:开关电源中常用EMI滤波器

合集下载

开关电源EMI滤波器原理与设计

开关电源EMI滤波器原理与设计

提高设备性能
EMI滤波器可以减少电磁干扰对周围 设备的影响,提高整个系统的性能和 稳定性。
EMI滤波器的分类与特点
分类
EMI滤波器根据不同的应用场景 和需求,可分为有源滤波器和无
源滤波器。
有源滤波器特点
有源滤波器通过放大电路和比较电 路实时检测干扰信号并消除,具有 较高的滤波效果,但成本较高。
无源滤波器特点
评估
通过对EMI滤波器性能的测试数据进行统计和分析,可以评 估其性能是否满足设计要求和标准。
优化建议
根据评估结果,可以提出针对性的优化建议,如改进滤波器 电路设计、选用更高性能的器件等。同时,也可以根据实际 应用场景和需求,对EMI滤波器进行定制化设计和生产。
05
EMI滤波器在开关电源中的应 用案例
01
02
03
插入损耗
滤波器对信号的衰减程度 ,通常用分贝(dB)表示 。
阻抗
滤波器对不同频率信号的 阻抗,通常用欧姆(Ω) 表示。
带宽
滤波器对信号的频率范围 ,通常用赫兹(Hz)表示 。
EMI滤波器的工作原理及作用机理
工作原理
EMI滤波器通过在电路中引入阻抗和感抗,对高频干扰信号进行抑制,从而减 小电磁干扰对电源的影响。
电设备的安全和稳定。
以上案例表明,EMI滤波器在开 关电源中具有广泛的应用,对于 提高电源性能、确保设备安全稳
定运行具有重要作用。
06
未来发展趋势与挑战
新型EMI滤波器技术的研究与发展
新型EMI滤波器技术
随着电子设备对性能和效率的要求不断提高,新型EMI滤波器技术的研究与发展成为重要趋势。这包 括研究新的滤波器结构、材料和设计方法,以提高EMI滤波器的性能和效率。

抑制开关电源电磁干扰的措施

抑制开关电源电磁干扰的措施

抑制开关电源电磁干扰的措施开关电源存在着共模干扰和差模干扰两种电磁干扰形式。

根据上篇分析的电磁干扰源,结合它们的耦合途径,可以从EMI 滤波器、吸收电路、接地和屏蔽等几个方面来抑制干扰,把电磁干扰衰减到允许限度之内。

1.交流输入EMI 滤波器滤波是一种抑制传导干扰的方法,在电源输入端接上滤波器可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。

电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。

电源进线端通常采用如图1 所示的EMI 滤波器电路。

该电路可以有效地抑制交流电源输入端的低频差模骚扰和高频段共模骚扰。

在电路中,跨接在电源两端的差模电容Cx1、Cx2 (亦称X 电容)用于滤除差模干扰信号,一般采用陶瓷电容器或聚脂薄膜电容器,电容值通常取0.1~ 0. 47F。

而中间连线接地的共模电容Cy1和Cy2 (亦称Y 电容)则用来短路共模噪声电流,取值范围通常为C1=C2 # 2200 pF。

抑制电感L1、L2 通常取100~ 130H,共模扼流圈L 是由两股等同并且按同方向绕制在一个磁芯上的线圈组成,通常要求其电感量L#15~ 25 mH。

当负载电流渡过共模扼流圈时,串联在火线上的线圈所产生的磁力线和串联在零线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。

因此,即使在大负载电流的情况下,磁芯也不会饱和。

而对于共模干扰电流,两个线圈产生的磁场是同方向的,会呈现较大电感,从而起到衰减共模干扰信号的作用。

2.利用吸收电路开关电源产生EMI 的主要原因是电压和电流的急剧变化,因而需要尽可能地降低电路中电压和电流的变化率( du/ dt 和di/ dt )。

采取吸收电路能够抑制EMI,其基本原理就是在开关关断时为其提供旁路,吸收积蓄在寄生分布参数中的能量,从而抑制干扰的发生。

可以在开关管两端并联如图2( a)所示的RC 吸收电路,开关管或二极管在开通和关断过程中,管中产生的反向尖峰电流和尖峰电压,可以通过缓冲的方法予以克服。

开关电源EMI滤波器原理与设计

开关电源EMI滤波器原理与设计

EMI滤波器的分类
按安装位置分类
可以分为输入EMI滤波器和输出EMI滤波器。输入EMI滤波器安装在电源输入 端,用于抑制电网中的电磁干扰;输出EMI滤波器安装在电源输出端,用于抑 制电源对负载的电磁干扰。
按元件分类
可以分为无源EMI滤波器和有源EMI滤波器。无源EMI滤波器主要由电感和电容 组成,有源EMI滤波器则增加了运算放大器等电子元件。
THANKS
感谢观看
工业控制
如PLC、伺服驱动、传感器等。
汽车电子
如发动机控制、刹车控制等。
案例一:某型号电源的EMI滤波器设计
背景介绍
某型号电源在运行过程中出现了严重 的EMI干扰问题。
设计方案
采用EMI滤波器对电源输出端的干扰 进行抑制。
设计细节
根据电源的输出阻抗特性和干扰频率 ,选择合适的滤波器元件和结构。
实验验证
提高效率
优化电路拓扑结构,以提高电源的效率。例如, 采用同步整流、软开关等技术。
降低电磁干扰
合理设计电路拓扑结构,降低开关电源本身产生 的电磁干扰。
改进元件布局和布线
优化元件布局
合理安排各个元件的位置,以减小它们之间的相互干扰。
合理布线
优化线路布局,减小电流回路的大小和复杂度,以降低线路的电 感和电阻。
样品制作阶段
制作滤波器样品,并进行初步 的测试和验证。
批量生产阶段
在生产线上进行批量生产,并 进行持续的测试和验证。
应用现场阶段
在实际使用现场进行应用和验 证,确保滤波器的性能和效果
符合设计要求。
06
开关电源EMI滤波器应用 与案例分析
应用领域
电力电子设备
如电源、逆变器、变频器等。

开关电源的EMI滤波器设计的开题报告

开关电源的EMI滤波器设计的开题报告

开关电源的EMI滤波器设计的开题报告一、选题背景及意义随着电子产品的普及和发展,开关电源已经成为了一个十分重要和普遍的电源类型。

开关电源具有体积小、效率高、维护简单等优点,但是由于其工作方式的特点,会产生较多的电磁干扰信号,对其它电子设备的正常工作造成一定的影响。

因此,在开关电源中应用EMI(电磁干扰)滤波器是必不可少的。

EMI滤波器是一种电路组件,能够有效地降低开关电源中的EMI干扰信号,从而提高设备的抗干扰能力,保证数据的可靠性和设备工作稳定性。

它能够通过选择合适的滤波器结构和元器件,对开关电源中产生的高频噪声进行滤波和屏蔽,从而减少电磁干扰和电源的噪声。

因此,本篇论文选取开关电源的EMI滤波器设计作为课题,旨在通过对滤波器结构和元器件的选择和分析,设计出一种有效的EMI滤波器,为开关电源应用提供指导和借鉴。

二、课题研究内容本题的主要研究内容包括以下两个方面:1、EMI滤波器的基本原理与设计方法:介绍EMI滤波器的基本原理及EMI源,重点探讨滤波器的设计方法和结构特点,对滤波器元件的选取和电路拓扑进行分析和优化。

2、开关电源中EMI滤波器的设计:根据EMI滤波器的设计原理和方法,结合开关电源的特性,设计一种适合开关电源的EMI滤波器,包括滤波器的拓扑结构、元器件的选择和最终电路方案。

三、研究意义本课题的研究成果,有以下几个方面的意义:1、EMI滤波器设计的研究对于提高开关电源的抗干扰能力,保证设备的数据可靠性,工作稳定性和电磁兼容性方面具有实际意义。

2、本研究成果对于进一步完善EMI滤波器的设计方法和研究具有一定的借鉴意义,并对工程实践具有一定的指导作用。

3、本研究针对开关电源的EMI滤波器设计,未来可进行推广和应用,在电路设计和电子设备维护过程中发挥积极作用。

四、研究方法本研究采取文献调研、理论研究和电路仿真等方法进行研究。

首先通过查阅文献和咨询相关专家,了解EMI滤波器的设计原理和方法;然后针对开关电源的特性,结合EMI滤波器的设计方法,进行滤波器电路的模拟仿真分析,得到最终的方案设计。

开关电源EMI滤波器的设计

开关电源EMI滤波器的设计

开关电源EMI滤波器的设计要使EMI滤波器对EMI信号有最佳的衰减特性,设计与开关电源共模、差模噪声等效电路端接的EMI滤波器时,就要分别设计抗共模干扰滤波器和抗差模干扰滤波器才能收到满意的效果。

1.抗共模干扰的电感器的设计电感器是在同一磁环上由两个绕向与匝数都相同的绕组构成。

当信号电流在两个绕组流过对,产生的磁场恰好抵消,它可几乎无损耗地传输信号。

因此,共模电流可以认为是地线的等效干扰电压Ug所引起的干扰电流。

当它流经两个绕组时,产生的磁场同相叠加,电感器对干扰电流呈现出较大的感抗,由此起到了抑制地线干扰的作用。

电路如图1所示。

信号源至负载RL连接线的电阻为Rcl、Rc2,电感器自感为L1、L2,互感为M,设两绕组为紧耦合,则得到L1=L2=M。

由于Rc1和RL串联且Rc1<<RL,则可以不考虑Vg, Vg 被短路可以不考虑Vg的影响。

其中(Is是信号电流,Ig是经地线流回信号源的电流。

由基尔霍夫定律可写出:式(2)表明负载上的信号电压近似等于信号源电压,即共模电感传输有用信号时几乎不引入衰减。

由(1)式得知,共模千扰电流Ig随f:fc的比值增大而减小。

当f:fc的比值趋于无穷时,Ig=0,即干扰信号电流只在电感器的两个绕组中流过而不经过地线,这样就达到了抑制共模干扰的作用。

所以,可以根据需要抑制的干扰电压频率来设置电感器截止频率。

一般来说,当干扰电压频率f≥5fc时,即Vn:Vg≤0.197,就可认为达到有效抑制地线中心干扰的目的。

2.抗差模干扰的滤波器设计差模干扰的滤波器可以设计成Π型低通滤波器,电路如图2所示。

这种低通滤波器主要是设置电路截止频率人的值达到有效地抑制差模传导干扰的目的。

开关电源EMI滤波器原理与设计研究

开关电源EMI滤波器原理与设计研究
EMI滤波器工作原理
被动式EMI滤波器主要通过电感和电容的组合来实现干扰的吸收和抑制。而主 动式EMI滤波器则通过在信号线上加入特殊的电子器件来消除干扰。
EMI耗
额定电压是EMI滤波器的重要参数之一,它 表示滤波器可以承受的最大电压值。
插入损耗是指EMI滤波器接入电路后,对信 号传输造成的影响。插入损耗越小,说明滤 波器的性能越好。
群时延
温度系数
群时延是指滤波器对信号传输时间的影响。 群时延越小,说明滤波器的传输速度越快。
温度系数是指EMI滤波器在温度变化时,其 性能变化的程度。温度系数越小,说明滤波 器的稳定性越好。
02
开关电源EMI滤波器设计基 础
EMI滤波器电路拓扑结构
1 2
共模滤波电路
用于减小电源线上共模噪声,包括电阻、电容 和电感等元件。
抑制共模噪声
通过采用共模扼流圈等元件,可以抑制共模噪声,提高滤波 器的性能。
抑制差模噪声
采用差模扼流圈等元件,可以抑制差模噪声,提高滤波器的 性能。
EMI滤波器与整流器的配合设计
整流器与滤波器的配合设计
整流器输出的波形对EMI滤波器的性能有很大影响,因此需要合理设计整流 器与滤波器之间的电路连接方式,以减小整流器对EMI滤波器性能的影响。
2023
《开关电源emi滤波器原理 与设计研究》
目录
• 开关电源EMI滤波器概述 • 开关电源EMI滤波器设计基础 • 开关电源EMI滤波器优化设计 • 开关电源EMI滤波器性能评估 • 开关电源EMI滤波器设计实例 • 结论与展望
01
开关电源EMI滤波器概述
EMI滤波器的定义和作用
EMI滤波器定义
整流器与滤波器的参数匹配

开关电源EMI滤波器原理与设计研究

开关电源EMI滤波器原理与设计研究

开关电源EMI滤波器原理1 EMI滤波器设计原理在开关电源中,主要的EMI骚扰源是功率半导体器件开关动作产生的d v/d t和d i/d t,因而电磁发射EME(Electromagnetic Emission)通常是宽带的噪声信号,其频率范围从开关工作频率到几MHz。

所以,传导型电磁环境(EME)的测量,正如很多国际和国家标准所规定,频率范围在0.15~30MHz。

设计EMI滤波器,就是要对开关频率及其高次谐波的噪声给予足够的衰减。

基于上述标准,通常情况下只要考虑将频率高于150kHz的EME衰减至合理范围内即可。

在数字信号处理领域普遍认同的低通滤波器概念同样适用于电力电子装置中。

简言之,EMI滤波器设计可以理解为要满足以下要求:1)规定要求的阻带频率和阻带衰减;(满足某一特定频率f stop有需要H stop的衰减);2)对电网频率低衰减(满足规定的通带频率和通带低衰减);3)低成本。

1.1 常用低通滤波器模型EMI滤波器通常置于开关电源与电网相连的前端,是由串联电抗器和并联电容器组成的低通滤波器。

如图1所示,噪声源等效阻抗为Z source、电网等效阻抗为Z sink。

滤波器指标(f stop和H stop)可以由一阶、二阶或三阶低通滤波器实现,滤波器传递函数的计算通常在高频下近似,也就是说对于n阶滤波器,忽略所有ωk相关项(当k<n),只取含ωn相关项。

表1列出了几种常见的滤波器拓扑及其传递函数。

特别要注意的是要考虑输入、输出阻抗不匹配给滤波特性带来的影响。

图1 滤波器设计等效电路表1 几种滤波器模型及传递函数1.2 EMI滤波器等效电路传导型EMI噪声包含共模(CM)噪声和差模(DM)噪声两种。

共模噪声存在于所有交流相线(L、N)和共模地(E)之间,其产生来源被认为是两电气回路之间绝缘泄漏电流以及电磁场耦合等;差模噪声存在于交流相线(L、N)之间,产生来源是脉动电流,开关器件的振铃电流以及二极管的反向恢复特性。

开关电源EMI滤波器的正确选择与使用1

开关电源EMI滤波器的正确选择与使用1

开关电源EMI滤波器的正确选择与使用(连载二)2额定电流与环境温度EMI滤波器一般采用高导磁率软磁材料锰锌铁氧体,初始导磁率μi=700~10000,但其居里点温度不高,优质的仅为130℃左右。

导磁率越高,居里点温度越低,典型曲线如图10所示。

除特殊说明外,EMI滤波器说明书给出的额定电流均指室温+25℃的值;同样,给出的典型插入损耗或曲线也均指室温+25℃的值。

随着环境温度的升高,主要由电感导线的损耗、磁芯损耗以及周围环境温度等原因导致温度高于室温,结果难于确保插入损耗的性能,甚至烧坏滤波器。

由于滤波电容的最高工作温度受到限制也是+85℃。

我们应该根据实际可能的最大工作电流和工作环境温度来选择滤波器额定电流。

图10 居里点温度曲线图11额定电流与温度的关系工作电流、额定电流与环境温度之间存在如下关系:式中:Ip——容许的最大工作电流;IR——室温+25℃时的额定电流;Tmax——容许的最高工作温度,+85℃;Ta——环境温度;TH——室温(+25℃)。

也可用曲线表示(参见图11)。

曲线表示Ip/IR∝Ta。

举例说明:+25℃Ip=IR;+45℃Ip=0.816IR;+55℃Ip=0.5IR;+85℃Ip=0.0因此,要根据工作温度来正确选择滤波器的额定电流;或者用改善滤波器的散热条件(工作环境)来确保滤波器的安全使用。

这样,滤波器务必安装在有散热作用的机架、机壳上,切忌安装在绝缘材料上。

3耐压、泄漏电流与安全3.1耐压与安全由于EMI滤波器安装在AC电网的输入端,所以除了承受开关电源(滤波器的负载)产生的尖峰脉冲干扰电压外,还要承受来自电网的浪涌电压(电流),特别是浪涌电压,其持续时间长(ms级),能量大(2000伏浪涌电压是经常出现的)。

这些干扰电压由滤波器的Cx、Cy承受。

因此,要求使用专为EMI滤波器设计的Cx、Cy。

目前,据了解,因内尚没有这类电容器生产厂家。

电容Cx或Cy被浪涌电压击穿产生的后果,是Cx被击穿短路,相当于AC电网被短路,至少造成设备停止工作;Cy击穿短路,相当于将AC电网的电压加到设备的外壳,它直接威胁人身安全的同时,波及所有与金属外壳为参考地的电路安全,往往导致某些电路的烧毁。

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。

EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。

EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。

EMI滤波器的原理是基于电流和电压的相位关系来实现的。

开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。

EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。

设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。

根据具体的应用环境和要求,选择合适的滤波器工作频率范围。

2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。

常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。

3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。

过渡区域越宽,滤波器的性能越好。

过渡区域的宽度需要根据具体要求进行设计。

4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。

在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。

设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。

常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。

其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。

总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。

通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用于抑制开关电源产生的电磁干扰(EMI)的一种电路。

开关电源工作时,因为开关元件的开闭引起的瞬态电流和电压变化,会在电源线上产生高频噪声干扰,通过电磁辐射和传导的方式传播到其他电路中,对其他设备和系统产生干扰。

EMI滤波器的设计旨在通过选择合适的滤波器拓扑结构、滤波器元件和参数,以及合理布局和连接方式,来有效地抑制开关电源产生的高频噪声。

EMI滤波器的原理是通过串联和并联等方式构成一个低通滤波器,将开关电源的高频噪声滤除,使其只能在设定的频率范围内传递,从而减少对其他设备和系统的干扰。

EMI滤波器的设计研究需考虑以下几个方面:1.滤波器拓扑结构选择:常见的EMI滤波器拓扑结构包括LC滤波器、RC滤波器和LCL滤波器等。

不同的拓扑结构适用于不同的滤波需求,需根据实际应用场景选择适合的拓扑结构。

2.滤波器元件选择:滤波器中的元件包括电感、电容和电阻等。

选择合适的元件需要考虑元件的频率响应特性、阻抗特性、容值和功率等参数。

3.滤波器参数优化:滤波器的参数优化可以通过频率响应曲线和阻抗匹配等方法进行,以确保滤波器在设计频率范围内能够有效地滤除高频噪声。

4.布局和连接方式设计:合理的布局和连接方式可以减少电磁辐射和传导的路径,从而进一步提高滤波器的性能。

此外,还需对滤波器进行实验验证,通过在实际电路中的应用来评估滤波器的性能和有效性。

总之,开关电源EMI滤波器的原理和设计研究是为了抑制开关电源的高频噪声干扰,需要对滤波器的拓扑结构、元件选择、参数优化以及布局和连接方式进行综合考虑和设计,以提高滤波器的性能和效果。

开关电源EMI滤波器的应用方法探讨

开关电源EMI滤波器的应用方法探讨

www�ele169�com | 7电子科技开关电源本身拥有质量和效率双高的特点,而且能使电能多样变换。

得到工业和民用领域的双重青睐,但由于开关电源和功率开关器件所带来的电磁干扰,使得电磁影响在电源内部愈演愈烈,同时使得其他电子设备及电源自身工作越发不利。

除此之外,为顺应高频化的发展趋势,开关电源必然迈向小型化发展的道路,随之而来却是更加强烈的电磁干扰。

为了解决这一问题,最行之有效的办法就是加装EMI 滤波器,由于其应用的广泛性,EMI 滤波器显得越来越重要。

1 MI 滤波器简介 ■1.1 开关电源简介一个高频开关电源主要是由下面的几个电路构成,它的基本结构如图1所示。

(1)功率电路:指的是开关电源的主电路部分,由交流电输入端口到直流电输出端口的电路通道,包含了四个方面:① 输入滤波器; ② 整形滤波电路; ③ 逆变; ④ 输出的整形滤波电路。

(2)检测电路:对系统工作的状态进行监测,将得到的数据传送给保护模块,并且提供个给显示模块输出。

(3)保护电路与控制电路:保护模块依据检测模块检测到的参数,和电路的限制相比较,将数据结果传送到控制模块,再由控制模块对系统或设备实施各类保护措施;控制电路是把输出由反馈电路采集的数据与标准值做差,然后将差值放大去控制功率开关管的占空比,以调整输出的大小。

(4)辅助电源:为电路除功率电路以外的模块提供电源。

■1.2 EMI 滤波器简介EMI 滤波器广泛存在于电源开关中,长期以来,科研人员一直在不懈坚持研究对抗干扰的方法与途径,在传统的长期工程实践中,人们归纳总结出屏蔽、系统布局、合理接地以及滤波等行之有效的对抗电磁干扰的举措。

在实际运用中,比较好的手段是在屏蔽室控制电磁干扰所带来的辐射信号,减少电磁干扰信号的传导EMI 则需依靠滤波技术,由于传导方式是电磁干扰的主要方式,所以主要依靠EMI 滤波器来隔阻开关电源EMI [1]。

EMI 滤波器本质上都是低通滤波器,理想情况下按照阻抗最大不匹配原则:当源阻抗是高阻时,滤波器的输入阻抗应为低阻,反之亦然。

开关电源EMI滤波器的正确选择与使用

开关电源EMI滤波器的正确选择与使用

开关电源EMI滤波器的正确选择与使用1插入损耗和滤波电路的选择在用户选择滤波器时,最关心插入损耗性能。

但是,往往插入损耗相近的滤波器,在实际运用中效果相差甚远。

究其主要原因是,相近插入损耗的滤波器可由不同的电路实现。

这和理论分析是吻合的,因为插入损耗本身是个多解函数。

所以,选择滤波器时首先应选择适合你所用的滤波电路和插入损耗性能。

要做到这一点,就要求了解所使用电源的等效噪声源阻抗和所需要对噪声的抑制能力。

这符合“知己知彼,百战百殆”的客观规律。

那么滤波电路和电源等效噪声之间存在什么样的关系呢?众所周知,EMI滤波器是由L、C构成的低通器件。

为了在阻带内获得最大衰减,滤波器输入端和输出端的阻抗需与之连接的噪声源阻抗相反,即对低阻抗噪声源,滤波器需为高阻抗(大的串联电感);对高阻抗噪声源,滤波器就需为低阻抗(大的并联电容)。

对于EMI滤波器,这些原则应用于共模和差模中。

如按此原则选用的滤波器,在实际运用中仍存在效果相差很多的现象,特别发生在重载和满载的情况下。

造成这一问题的主要原因可能是滤波器中的电感器件在重载和满载时,产生饱和现象,致使电感量迅速下降,导致插入损耗性能大大变坏。

其中尤以有差模电感的滤波器为多。

因差模电感要流过电源火线或零线中的全部工作电流,如果差模电感设计不当,电流一大,就很容易饱和。

当然也不排除共模扼流圈,因生产工艺水平较差,两个绕组不对称,造成在重载或满载时产生磁饱和的可能。

图1 共模滤波器模型1.1.2差模滤波电路由于开关电源的开关频率谐波噪声源阻抗为低阻抗,所以与之相对应的滤波器输出端应是高阻抗串联大电感LDM。

AC电网火线和零线之间是低阻抗,所以与之对应的滤波器输入端也应是高阻抗串联大电感LDM。

如果想再进一步抑制差模噪声,可以在滤波器输入端并接线间电容CX1,条件是它的阻抗要比AC电网火线、零线之间的阻抗还要低得多。

开关电源工频谐波噪声源阻抗是高阻抗,所以与之相对应的滤波器输出端应是低阻抗并联大电容CX2。

开关电源EMI滤波器原理与设计

开关电源EMI滤波器原理与设计

02
EMI滤波器的工作原 理
EMI滤波器的电路组成
EMI滤波器通常由电感、电容和电阻等元件组成,根据需要还可以加入铁氧体磁 珠、二极管等其他元件。其中,电感和电容的作用是阻止特定频率的电磁波通过 ,而电阻则可以吸收电磁波的能量。
EMI滤波器的电路设计需要根据开关电源的工作频率、电磁干扰的频率和幅度、 以及所需的滤波效果等因素来确定元件的参数和电路结构。
利用仿真软件对所设计 的滤波器电路进行仿真 验证,确保其性能指标 符合要求。
将所设计的滤波器电路 制作成样品,并进行测 试,确保其实际性能符 合设计要求。
参数选择与Leabharlann 算确定插入损耗插入损耗是指滤波器插入前后信 号电平的差值,是衡量滤波器性 能的重要指标之一。插入损耗的 计算方法包括频域法和时域法等
EMI滤波器的频带宽度表示其 能够抑制的电磁波频率范围。 频带越窄,表示滤波器对电磁 波的抑制效果越集中;频带越 宽,表示滤波器对电磁波的抑 制效果越广泛。
EMI滤波器的耐压等级表示其 能够承受的最大电压。在选择 滤波器时,需要根据开关电源 的最大输出电压来确定耐压等 级。
03
EMI滤波器的设计方 法
方法
根据电源的特性,选择合 适的EMI滤波器器件,包 括电容器、电感器、二极 管等,进行电路设计。
结果
通过优化设计,有效地降 低了电源的电磁干扰,提 高了电源的稳定性和可靠 性。
案例二
1 2 3
背景
某复杂电路板在运行过程中出现了信号失真和噪 声干扰问题,需要进行EMI滤波器优化设计。
方法
对电路板进行电磁兼容性分析,找出电磁干扰的 主要来源,选择合适的EMI滤波器器件和电路拓 扑结构,进行优化设计。
VS

开关电源emi滤波器原理与设计

开关电源emi滤波器原理与设计

1. 传导发射测试:测量开关电源EMI滤波器在电源线上 的传导发射电平。
3. 插入损耗测试:测量滤波器插入前后信号的衰减量, 反映滤波器的抑制能力。
测试结果分析与改进建议
结果分析
根据测试数据,分析开关电源EMI滤波器的性能,包括传导发射、辐射发射和 插入损耗等指标。
改进建议
根据分析结果,提出针对性的改进措施和建议,如优化滤波器电路设计、改进 元件参数等,以提高滤波器的性能。
05
开关电源EMI滤波器应用案例 分析
应用场景与案例选择
应用场景
开关电源广泛应用于各种电子设备中,如计算机、通信设备、家电等。在这些设 备中,EMI(电磁干扰)问题常常成为影响设备性能和稳定性的重要因素。
案例选择
为了更好地说明开关电源EMI滤波器的应用,本文选择了两个具有代表性的案例 进行分析,分别是计算机电源供应系统(PSU)和电动汽车充电桩。
03
开关电源EMI滤波器元件选择 与布局
元件选择的原则与技巧
元件选择的原则 选择低ESR(等效串联电阻)电容 选择低DCR(直流电阻)电感
元件选择的原则与技巧
选择低电阻、低电感的PCB(印刷电路板) 元件选择的技巧
根据EMI滤波器的性能要求,选择适当的元件值和类型
元件选择的原则与技巧
考虑元件的可靠性、耐温性能和寿命
考虑元件的成本和可获得性
元件布局的要点与注意事项
元件布局的要点 合理安排输入和输出线,避免平行布线
尽量减小电感器和电容器的距离
元件布局的要点与注意事项
输入和输出线应远离 PCB边缘
避免在PCB上形成大 的环路
元件布局的注意事项
元件布局的要点与注意事项
避免使用过长的元件引脚

开关电源EMI滤波器设计与验证

开关电源EMI滤波器设计与验证

开关电源EMI滤波器设计与验证作者:孟晶杨勇熊立来源:《现代电子技术》2014年第12期摘要:开关电源已广泛应用于电力电子设备中,作为一种EMI源,在设计电源电路中需前置EMI滤波器抑制传导干扰。

CE102作为检测电源线传导干扰的一项电磁兼容性试验,成为电子设备尤其是军用电子设备的必测项目,测试超标即意味着设计的失败。

设计了一个EMI 滤波器,通过CE102测试和分析发现并解决设计存在的问题,并通过整改后的试验验证,证明设计的有效性。

关键词:开关电源; EMI滤波器;电磁兼容性; CE102中图分类号: TN710⁃34 文献标识码: A 文章编号: 1004⁃373X(2014)12⁃0137⁃03Abstract: Switching power supply, as a electromagnetic interference (EMI) source, is widely used in power electronic equipments. The EMI filter should be prepositioned in power circuit design to suppress the conducted EMI. CE102 is taken as a project of EMC tests to detect the conducted interference of power⁃line. It is a necessary measuring project of electronic equipments,especially for military electronic equipments. It means that the design of the power system fails if the interference exceeds the standard. An EMI filter was designed to find and solve the problems of the design by CE102 test and analysis. The effectiveness of the design was proved by CE102 after the test validation.Keywords: switchingpower supply; EMI filter; EMC; CE1020 引言随着开关电源的迅速发展和广泛应用,它们引起的电磁泄露和电磁辐射问题越来越严重。

设计开关电源的EMI滤波器

设计开关电源的EMI滤波器

开关电源应用最为广泛,但EMI最为严重。

开关电源EMI主要来源:其一:在整流环节中,由于滤波电容器容量很大,整流管仅在交流电压峰值附近导通,此时电容器流经较大的充电尖峰电流,产生了丰富的谐量分量;其二:由于DC/DC变换器开关频率在几十KHZ至几百KHZ之间,开关管电流含有丰富的谐波分量,而且是开关电源主要电磁干扰源。

由于开关电源EMI主要是传导干扰,采用滤波器来抑制是最主要的手段。

EMI滤波器设计与一般信号滤波器设计完全不同,必须采取特殊设计方法。

本文采用完全有别于信号滤波器的设计方法,采用“三点频率法”设计了双级LC滤波器,滤波器效果令人满意。

1 滤波器设计双级LC网络插入开关电源电路中的位置如图1所示。

图1 LC网络在开关电源电路中的位置假定直流电源侧为低阻抗电压源Us,DC/DC变换器输入端为高阻抗电流源i(t)。

那么LC滤波器只能选择“ Γ”型结构,最简单的双“ Γ”型LC网络如图2所示。

其频域传递函数为图2 双级LC网络由于LC网络谐振时,会产生很大的电流(电压)峰值,这个网络有3个频率点的谐振峰值是必须限制,否则,会产生更大的EMI。

限制这3个频率点的峰值是设计这个滤波器的主要指导思想。

这3个频率点分别是:由于LC网络谐振时,会产生很大的电流(压)峰值,这个网络有3个频率点的谐振峰值是必须限制,否则,会产生更大的EMI。

限制这3个频率点的峰值是设计这个滤波器的主要指导思想。

这3个频率点分别是:第一级滤波器的谐振频率:第二级滤波器的谐振频率:第3个频率点就是DC/DC 变换器的开关频率f。

下面具体讨论滤波器设计方法,即选取LC 网络中元件参数的方法。

由上面3个式子,3个频率点对应的传递函数的幅值分别为:元件参数选取方法讨论如下:为了限制1 f 点的谐振峰值,要求插入衰减20logH1=20logC1/C2<0,即C1/C2<0。

根据经验,它们的比值范围为C1/C2=0.1~0.5 (7)为了限制f2点的谐振峰值,同理选取L1/L2=0.1~0.5 (8)为了限制f 点的谐振峰值,要求20logH3=-20~-150dB,即H3=0.1~0.5 (9)元件参数选取步骤归纳如下:(1)由(7)~(9)式确定了比值,这样只有二个参数是独立的;(2)由于滤波器负载侧(开关电流i(t)侧)谐波分量较大,C2应选一个大容量电容器;(3)由(1)、(2)步结果代入(9)式,就可以确定另一个独立参数。

开关电源输入EMI滤波器设计与仿真(完整版)实用资料

开关电源输入EMI滤波器设计与仿真(完整版)实用资料

开关电源输入EMI滤波器设计与仿真(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)开关电源输入EMI滤波器设计与仿真曹丽萍张勋陈晨刘韬摘要:开关电源中常用EMI滤波器抑制共模干扰和差模干扰。

三端电容器在抑制开关电源高频干扰方面有良好性能。

文中在开关电源一般性能EMI滤波器电路结构基础上,给出了使用三端电容器抑制高频噪声的滤波器结构。

并使用PSpice软件对插入损耗进行仿真,给出了仿真结果。

关键词:开关电源;EMI滤波器;三端电容器;插入损耗1、开关电源特点及噪声产生原因随着电子技术的高速发展,电子设备种类日益增多,而任何电子设备都离不开稳定可靠的电源,因此对电源的要求也越来越高。

开关电源以其高效率、低发热量、稳定性好、体积小、重量轻、利于环境保护等优点,近年来取得快速发展,应用领域不断扩大。

开关电源工作在高频开关状态,本身就会对供电设备产生干扰,危害其正常工作;而外部干扰同样会影响其正常工作。

开关电源干扰主要来源于工频电流的整流波形和开关操作波形。

这些波形的电流泄漏到输入部位就成为传导噪声和辐射噪声,泄漏到输出部位就形成了波纹问题。

考虑到电磁兼容性的有关要求,应采用EMI电源滤波器来抑制开关电源上的干扰。

文中主要研究的是开关电源输入端的EMI滤波器。

2、EMI滤波器的结构开关电源输入端采用的EMI滤波器是一种双向滤波器,是由电容和电感构成的低通滤波器,既能抑制从交流电源线上引入的外部电磁干扰,还可以避免本身设备向外部发出噪声干扰。

开关电源的干扰分为差模干扰和共模干扰,在线路中的传导干扰信号,均可用差模和共模信号来表示。

差模干扰是火线与零线之间产生的干扰,共模干扰是火线或零线与地线之间产生的干扰。

抑制差模干扰信号和共模干扰信号普遍有效的方法就是在开关电源输入电路中加装电磁干扰滤波器。

EMI滤波器的电路结构包括共模扼流圈(共模电感)L,差模电容Cx和共模电容Cy。

共模扼流圈是在一个磁环(闭磁路)的上下两个半环上,分别绕制相同匝数但绕向相反的线圈。

改进型EMI滤波器在开关电源中的应用

改进型EMI滤波器在开关电源中的应用

改进型EMI滤波器在开关电源中的应用赵秀芬;王先宏;孔翠香;李怡【摘要】EMI滤波器主要用来在开关电源中抑制共模和差模干扰.通过采用改进型的EMI滤波器,提高高频抗干扰能力,运用PSPICE仿真软件对一般EMI滤波电路和改进型EMI滤波电路进行仿真,并在110 V开关电源中进行仿真实验,解决了抗干扰问题.【期刊名称】《北京工业职业技术学院学报》【年(卷),期】2019(018)001【总页数】5页(P25-29)【关键词】EMI滤波器;插入损耗;开关电源【作者】赵秀芬;王先宏;孔翠香;李怡【作者单位】北京工业职业技术学院电气与信息工程学院,北京100042;北京工业职业技术学院电气与信息工程学院,北京100042;井冈山大学,江西吉安343009;宁夏送变电工程有限公司,银川751200【正文语种】中文【中图分类】TM460 引言随着现代技术的发展,高频开关电源由于其在功率、效率和体积等诸多优点,被广泛应用于电气行业、国防、工业等各个方面[1]。

而开关电源应用于交流电网时,由于二极管组成的整流电路输入电流断续,不仅降低了输入功率因数,还产生了大量的高次谐波污染了电网[2]。

另外,高频开关电源工作频率在几十kHz到数MHz之间,对供电设备产生一定的电磁干扰和电网噪声。

减少电磁干扰的方法有很多,诸如采取屏蔽措施、接地措施、滤波措施等。

其中应用最多的是利用EMI滤波器,来抑制开关电源产生向电网反馈的干扰,也可以抑制来自电网的噪声对电源本身的侵害。

在滤波中多采用滤波元件,如穿心电容器、三端电容器、铁氧化磁环,它们能够改善电路的滤波特性。

因此,正确的安装和使用滤波器,是抗干扰技术的重要组成部分。

开关稳压电源抗干扰常用的电路形式较多,应用较广的是一级或二级EMI(电磁干扰)滤波电路。

1 EMI滤波器的结构EMI电源滤波器实质上由差模电容、共模电容、热敏电阻及共模扼流线圈等组成。

开关电源采用的EMI滤波器是一种双向滤波器,由电感器和电容器组成的低通滤波器,不仅能抑制交流电源线上的外部电磁干扰,也能避免自身设备向外部电磁干扰。

常用在开关电源中做EMI滤波器的安规电容

常用在开关电源中做EMI滤波器的安规电容

常用在开关电源中做EMI滤波器的安规电容1.安规电容的概念安规电容是指电容器失效后,不会导致电击,不危及人身安全的安全电容器。

安规电容通常只用于抗干扰电路中的滤波作用。

它们用在电源滤波器里,起到电源滤波作用,分别对共模,差模干扰起滤波作用。

出于安全考虑和EMC考虑,一般在电源入口建议加上安规电容。

2.安规电容与普通电容的异同点安规电容的放电和普通电容不一样,普通电容在外部电源断开后电荷会保留很长时间,如果用手触摸就会被电到,而安规电容则没这个问题。

在交流电源输入端,一般需要增加3个安全电容来抑制EMI 传导干扰。

图1 安规电容应用在开关电源中3.安规电容的分类安规电容分为x 型和y 型。

交流电源输入分为3 个端子:火线L/零线N/地线G,(L=Line,N=Neutral, G=Ground)。

跨于“L-N”之间,即“火线-零线”之间的是X 电容;跨于“L-G/N-G”之间,即“火线-地线或零线-地线”之间的是Y 电容。

火线与零线之间接个电容就像是“X”,而火线与地线之间接个电容像个“Y”4.安规电容应用在开关电源的EMI滤波器电路如下图所示为EMI电路,该EMI滤波器应用在220V交流电与整流电路之间,用来滤除市电中的电压瞬变和高频干扰,同时也防止开关电源中的器件产生的高频干扰传输到市电中。

安规电容应用在开关电源的EMI滤波器5.安规电容的安全等级安规电容安全等级应用中允许的峰值脉冲电压过电压等级(IEC664)X1 >2.5kV ≤4.0kV ⅢX2 ≤2.5kV ⅡX3 ≤1.2kV ——安规电容安全等级绝缘类型额定电压范围Y1 双重绝缘或加强绝缘≥ 250VY2 基本绝缘或附加绝缘≥150V ≤250VY3 基本绝缘或附加绝缘≥150V ≤250VY4 基本绝缘或附加绝缘<>。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:开关电源中常用EMI滤波器抑制共模干扰和差模干扰。

三端电容器在抑制开关电源高频干扰方面有良好性能。

文中在开关电源一般性能EMI滤波器电路结构基础上,给出了使用三端电容器抑制高频噪声的滤波器结构。

并使用PSpice软件对插入损耗进行仿真,给出了仿真结果。

1 开关电源特点及噪声产生原因
随着电子技术的高速发展,电子设备种类日益增多,而任何电子设备都离不开稳定可靠的电源,因此对电源的要求也越来越高。

开关电源以其高效率、低发热量、稳定性好、体积小、重量轻、利于环境保护等优点,近年来取得快速发展,应用领域不断扩大。

开关电源工作在高频开关状态,本身就会对供电设备产生干扰,危害其正常工作;而外部干扰同样会影响其正常工作。

开关电源干扰主要来源于工频电流的整流波形和开关操作波形。

这些波形的电流泄漏到输入部位就成为传导噪声和辐射噪声,泄漏到输出部位就形成了波纹问题。

考虑到电磁兼容性的有关要求,应采用EMI电源滤波器来抑制开关电源上的干扰。

文中主要研究的是开关电源输入端的EMI滤波器。

2 EMI滤波器的结构
开关电源输入端采用的EMI滤波器是一种双向滤波器,是由电容和电感构成的低通滤波器,既能抑制从交流电源线上引入的外部电磁干扰,还可以避免本身设备向外部发出噪声干扰。

开关电源的干扰分为差模干扰和共模干扰,在线路中的传导干扰信号,均可用差模和共模信号来表示。

差模干扰是火线与零线之间产生的干扰,共模干扰是火线或零线与地线之间产生的干扰。

抑制差模干扰信号和共模干扰信号普遍有效的方法就是在开关电源输入电路中加装电磁干扰滤波器。

EMI滤波器的电路结构包括共模扼流圈(共模电感)L,差模电容Cx和共模电容Cy。

共模扼流圈是在一个磁环(闭磁路)的上下两个半环上,分别绕制相同匝数但绕向相反的线圈。

两个线圈的磁通方向一致,共模干扰出现时,总电感迅速增大产生很大的感抗,从而可以抑制共模干扰,而对差模干扰不起作用。

为了更好地抑制共模噪声;
共模扼流圈应选用磁导率高,高频性能好的磁芯。

共模扼流圈的电感值与额定电流有关。

差模电容Cx通常选用金属膜电容,取值范围一般在0.1~1μF。

Cy用于抑制较高频率的共模干扰信号,取值范围一般为2200~6800 pF。

常选
用自谐振频率较高的陶瓷电容。

由于接地,共模电容Cy上会产生漏电流Ii-d。

因为漏电流会对人体安全造成伤害,所以漏电流应尽量小,通常<1.0 mA。

共模电容取值与漏电流大小有关,所以不宜过大,取值范围一般为2200~4700 pF。

R为Cx的泄放电阻。

电源滤波器的性能很大程度上取决于其端阻抗,根据信号传输理论,滤波器输入端与电源端的端接、滤波器输出端与负载端的端接应遵循阻抗极大不匹配原则。

因此,滤波器设计时应遵循:(1)源内阻是高阻(低阻)的,滤波器输入阻抗就应该是低阻(高阻);(2)负载是高阻(低阻)的,则滤波器输出阻抗就应该是低阻(高阻)。

对EMI信号来说,电感是高阻,电容是低阻,则有图1中的4种滤波器选用类型。

电源滤波器一般用来抑制30 MHz以下频率范围的噪音,但对30 MHz以上的辐射发射干扰也有一定的抑制作用。

根据开关电源共模、差模干扰的特点。

可以按干扰的分布大概划分为3个频段:0.15~0.5 MHz差模干扰为主;0.5~5 MHz差模、共模干扰共存;5~30 MHz共模干扰为主。

3 插入损耗
插入损耗是*价滤波器性能的主要指标,它是频率的函数。

插入损耗的定义为,没有滤波器接入时,从噪声源传输到负载的功率P1和接入滤波器后噪声源传输到负载的功率P2之比,用dB表示。

插入损耗越大,说明滤波器抑制干扰的能力越强。

滤波器接入前后的电路图,如图3(a)和图3(b)所示。

滤波器的插入损耗由式(1)表示。

4 三端电容器
在高频线路中,因为一般电容器的引线具有电感分量,所以影响了其高频特性。

而三端电容器在结构上可以做到与电容器串联的剩余电感分量很小,因此其插入损耗特性优于两端电容器,从而改善了电容器的高频特性。

三端电容器有引线式和片状式两种。

通常采用旁路电容抑制高频噪声。

实际的电容器不仅具有电容C,还有等效串联电阻ESR和等效串联电感ESL。

由于寄生电感的影响,对于一个实际的电容存在着自谐振频率。

在这个频率以上时,电容呈感性。

元件的寄生参数也会极大地影响滤波器的高频特性。

电容的寄生电感是主要的寄生参数,而对于电感来说,寄生电容是主要的寄生参数。

电容器用作旁路电容时,如图4(a)所示,两端电容器一端接地,另一端与信号线连接。

三端电容器一端接地,其余两端与电容器的一个电极相连并串联到信号线上,如图4(b)所示。

一般的两端电容器由于与其电路连接的引线电感或电极所产生的等效串联电感较大,所以自谐振点较低,旁通效应也随之降低。

采用三端电容器可有效改善此缺陷。

原因在于三端电容器中流入地的电流与信号线中电流方向正交,所以其寄生电感比两端电容降低约
50%,并且其中70%以上的寄生电感转移到信号线上。

因此提高了三端电容器的自谐振频率,也可以将它作为T形滤波器使用,更好地抑制高频噪声。

三端电容器的地线电感起着不良作用,作为旁路电容抑制高频噪声时,宜采用无引线的片式陶瓷电容器。

图5为两端电容器与三端电容器插入损耗的比较。

5 改进型结构
线路旁通电容Cy是用来消除高频噪声的组件,基于对今后开关操作频率的高频化考虑,宜选用能消除频率高达1000MHz噪声的电容器。

而一般的两端结构的旁通电容器仅能消除30MHz左右的噪声。

由以上介绍可知,相对两端电容器来说,三端电容器能更好地抑制高频噪声。

以EMI滤波器的一般结构为基础,用三端电容器替代其中的两端旁通电容Cy,电路图,如图6所示。

其中ESL为三端电容器信号线上的等效串联电感。

6 PSpice仿真
(1)使用三端电容的电路的插损与以往电路插损的比较。

取差模电容Cx为0.1μF,共模电容Cy为2200pF,共模电感L取8mH。

三端电容的等效串联电感ESL取0.36nH。

在50 Ω/50 ΩQ系统中分别对一般结构的EMI滤波器和使用了三端电容器的EMI滤波器的插入损耗进行PSpice 仿真。

如图7所示,EMI滤波器在使用三端电容时,谐振点之后的插损效果明显好于在滤波器中使用两端电容的插损。

提高了滤波器在高频段的性能。

(2)不同Cy值,固定ESL。

在使用三端电容的滤波器电路中,输入阻抗和输出阻抗都取50时,分别取共模电容Cy为4700pF,3300pF和2200pF,其他参数不变,观察共模电容
Cy变化时对插入损耗的影响。

通过图8的仿真结果看出,随着共模电容的增大,在高频段插入损耗有所提高,并且滤波器谐振点降低;而在低频段基本没有变化。

因此可以通过选择较大的共模电容来提高滤波器高频段的插入损耗。

由于共模电容需要接地,有漏电流,Iid的存在,对人身安全存在威胁。

而共模电容越大,漏电流越大,所以选择共模电容时需要在漏电流满足安全条件的情况下取值。

(3)固定Cy值,不同ESL。

考察三端电容器与信号线串联的等效串联电感ESL对插入损耗的影响。

取共模电容Cy为3 300 pF,取ESL分别为0.03 nH,0.36 nH和0.72 nH,其他参数值不变。

从图9的仿真结果可以看出,随着ESL降低,谐振点提高,谐振点之后的插入损耗下降。

7 结束语
在一般性能EMI滤波器的基础上,使用三端电容器作为共模电容对原滤波器加以改进,仿真结果表明,在高频段有较好的插损效果。

由于实际使用时设备的阻抗大小以及在高频时元件的寄生效应均会对EMI滤波器的插损产生影响,因此还需根据实际情况对滤波器进行具体优化设计。

(电子科技作者:曹丽萍,张勋,陈晨,刘韬)。

相关文档
最新文档