桩基低应变检测报告
高应变低应变桩基检测
高应变低应变桩基检测一、定义根据建筑基桩检测技术规范JGJ106-2003第2.1.6条,低应变:采用低能量瞬态或稳态激励方式在桩顶激励,实测桩顶速度时程曲线或速度导纳曲线,通过波动理论分析或频域分析,对桩身完整性进行判断的检测方法。
第2.1.7条,高应变:用重锤冲击桩顶,实测桩顶部的速度和力时程曲线,通过波动理论分析,对单桩竖向抗压承载力和桩身完整性进行判定的检测方法。
高大钊版的《土力学与地基基础》关于大小应变的定义大应变:指激励能量足以使桩土之间发生相对位移,使桩产生永久贯入度的动测法小应变:指在激励能量较小,只能激发桩土体系(甚至只有局部)的某种弹性变形,而不能使桩土之间产生相对位移的动测法。
桩达到极限承载力时,即为桩周土达到塑性破坏。
唯有大应变才能使桩产生一定的塑性沉降(贯入度),所测的土阻力才是土的极限阻力;小应变只能测得桩土体系的某些弹性特征值,而土的弹性变形与其强度之间并没有确定的关系。
因此从理论上讲,小应变不能提供确切的单桩极限承载力,只能用于检验桩身质量。
二、何种桩需要检测建筑基桩检测技术规范JGJ106-2003第3.3.3条,单桩承载力和桩身完整性验收抽样检测的受检桩选择宜符合下列规定:1 施工质量有疑问的桩;2 设计方认为重要的桩;3 局部地质条件出现异常的桩;4 施工工艺不同的桩;5 承载力验收检测时适量选择完整性检测中判定的Ⅲ类桩;6 除上述规定外,同类型桩宜均匀随机分布。
解释:对于基桩的检测包括单桩承载力及桩身完整性两个部分,这两个部分要求检测的数量不同。
三、低应变与高应变适用范围低应变:适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。
低应变法的理论基础以一维线弹性杆件模型为依据。
因此受检桩的长细比、瞬态激励脉冲有效高频分量的波长与桩的横向尺寸之比均宜大于5,设计桩身截面宜基本规则。
另外,一维理论要求应力波在桩身中传播时平截面假设成立,所以,对薄壁钢管桩和类似于H型钢桩的异型桩,本方法不适用。
低应变检测
8.2 对测量用仪器的安装要求以及检测
8.2.1 实心桩的激振点宜选择在桩头中心部位, 传感器应粘贴在距桩中心约2/3R处。敲击产生 的应力波除向下传播外,也沿径向周边传播, 从周边反射回来的波与圆心外散的波会发生迭 加。理论与实践表明,2/3R处波的干扰最小。 空心桩的激振点及传感器安装位置应选择在壁 厚1/2处且应在同一水平面上,与桩中心连线形 成的夹角宜为90°。将加速度计粘贴在磨平过 的桩顶表面,粘巾处可用大膏、黄油、橡皮泥 作为耦合介质。
或因桩身浅部严重缺陷只出现 单一谐振峰,无桩底谐振峰。
9.4 在检测过程中发现生异常现场时的处理方法
在检测过程中出现异常波形时,应在现场及时研
究,排除影响测试的不良因素后再重复测度。重复测
试的波形与原波形应具有相似性。
9.5在检测过程中发生意外事故时的处理方法
9.5.1 正在检测过程因外界干扰和其它不可预见的事故 时,应关机停止检测。若发生干扰影响测试结果,则
基桩检测
一.低应变法检测
1 目的
根据国家行业标准《建筑基桩检测技 术规范》JGJ 106-2003、J256-2003对低应 变工程检测做必要的细化和补充。
2 主题内容与适用范围
为了确保现场低应变动力检测的正常 进行,取得正确可靠的检测数据,使低 尖变动力检测工作规范、有序,特制定 基桩低应变检测作业指导书。
检测系统框图
7 对环境条件的要求
检测仪器应具有防尘、防潮性能,并应 在-10~50℃环境条件下正常工作。在现 场检测时,对仪器屏幕应采取防晒措施。 当仪器长期不用时,应按要求定期通电。
8 检测步骤 8.1 检测前后,对被测样品和检测仪器的检查项目 8.1.1 检测前,应进行现场调查,桩头应凿去浮浆,露
低应变桩基检测
目录摘要 (3)Abstract (4)第一章绪论 (5)引言 (5)桩基分类 (6)桩基工程的常见质量问题 (8)基桩动测法的发展 (11)第二章应力波与桩的完整性 (13)基本概念 (13)桩身完整性 (14)桩身完整性的定义 (14)桩身完整性指标 (15)桩身缺陷指标 (15)第三章低应变反射波法的基本原理 (17)一维波动理论 (17)杆的纵向波动方程 (17)杆的纵向波动方程解答 (19)别离变量法求解波动方程 (19)采用行波理论求解波动方程 (21)3.3 应力波的相互作用在不同阻抗界面上的反射和投射 (23)3.3.1 应力波的相互作用 (23)3.3.2 应力波在杆不同阻抗界面处的反射透射 (24)第四章测试系统 (26)激振设备 (26)瞬态激振设备 (26)稳态激振设备 (27)传感器 (29)压电式加速度传感器 (29)速度传感器 (33)放大器 (36)信号采集分析仪 (36)第五章测试方法及数据处理 (37)5.1 测试方法 (37)测试参数的选择 (37)测试仪器和激振设备的选择 (39)桩头处理 (40)传感器安装和激振操作 (41)现场测试要点 (42)测试结果的计算分析 (43)信号后分析 (43)时域分析 (45)频域分析 (48)各类缺陷〔或桩底〕的波形特征 (49)工程应用 (50)工程及检测概述 (51)第六章反射波法的使用总结 (56)摘要桩基动力检测是指在桩顶施加一个动态力〔动荷载〕,动态力可以是瞬态冲击力或稳态激振力。
桩-土系统在动态力的作用下产生动态响应,采用不同功能的传感器在桩顶量测动态响应信号(如位移、速度、加速度信号),通过对信号的时域分析、频域分析或传递函数分析,判断桩身结构完整性,推断单桩承载力。
随着我国国民经济与工程建设的快速发展,基桩检测作为隐蔽工程验收的重要环节,对保证整个工程建设的安全稳定起着十分重要的作用。
在各种检测方法中,反射波法目前应用最广泛、使用最便捷,理论与实践发展也比较成熟,有比较先进的仪器设备及应用分析软件。
桩基小应变检测报告
桩基小应变检测报告低应变检测法是建立在一维波动理论根底之上,在数学上模拟桩的一维应力波传播,计算反射、投射和博得叠加,根据波形的异常推断桩的完整性。
在桩质量检测过程中,把桩做如下鉴定:1)视桩为一维弹性直杆;2)假定桩为均匀材质构成,且截面积在受力时保持平面;3)忽略了桩的内外阻力表面摩擦力的影响,桩周土对桩的约束和支承作用,集中由桩底的一个弹簧替代。
当桩顶受到一定的冲击力作用,会产生一弹性脉冲波,经桩身向下传播,根据力的平衡条件和牛顿第二定律,得到一维波动方程。
低应变检测过程中需注意的事项1)现场测试准备。
准备工作的好坏直接影响测试结果的准确性可靠性。
在检测前务必注意以下几点:a.桩头处理严格符合铁路基桩检测技术规程;b.搜集必要的地质资料;C.传感器安装点需充分打磨平整。
2)传感器的选用安装。
在对基桩开展低应变反射波法测试时选用高灵敏度加速度传感器检测。
检测时,在将浮点工程动测仪、计算机、传感器和电源按要求连接好后,把传感器用粘贴剂粘在检测桩桩顶轴心平面处,传感器应尽可能平行于桩身轴线,位置一般在钢筋笼之内远离力棒的敲击点,传感器与桩头一定要粘贴牢固,因为不同的粘结方式对实测波形影响很大,安装不牢会使波形失真,给波形分析带来困难甚至造成误判,所以传感器与桩头应绝缘、密贴,不得有气泡。
根据实测经验认为,在桩头平整的条件下,采用橡皮泥安装传感器可获得理想的桩身完整性实测曲线。
3)激振方式的选择。
在实际检测中,要根据不同条件,采用不同的激振方式,合理调整激振,能量要适中,以取得满意的测试效果,敲击时要垂直于桩顶,防止连击。
检测结果及分析检测结果的分析也是检测过程中至关重要的一个环节,它对检测人员要求很高。
需要有扎实的理论知识和丰富的现场经验。
分析时一些方面需特别注意:1)当基桩在施工过程中浅部有特别明显的“大头”现象时,其波的传播即不满足该行波理论,或波在界面处能量反射太过强烈,致使透射能量衰弱,或该处形成了“面波”反射,即曲线不能真实的反映基桩的下部情况,需要对大头开展凿挖后重新检测;2)要特别留意扩径的奇数次反射与入射波反相位,偶数次反射与入射波同相位的特征,以免造成误判——将扩径的偶数次反射当作缺陷判定;3)要注意低应变检测结果的多解性,注意与施工情况、地层情况等结合开展判定。
桩基低应变检测曲线实例分析
桩基低应变检测曲线实例分析对桩基低应变检测曲线实例分析;1、完整桩一般完整桩在时程曲线上的反应:对于摩擦桩和嵌岩桩表现有三种情况:桩底反射与初始入射波同相;桩底反射不明显,以及桩底反射与初始入射波先反相后同相;如图所示:预制管桩外径Φ500mm,h=13.3m壁厚100mm,砼强度等级C60,在空气中的反射波曲线预应力空心管桩,外径Φ500mm,h=12m,壁厚80mm,砼强度等级C80,在空气中的反射波曲线实例:桩类型:Φ1.2m,H=38.5m钻孔灌注桩地点:杭宁高速公路K76+893 0-R2/0-R3桩评价:完整嵌岩桩该桩径1.2m,桩长38.5m,C30钻孔灌注桩,桩尖进入微风化泥质岩2m,测试波形完整;纵波速度为3600-3700m/s,桩底反向,说明无沉渣.为完整嵌岩桩.地层影响的时程曲线桩桩类型:Φ1200mm,h=28.4m冲孔灌注桩地点:诸永高速台州一段25标某桥桩评价:该桩砼强度c25,采用冲抓钻,12m见基岩后采用冲击钻,一直到桩底,从波形可见进入基岩有明显的反向反射,为地层的反映特殊桩形的曲线桩类型:Φ1000mm, L约13m,冲击桩地点:温州洞头中心渔港石码头评价:完整桩该外加5mm壁厚钢护筒至强风化,后变径800嵌岩2D;故在桩底前同向反映为钢护筒底变径处的部位,经钻孔验证而不是缺陷2、桩头缺陷桩桩头疏松桩头浮浆或强度偏低的桩,测试结果无法反映桩的完整性,曲线反应为入射波峰较低而且脉冲较缓,而且后续波形呈低频,此类现象均属桩头强度偏低;如图所示:桩类型:Φ1.2m,L=18.7m钻孔灌注桩地点:杭兴高速公路MP14—R3桩评价:桩头砼强度低该桩径1.2m,长18.7m,设计混凝土强度等级为C25,测试发现曲线呈低频振荡, 判为桩头浅部强度低或局部离柝,经取芯验证,0-1m岩芯松散,1-2.7m岩芯有气孔,强度低,2.7m以后岩芯强度达到要求,芯样完整,要求凿去3m桩头重新接上桩头处理.3、桩底缺陷桩桩类型: Φ800, H=19.0m钻孔灌注桩地点: 温州某工地嵌岩桩评价: 桩长明显沉渣该桩设计桩长19m,单桩承载力3000kN,若按3520m/s计,测试桩底在18m处同向反射明显, 取芯后有50cm淤泥沉渣,未进入中风化,后注浆再测也有同向反映,说明效果不明显;桩类型: Φ800, H=11.2m钻孔灌注桩地点: 杭州某监站围墙桩工地评价: 桩长明显偏短该桩设计桩长11.2m,测试桩底反射明显,波速达4790m/s,若按3500m/s计, 桩仅为8m,明显反映为桩偏短.4、缩径夹泥桩缩径桩在时程曲线上的反映比较规则,缩径部位的缺陷呈先同相后反相,或仅见到同相反射的信号,视严重程度,可能有多次反射,此类缺陷桩一般可见桩底信号;如图所示:桩类型:,桩径0.8m,桩长39.6m钻孔桩,地点:温州苍南码头桩桩;评价:该桩第一次测发现5m处明显缩径,后凿去4m再复测表明:因凿不到位,露出部分桩头是缩径处,故形成第二次测试为扩径反映该桩为钻孔灌注桩,桩长17m,混凝土强度等级为C30,在2.4m处存在明显缺陷经开挖验证,找到一块疯狂的石头;桩身畸变,呈S形状,由以上曲线也可判断,施工过程中堵管,拒灌,后二次灌注;桩类型: Φ800 mm , H=33m钻孔灌注桩地点:杭州市下沙高教城职工技术学院评价:严重夹泥该桩径0.8m,桩长33m,强度C25,通长钢筋笼,测试在1.5-2m处严重缩径或夹泥,经开挖证实2m处严重夹泥达一半桩径;经凿除后再进行复测下图,桩身完整;5、扩径桩扩径桩在曲线上反射波形较为规则,扩径处的反射子波呈反相,或先反相后续同相,也可能有多次反射,一般情况看到桩底反射;如图所示:桩类型: Φ1200mm,L=16.1m钻孔灌注桩地点: 温州某大桥桩评价: 扩径桩上图11m处反向反射明显,为扩径反映属扩径后逐渐回缩;下图在8m处由反向转同向,属扩径后马上回缩.6、离析桩由于离析部位的混凝土松散,对应力波能呈吸收较大,形成的缺陷子波不规则后续信号杂乱,而且频率较低,波速偏小,一般不易见到桩底反射;如图所示:桩类型:φ700 mm, h=34m,钻孔灌注桩地点:某大楼工程桩评价:离析桩该桩经测试发现在8.6m左右有同相多次低频反射,经钻孔取芯在8.1-9.5m严重离析,无法取到芯样,原因在该处仃灌3小时,在7m处为扩径反映,该处超灌5方混凝土;7、断裂脱焊脱节桩断裂桩由于在断裂处波阻抗的突变,故形成以下三种情况:上部断裂往往呈高频多次同相反射、反射波频率值较高,衰减较慢;中部断裂反映为多次同相反射,缺陷的反射波幅值较低;而深部断裂波形,类似摩擦桩桩底反射,但算得的波速明显高于正常桩的波速;如图所示:桩类型: Φ600 mm , H=45.0m钻孔桩地点:温州某工程二期80桩评价:断裂桩该桩径o.8m,长45.0m,设计强度C25,,因基坑开挖造成部分桩断裂,经测试在近4.2m处断裂,波形呈多次反射,经开挖验证为4.5m断裂凿去断处后重测说明下部桩身完整再进行接桩;桩类型:φ500mm,h=35mphc空芯管桩地点:浙江加兴某工地评价:脱节桩该桩径500mm,壁厚10mm,桩长35m12,11,11phc管桩,由于施工和挤土的原因,造成局部脱焊,或地表第一节上抬,並与下桩脱接8、脱焊虚焊等不良焊接桩预制桩和管桩的焊接质量及成桩时由于受损造成焊接处表现为有同相反射,严重时难以见到下部位较大的缺陷或桩底反射;如图所示:桩类型: Φ500~600 mm h=40m12+12+11+5预应力地点:杭州东新园安居小区评价:断桩该桩为pvc500mm空芯管桩,桩间距1.5m,电梯间采用Φ600管桩,用600吨静压桩机压有部分欠压, 桩高出设计标高2~3m;由于一次性开挖3.5m,造成土体挤压, 而使绝大部分欠压桩形成2~5m断裂;。
桩基完整性(低应变试验)试验方法
1 桩基完整性(低应变试验)1、1一般规定:(1)低应变反射波法适用范围为:混凝土灌注桩、混凝土预制桩、预应力管桩及CFG 桩。
(2)对桩身截面多变且变化幅度较大灌注桩,应采用其她方法辅助验证低应变法检测得有效性。
(3)受检桩混凝土强度不应低于设计强度得70%,且不应低于15MPa 。
1、2检测原理:低应变法目前国内普遍采用低应变反射波法,为狭义低应变法,其通过采用瞬态冲击得方式(瞬态激振),实测桩顶加速度或速度响应曲线,以一维线弹性杆件模型为依据,采用一维波动理论分析判定基桩得桩身完整性。
因此基桩必须符合一维波动理论要求,满足平截面假定与一维线弹性杆件模型要求,一般要求其桩长远大于直径即长径比大于5或瞬态激励有效高频分量得波长与桩得横向尺寸之比大于5。
1、3检测方法及工艺要求(1)检测前得准备工作a 受检基桩混凝土强度至少达到设计强度得70%,或期龄不少于14天时方可报检。
b 施工单位填写报检表,经监理工程师签字确认后,至少提前2天提交给现场检测人员。
c 施工单位向检测单位提供基桩工程相关参数与资料。
d 检测前,施工单位做好以下准备工作:①剔除桩头,使桩顶标高为设计得桩顶标高。
②要求受检桩桩顶得混凝土质量、截面尺寸应与桩身设计条件基本相同。
③灌注桩要凿去桩顶浮浆或松散破损部分,并露出坚硬得混凝土表面。
④桩顶表面平整干净且无积水。
⑤实心桩得第三方位置打磨出直径约10cm 得平面,平面保证水平,不要带斜坡;在距桩第三方2/3半径处,对称布置打磨2~4处(具体见图1),直径约为6cm 得平面,打磨面应平顺光洁密实图2 不同桩径对应打磨点数及位置示意图0.8m<D≤1.25m D≤0.8m图2 不同桩径对应打磨点数及位置示意图⑥当桩头与垫层相连时,相当于桩头处存在很大得截面阻抗变化,会对测试信号产生影响。
因此,测试前应将桩头侧面与断层断开。
⑦准备黄油1~2包,作为测试耦合剂用。
⑧在基坑内检测,应提前将基坑内水抽干,并搭设好梯子,便于上下。
桩基完整性(低应变试验)试验方法
1 桩基完整性(低应变试验)1.1一般规定:(1)低应变反射波法适用围为:混凝土灌注桩、混凝土预制桩、预应力管桩及CFG 桩。
(2)对桩身截面多变且变化幅度较大灌注桩,应采用其他方法辅助验证低应变法检测的有效性。
(3)受检桩混凝土强度不应低于设计强度的70%,且不应低于15MPa 。
1.2检测原理:低应变法目前国普遍采用低应变反射波法,为狭义低应变法,其通过采用瞬态冲击的方式(瞬态激振),实测桩顶加速度或速度响应曲线,以一维线弹性杆件模型为依据,采用一维波动理论分析判定基桩的桩身完整性。
因此基桩必须符合一维波动理论要求,满足平截面假定和一维线弹性杆件模型要求,一般要求其桩长远大于直径即长径比大于5或瞬态激励有效高频分量的波长与桩的横向尺寸之比大于5。
1.3检测方法及工艺要求(1)检测前的准备工作a 受检基桩混凝土强度至少达到设计强度的70%,或期龄不少于14天时方可报检。
b 施工单位填写报检表,经监理工程师签字确认后,至少提前2天提交给现场检测人员。
c 施工单位向检测单位提供基桩工程相关参数和资料。
d 检测前,施工单位做好以下准备工作:①剔除桩头,使桩顶标高为设计的桩顶标高。
②要求受检桩桩顶的混凝土质量、截面尺寸应与桩身设计条件基本相同。
③灌注桩要凿去桩顶浮浆或松散破损部分,并露出坚硬的混凝土表面。
④桩顶表面平整干净且无积水。
⑤实心桩的第三方位置打磨出直径约10cm 的平面,平面保证水平,不要带斜坡;在距桩第三方2/3半径处,对称布置打磨2~4处(具体见图1),直径约为6cm 的平面,打磨面应平顺光洁密实图2 不同桩径对应打磨点数及位置示意图0.8m<D≤1.25m D≤0.8m图2 不同桩径对应打磨点数及位置示意图⑥当桩头与垫层相连时,相当于桩头处存在很大的截面阻抗变化,会对测试信号产生影响。
因此,测试前应将桩头侧面与断层断开。
⑦准备黄油1~2包,作为测试耦合剂用。
⑧在基坑检测,应提前将基坑水抽干,并搭设好梯子,便于上下。
桩低应变实验报告
桩低应变实验报告引言桩基是土木工程中常用的重要基础形式之一,它承担着将建筑物和地下结构的重荷载传递至较深的地层中的重要任务。
桩基在土壤中的承载力和变形特性对工程的安全性和稳定性具有重要影响。
桩低应变实验是用来研究桩基在静态或动力荷载作用下的变形特性及承载力的实验方法之一。
实验目的本次实验旨在通过桩低应变实验,探究桩基在荷载作用下的变形规律,进一步了解土壤与桩基的相互作用过程,从而为工程设计提供参考建议。
实验原理桩低应变实验是通过在试验场地上搭建桩基模型,在模拟实际工程荷载作用下,测量桩头和桩身的变形量,从而对桩基的力学特性进行研究。
实验装置主要包括传感器、数据采集设备、承载框架和电子称重砝码等组成。
实验步骤如下:1. 在试验场地上挖掘合适深度的试验坑;2. 安装试验装置,包括传感器和数据采集设备,并保证其准确可靠;3. 在试验坑中浇筑混凝土,形成相应的承载框架,并确保其水平度;4. 安装待测的桩基模型,如木制、塑料或钢管等;5. 设置荷载大小和加载速率,并开始加载;6. 期间记录并测量桩头和桩身的变形量,并记录相应的荷载和位移数据;7. 持续加载直到达到目标荷载或设定的变形限值。
实验结果与分析通过桩低应变实验,我们得到了桩头和桩身在不同荷载作用下的变形数据。
根据实验数据,我们制作了荷载-位移曲线和荷载-变形曲线,如下图所示。
![](荷载位移曲线.png)通过观察荷载-位移曲线可以看出,随着荷载的增加,位移逐渐增大,呈现出明显的非线性关系。
荷载逐渐增大时,桩基的承载能力在一定范围内与位移呈线性关系,但当荷载进一步增大时,位移增加速度明显加快,表明桩基即将达到破坏状态。
而通过观察荷载-变形曲线可以看出,随着荷载的增加,桩头和桩身的变形逐渐增大。
与位移不同的是,荷载与变形呈现出较为线性的关系。
这说明桩基的变形主要由荷载引起,变形量与荷载之间存在明确的线性关系。
根据实验数据还可以计算得到桩基的刚度等参数,并通过比较不同实验条件下的数据,进一步研究桩基的力学性质。
桩基检测报告
铜凤线π接入三家桥变线路工程基桩低应变检测报告目录1检测依据及标准 (3)2工程概况 (3)3采用检测设备 (4)4现场检测 (5)5检测成果 (8)6资料移交表。
(10)7检测曲线图。
(10)1检测依据及标准1.1检测依据:受铜仁供电局委托,我单位于2014年1月9日对铜凤线π接入三家桥变线路工程进行了基桩低应变检测,该工程设计基桩15根,检测桩15根。
检测内容为:(1)检测桩身完整性;(2)桩身缺陷程度及缺陷位置。
1.2执行标准及参考资料:执行标准为中华人民共和国行业标准《建筑桩基检测技术规范》(JGJ106-2003)(J256-2003)和现行行业标准《基桩动测仪》JG/T3055-1999及《贵州电网公司输变电工程地基基础质量检测管理办法》(Q/CZW 40014-2011)。
参考资料为我单位编写的铜凤线π接入三家桥变线路工程岩土勘察报告。
2工程概况本线路工程为铜仁变--凤城变220kV线路π接入玉屏三家桥变220kV 线路工程。
全线为10mm冰区,导线采用2×JL/G1A-240-24/7钢芯铝绞线。
地线一根为LBGJ-100-20AC型铝包钢绞线,π接后形成两条线路,具体为:a)铜仁500kV变--玉屏三家桥220kV变220kV线路:线路全长约为16km,其中新建段三家桥变--铜仁侧π接点(1.756km),铜仁侧π接点--原铜凤线33#(0.332km),共2.088km。
考虑到将来出线,玉屏三家桥变出线段部分1.153km按同塔双回路进行设计,一侧挂线,另一侧3作为备用。
其余段0.855km按单回路进行设计。
b)三家桥220kV变--凤城变220kV变220kV线路:线路全长约为67km,其中新建段三家桥变--凤城变侧π接点(1.714km),凤城变π接点--原铜黎线38#(0.456km),共2.17km。
考虑到将来出线,玉屏三家桥变出线段部分1.22km按同塔双回路进行设计,其余段0.95km按单回路进行设计。
低应变检测桩身完整性和声波透射法检测桩基
实验报告课程:桩基检测与评定题目:低应变检测桩身完整性与桩基超声波透射法院系:土木工程系专业:年级:姓名:指导教师:西南交通大学峨眉校区2012 年7 月 1 日基 桩 反 射 波 法 试 验检 测 报 告一.基本原理基桩低应变动力检测反射波法的基本原理是将桩身假定为一维弹性杆件(桩长>>直径),在桩顶锤击力作用下,产生一压缩波,沿桩身向下传播。
当桩身存在明显波阻抗Z 变化的截面将产生反射和透射波,反射的相位和幅值大小由波阻抗Z 变化决定。
桩身波阻抗Z 由桩的横截面积A 、桩身材料密度ρ等决定即Z=A C ⋅⋅ρ。
假设在基桩中某处存在一个波阻抗变化界面,界面上部波阻抗1Z =111A C ρ,上部波阻抗2Z =222A C ρ①当1Z =2Z 时,表示桩截面均匀,无缺陷。
②当1Z >2Z 时,表示在相应位置存在缩径或砼质量较差等缺陷,反射波速度信号与入射波速度信号相位一致。
③当1Z <2Z 时,表示在相应位置存在扩径,反射波与入射波速度信号相位相反。
当桩身存在缺陷时,根据缺陷反射波时刻与桩顶锤击触发时刻的差值△t 和桩身传播速度C 来推算缺陷位置Lx=△t ²C/2二.现场检测大致流程是用力锤对桩顶作瞬态激振,以产生脉冲应力波,由设置在桩顶的加速度传感器接收入射波和反射波信号,该信号经电荷放大后,经桩基分析系统处理,根据反射波的时差,相位和幅值即可判断桩身的缺陷位置、类型及程度。
传感器的安装对现场信号的采集影响较大,理论上传感器越轻、越贴近桩面、与桩面之间接触刚度越大,传递特性越好,测试信号也越接近桩面的质点振动。
对实心桩的测试,传感器安装位置宜为距桩心2/3~3/4半径处;对空心桩的测试,锤击点与传感器安装位置宜在同一水平面上,且与桩中心连线形成90°夹角,传感器安装位置宜为桩壁厚的1/2处。
传感器的安装必须通过藕合剂垂直与桩面粘接,此次实验使用的是经口加工的口香糖。
桩基低应变动力检测 高应变、低应变[荟萃知识]
二类---桩身有轻微缺陷,不会影响桩身结构 承载力的发挥。
三类---桩身有明显缺陷,对桩身结构承载力 有影响,一般应采用其他方法验证其可用性,或 根据具体情况进行设计复核或补强处理。
四类---桩身存在严重缺陷,一般应进行补强 处理。
专业精制
12
专业精制
13
专业精制
14
专业精制
3
激振设备、 传感器、放 大器、信号 采集分析仪。
低应变动测仪器
专业精制
4
FDP204(B)掌上动测仪
专业精制
5
专业精制
6
专业精制
7
专业精制
8
专业精制
9
专业精制
10
目前倾向于低应 变法仅能检测桩 身完整性
专业精制
11
桩身完整性定义
桩身完整性类别是按缺陷对桩身结构承载力的影 响程度,统一划分为四类的:
专业精制
26
3.贵州省遵义市万里路某建筑工程检测 贵州省遵义市万里路某建筑工程人工挖孔灌注桩,桩长
11.5米、桩径1200mm、砼强度等级C20,本次工程桩 试验采用FDP204(B)动测仪,下图桩底很清晰,有明显
的扩大头反射,而且波形的归零情况良好。
专业精制
27
五 桩基高应变动力检测
高应变动力试桩的基本原理: 用重锤冲击桩顶,使桩土产生足够的相对位移,
一 桩基低应变动力检测
桩基动力检测是指在桩顶施加一个动态力(可以 是瞬态冲击力或稳态激振力)。桩土系统在动态力 的作用下产生动态响应信号(位移、速度、加速度 信号),通过对信号的时域分析、频域分析或传递 函数分析,判断桩身结构的完整性,推断单桩承载 力。
基桩低应变检测的实例分析与处理方法
基桩低应变检测实例分析与处理方法瑞安市建设工程检测科学研究所有限公司朱永茅陈华弟基础工程是建筑工程的重要组成部分,地基基础工程的质量直接关系到整个建筑物的结构安全。
桩基础是主要的基础形式之一,由于桩的施工具有高度的隐蔽性,因此桩基工程的设计、施工、质量检测等方面往往比上部建筑结构更为复杂,更容易存在质量隐患。
桩基工程的质量问题将直接危及主体结构的正常使用与安全。
桩基质量检测技术,特别是桩基动力试验,涉及到岩土力学、振动学、桩基施工技术和计算机技术等诸多学科知识,它既不同于常规的建筑材料试验,又不同于普通的建筑结构测试。
因此,作为一名检测人员,应坚持不懈地学习专业理论知识,不断地积累实际工作经验,努力地提高桩基检测的技术水平,进一步完善基桩质量检测技术。
桩基在施工过程中如果控制不当,就会造成质量事故。
特别是钻(冲)孔灌注桩,往往在浇注混凝土时出现质量问题。
下面,本人就近几年在基桩低应变检测中测得的几例比较典型的钻(冲)孔灌注桩工程实例进行分析,供同行参考。
图1:中国南洋汽摩集团有限公司综合宿舍楼工程,该桩桩径500mm,有效桩长40m,混凝土强度C20,简易钻孔桩。
该桩在2.2m附近有同向反射,并伴有多次反射,断桩,判为Ⅳ类桩。
处理方法:开挖处理,开挖至2.2m左右,发现钢筋笼内空心,下去1m左右出现平整的水泥土,继续开挖至5m左右(采用人工挖孔桩的方法),出现密实的混凝土,修整后再测,桩身完整。
原因分析:在浇灌至距桩顶标高5m左右,导管拔空,混凝土无法从导管中下去,拔出导管后直接把混凝土从孔口倒下,于是孔中的泥浆和砂浆的混合物就被倒下的混凝土压缩在2.2m至5m 左右的钢筋笼中,水份被吸收后就形成前面的状态。
经与浇灌工人核对后,情况完全符合。
图2:瑞安红旭车辆贸易公司综合楼工程,该桩桩径500mm,有效桩长45m,混凝土强度C20,简易钻孔桩。
该桩在5.1m附近有同向反射,并伴有多次反射,断桩,判为Ⅳ类桩。
小应变桩基检测
小应变桩基检测
一说到桩基大应变检测,相关建筑人士还是比较陌生的,什么是桩基大应变检测?小应变桩基检测优劣势有哪些?以下是为建筑人
士整理相关小应变桩基检测基本资料,具体内容如下:
为了便于建筑企业施工人员的了解小应变桩基检测的相关内容,我们收集梳理相关知识点,具体内容如下:
小应变检测也称为低应变动力检测,它是相对对大应变动力检测而言的。
低应变检测是从事岩土工程检测、结构检测、工程物探、工程测绘、房屋质量检测、室内环境质量检测、环境化学检测、环境工程、安全评价、水务设计与建设行业、水利水电行业、铁路、公路交通行业、化工、市政等行业岩土工程、地质灾害、环境保护相关的技术服务、咨询、开发工作,以及与上述业务相关的延伸业务。
小应变有其方法本身的局限性:
1.对于多缺陷桩,应力波在桩中产生多次反射和透射,对实测波形的判断非常复杂且不准确,第二、第三缺陷的判断会有较大误差,一般不判断第三个缺陷。
2.不能定量计算桩底沉渣厚度。
对端承桩的嵌岩效果只能做定性判断。
因嵌岩有时出现较强的负向反射波,会严重影响桩底反射波和桩底沉渣的判断。
3.只能对桩身质量作定性描述,不能作定量分析。
不能识别纵向裂缝,能反映水平裂缝和接缝,但程度很难掌握,易误判为严重缺陷。
4.桩身渐变扩径后的相对缩径易误判为缩径,渐变缩径或离析且范围较大时,缺陷反射波形不明显。
5.不能提供桩身混凝土强度。
以上是为中国建筑人士收集整理的关于小应变桩基检测的详细建筑知识介绍,,。
建筑基桩检测技术规范·低应变法·检测数据的分析与判定
建筑基桩检测技术规范·低应变法·检测数据的分析与判定8.4.1桩身波速平均值的确定应符合下列规定:1 当桩长已知、桩底反射信号明确时,在地质条件、设计桩型、成桩工艺相同的基桩中,选取不少于5根Ⅰ类桩的桩身波速值按下式计算其平均值:`c_m=1/n sum_(i=1)^n c_i` (8.4.1-1)`c_i=(2000L)/(ΔT)`(8.4.1-2)`c_i=2L*Δf`(8.4.1-3)式中`c_m`——桩身波速的平均值(m/s);`c_i`——第i根受检桩的桩身波速值(m/s),且`|c_i-c_m|//c_m≤5%`;L——测点下桩长(m);ΔT——速度波第一峰与桩底反射波峰间的时间差(ms);Δf——幅频曲线上桩底相邻谐振峰间的频差(Hz);n——参加波速平均值计算的基桩数量(n≥5)。
2 当无法按上款确定时,波速平均值可根据本地区相同桩型及成桩工艺的其他桩基工程的实测值,结合桩身混凝土的骨料品种和强度等级综合确定。
8.4.2桩身缺陷位置应按下列公式计算:`x=1/2000*Δt_x*c`(8.4.2-1)`x=1/2*c/(Δf′)`(8.4.2-2)式中x——桩身缺陷至传感器安装点的距离(m);`Δt_x`——速度波第一峰与缺陷反射波峰间的时间差(m);c——受检桩的桩身波速(m/s),无法确定时用`c_m`值替代;Δf′——幅频信号曲线上缺陷相邻谐振峰间的频差(Hz)。
8.4.3桩身完整性类别应结合缺陷出现的深度、测试信号衰减特性以及设计桩型、成桩工艺、地质条件、施工情况,按本规范表3.5.1的规定和表8.4.3所列实测时域或幅频信号特征进行综合分析判定。
8.4.4对于混凝土灌注桩,采用时域信号分析时应区分桩身截面渐变后恢复至原桩径并在该阻抗突变处的一次反射,或扩径突变处的二次反射,结合成桩工艺和地质条件综合分析判定受检桩的完整性类别。
必要时,可采用实测曲线拟合法辅助判定桩身完整性或借助实测导纳值、动刚度的相对高低辅助判定桩身完整性。
低应变报告
贵州金正达工程质量检测咨询有限公司检测报告报告编号:JZDBG01-2020xxxx-xxx委托单位: /工程名称: /监理单位: /施工单位: /检测项目:基桩完整性检测(低应变法)检测时间: /检测单位(专用章)报告日期:2020-xx-xxXXX工程检测报告签字页检测人员:报告审核:报告批准:批准日期:附加声明:当您收到报告后,请务必注意:1.检测报告未加盖“检验检测专用章”无效;含多页的报告“无骑缝章”无效。
2.未经本公司批准,不得复制检测报告;复制检测报告未重新加盖“检验检测专用章”无效。
3.报告存在手写、缺页或者涂改现象无效。
4.报告无检测、复核、批准人签字无效。
5.委托方收到检测报告15日内未提出异议的,视为确认本报告结果。
6.本报告未经本公司同意,不得作为商业广告使用。
地址:贵州省黔南州都匀市绿茵湖社区长红路(112厂内)邮政编码:558022联系电话:0854-*******目录1工程概况 (1)2检测规范、标准及相关依据 (1)2.1检测规范及标准 (1)2.2参考依据 (1)3检测目的及内容 (2)3.1检测目的 (2)3.2检测内容 (2)4检测仪器 (2)5检测原理及方法 (2)5.1检测原理 (2)5.2检测方法 (4)7检测结果汇总表 (6)8检测结论 (7)附图1:低应变波形图 (8)附件2:现场检测照片 (9)1工程概况2检测规范、标准及相关依据2.1检测规范及标准(1)《建筑基桩检测技术规范》(JGJ 106-2014)。
2.2参考依据(1)《公路工程基桩检测技术规程》(JTG/T 3512-2020);(2)《建筑桩基技术规范》(JGJ 94-2008)。
3检测目的及内容3.1检测目的检测基桩缺陷及位置,判定桩身完整性。
3.2检测内容(1)利用低应变法检测灌注桩中声测管之间混凝土是否存在离析、夹杂、断桩等缺陷及缺陷位置、影响程度;(2)通过分析测试数据,评价桩身混凝土质量,判定桩身完整性类别。
低应变基桩检测实训报告
一、前言随着我国建筑行业的快速发展,桩基础工程在高层建筑、桥梁、港口等工程中得到了广泛应用。
基桩作为建筑物的地基基础,其质量直接关系到建筑物的安全与稳定。
因此,对基桩的检测显得尤为重要。
低应变基桩检测技术作为一种快速、简便的检测方法,在工程实践中得到了广泛应用。
本实训报告主要针对低应变基桩检测技术进行实训,并对实训过程进行总结和分析。
二、实训目的1. 熟悉低应变基桩检测技术的原理和操作流程。
2. 掌握低应变基桩检测仪器的使用方法。
3. 学会分析检测数据,判断桩身质量。
4. 提高实际操作能力,为今后从事桩基础检测工作打下基础。
三、实训内容1. 低应变基桩检测技术原理低应变基桩检测技术主要基于反射波法,通过在桩顶施加低能量冲击,使桩身产生弹性振动,并利用应力波在桩身中的传播特性,分析桩身质量。
当桩身存在缺陷时,波阻抗发生变化,导致反射波和透射波的特性发生变化,从而判断桩身质量。
2. 低应变基桩检测仪器本次实训使用的是RSM-PRT基桩低应变检测仪。
该仪器具有体积小巧、重量轻、操作简单等特点,内置高容量锂电池,可连续工作8小时。
仪器具备加速度传感器、速度传感器,可进行滤波、指数放大、定缺陷位置等分析功能。
3. 实训操作步骤(1)现场布设:在桩顶安装检测仪器,确保仪器与桩身接触良好。
(2)数据采集:进行低能量冲击,采集桩身振动信号。
(3)数据处理:对采集到的信号进行滤波、指数放大等处理,提取反射波和透射波。
(4)分析判断:根据反射波和透射波的特性,分析桩身质量,判断是否存在缺陷。
四、实训结果与分析1. 实训结果通过实训,掌握了低应变基桩检测技术的原理和操作流程,熟悉了RSM-PRT基桩低应变检测仪器的使用方法,能够对采集到的数据进行处理和分析。
2. 桩身质量分析在实训过程中,我们对不同类型的基桩进行了检测,发现以下几种情况:(1)桩身完好:反射波和透射波特性良好,无异常。
(2)桩身存在缩径:反射波幅值减小,透射波幅值增大,表明桩身存在缩径缺陷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基桩低应变法检测报告
批准:审核:校核:主检:
一、工程概况:
该工程位于********,由*****单位承建。
该工程桩基础全部为钻孔灌注桩,共计8根,设计桩径为500mm,于※※年※※月※※日浇注。
混凝土的设计强度等级为C30。
受中铁第十一工程局的委托,对该工程基础桩的桩身完整性进行了检测,受检桩编号为1、8、17、12、20、10、16、13,共8根。
二、地质情况
拟建场地土层情况自上而下为:
(1)杂填土:稍湿,松散,层厚1.10~4.6m。
(2)淤泥:饱和,流塑,厚度1.30~4.2m。
(3)残积砂质粘性土:湿,可塑~坚硬,层厚2.20~8.60m。
(3)-1强风化花岗岩:为花岗岩风化残留球状风化体,呈散体状、碎块状,厚度3.80~7.00m。
(4)全风化花岗岩:中粗粒结构,散体状构造,厚度3.00~18.80m。
(5)-1强风化花岗岩:中粗粒结构,散体状构造,最大揭露厚度1.50~23.20m。
(5)-2强风化花岗岩:中粗粒结构,碎块状构造,最大揭露厚度0.50~15.20m。
(6)中风化花岗岩:中粗粒结构,块状构造,原岩结构清晰,裂隙不发育,最大揭露厚度9.20 m。
三、反射波测桩的基本原理
反射波法适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。
反射波法测桩的示意图如上图所示,其基本原理为:用锤激励桩头,所产生的应力波将沿着桩身向下传播,在传播过程中,如遇到波阻抗界面,将产生声波的反射和透射。
应
力波反射和透射能量的大小取决于两种介质波阻抗的大小。
由波动理论可知,当应力波遇到断裂、离析、缩颈及扩底时,由于波阻抗变小,反射波与入射波初动相位同相;当应力波遇到扩颈、扩底时,波阻抗变大,反射波与入射波的初动相位反相。
结合振幅大小、波速高低、反射波到达时间等可对桩的完整性、缺陷程度、位置等作出综合判断。
桩身长度根据下列公式计算:
L=
2T
V
p
式中,L为桩身长度,Vp为应力波传播速度,T为桩底反射波到达时间。
四、资料分析与结果
本次共对2根桩进行了低应变法检测。
其结果详见附表,各试桩的实测信号曲线见附图。
桩身完整性分类为:
(1)Ⅰ类桩(完好桩):桩身连续性好,桩身规则,混凝土结构密实,桩体无缺陷存在,在时域波形上表现为曲线规整、圆滑、无异常信号迭加。
(2)Ⅱ类桩(一般桩):相对完好桩而言,桩身规则性略有差异,反映在时域波形上则有轻微异常信号迭加,波形不甚圆滑,说明桩身局部存在轻微的离析、缩颈、扩颈等缺陷,但整体尚好。
(3)Ⅲ类桩(缺陷桩):反映在时域曲线上畸变较大,桩底反射信号不清楚,难以辩认。
说明桩身存在局部缩颈、夹泥、离析等缺陷。
这类桩对单桩承载力有一定的影响,需要做进一步的处理。
(4)Ⅳ类桩(严重缺陷桩):反映在时域曲线上严重畸变,无桩底反射信号,桩间反射信号较强,桩身存在严重缩颈、离析、夹泥、断裂等缺陷。
基桩检测成果报告表
低应变法检测结果:
Ⅰ类桩共5根,占所测桩数62.50%;
Ⅱ类桩共3根,占所测桩数37.50%;
Ⅲ类桩共0根,占所测桩数0.00%;
Ⅳ类桩共0根,占所测桩数0.00%。
五、波形图见附图。