流化床反应器分类18页PPT
合集下载
流化床基础PPT课件

流化床类似液体的性状
轻的物体浮起; 表面保持水平; 固体颗粒从孔中喷出; 床面拉平; 床层重量除以截面积等于压强差
2 固体颗粒迅速混合,整个床层近似等温(传热效率高); 2颗粒停留时间分布不均匀(产品质量不一) 扩大段:降低气流速度以便有利于气固分离 (1)认为床层主体部分气泡大小均一且均匀分布于床层之中。 为保证流化均匀,稳定,分布板要有足够压降,一般选分布板压降 1气体的流动状态难以描述,容易偏离平推流,气泡使颗粒发生沟流,接触效率下降; 沟流:在流固系统或气液系统中,由于不均匀的流动,流体打开了一条阻力很小的通道,形成所谓沟,以极短的停留时间通过床层。 聚式流化态:颗粒在床层的分布不均匀,床层呈现两相结构:一相是颗粒浓度与空隙率分布较为均匀且接近初始流态化状态的连续相 ,称为乳化相; 3 颗粒可以在两个流化床之间流动、循环,使大量热、质有可能在不同床层之间传递; 2 固体颗粒迅速混合,整个床层近似等温(传热效率高); 床层(浓相段):床高与催化剂的装填量、气速有关,是反应器的有效体积。 小循环:乳相内,颗粒的无规则运动。 按固体颗粒是否在系统内循环分 工业生产中常见流化床反应器形式 小循环:乳相内,颗粒的无规则运动。 通常催化剂填充层的静止高度与流化床直径的比值很少超过1,一般接近于1。 锥底:一般锥角为90°或60° (1)自由床 1 颗粒流动类似液体,易于处理,控制; 3脆性颗粒易粉碎被气流带走(需分离);
腾涌床:床高与床径比大,气泡在上升过程中可能聚并增大甚至达到 占据整个床层,固体粒子一节节的往上柱塞式的推动,直到达到某一 位置崩落为止,这种现象称为腾涌或者节涌。 腾涌时床层高度起伏很大,器壁被颗粒磨损加剧,容易引起设备 震动,损伤床内构件。
聚式流化态:颗粒在床层的分布不均匀,床层呈现两相结构:一相是 颗粒浓度与空隙率分布较为均匀且接近初始流态化状态的连续相,称 为乳化相;另一相则是以气泡形式夹带少量颗粒穿过床层向上运动的 不连续的气泡相,因此又称为鼓泡流态化。
固定床和流化床反应器ppt课件

层,可采用离心流动或向心流动,床层同外界无 热交换。径向反应器与轴向反应器相比,流体流 动的距离较短,流道截面积较大,流体的压力降较小。 但径向反应器的结构较轴向反应器复杂。以上两 种形式都属绝热反应器,适用于反应热效应不大,或 反应系统能承受绝热条件下由反应热效应引起的 温度变化的场合。
• ③列管式固定床反应器。
• 当流体通过床层的速度逐渐提高到某值时,颗粒 出现松动,颗粒间空隙增大,床层体积出现膨胀。 如果再进一步提高流体速度,床层将不能维持固 定状态。此时,颗粒全部悬浮与流体中,显示出 相当不规则的运动。随着流速的提高,颗粒的运 动愈加剧烈,床层的膨胀也随之增大,但是颗粒 仍逗留在床层内而不被流体带出。床层的这种状 态和液体相似称为流化床。其中,流化床的种类 有:最小流化床,鼓泡流化床,腾涌流化床。
固定床反应器的结构
1.绝热式固定床反应器 1.1单段绝热式
1-矿渣棉2-瓷环3-催化剂 1-催化剂 2-冷却器
固定床反应器有三种基本形式
• 固定床反应器有三种基本形式: • ①轴向绝热式固定床反应器。流体沿轴向自上而
下流经床层,床层同外界无热交换。 • ②径向绝热式固定床反应器。流体沿径向流过床
固定床反应器
• 固定床反应器又称填充床反应器,装填有固体催化剂或固 体反应物用以实现多相反应过程的一种反应器。固体物通 常呈颗粒状,粒径2~15mm左右,堆积成一定高度或厚 度的床层。床层静止不动,流体通过床层进行反应。
固定床 反应器
分类及其应用
不同 的传 热要 求和 传热 方式
单段绝热式
二段
绝 热 式 多段绝热式
真思考如何为以后的发展开好头。
Thank you
流化床反应器的结构
流化床反应器类型 ➢ 按固体颗粒是否在系统内循环分
• ③列管式固定床反应器。
• 当流体通过床层的速度逐渐提高到某值时,颗粒 出现松动,颗粒间空隙增大,床层体积出现膨胀。 如果再进一步提高流体速度,床层将不能维持固 定状态。此时,颗粒全部悬浮与流体中,显示出 相当不规则的运动。随着流速的提高,颗粒的运 动愈加剧烈,床层的膨胀也随之增大,但是颗粒 仍逗留在床层内而不被流体带出。床层的这种状 态和液体相似称为流化床。其中,流化床的种类 有:最小流化床,鼓泡流化床,腾涌流化床。
固定床反应器的结构
1.绝热式固定床反应器 1.1单段绝热式
1-矿渣棉2-瓷环3-催化剂 1-催化剂 2-冷却器
固定床反应器有三种基本形式
• 固定床反应器有三种基本形式: • ①轴向绝热式固定床反应器。流体沿轴向自上而
下流经床层,床层同外界无热交换。 • ②径向绝热式固定床反应器。流体沿径向流过床
固定床反应器
• 固定床反应器又称填充床反应器,装填有固体催化剂或固 体反应物用以实现多相反应过程的一种反应器。固体物通 常呈颗粒状,粒径2~15mm左右,堆积成一定高度或厚 度的床层。床层静止不动,流体通过床层进行反应。
固定床 反应器
分类及其应用
不同 的传 热要 求和 传热 方式
单段绝热式
二段
绝 热 式 多段绝热式
真思考如何为以后的发展开好头。
Thank you
流化床反应器的结构
流化床反应器类型 ➢ 按固体颗粒是否在系统内循环分
流化床反应器讲解课件

umf
0.00923
d
( 1.82
p
p
0.88 f
f
0.06 f
)0.94
该式适用于临界雷诺数Remf <5的情况
当Remf>5时,所求得的umf应加以校正
20
图10-11临界流化速度的修正系数
21
2.带出速度
• 当气速略大于颗粒的自由沉降速度时,颗粒沉降不下来而被 流体带出。开始把颗粒带出的速度称为带出速度。
对于球形颗粒,当Re<0.4时,
ut
d
2 p
(
p
f
1.835 f
)
对于Ret>0.4的情况,要进行校正 .
校正的方法:先由上式求出ut的近似值
u
' t
,再求出
Re t
=
d put' t t
,由Ret查图10-12得校正系数FD.
实际带出速度为
ut
=
FD
•
u
' t
22
对于非球形颗粒,因它比同体积的球形颗粒具有更大的表面积, 故求出的ut应再乘以校正系数C 。
.
p p f Lf (1 f )( p - f )g
18
10.2.4流化速度
• 1.临界流化速度
19
对于小颗粒:
umf
d
2 p
(
p
f
)g
16501
上式适用于临界雷诺数Remf<20的情况
对于粗颗粒,当Remf >1000时
umf
[ d p ( p f )g ]1/2 24.5 f
临界流化速度还常用经验式李伐公式计算
10.1流化床反应器的特点及结构
流化床反应器ppt课件

大气泡腾涌换热面积的确定换热器形式高速流态化技术高速流态化与传统流态化比较影响因素确定开孔率流化速度umf影响因素操作训练高速流态化技术的应用流化床反应器操作指导流化床反应器操作训练整理版课件62流化床反应器的仿真操作拓展型训练感谢亲观看此幻灯片此课件部分内容来源于网络如有侵权请及时联系我们删除谢谢配合
确定方法 :半经验公式
18
带出速度U带
操作速度大于带出速度时,催化剂颗粒将 被带出流化床反应器
确定方法 注意 原则上:临界流化速度<操作速度<带出速度 实际上:往往偏离这个范围。有些工业反应
器操作速度大于带出速度时,颗粒夹带并 不严重。
19
操作速度的确定
选择原则
实际生产中流化床操作数据
比较 气速[m/s] 颗粒直径[mm]
空隙率 气体返混
传统流化床 0.1~1.5 0.05~3 0.6~0.8 部分返混
高速流化床 1.5~16 0.05~0.5
0.85~0.98 返混大大减少
57
高速流态化的优缺点
1.气固为无气泡接触,改善了气固接触效果。 2.气固轴向返混减少。 3.操作速度提高,停留时间可缩短至毫秒级,特殊适合于以
14
15
16
流态化的形成
1.流速较小,流体从颗粒 缝隙通过,床层静止。 u↑→P↑,固定床阶段。
2.流速增加,颗粒吹起, △P u↑→ε ↑→P不变。
3.流速继续增加,颗粒被 带出床层,空隙率增加, u↑→P↓,输送床阶段。
U
17
临界流化速度U临
特征: 因为
所以
U操<U临 固定床阶段 U操>U临 流化床阶段 U临 时, P固 = P流
确定方法 :半经验公式
18
带出速度U带
操作速度大于带出速度时,催化剂颗粒将 被带出流化床反应器
确定方法 注意 原则上:临界流化速度<操作速度<带出速度 实际上:往往偏离这个范围。有些工业反应
器操作速度大于带出速度时,颗粒夹带并 不严重。
19
操作速度的确定
选择原则
实际生产中流化床操作数据
比较 气速[m/s] 颗粒直径[mm]
空隙率 气体返混
传统流化床 0.1~1.5 0.05~3 0.6~0.8 部分返混
高速流化床 1.5~16 0.05~0.5
0.85~0.98 返混大大减少
57
高速流态化的优缺点
1.气固为无气泡接触,改善了气固接触效果。 2.气固轴向返混减少。 3.操作速度提高,停留时间可缩短至毫秒级,特殊适合于以
14
15
16
流态化的形成
1.流速较小,流体从颗粒 缝隙通过,床层静止。 u↑→P↑,固定床阶段。
2.流速增加,颗粒吹起, △P u↑→ε ↑→P不变。
3.流速继续增加,颗粒被 带出床层,空隙率增加, u↑→P↓,输送床阶段。
U
17
临界流化速度U临
特征: 因为
所以
U操<U临 固定床阶段 U操>U临 流化床阶段 U临 时, P固 = P流
化学反应工程-25-第八章-流化床反应器ppt课件

二、气泡的速度和大小 1、气泡的速度计算 单个气泡的平均上升速度可取:
u 0 . 711 gd br b
2 ① u u u 0 . 711 gd b 0 mf b 1
1 2
在实际床层中,气泡成群上升,其上升速度有不同的计算公式:
cm gd ② u b s
⑴气泡云与气泡的体积比 C 3 3 3 3 R R C b u 2 u 3 u V R b r f f C 4 C 1 1 C 3 V R u u u u 3 b b r f b r f b R b 4 ⑵气泡晕与气泡的体积比 V V C w Vb 显然: C w
⑶气泡所占床层的体积分率
b
一般认为:大于u0的气体均形成气泡,总的气体流量等于气泡及乳 相中气体流量之和。
u u u 1 0 b b mf b b
L L u u f mf 0 mf 则: b L u u 1 f b mf
四、气泡中的粒子含量 定义: b
有研究者认为:当 u br u t 时,粒子就被气泡带上,并可能从其底部
进入气泡,而使气泡破裂。故当 ubr ut 时为稳定气泡,反之则不稳定。
最大气泡直径应在 u br u t 之时,计算如下:
u 1 t d bmax .711 0 g
但实验表明,气泡的破裂常是由于粒子从气泡顶部侵入所致,故本式 的立论值得商榷。 另一计算式子为:d 0 . 652 A u b max tu 0
u mf u 当 u 时,uf为乳相中的真实气速,气泡内外由于 br f mf
气体环流而形成的气泡云变得明显起来,其相对厚度对圆柱形床,可按 下式计算: 3
流化床反应器课件

D 4q v u 0
• 式中
D——反应器直径,m;
qv——操作条件下的气体体积流量,m3/s;
u0——操作空床气速,m/s。
PPT学习交流
36
流化床高度的确定
• 1.流化床层高度(浓相段高度)H0 • 2.分离段高度H1 • 3.扩大段高度H2 • 4.锥底部分高度H3 • 过滤管出口或旋风分离器入口至床顶高
PPT学习交流
3
流化床基本结构
• 结构分为: • 浓相段、稀相段、扩大段、
锥底。
• 内部构件: • 气体分布板、换热装置、
气固分离装置、挡板档网、 气体预分布器等。
PPT学习交流
4
PPT学习交流
5
PPT学习交流
6
流化床反应器的特点
• 1.床层温度均匀,避免局部过热。
• 2.颗粒处于运动状态,表面更新,强化传质。
PPT学习交流
PPT学习交流
29
列管式换热器:套管式
PPT学习交流
30
立式管束式
PPT学习交流
31
横排管束式换热器
PPT学习交流
32
鼠笼式换热器
PPT学习交流
33
蛇管式换热器
PPT学习交流
34
三、流化床反应器的计算
• (一)流化床直径的计算 • (二)流化床高度的确定
PPT学习交流
35
流化床直径的计算
u k 操
u 临
PPT学习交流
20
流化床的压力降
• 颗粒悬浮静止时受力
向下:重力
向上:浮力、流体阻力
• 平衡时
重力=浮力+流体阻力
• 公式推导:式(3-6)
流化床反应器简介 PPT

分布器的作用
换热装置
• 是反应体系的温度在适宜条件下进 行,使反应稳定进行。如对于放热 反应必须及时撤走热量,而对于吸 热反应必须及时加入热量。
大家学习辛苦了,还是要坚持
继续保持安静
• 1、套管和单管式换热器 • 2、管束式换热器 • 3、蛇管式换热器
旋风分离器
旋风分离器
塞阀
图1-4 塞阀的剖视图
流化床反应器简介
散式流化床Leabharlann 以气泡形式夹带少量颗粒穿过床
层向上运动的不连续的气泡称为 气泡相
图1-1 流化床的模型
聚式流化床
颗粒浓度与空隙率分布 较为均匀且接近初始流 态化状态的连续相,称 为乳化相。
气-固流化床反应器结构
气体 料锁
加料口 换热介质
循环管 换热介质 固体粒子
……….. ………. ..
气体
旋风分离器 壳体
内部构件 换热器 卸料口 气体分布板 预分布器
主体设备
壳 体 壳体 主要是保证流化过程局限在一定范围内 进行,对于存在有强烈放热或吸热过程, 保证热量不散失或少散失。
主要内件
• 分布器 • 换热器 • 旋风分离器 • 塞阀 • 翼阀
分布器
图1-3-1平板型分布板
图1-3-2 拱型分布板
《流化床反应器》课件

污染物排放。
04
流化床反应器的优缺点
优点
高转化率
高选择性
流化床反应器能够实现高转化率,使得反 应更加彻底,提高了生产效率和产品质量 。
通过优化反应条件,流化床反应器能够实 现高选择性,从而降低副产物的生成,进 一步提高了产品的纯度和质量。
操作简便
适应性强
流化床反应器的结构简单,操作方便,易 于维护和维修,降低了生产成本。
流化床反应器可用于生产塑料,如 聚乙烯、聚丙烯和聚氯乙烯等,通 过聚合反应将单体转化为高分子聚 合物。
在能源领域的应用
燃烧发电
燃料电池
流化床反应器可用于燃烧煤炭、生物 质和垃圾等燃料,产生高温高压蒸汽 驱动发电机发电。
流化床反应器可用于燃料电池发电, 通过氢气和氧气的化学反应产生电能 。
核能利用
流化床反应器可用于核燃料循环,包 括核燃料溶解、分离、纯化和再处理 等过程,实现核能的可持续利用。
在氢能生产领域,流化床反应 器可用于水蒸气重整和光催化 产氢,为可再生能源的储存和 运输提供床反应器的发展趋势
高效能化 随着技术的不断进步,流化床反 应器的性能将得到进一步提升, 实现更高的转化率和产物收率。
多功能化 未来的流化床反应器将具备更加 丰富的功能,能够适应多种反应 类型和生产需求,提高生产效率 和灵活性。
THANKS
感谢观看
循环流化床反应器
总结词
一种高效、环保的流化床反应器类型。
详细描述
循环流化床反应器是一种高效、环保的流化床反应器,其特点是固体颗粒在反应器内循环流动。这种 反应器的优点在于能够实现高效能、高转化率和低能耗,同时减少废气和废水的排放。循环流化床反 应器在煤燃烧、废弃物处理等领域有广泛应用。
04
流化床反应器的优缺点
优点
高转化率
高选择性
流化床反应器能够实现高转化率,使得反 应更加彻底,提高了生产效率和产品质量 。
通过优化反应条件,流化床反应器能够实 现高选择性,从而降低副产物的生成,进 一步提高了产品的纯度和质量。
操作简便
适应性强
流化床反应器的结构简单,操作方便,易 于维护和维修,降低了生产成本。
流化床反应器可用于生产塑料,如 聚乙烯、聚丙烯和聚氯乙烯等,通 过聚合反应将单体转化为高分子聚 合物。
在能源领域的应用
燃烧发电
燃料电池
流化床反应器可用于燃烧煤炭、生物 质和垃圾等燃料,产生高温高压蒸汽 驱动发电机发电。
流化床反应器可用于燃料电池发电, 通过氢气和氧气的化学反应产生电能 。
核能利用
流化床反应器可用于核燃料循环,包 括核燃料溶解、分离、纯化和再处理 等过程,实现核能的可持续利用。
在氢能生产领域,流化床反应 器可用于水蒸气重整和光催化 产氢,为可再生能源的储存和 运输提供床反应器的发展趋势
高效能化 随着技术的不断进步,流化床反 应器的性能将得到进一步提升, 实现更高的转化率和产物收率。
多功能化 未来的流化床反应器将具备更加 丰富的功能,能够适应多种反应 类型和生产需求,提高生产效率 和灵活性。
THANKS
感谢观看
循环流化床反应器
总结词
一种高效、环保的流化床反应器类型。
详细描述
循环流化床反应器是一种高效、环保的流化床反应器,其特点是固体颗粒在反应器内循环流动。这种 反应器的优点在于能够实现高效能、高转化率和低能耗,同时减少废气和废水的排放。循环流化床反 应器在煤燃烧、废弃物处理等领域有广泛应用。
流化床PPT课件

所谓临界流化速度指刚刚哪能使粒子流化起来的气体空床 流速。可用测定空床层压降变化来确定。如图7-3。
11
.
7.2 流化床中的气、固运动 第7章 流化床反应器
7.2.1 流化床的流体力学 流化床压降用下式计算:
pW A tL m f 1m f pg..............(7 1 )
从图中实线的拐点就可定出固定最小流化速率umf。 起始流化速率可用下式子计算:
8
.
7.1 概述
第7章 流化床反应器
但流化床也有一些不足之处:
混合剧烈,存在相当宽的停留时间分布。 气泡通过床层,减少了气-固相接触机会,降低了转化率。 剧烈的碰撞、磨擦,加速了催化剂的粉化。 流动现象的复杂性,揭示其内在规律性较难。 在出口,需要旋风分离设备,回收催化剂。
9
.
图
图
7.2 流化床中的气、固运动 第7章 流化床反应器 7.2.1 流化床的流体力学 (1)临界流化速度(umf)
• 对于B类颗粒,由图7-8求X,图7-9求Y,然后按下式子求出R。
• R=1+XY………….(7-26)
18
.
7.2 流化床中的气、固运动 7.2.2 气泡及其行为
第7章 流化床反应器
⑴气泡的结构 人们常把气泡与气泡以外的密相床部分分别称作泡
相与乳相。气泡在上升途中,因聚并和膨胀而增大, 同时不断与乳相间进行着质量的交换,所以气泡不仅 是造成床层运动的动力,又是授受物质的储存库,它 的行为自然就是影响反应结果的一个决定性因素。
1 .7 3 3 m 0 f f d p u mf d 3 p
p 2 g ..... 7 . .( 2 ) ..
12
.
7.2 流化床中的气、固运动 第7章 流化床反应器
11
.
7.2 流化床中的气、固运动 第7章 流化床反应器
7.2.1 流化床的流体力学 流化床压降用下式计算:
pW A tL m f 1m f pg..............(7 1 )
从图中实线的拐点就可定出固定最小流化速率umf。 起始流化速率可用下式子计算:
8
.
7.1 概述
第7章 流化床反应器
但流化床也有一些不足之处:
混合剧烈,存在相当宽的停留时间分布。 气泡通过床层,减少了气-固相接触机会,降低了转化率。 剧烈的碰撞、磨擦,加速了催化剂的粉化。 流动现象的复杂性,揭示其内在规律性较难。 在出口,需要旋风分离设备,回收催化剂。
9
.
图
图
7.2 流化床中的气、固运动 第7章 流化床反应器 7.2.1 流化床的流体力学 (1)临界流化速度(umf)
• 对于B类颗粒,由图7-8求X,图7-9求Y,然后按下式子求出R。
• R=1+XY………….(7-26)
18
.
7.2 流化床中的气、固运动 7.2.2 气泡及其行为
第7章 流化床反应器
⑴气泡的结构 人们常把气泡与气泡以外的密相床部分分别称作泡
相与乳相。气泡在上升途中,因聚并和膨胀而增大, 同时不断与乳相间进行着质量的交换,所以气泡不仅 是造成床层运动的动力,又是授受物质的储存库,它 的行为自然就是影响反应结果的一个决定性因素。
1 .7 3 3 m 0 f f d p u mf d 3 p
p 2 g ..... 7 . .( 2 ) ..
12
.
7.2 流化床中的气、固运动 第7章 流化床反应器
流化床反应器PPT课件

2.1 工业合成甲基氯硅烷的研究
虽然格力雅试剂可以形成很多不同的Si-C键,但在现代有机硅工 业中,它已经被更为有效的方法所替代,最著名的具有原料易得、工 序简单、不用溶剂、时空产率高,且易于实现连续化大生产的直接合 成法。
1941年,罗伊首先提出了直接法合成有机氯硅烷。 第二年,穆勒也取得了专利。
Lorem ipsum dolor sit amet, consectetur adipisicing elit.
第四章 动态模拟仿真
1 数值计算中参数的影响 A
B
2 数学模型
3 自由床流动特性的数值模拟 C
D 4 流化床外形对内部的流场的影响
4.1 数值计算中的参数影响
计算流体力学中,由于因变量在节点之间的 分布假设及推倒离散方程的方法不同,形成了有 限差分法、有限元法和有限体积法等不同类型的 离散化方法。
3.1 流化床内的构件
在流化床内设置若干层水平挡板、挡网或 垂直管束,便构成了内部构件。其作用是抑制 气泡成长并且粉碎大气泡,改善气体在床层中 的停留时间分布,减少气体返混合和强化两相 间的结构。
常见的内部构件可分为三类: 横向(水平)构件
纵向(垂直)构件
横向+纵向构件
3.1流化床内的构件
LOREM IPSUM DOLOR
2.1 工业合成甲基氯硅烷的研究 直接合成法反应:
对于综合性生产车间来说,直接法是必不可少的,但还需 辅以其他方法,方能满足生产需要和降低生产成本的要求。
2.2 直接法合成有机硅单体的原理
2.2 直接法合成有机硅单体的原理
反应过程中还可能发生热分解、歧化以及氯硅烷水 解(原料带进的水分)等副反应,致使反应产物变得更 为复杂,甲基氯硅烷产物组分可多达41个。
流化床反应器化学反应过程与设备课程PPT课件

气体分布装置:
包括气体预分布器和气体分布板。其作用是使气体均匀分布,以形 成良好的初始流化条件,同时支承固体颗粒。以下为常见气体分布板 形式:
凹型筛孔板
单个直孔泡帽
气体分布装置:
泡帽侧缝分布板
泡帽侧孔分布板
条形侧缝分布板
直孔泡帽分布板
直孔筛板
锥型侧孔分布板
锥型侧缝分布板 锥型侧缝分布板
包括档网、档板和气填充体物等预。 分布器
聚式流化床。
作用:回收上升气流中不仅带的细粒和粉尘,并避免带出的粉尘影响产品的纯度。
对于g-s系统,一般在气速超过Umf后,将会出现气泡,气速越高,气泡造成的扰动也越剧烈,使床层波动频繁,这种形态的流化床称
聚式流化床。
帽式分布器
作用:对进入气体起预分布作用、卸催化剂。
同心圆锥壳式分布器
流态化——固体粒子象流体一样进行流动的现象。
•
umf——临界流化速度,是指刚刚能够使固体颗粒流化起来的气
体空床流速度,也称最小流化速度。
•
ut——带出速度,当气体速度超过这一数值时,固体颗粒就不能
沉降下来,而被气流带走,此带出速度也称最大流化速度。
散式流化和聚式流化
➢ 散式流化
db/dp<1 db——气泡直径
dp——颗粒直径
对于l-s系统,流体与粒子的密度相差不大,故umf一般很小,流速进 一步提高时,床层膨胀均匀且波动很小,粒子在床内的分布也比较均
➢ 消除方法:床内设内部构件;降低u
压降:
p (1 mf )hmf (s f )g (1 f )hf (s f )
当dp/D<1/20,L0/D<2时,床层压降计算式较准确。 由式可知:床层处于流化状态时,压降与流化速度无关。
流化床反应器PPT演示课件

3
流化床基本结构
结构分为: 浓相段、稀相段、扩大
段、锥底。
内部构件: 气体分布板、换热装置、
气固分离装置、挡板档 网、气体预分布器等。
4
56ຫໍສະໝຸດ 流化床反应器的特点 1.床层温度均匀,避免局部过热。 2.颗粒处于运动状态,表面更新,强化传质。 3.颗粒小,催化剂有效系数高。 4.流化状态,便于操作。 5.传热系数大,换热面积小。 6.生产强度大。 7.返混严重,一次转化率低。 8.颗粒磨损,要求催化剂强度大。 9.对设备磨损严重。
14
15
16
流态化的形成
1.流速较小,流体从颗粒 缝隙通过,床层静止。 u↑→P↑,固定床阶段。
2.流速增加,颗粒吹起, △P u↑→ε ↑→P不变。
3.流速继续增加,颗粒被 带出床层,空隙率增加, u↑→P↓,输送床阶段。
U
17
临界流化速度U临
特征: 因为
所以
U操<U临 固定床阶段 U操>U临 流化床阶段 U临 时, P固 = P流
39
弯管式预分布器
40
同心圆壳式分布器
41
帽式分布器
42
充填式分布器
43
开口式分布器
44
气体分布板的作用
支撑:床层上的催化剂或载体 分流:使气体分布均匀,造成良好的起
始 流化条件
导向:抑制气固恶性聚式流态化
45
凹型筛孔板
46
直孔筛板
47
直孔泡帽分布板
48
单个直孔泡帽
49
24
(二)床层与器壁间的传热
25
床层对器壁给热系数分析
①操作速度的影响 ②颗粒直径的影响 ③挡板挡网的影响 ④换热器位置对给热系数的影响 ⑤气、固物性对给热系数的影响
流化床基本结构
结构分为: 浓相段、稀相段、扩大
段、锥底。
内部构件: 气体分布板、换热装置、
气固分离装置、挡板档 网、气体预分布器等。
4
56ຫໍສະໝຸດ 流化床反应器的特点 1.床层温度均匀,避免局部过热。 2.颗粒处于运动状态,表面更新,强化传质。 3.颗粒小,催化剂有效系数高。 4.流化状态,便于操作。 5.传热系数大,换热面积小。 6.生产强度大。 7.返混严重,一次转化率低。 8.颗粒磨损,要求催化剂强度大。 9.对设备磨损严重。
14
15
16
流态化的形成
1.流速较小,流体从颗粒 缝隙通过,床层静止。 u↑→P↑,固定床阶段。
2.流速增加,颗粒吹起, △P u↑→ε ↑→P不变。
3.流速继续增加,颗粒被 带出床层,空隙率增加, u↑→P↓,输送床阶段。
U
17
临界流化速度U临
特征: 因为
所以
U操<U临 固定床阶段 U操>U临 流化床阶段 U临 时, P固 = P流
39
弯管式预分布器
40
同心圆壳式分布器
41
帽式分布器
42
充填式分布器
43
开口式分布器
44
气体分布板的作用
支撑:床层上的催化剂或载体 分流:使气体分布均匀,造成良好的起
始 流化条件
导向:抑制气固恶性聚式流态化
45
凹型筛孔板
46
直孔筛板
47
直孔泡帽分布板
48
单个直孔泡帽
49
24
(二)床层与器壁间的传热
25
床层对器壁给热系数分析
①操作速度的影响 ②颗粒直径的影响 ③挡板挡网的影响 ④换热器位置对给热系数的影响 ⑤气、固物性对给热系数的影响