pkpm参数设置的问题
PKPM参数设置
PKPM参数设置PKPM(鹏凯测定物性分析与计算程序)是一种广泛应用于土木工程结构设计中的计算程序,它能够对结构进行受力分析、变形计算以及稳定性分析等,并可以根据需要进行参数设置。
下面将介绍一些常见的PKPM参数设置。
1.结构类型设置:PKPM能够分析各种类型的结构,包括梁、柱、板、桁架等。
在进行计算之前,需要选择结构类型,并设定相关参数,如结构的材料属性、截面形状和尺寸等。
2.受力边界条件设置:在进行结构分析时,需要设定结构的受力边界条件,包括支座类型、受力方向和受力大小等。
支座类型可以选择固定支座、弹性支座或自由支座。
受力方向和大小应根据具体情况进行设置,一般需要根据结构的受力与约束情况进行考虑。
3.材料属性设置:PKPM可以对多种材料进行分析,如钢材、混凝土和木材等。
在进行计算之前,需要设定材料的物理性质,如弹性模量、抗弯强度和抗压强度等。
这些参数可以根据实际情况选择合适的数值,以保证计算结果的准确性。
4.截面参数设置:对于梁、柱等结构,需要设定截面的几何形状和尺寸。
常见的截面形状包括矩形、圆形、T形等,而尺寸可以通过设定宽度、高度、厚度等参数来确定。
在设定截面参数时,需要根据结构的实际形态和受力情况进行选择,以保证计算的准确性。
5.荷载设置:在进行结构分析时,需要考虑结构所受到的外部荷载,如重力荷载、活荷载以及风荷载等。
在设定荷载参数时,需要根据结构的使用要求和设计规范进行选择。
可以根据实际情况设置荷载的种类、大小和分布等。
6.稳定性分析参数设置:在进行结构稳定性分析时,需要设定相关参数,如屈曲长度系数、曲率半径等。
这些参数可以根据结构的几何形状和受力情况进行选择,以保证计算结果的准确性。
总之,PKPM参数设置是进行结构分析与计算的重要环节,合理的参数设定可以保证计算结果的准确性和可靠性。
不同的结构类型和受力条件需要设置不同的参数,设计人员应根据实际情况选择适当的参数值,并遵循相关的设计规范和标准,以保证结构的安全可靠性。
PKPM如何调整参数和选用讲解
PKPM如何调整参数和选用讲解PKPM(简称为Punching Kong Program)是一种用于设计和分析钢结构建筑物(主要是高层建筑、大跨度建筑、工业厂房等)的计算机辅助设计和分析软件。
在使用PKPM时,我们可以根据具体的建筑需求来调整参数和选用,以确保建筑的安全可靠性。
首先,PKPM的调整参数是指根据建筑物的具体要求和条件,对程序中的相关参数进行修改和设置。
其中影响较大的参数包括截面参数、材料参数、荷载参数等。
调整这些参数可以更准确地反映建筑物的实际情况,提高计算结果的准确性。
例如,对于不同类型的截面,可以设置不同的截面参数,如板厚、型钢尺寸等;对于不同材料,可以设置不同的材料参数,如强度、弹性模量等;对于不同的荷载条件,可以设置不同的荷载参数,如风荷载、地震荷载等。
其次,对于PKPM的选用,主要是指选择合适的计算模型和方法。
在PKPM中,有多种计算模型和计算方法可供选择,如刚性差异理论(RDT)、位移法、切割方法等。
选用合适的计算模型和方法有助于更准确地预测建筑物的受力和变形情况。
通常,对于简单结构和荷载条件相对简单的建筑物,可以选用简化的计算模型和方法,以提高计算效率;对于复杂结构和复杂荷载条件的建筑物,应选用更精确和细致的计算模型和方法,以保证计算结果的准确性。
另外,对于PKPM的参数调整和选用,需要考虑以下几个方面:1.建筑物的结构类型和用途:根据建筑物的结构类型和用途,选择相应的计算模型和方法以及合适的参数。
例如,对于高层建筑,通常采用刚性差异理论(RDT)进行计算,对于大跨度建筑,可以选用位移法进行计算。
2.建筑物的设计要求和安全等级:根据建筑物的设计要求和安全等级,设置合适的材料参数和荷载参数。
例如,对于高风区的建筑物,应设置较大的风荷载,对于地震区的建筑物,应设置合适的地震荷载。
3.PKPM软件版本和更新:根据PKPM软件的版本和更新情况,及时了解软件中新增的参数和更新的计算模型和方法,并且根据实际需要进行相应的参数调整和选用。
PKPM参数设置规范详解
PKPM参数设置规范详解PKPM是一种常用的结构分析和设计软件,具有参数设置功能,可以根据不同的需求进行定制。
本文将详细介绍PKPM参数设置的规范,帮助用户更好地使用该软件。
首先需要明确的是,参数设置是PKPM软件中非常重要的一项功能,它直接影响到分析结果的准确性和可靠性。
因此,在进行参数设置时,需要遵循一定的规范,以确保分析结果的准确性。
一、参数设置的原则:1.合理性原则:设置的参数应符合实际情况,反映结构的真实状态,不能过于乐观或过于保守。
2.一致性原则:参数设置应与其他设计参数相一致,确保整个设计的协调性。
3.严谨性原则:遵循规范和标准,确保参数设置的合理性和准确性。
二、常见参数设置:1.材料参数:PKPM软件中提供了各类结构材料的参数设置,包括弹性模量、泊松比、抗拉强度等。
在设置材料参数时,应根据实际材料的性质和试验数据进行选择。
2.几何参数:几何参数包括构件的尺寸、形状等。
在设置几何参数时,应确保准确、一致,并考虑对结构响应的影响。
3.工况参数:工况参数包括荷载、边界条件等。
在设置工况参数时,应根据结构的使用状况和设计要求进行选择,并保持与其他设计参数的一致性。
4.计算参数:计算参数包括求解方法、计算精度等。
在设置计算参数时,应根据结构类型和分析要求进行选择,并保持计算结果的稳定性和可靠性。
三、参数设置的步骤:1.分析问题的定义:首先需要明确分析的目的和要求,确定分析的类型和范围。
2.数据的获取和处理:收集和整理分析所需的相关数据,包括结构的几何形状、材料性质、荷载情况等。
3.参数的选择和设置:根据实际情况,选择合适的参数,并进行设置。
需要注意的是,参数的设置应符合规范和标准,反映结构的真实状态。
4.分析的执行和结果的评定:按照设置的参数进行分析,并对结果进行评定。
如果结果不符合要求,可以进行参数的调整和分析的迭代,直到满足要求为止。
四、参数设置的注意事项:1.结构的复杂性:对于复杂结构的分析,参数设置更为关键。
PKPM参数设置教程
PKPM参数设置教程PKPM是一款常用的结构分析和设计软件,它具有简单易用、功能强大的特点。
在进行结构分析和设计时,正确设置PKPM的参数是非常重要的,本教程将为大家详细介绍PKPM参数设置的步骤和注意事项。
一、模型参数设置1.材料参数:在PKPM中,材料参数包括混凝土、钢筋等材料的强度和弹性模量等属性。
在进行结构分析和设计之前,需要根据实际情况输入正确的材料参数。
2.截面参数:截面参数是指梁、柱、梁柱节点等构件的截面尺寸和形状等属性。
在进行结构分析和设计之前,需要根据实际情况输入正确的截面参数。
3.支座参数:支座参数是指结构的支座类型、支座刚度等属性。
在进行结构分析和设计之前,需要根据实际情况输入正确的支座参数。
二、荷载参数设置1.面积荷载:在PKPM中,面积荷载可以是均布荷载、集中荷载等。
在进行结构分析和设计之前,需要根据实际情况输入正确的面积荷载参数,包括荷载的大小和作用位置等。
2.点荷载:点荷载是指作用在结构上的集中力或集中力矩。
在进行结构分析和设计之前,需要根据实际情况输入正确的点荷载参数,包括荷载的大小和作用位置等。
3.温度荷载:温度荷载是指由于温度变化引起的结构变形。
在进行结构分析和设计之前,需要根据实际情况输入正确的温度荷载参数,包括温度变化范围和温度变化系数等。
三、分析参数设置1.分析类型:在PKPM中,分析类型包括静力分析、模态分析和动力时程分析等。
在进行结构分析和设计之前,需要根据实际情况选择合适的分析类型。
2.求解控制:在PKPM中,求解控制包括杆件分析控制和节点分析控制等。
在进行结构分析和设计之前,需要根据实际情况设置合适的求解控制参数。
3.分析选项:在PKPM中,分析选项包括荷载组合、组合类型等。
在进行结构分析和设计之前,需要根据实际情况选择适合的分析选项。
四、设计参数设置1.验算参数:在PKPM中,验算参数包括构件的抗弯强度、剪切强度等。
在进行结构设计之前,需要根据实际情况设置正确的验算参数。
对pkpm参数设置的疑问解答
一、一般情况下模拟施工加载取模拟施工加载3比较符合逐层施工的实际情况。
模拟施工加载2则可以更合理的给基础传递荷载。
复杂结构设计人员可以指定施工顺序。
二、修正后的大体风压一般就是荷载规范规定的大体风压,对于沿海和强风地带对风荷载敏感的建筑可以在此基础上放大10%~20%,门刚中则规定按放大5%采用。
3、对于高度大于150M的高层混凝土建筑才要验算风振舒适度。
结构阻尼比取0.01~0.02,程序缺省0.02。
4、侧刚计算方式:一种简化计算法,计算速度快,但应用范围有限,当概念有弹性楼板或有不与楼板相连的构件时(如错层结构、空旷的工业厂房、体育馆等)用此法会有必然误差;总刚计算方式:精度高,适用范围广,计算量大。
对于没有概念弹性楼板且没有不与楼板相连构件的工程,两种方式结果一样。
(以下转贴)“刚性楼板”的适用范围:绝大多数结构只要楼板没有特别的减弱、不持续,都可采用这个假定。
相关注意:由于“刚性楼板假定”没有考虑板面外的刚度,所以可以通过“梁刚度放大系数”来提高梁面外弯曲刚度,以弥补面外刚度的不足。
一样原因,也可通过“梁扭矩折减系数”来适当折减梁的设计扭矩。
“弹性板6 ”的适用范围:所有的工程都可采用。
相关注意:由于已经考虑楼板的面内、面外刚度,则梁刚度不宜放大、梁扭矩不宜折减。
板的面外刚度将承担一部份梁柱的面外弯矩,而使梁柱配筋减少。
此时结构分析时间大大增加。
“弹性板3 ”的适用范围:需要保证楼板平面内刚度超级大,外刚度承担荷载,不使梁柱配筋减少,以保证梁柱设计的安全度。
“如厚板转换层中的厚板,板厚达到1m以上。
而面外刚度则需要按实际考虑。
相关注意:一般在厚板转换层不设梁,或用等代梁,并注意上下部轴线差别产生的传力问题。
“弹性膜”的适用范围:仅适用于梁柱结构,设计时不使楼板面相关注意:不能用于“板柱结构”。
设计时可以进行梁的刚度放大和扭矩折减。
(弹性楼板6:考虑楼板的面内刚度和面外刚度,采用壳单元.原则上适用于所有结构,但采用弹性楼板6计算时,楼板和梁一路承担面外弯矩,计算结果中梁的配筋小了,而楼板承担面外弯矩,计算的配筋又未考虑.另外计算工作量大.因此该模型仅适用于板柱结构;弹性楼板3:考虑楼板的面内刚度无穷大,并考虑楼板的面外刚度.适用于厚板转换层;弹性膜:考虑面内刚度,面外刚度为零.采用膜剪切单元.弹性板由用户人工指定,但对于斜屋面,若是没有指定,程序会缺省为弹性膜,用户可以指定为弹性板6或弹性膜,不允许概念为刚性板或弹性板3)五、按照高规(JGJ 3-2021)第3.7.3条注,抗震设计时SATWE计算结果中楼层层间最大位移与层高之比的限值可不考虑偶然偏心的影响。
Pkpm常见错误做法总结于下
Pkpm常见错误做法总结于下。
1.暗梁当楼面梁使用。
这是最常见的错误。
暗梁之所以不能当楼面梁是因为其刚度不够,荷载不能按自己设想的方式传递,即楼面荷载—板—暗梁—柱的传递方式几乎是不可能的。
这样将大大低估板的内力。
我个人认为,根据内力按最短距离传递的原则,用暗梁代替梁只有在板受集中力时,在集中力处沿板的最短方向(双向板沿两个垂直方向)设置暗梁,可以认为集中力由暗梁承受以满足抗弯强度和裂缝要求,此时板的计算跨度绝对不能按支承于暗梁来考虑。
但很多时候,这种做法也没有必要,直接加大板的受力钢筋即可,除非因抗剪(冲切)需要箍筋而使用暗梁。
2.与上一个问题相对应的是,在刚度发生较大突变(增加)处,应视为梁。
典型的问题是不同高程的板之间出现的错台,错台本身平面外刚度比较大,而板的平面外刚度较小,不管你是否愿意,板上的荷载都要传递到错台上,因此应当按梁来设计,尤其是抗剪钢筋应满足要求。
地下通道、车站遇到的这种情况较多,其荷载又比较大,但大多数人对错台的处理却非常草率,这很令人担忧。
3.框架结构形成事实上的铰接。
最常见的是梁刚度比柱大的多,使柱对梁的约束作用较弱,形成事实上的铰。
这样减少了超静定次数,于抗震不利,也难以形成“强柱弱梁”。
坂神地震时,地铁车站柱的破坏相当严重,也提醒我们不能忽视这个问题。
地铁车站顶底板可看作筏板,其梁的刚度当然大于柱,但中板处不宜将梁的刚度做得较大。
另外,地下工程如通道、涵洞、地铁车站等,有时不小心也容易作成刚度较大的顶底板和刚度较小的侧墙,这样横剖面就形成铰接的四边形,两侧墙土压力相差较大时很容易失稳,也不利于抗震。
4.板墙受力钢筋置于分布钢筋的内侧。
很多人总把分布钢筋想象成类似梁的箍筋,因此配筋不小心就这样倒置。
分布钢筋的作用在于固定受力钢筋位置,传递受力及防止温度收缩裂缝,它不需要象梁柱箍筋那样外包以防止钢筋受压向外鼓出,更重要的是,板墙截面高度较小,为增加有效高度发挥受力筋作用,一般情况下应当外置受力钢筋。
pkpm参数设置
1.正好我也遇到了同样的问题,我按照高规的规定,一个多层的框架结构取值范围是~,而总工有异议,到底这个该怎么取值希望大家探讨。
PKPM手册上框架结构的取值范围是~,我的理解是PKPM更保守了,你们认为呢2.菜单1里的设计参数:总信息:结构体系:包括框架结构,框鉴结构,框筒结构,筒中筒结构,剪力墙结构,短肢剪力墙结构,复杂高层结构,砌体结构,底框结构。
结构主材:钢筋混凝土,砌体,钢和混凝土。
结构重要性系数:,,。
选择要求按照应该按照不同安全等级或使用年限区别。
底框层数:选择底框结构才会有选项,有1,2,3,3个选择,《抗规》第七节,只有两层底层框架的规定。
地下室层数:选项有1,2,2个选择。
根据实际情况选择。
与基础相连的最大楼层号:根有1,2,3,3个选择,据实际情况选择自然层号。
梁柱钢筋的砼保护层厚度(mm):根据《混规》确定。
框架梁端负弯矩调幅系数:根据《高规》条确定,默认。
地震信息力的周期折减系数:《高层建筑混凝土结构技术规程》,框架结构可取为~材料信息:混凝土容重(kN/m3):根据荷载规范选取,默认25。
钢材容重(kN/m3):根据荷载规范选取,默认78。
钢结构钢材:根据设计使用情况采用不同的钢材材料有Q235,Q345,Q390,Q420不同选择。
钢截面净毛面积比值:根据实际情况选择,默认。
墙:主要墙体材料:烧结砖,混凝土,蒸压砖,砼砌块,根据实际情况选择。
砌体容重(kN/m3):根据荷载规范选取,默认22。
墙主筋类别:有HPB235,HRB335,HRB400,RRB400,冷轧带肋550,根据实际情况选择。
墙水平(竖向)分布筋类别:同上墙水平分布筋间距(mm):默认200。
墙竖向分布钢筋配筋率(%):默认。
可根据《抗规》条确定。
梁柱箍筋:梁柱箍筋类别:有HPB235,HRB335,HRB400,RRB400,冷轧带肋550,根据实际情况选择。
PKPM设计基础时的参数分析和最小配筋率使用注意事项
PKPM设计基础时的参数分析和最小配筋率使用注意事项在进行参数分析时,需要关注以下几个方面:1.结构类型:PKPM设计基础时,首先需要确定结构类型,例如钢结构、混凝土结构、钢-混凝土组合结构等。
不同结构类型的参数要求和分析方法会有所不同。
2.荷载标准:PKPM设计基础时,需要根据设计要求选择适当的荷载标准,例如国家标准、行业标准或地方标准。
荷载标准中包含了各种荷载及其组合方式,需要根据实际情况进行合理选择。
3.材料性能:PKPM设计基础时,需要确定结构所采用的材料的基本性能参数,例如混凝土的抗压强度、钢筋的屈服强度等。
这些参数对于结构的承载能力和耐久性具有重要影响。
5.参数优化:在确定参数取值范围后,可以通过参数优化的方法来找到最优参数组合。
参数优化可以采用经验公式、数值分析、试验数据等多种方法,以最大限度地发挥结构的承载能力和经济性。
最小配筋率是指在PKPM设计基础时,要保证混凝土结构中的钢筋面积不低于规定的最小值。
最小配筋率的使用注意事项如下:1.配筋率计算:最小配筋率需要根据结构的受力特点和设计要求进行计算。
一般情况下,最小配筋率是以混凝土截面面积的一定比例来表示的。
2.强度计算:在计算最小配筋率时,需要考虑混凝土的抗压强度和钢筋的屈服强度。
最小配筋率需要保证结构在荷载作用下不发生塑性破坏,且足够刚性。
3.限制条件:最小配筋率的使用还需要考虑其他对配筋率的限制条件,例如最大配筋率、构造限制等。
在设计时,需要满足这些限制条件,并在合理的范围内选择最小配筋率。
4.经验公式:最小配筋率通常可以通过经验公式来估算。
这些经验公式是根据大量的试验数据和实际工程经验得出的,设计师可以参考这些公式来确定最小配筋率。
5.优化设计:最小配筋率还可以通过优化设计来确定。
优化设计可以考虑多个参数的影响,并通过目标函数和约束条件来寻找最优的结构配置。
总之,PKPM设计基础时的参数分析和最小配筋率的使用需要根据具体情况进行合理分析和计算,并参考经验公式和优化设计方法来确定最优的结构参数和配筋率。
PKPM如何调整参数和选用分析
PKPM如何调整参数和选用分析PKPM(一种常用于结构设计的计算机软件)参数调整和选用是设计和计算过程中非常重要的一环。
正确的参数调整和选用能够确保结构的安全、经济和合理。
本文将从PKPM参数的基本概念、应用范围、调整方法和选用原则等方面进行详细介绍。
一、PKPM参数的基本概念PKPM参数主要包括以下几个方面:1.材料参数:包括混凝土强度等级、钢筋强度等级、混凝土和钢筋的材料力学性能等。
2.计算参数:包括设计活载、设计雪荷载、设计地震加速度等。
3.结构参数:包括截面尺寸、受力构件的长度、连接方式等。
二、PKPM参数的应用范围PKPM适用于各种类型的结构计算和设计,包括建筑结构、桥梁结构、塔架结构等。
参数选用和调整的方法也可以适用于不同类型的结构。
三、PKPM参数的调整方法1.材料参数的调整:混凝土强度等级和钢筋强度等级是结构设计中最常见的材料参数。
根据具体的项目要求,可以通过查表或进行试验来确定合适的混凝土和钢筋强度等级,以确保结构的安全性和经济性。
2.计算参数的调整:设计活载、雪荷载和地震加速度等是结构计算中需要考虑的重要参数。
根据国家标准和设计规范的要求,可以选取合适的设计活载、雪荷载和地震加速度等值,并根据工程实际情况进行调整,以确保结构的安全性和合理性。
3.结构参数的调整:结构参数包括截面尺寸、受力构件的长度、连接方式等。
在进行结构设计和计算时,需要根据各个受力构件的受力特点和工程要求,选择合适的截面尺寸和构件长度,同时对连接方式进行合理设计,以保证结构的强度和稳定性。
四、PKPM参数的选用原则1.安全性原则:在进行PKPM参数选用和调整时,首要考虑的是结构的安全性。
必须确保结构能够满足承载能力和抗震能力的要求,以避免结构的破坏和倒塌。
2.经济性原则:结构设计和计算过程中,除了要满足安全性的要求外,还需要考虑经济性的因素。
即在满足结构的安全性的前提下,尽量减小结构的材料和成本,以提高工程的经济效益。
PKPM参数设置教程
PKPM参数设置教程PKPM是一种常用的结构分析软件,通过设置不同的参数可以使得分析结果更加精确和合理。
本篇教程将对PKPM的参数设置进行详细介绍,希望对使用PKPM的用户有所帮助。
一、桁架模型参数设置桁架模型是PKPM最常用的结构类型之一,其参数设置主要包括节点设置、截面设置和材料设置。
节点设置:对于桁架模型,首先需要设置节点的坐标。
在PKPM中,可以通过手动输入坐标值或者通过导入CAD文件的方式进行设置。
在进行节点设置时,需要注意节点之间的互连关系,确保节点之间合理连接。
截面设置:截面设置是桁架模型设计中的重要步骤。
在PKPM中,可以选择常用的截面形状,如矩形、圆形等,也可以根据实际需要自定义截面形状。
在设置截面时,需要考虑到截面的几何尺寸和材料强度等因素。
对于桁架模型而言,大多数情况下可以简化为单元截面,在设置截面时需要注意保证桁架模型的整体稳定性和安全性。
材料设置:在PKPM中,可以选择常用的材料类型,如碳钢、高强钢等,也可以根据实际需要自定义材料类型。
在设置材料时,需要输入材料的弹性模量和屈服强度等参数。
对于桁架模型而言,通常使用弹性理想塑性材料模型进行分析。
二、框架模型参数设置框架模型是PKPM中比较常见的结构类型之一,其参数设置主要包括节点设置、截面设置和材料设置。
节点设置:框架模型节点的设置方式与桁架模型类似,需要设置节点的坐标,并保证节点之间连接合理。
截面设置:在PKPM中,框架模型的截面可以选择常见的几何形状,如矩形、圆形等,也可以自定义截面形状。
在设置截面时,需要考虑到截面的几何尺寸和材料强度等因素。
对于框架模型而言,通常需要设置节点的支座条件,包括固支、弹性支座和铰支等。
材料设置:在PKPM中,可以选择常用的材料类型,如混凝土、钢筋等,也可以自定义材料类型。
在设置材料时,需要输入材料的弹性模量、泊松比和抗压抗拉强度等参数。
对于框架模型而言,需要设置材料的屈服强度和破坏应变等参数。
PKPM常见问题处理
数据备份与恢复问题
数据备份
定期备份数据是防止数据丢失的有效方法。 需要定期备份数据,并确保备份数据存储在 安全可靠的位置。
数据恢复
当数据丢失或损坏时,需要使用备份数据进 行恢复。需要确保备份数据的完整性和可用
性,以便在需要时能够快速恢复数据。
谢谢观看
启动时无响应
可能是由于软件与系统兼容性问题或内存不足。解 决方法是尝试更新操作系统或软件版本,或增加系 统内存。
启动后界面异常
可能是由于软件界面主题设置错误或显卡驱 动问题。解决方法是检查并修改软件界面主 题设置,或更新显卡驱动。
运行环境问题
1 2 3
操作系统版本不兼容
可能是由于软件对操作系统版本有特定要求。解 决方法是检查软件对操作系统版本的要求,并升 级或更换操作系统。
模型精度问题
对于复杂结构,可能需要调整模型的 精度以适应计算资源。过高的精度可 能导致计算时间过长或资源不足,而 精度不足则可能影响结果的准确性。
材料参数问题
参数设置不正确
确保为模型中的所有元素设置了正确的材料参数,包括弹性模量、泊松比、密度等。错误的参数可能 导致计算结果偏离实际。
特殊材料处理
对于特殊材料,如复合材料或具有特殊性能的材料,可能需要额外的处理或采用特殊的方法进行模拟 。
参数设置不当
可能是由于分析类型、边界条件、载荷等参数设置不正确。需要仔细 核对参数设置,确保符合实际工况。
结果解读问题
总结词
结果解读问题通常涉及到对计算结果 的理解和解释,以及如何从结果中获 取有用信息。
理解计算结果
需要了解各种结果的含义和背景,例 如应力、应变、位移等。
解释结果
需要结合实际工况和设计要求,对结 果进行解释和评估。
PKPM如何调整参数和选用
PKPM如何调整参数和选用PKPM(Plates-Kou Big Power Method)是一种常用的结构计算软件,广泛应用于中国的建筑工程中。
在进行PKPM计算时,合理调整参数和选用是非常重要的,它们直接与计算结果的准确性和可靠性相关。
下面将详细介绍如何调整PKPM的参数和选用。
1.根据工程实际情况选择合适的参数:PKPM中有许多参数可以调整,例如截面的混凝土强度、钢筋的强度、构件的截面尺寸、材料属性等。
这些参数的选择应根据具体工程的实际情况来确定。
其中,混凝土强度和钢筋强度是最主要的参数,需要根据设计要求和现场实际情况来确定。
通常采用强度设计方法时,混凝土和钢筋的设计强度应分别按照规范要求的短期和长期强度取值。
此外,还应根据构件的实际尺寸和变形情况,选择合适的材料性质参数,如单位体积重、泊松比等。
2.合理选用模型:PKPM中提供了多种模型供用户选择,如弹性模型、非线性弹性模型、接触模型等。
在对结构进行静力计算时,一般使用线性弹性模型即可满足要求。
而在进行动力计算时,需要考虑结构的非线性变形和非线性材料的影响,可以选用非线性弹性模型。
另外,对于复杂的结构或涉及到非接触约束的情况,还可以选择接触模型进行分析。
在选择模型时,应根据工程的具体要求、结构的特点和计算的精度要求进行综合考虑。
3.设置合理的计算控制参数:PKPM中的计算控制参数对于计算结果的准确性和计算效率有很大影响。
常见的计算控制参数包括残余力的容许值、迭代次数的限制、收敛准则的设定等。
其中,残余力的容许值表示在迭代过程中,当残余力达到该容许值时,则认为计算收敛。
一般来说,残余力的容许值设置得越小,计算结果越精确,但计算时间也会相应增加。
迭代次数的限制用于控制迭代的次数,过多的迭代次数会导致计算时间的增加,此时应适当增大迭代次数的限制。
另外,收敛准则的设定也会影响计算精度和计算时间。
在进行计算时,应根据具体问题和计算要求,合理设置这些参数,以获得满意的计算效果。
PKPM参数设置教程剖析
PKPM参数设置教程剖析PKPM(即平面钢结构详图计算机分析程序)是一种专门用于进行平面钢结构计算的软件,它能够自动将草图转化为详细图并进行计算,提供了多种参数设置选项以满足不同工程要求。
本文将对PKPM参数设置教程进行剖析,帮助读者了解如何正确使用PKPM软件。
首先,打开PKPM软件后,我们会看到一个界面,界面上有很多选项和工具栏。
在进行参数设置之前,我们首先需要导入或者新建一个工程文件。
点击菜单栏的“文件”选项,选择“新建”或者“打开”选项,选择一个已有工程文件或者新建一个工程文件。
接下来,我们需要设置工程的基本信息。
点击菜单栏的“设置”选项,在弹出的对话框中选择“基本信息”选项。
在基本信息设置中,我们需要填写工程的名称、编制单位、设计单位、设计者、校对者等基本信息,确保这些信息都是正确的。
在填写完成后,点击“确定”按钮保存设置。
在设置完基本信息之后,我们还需要设置节点参数。
节点是PKPM中的一个重要概念,它代表了结构中的连接点,我们需要为每个节点设置相应的参数。
点击菜单栏的“设置”选项,在弹出的对话框中选择“节点参数”选项。
在节点参数设置中,我们可以设置节点的类型、编号、坐标、荷载等信息。
根据具体的工程要求,我们可以选择合适的节点类型,如固定支座、弹性支座等。
填写完成节点参数后,点击“确定”按钮保存设置。
除了节点参数,我们还需要设置材料参数。
点击菜单栏的“设置”选项,在弹出的对话框中选择“材料参数”选项。
在材料参数设置中,我们可以设置结构中使用的材料的弹性模量、截面系数、重量等参数。
根据具体的工程要求,我们可以选择合适的材料类型,如普通钢、高强钢等。
填写完成材料参数后,点击“确定”按钮保存设置。
设置完节点参数和材料参数之后,我们还需要设置荷载参数。
点击菜单栏的“设置”选项,在弹出的对话框中选择“荷载参数”选项。
在荷载参数设置中,我们可以设置结构所受到的静力荷载、动力荷载等参数。
根据具体的工程要求,我们可以选择合适的荷载类型,如重力荷载、风荷载等。
PKPM参数设置(个人总结)
一、PMCAD中设计参数1、考虑结构设计使用年限的荷载调整系数,【高规5.6.1】设计使用年限为50年时取1.0,设计使用年限为100年时取1.1。
2、框架梁端负弯矩条幅系数,【高规5.2.3】在竖向荷载作用下,可考虑框架梁端塑性变形内力重分布对梁端负弯矩乘以调幅系数进行调幅,并应符合下列规定:装配整体式框架梁端负弯矩调幅系数可取为0.7~0.8,现浇框架梁端负弯矩调幅系数可取为0.8~0.9(一般取为0.85),且调幅后的跨中弯矩不应小于按简支计算的跨中弯矩的1/2。
3、保护层厚度,【砼规8.2.1】中有详细规定(新规范保护层厚度指以最外层钢筋的外边缘计算混凝土的保护层厚度)。
4、框架的抗震等级,【抗规6.1.2】中有详细规定(表6.1.2中确定的房屋的抗震等级为丙类建筑的抗震等级,甲、乙类建筑应提高一度查表6.1.2确定其抗震等级,但抗震设防烈度为9度时,乙类建筑的抗震等级应按特一级采用,甲类建筑应采取更有效的抗震措施,丁类建筑允许降低一度采取抗震措施,但已为6度时不应再降低)。
5、抗震构造措施和抗震等级,【抗规3.3.2】建筑场地为1类时,对甲、乙类建筑应允许仍按本地区抗震设防烈度的要求采取抗震构造措施,对丙类建筑应允许按本地区抗震设防烈度降低一度的要求采取抗震构造措施,但抗震设防烈度为6度时仍应按本地区抗震设防烈度的要求采取抗震构造措施。
(1类场地时,丁类建筑抗震构造措施也可降低一度同丙类;2类场地时,甲、乙类建筑应按本地区抗震设防烈度提高一度采取抗震构造措施,丙类建筑按本地区抗震设防烈度采取抗震构造措施,丁类建筑可按本地区抗震设防烈度降低一度采取抗震构造措施;3、4类场地时,甲乙类建筑应按本地区抗震设防烈度提高两个等级采取抗震构造措施,丙类建筑7度半和8度半分别按8度9度采取抗震构造措施,丁类建筑7度和8度分别按6度7度采取抗震构造措施)。
6、计算振型个数,【高规5.1.13】计算振型数应使各振型参与质量之和不小于总质量的90%(振型数应为3的倍数,与结构的自由度有关,所选振型数不应大于结构的自由度,当结构按侧刚模型分析时,每层的刚性楼板有三个自由度,总自由度为3n,当按总刚模型分析时,每个节点有两个自由度,总自由度为2mn)。
PKPM参数的合理设置
PKPM参数的合理设置PKPM(Plane Frame Analysis Program)是一种常用的结构分析软件,广泛应用于建筑、桥梁、管线等领域。
这款软件的参数设置对于正确分析和设计结构至关重要。
在下面的文章中,我将详细介绍PKPM的一些常见参数,并讨论如何合理设置这些参数。
1.材料参数:PKPM可以对结构材料进行参数设定,包括弹性模量、泊松比、抗拉强度等。
这些参数直接影响结构的刚度和强度。
合理设置材料参数必须考虑结构的实际情况和设计要求。
一般来说,对于普通建筑结构而言,可以参照国家标准或相关规范的要求进行设置。
2.截面参数:PKPM可以输入截面的几何形状和材料属性,如截面的宽度、高度、深度等。
这些参数直接影响截面的承载能力和刚度。
合理设置截面参数需要根据结构的受力特点和设计要求。
一般来说,应根据实际截面形状进行测量,并参考相关规范中的参数要求进行设置。
3.荷载参数:PKPM可以输入结构受力荷载的类型和大小,如永久荷载、活荷载、地震荷载等。
这些参数直接影响结构的受力和变形。
合理设置荷载参数需要考虑结构的使用功能和设计要求。
一般来说,可以根据国家标准或相关规范的要求设置荷载参数。
4.增量参数:PKPM可以进行非线性分析,用于模拟结构的非线性受力性能。
在进行非线性分析时,需要设置合适的增量参数,如步长、收敛误差等。
合理设置增量参数可以保证分析的精度和稳定性。
一般来说,可以根据实际结构的非线性特点和计算机性能进行适当调整。
5.分析参数:PKPM可以进行静力分析、动力分析、非线性分析等。
这些分析参数直接影响分析结果的准确性和稳定性。
合理设置分析参数需要根据结构的受力特点和设计要求。
一般来说,应根据分析方法和分析对象的不同进行设置,如静力分析可以选择受力计算方法,动力分析可以选择合适的频率范围等。
综上所述,合理设置PKPM的参数需要综合考虑结构的实际情况和设计要求。
在设置参数时,应参考国家标准、相关规范和设计经验,并根据实际情况进行适当调整。
PKPM参数设置详解
PKPM参数设置详解PKPM(Pushover Analysis & Performance-based Design Method)是一种使用有限元理论和性能设计理论结合的结构抗震分析与设计方法。
它可以考虑结构在地震中的非线性行为,提供更准确的地震响应预测和更安全的结构设计。
在进行PKPM分析和设计时,有一些参数需要进行设置。
下面将详细介绍PKPM参数设置的几个关键方面。
1.入力参数设置:PKPM分析首先需要输入地震波信息,包括地震波的震级、震中距、方位角等。
这些参数需要根据实际情况和当地地震活动性进行设置。
一般来说,震级和最大加速度是分析的关键参数,需要按照相关的规范或地震专家的建议进行设置。
2.建筑物基本参数设置:PKPM分析还需要设置建筑物的结构类型、几何参数和材料参数。
其中,结构类型包括框架、剪力墙、框剪结构等,几何参数包括楼层高度、柱、梁等截面尺寸,材料参数包括混凝土、钢材的材料性质等。
这些参数需要根据实际建筑物的结构特点和设计要求进行设置,可以参考相关的设计规范或经验数据。
3.材料非线性参数设置:PKPM分析中考虑的材料非线性行为包括混凝土的拉压损伤、钢材的屈服、铰状构件的屈曲等。
这些非线性行为需要通过设置相应的参数来进行模拟。
例如,混凝土的拉压损伤可以通过设置混凝土的强度、保存力和初始损伤等参数来实现。
钢材的屈服可以通过设置钢材的弹性模量、屈服强度等参数来实现。
铰状构件的屈曲可以通过设置铰的弹性刚度、屈曲强度等参数来实现。
这些参数需要结合具体材料的测试数据和设计要求进行设置。
4.非线性分析参数设置:PKPM分析中,还需要设置一些与非线性分析相关的参数,例如步长控制参数、计算时间步数等。
步长控制参数用于控制非线性分析的精度和稳定性,需要根据分析的具体要求进行设置。
计算时间步数用于确定分析的时间范围和时间间隔,需要根据分析的时程数据和结构的动力特性进行设置。
综上所述,PKPM参数设置是PKPM分析和设计中一项非常关键的工作。
PKPM模型参数调整方法
一、位移比超限宜≤1.2、应≤1.5
注:【全楼强制刚性楼板假定】设置
首先需要判断是某个楼层的局部节点位移超了所造成,还是整个楼层的位移都超了所造成的
<一>、楼层最大位移超限
1、参看哪个节点位移超,加大该处柱截面尺寸、该处节点相关梁的尺寸。
2、或者减小该节点周围柱的截面尺寸。
3、尽量避免框架中只有单向拉结的柱存在,这种柱子地震作用下位移较大。
4、另外也可能是建筑的刚度布置不均匀,构件布置过于集中,比如剪力墙结构则是刚心和质心偏移过大。
<二>、层间位移比(整个建筑的刚度布置不均匀)
如果层间位移角很小,相邻层的位移比值要求可以放宽。
如果整个层间位移都偏大,则需加大相关的截面(如四个角的柱截面)。
二、周期比应≤0.9
周期比超限处理:
1、最有效原则:削弱内部刚度,增强周边刚度,尽量周边均匀对称连续
2、有较大凹入的部位加拉梁
3、看看位移,将位移大的地方加拉梁,或者加大梁截面,加厚板
4、增加外围梁截面,特别加强角部,和抗震墙部位的梁截面。
三、刚度比相邻层70%,相邻三层的平均80%
1、如果是薄弱层,乘以1.25增大系数。
2、增加竖向承重构件的截面
四、刚重比
框架应≥10,宜框架≥20;剪力墙应≥1.4,宜≥2.7
1、增加竖向承重构件的截面刚度
2、在SATWE中勾选考虑P-Δ效应,程序会自动考虑。
五、剪重比(最小地震力系数)
6度区0.008,7度区0.016(0.024),对于薄弱层乘以1.15倍系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.风荷载风压标准值计算公式为:WK=βzμsμZ W。
其中:βz=1+ξυφz/μz在新规范中,基本风压Wo 略有提高,而建筑的风压高度变化系数μE、脉动增大系数ξ、脉动影响系数υ都存在减小的情况。
所以,按新规范计算的风压标准值可能比89规范大,也可能比89规范小。
具体的变化包括下面几条:1)、基本风压::新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇:新高规3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。
2)、地面粗糙度类别:由原来的A、B、C类,改为A、B、C、D类。
C类是指有密集建筑群的城市市区;D类为有密集建筑群,且房屋较高的城市市区。
3)、凤压高度变化系数:A、B、C类对应的风压高度变化系数略有调整。
新增加的D 类对应的风压高度变化系数最,比C类小20%到50%。
4)、脉动增大系数:A、B、C类对应的脉动增大系数略有调整。
新增加的D类对应脉动增大系数比89规范小,约5%到10%。
与结构的材料和形式有关。
5)、脉动影晌系数:在89高规中,脉动影响系数仅与地面粗糙度类别有关,对应A、B、C类的脉动影响系数分别为,0.48、0.53和0.63。
在新规范中,脉动影响系数不仅与地面粗糙度类别有关,而且还与建筑的高宽比和总高度有关,其数值都小于89高规。
如C类、高度为5Om、高宽比为3的建筑,υ=0.46,比89高规小28%,若为D类,则小37%。
6)、结构的基本周期:脉动增大系数ξ与结构的基本周期有关(WoT12)。
结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:框架结构T=(0.08-1.00)N:框剪结构、框筒结构T=(0.06-0.08)N:剪力墙结构、筒中筒结构T=(0.05-0.06)N。
其中N为结构层数。
PKPM结构设计参数22.地震作用1)、抗震设防烈度::新规范改变了抗震设防烈度与设计基本地震加速度值的对应关系,增加了7度(0.15g〉和8度(0.30g)两种情况(见新抗震规范表3.2.2)。
2)、设计地震分组:新规范把直接影响建筑的设计特征周期Tg的设计近震、远震改为设计地震分组,分别为设计地震第一组、第二组和第三组。
3)、特征周期值:比89规范增加了0.05s以上,这在一定程度上提高了地震作用。
4)、地震影响系数曲线:新规范5.1.5条,设计反应谱范围由原来的3s延伸到6s,分上升段、平台段、指数下降段和倾斜下降段四个区段。
在5Tg以内与89规范相同,从5Tg起改为倾斜下降段,斜率为0.02。
对于阻尼比不等于0.05的结构,设计反应谱在阻尼比δ等于0.05的基础上调整。
5)、扭转耦连:新高规3.3条规定,质量、刚度不对称、不均匀的结构,以及高度超过100m 的高层建筑结构应采用考虑扭转稿连振动影响的振型分解反应谱法。
6)、双向地震作用:新抗震规范5.1.1条规定,质量和刚度分布明显不对称的结构,应计入双向地震作用下的扭转影响。
7)、偶然偏心:新高规3.3.3条规定,计算地震作用时,应考虑偶然偏心的影响,附加偏心距可取与地震作用方向垂直的建筑物边长的5%。
8)、竖向地震作用:新规范5.3.1条规定,对于9度的高层建筑,其竖向地震作用标准值应按公式(5.3.1-1)和〈5.3.14〉计算,并宜乘以1.5的放大系数。
相当于重力荷载代表值的33.4%:新规范5.3.3条规定,长悬臂和其它大跨度结构竖向地震作用标准值,8度、8.5度和9度时分别取重力荷载代表值的10%、15%和20%:新高规10.2.3条规定,带转换层的高层建筑结构,8度抗震设计时转换构件应考虑竖向地震影响。
3.地震作用调整1)、最小地震剪力调整::新规范5.2.5条规定,抗震验算时,结构任一楼层的水平地震的剪重比不应小于表5.2.5给出的最小地震剪力系数λ。
对于竖向不规则结构的薄弱层,尚应乘以1.15的增大系数。
2)、0.2Q0调整:新规范6.2.13条规定,侧向刚度沿竖向分布基本均匀的框一剪结构,任一层框架部分的地震剪力,不应小于结构底部总地震剪力的20%和按框-剪结构分析的框架部分各楼层地震剪力中最大值1.5倍二者的较小值。
3)、边榀地震作用效应调整:新规范5.2.3条规定,规则结构不进行扭转祸连计算时,平行于地震作用方向的两个边桶,其地震作用效应应乘增大系数。
一般情况下,短边可按1.15采用,长边可按1.05采用:当扭转刚度较小时,宜按不小于1.3采用。
软件未执行这一条。
4)、竖向不规则结构地震作用效应调整:新规范 3.4.3条规定,竖向不规则的建筑结构,其薄弱层的地震剪力应乘以1.15的增大系数:新高规5.1.14条规定,楼层侧向刚度小于上层的70%或其正二层平均值的80%时,该楼层地震剪力应乘1.15增大系数;新规范3.4.3条规定,坚向不规则的建筑结构,竖向抗侧力构件不连续时,该构件传递给水平转换构件的地震内力应乘以1.25-1.5的增大系数。
5〉、转换梁地震作用下的内力调整:新高规10.2.23条规定,转换梁在特一级和一、二级抗震设计时,其地震作用下的内力分别放大1.8、1.5、1.25倍。
6)、框支柱地震作用下的内力调整:新高规10.2.7条规定,框支柱数目不多于10根时:当框支层为1一2层时各层每根柱所受的剪力应至少取基底剪力的2%当框支层为3层及3层以上时,各层每根柱所受的剪力应至少取基底剪力的3%:框支柱数目多于10根时,当框支层为1一2层时每层框支柱所承受剪力之和应取基底剪力20%,当框支层为3层及3层以上时,每层框支柱所承受剪力之和应取基底剪力3。
她框支柱剪力调整后,应相应调整框支柱的弯矩及柱端梁的剪力、弯矩,框支柱的轴力可不调整。
PKPM结构设计参数34.作用效应组合1)、作用效应组合基本公式非抗震设计时由可变荷载控制的组合zs=γGSGK+γJQJZ的iYQiSω非抗震设计时由永久荷载控制的组合zs=γGSGK+立的hSQik抗震设计时的组合。
2)、恒荷载作用的分项系数:当其对结构不利时,对于可变荷载效应控制的组合,应取1.2,对于永久荷载效应控制的组合,应取l.35:当其对结构不利时,一般应取1.0。
3)、可变荷载作用的分项系数和组合值系数:一般应取l.4;对于标准值大于4.OKN/m2的工业房屋楼面结构的活荷载应取1.3;楼面活荷载的组合值系数见荷载规范表4.1.1,取值范围在0.7-0.9之间;风荷载的组合值系数为0.6;与地震作用效应组合时风荷载的组合系数为0.2。
4)、地震作用的分项系数:一般应取1.3:当同时考虑水平、竖向地震作用时,应取0.5。
5〉、重力荷载代表值:新抗震规范5.1.3条规定,建筑的重力荷载代表值应取结构和构配件自重标准值和各可变荷载组合值之和。
各可变荷载组合值系数,应按表5.1.3采用。
(与荷载规范表4.1.1不同〉5.设计内力调整1)、梁设计剪力调整:抗震规范第6.2.4条和高规第6.2.5、7.2.21条规定,抗震设计时,特一、一、二、三级的框架梁和抗震墙中跨高比大于2.5的连梁,其梁端截面组合的设计剪力值应调整。
2)、柱设计内力调整:为了体现抗震设计中强柱弱梁概念设计的要求,抗震规范第6.2.2、6.2.3、6.2.6、6.2.10条和高规第4.9.2条规定抗震设计时,特一、一、二、三级的框架柱、框架结构的底层柱下端截面、角柱、框支柱的组合设计内力值应调整。
3)、剪力墙设计内力调整:高规第7.2.10、10.2.14、4.9.2条规定,抗震设计时,特一、一、二、三级的剪力墙底部加强区和非加强区截面组合的设计内力值应调整。
6.结构整体性能控制1)、位移控制:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.3倍。
2)、周期控制:新高规的4.3.5条规定,结构扭转为主的第一周期Tt与平动为主的第一周期T1之比,A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.850。
3〉、层刚度比控制:新抗震规范附录E2.1规定,筒体结构转换层上下层的侧向刚度比不宜大于2;新高规的4.4.3条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80%;新高规的5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍:新高规的10.2.6条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录D的规定。
D.0.1:底部大空间为一层的部分框支剪力墙结构,可近似采用转换层上、下层结构等效刚度比γ表示转换层上、下层结构刚度的变化,非抗震设计时γ不应大于3,抗震设计时不应大于2。
D.0.2:底部为2-5层大空间的部分框支剪力墙结构,其转换层下部框架一剪力墙结构的等效侧向刚度与相同或相近高度的上部剪力墙结构的等效侧向刚度比γe宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。
4)、层刚度比计算:高规附录D.0.l建议的方法一剪切刚度Ki=Gi Ai/hI高规附录D.0.2建议的方法一剪弯刚度Ki=A i/Hi抗震规范的3.4.2和3.4.3条文说明中建议的计算方法:Ki=Vi /A Iji新规范软件中提供前两种算法。
5)、框剪结构中框架承担的倾覆力矩计算;新抗震规范第6.1.3条、高规8.1.3条规定,框架一剪力墙结构,在基本振型地震作用下,若框架部分承担的地震倾覆力矩大于总地震倾覆力矩的50%,其框架部分的抗震等级应按框架结构确定,柱轴压比限值宜按框架结构采用。
抗震规范第6.1.3条的条文说明给出了框架部分承担的倾覆力矩的计算方法zMC=ZZVjh7.结构构件设计计算1〉、柱轴压比计算:新抗震规范6.3.7条、高规的6.4.2条和混凝土规范的11.4.16条,都规定了柱轴压比的限值,并规定建造于IV类场地且较高的高层建筑柱轴压比限值应适当降低。
柱轴压比指柱考虑地震作用组合的轴压力设计值与柱的全截面面积和混凝土轴心抗压强度设计值乘积之比:可不进行地震计算的结构,取无地震作用组合的轴压力设计值:2)、剪力墙轴压比计算:新抗震规范6.4.6条、高规的7.2.14条和混凝土规范的11.7.13条,都规定了剪力墙轴压比的限值。
目前新规范程序给出各个墙肢的轴压比。
3)、剪力墙强区:底部加新抗震规范和新高规对剪力墙结构底部加强部位的定义略有不同,分别定义如下:新抗震规范6.1.10条规定,部分框支抗震墙结构的抗震墙,其底部加强部位的高度,可取框支层加上框支层以上两层的高度及落地抗震墙总高度的l/8二者的较大值,且不大于15m,其它结构的抗震墙,其底部加强部位的高度可取墙肢总高度的1/8和底部二层高度二者的较大值,且不大于15m。