化学动力学基础二

合集下载

大学物理化学第12章 化学动力学基础(二)(1)

大学物理化学第12章 化学动力学基础(二)(1)

第12章化学动力学基础(二)1.在简单碰撞理论中,有效碰撞的定义是: ( )A、互撞分子的总动能超过EcB、互撞分子的相对总动能超过EcC、互撞分子联心线上的相对平动能超过EcD、互撞分子的内部动能超过Ec2.简单碰撞理论属基元反应速率理论,以下说法不正确的是: ( )A、反应物分子是无相互作用的刚性硬球B、反应速率与分子的有效碰撞频率成正比C、从理论上完全解决了速率常数的计算问题D、反应的判据之一是联线上的相对平动能大于某临界值3. 根据碰撞理论,温度增加反应速率提高的主要原因是: ( )A、活化能降低B、碰撞频率提高C、活化分子所占比例增加D、碰撞数增加4.化学反应的过渡态理论的要点是: ( )A、反应物通过简单碰撞就变成产物B、在气体分子运动论的基础上提出来的C、反应物首先形成活化络合物,反应速率决定于活化络合物分解为产物的分解速率D、引入了方位因子的概念,并认为它与熵变化有关5. 过渡态理论对活化络合物的假设中,以下说法不正确的为: ( )A、是处在鞍点时的分子构型B、正逆反应的过渡态不一定相同C、存在着与反应物间化学平衡D、生成的过渡态不能返回反应始态6. Lindemann 单分子反应机理是假定反应分子经碰撞激发后 ( )A、立即分解B、有一时滞C、发出辐射D、引发链反应7. 电解质溶液中的反应速率受离子强度影响的规律,下述说法中正确的应是: ( )A、离子强度I越大,反应速率越大;B、I越大,反应速率越小C、同号离子间反应,原盐效应为正;D、电解质与中性反应物作用,原盐效应为负[Co(NH3)5Br]2++OH-→[Co(NH3)5OH]2++Br-CH2ICOOH+SCN-→CH2(SCN)COOH+I-8. 除多光子吸收外,一般引起化学反应的光谱,其波长范围应是: ( )A、可见光(400 - 800 nm)及紫外光(150 - 400 nm)B、X射线 (5 -10-4nm)C、远红外射线D、微波及无线电波9.对光化学第二定律的认识下述说法正确的是:( )A、对初级,次级过程均适用B、对任何光源均适用C、对激光光源及长寿命激发态不适用D、对大、小分子都适用10. 与光化学基本定律有关的说法中正确的是:( )A、凡是被物质吸收了的光都能引起光化学反应;B、光化学反应所得到的产物数量与被吸收的光能的量成正比;C、在光化学反应中,吸收的光子数等于被活化的反应物微粒数;D、在其它条件不变时,吸收系数越大,透过溶液的光强度也越大11. 已知 HI 的光分解反应机理是:HI + h→ H·+ I·H·+ HI→ H2 + I·I·+ I·+ M→I2 + M 则该反应,反应物消耗的量子效率为: ( )A、 1B、 2C、 4D、 10612. 光化反应与热反应(黑暗反应)的相同之处在于 ( )A、反应都需要活化能;B、温度系数小;C、反应都向G(恒温恒压,W'=0时)减小的方向进行;D、平衡常数可用通常的热力学函数计算13. 温度对光化学反应速率的影响为:()A、与热反应大致相同;B、与热反应大不相同,温度增高,光化学反应速率下降;C、与热反应大不相同,温度增高,光化学反应速率不变;D、与热反应大不相同,温度的变化对光化学反应速率的影响较小14. 催化剂能极大地改变反应速率,以下说法不正确的是: ( )A、催化剂改变了反应历程B、催化剂降低了反应的活化能C、催化剂改变了反应的平衡,以致使转化率大大地提高了D、催化剂能同时加快正向和逆向反应速率15. 称为催化剂毒物的主要行为是: ( )A、和反应物之一发生化学反应;B、增加逆反应的速度;C、使产物变得不活泼;D、占据催化剂的活性中心;16.乙醛的光解机理拟定如下:(1)CH3CHO + hνCH3· + CHO·(2)CH3· + CH3CHO CH4 + CH3CO·(3) CH3CO·CO + CH3·(4) CH3· + CH3· C2H6试推导出CO的生成速率表达式和CO的量子产率表达式。

物理化学全程导学及习题全解259-186 第十二章化学动力学基础(二)

物理化学全程导学及习题全解259-186 第十二章化学动力学基础(二)

第十二章 化学动力学基础 (二)本章知识要点与公式1. 碰撞理论双分子碰撞频率 :2AB AB A B Z pd L c = 22AA AA A 2Z d L π= 临界能c E 与活化能a E 的关系:12a c E E RT =+ 用简单碰撞理论计算双 分子反应的速率常数:2AB aEk d RT π⎛⎫=- ⎪⎝⎭ 2AA 2a E k d RT π⎛⎫=- ⎪⎝⎭ 概率子Pexp a E k PA RT ⎛⎫=- ⎪⎝⎭2ABA d π= A P A =n n n n 2. 过渡态理论用统计热力学方法计算速率常数:,0B B B exp E k T f k h f RT π≠⎛⎫=- ⎪⎝⎭用热力学方法计算速率常数:()0010B r m r m exp exp nk T S H k c h R RT ≠≠-⎛⎫⎛⎫∆∆=- ⎪ ⎪⎝⎭⎝⎭对于双分子理想气体反应:1n000B r m r m exp exp k T S H P k h RT R RT -≠≠⎛⎫⎛⎫⎛⎫∆∆=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3.原盐效应稀溶液中,离子强度对反应速率的影响: A B 0lg2kz z k = A z 与B z 同号,产生正的原盐效应,I ↑ k ↑;A z 与B z 昇号,产生负的原盐效应,I k ↑↓。

4. 光化学反应光化学第一定律:只有被分子吸收的光才能引起分子的光化学反应。

光化学第二定律:在初级反应中, 一个反应分子吸收一个光子而被活化。

1 mol 光子能量(1 Einstein ) 101197J m mol Lhcu Lh νλλ-.===⋅⋅量子产率 ar I ϕ=5. 催化反应催化剂通过改变反应历程,改变反应的表观活化能来改变反应速率,只能缩短达到平蘅的时间,而不能改变平蘅的组成。

酶催化反应历程( Michaelis – Menten 机理)米氏常数12m 1k kK k -+=当[]S →∞ 时 []m m m111S K r r r =⋅+将1r对[]1S 作图,可求m K 和m r .典型俐题讲解例 1 500K 时,实验测得 NO 2 分解反应的提前因子为 61312.0010mol m s --⨯⋅⋅,碰撞截面为1921.0010m -⨯,试计算该反应的概率因子 P解 :2AA2A d π=c 2σ= ()()19223-12 1.0010m 602310mol-=⨯⨯⨯.⨯7-13133710mol m s -=.⨯⋅⋅61371320010mol m s 33710mol m s A P A --1∞--1∞.⨯⋅⋅==.⨯⋅⋅ 例 2 实验测得 N 2O 5 分解反应在不同温度时的反应速率常数,数据列于表中。

第十二章化学动力学基础(二)练习题及答案

第十二章化学动力学基础(二)练习题及答案

第十二章 化学动力学基础(二)练习题一、 选择题1.以下有关催化剂不正确的说法,是催化剂(A )改变反应物的平衡转化率 (B )改变反应途径(C )改变频率因子 (D )降低活化能 2.催化剂加快反应速率,是由于它能使(A )指前因子增大 (B )几率因子增大 (C )碰撞频率增加 (D )活化分子数增加 3.反应本性、温度、反应途径、浓度与活化能关系正确的是(A )反应途径与活化能无关 (B )反应物浓度与活化能有关(C )反应温度与活化能无关 (D )反应本性与活化能有关 4.气固相催化反应Pt<700K 2CO(g) + O 2(g)2CO 2(g)的速率方程是: r = k p (o 2)/p (co), 其反应级数应为:(A) 一级反应 (B) 二级反应 (C) 对 O 2是一级,对 CO 是负一级 (D) 级数不能确定 5.某反应速率常数与各基元反应速率常数的关系为 12124()2k k k k , 则该反应的表观活化能E a 与各基元反应活化能的关系为:(A) E a =E 2 +12E 1 - E 4 (B) E a = E 2+12(E 1- E 4)(B) E a = E 2+ (E 1- 2E 4)1/2 (D) E a = E 2+ E 1- E 46.在平行反应中要提高活化能较低的反应的产率,应采取的措施为: (A) 升高反应温度 (B) 降低反应温度 (C) 反应温度不变(D) 不能用改变温度的方法。

7.化学反应速率常数的 Arrhenius 关系式能成立的范围是:(A) 对任何反应在任何温度范围内 (B) 对某些反应在任何温度范围内 (C) 对任何反应在一定温度范围内 (D) 对某些反应在一定温度范围内8.一个基元反应,正反应的活化能是逆反应活化能的2倍,反应时吸热120 kJ·mol-1,则正反应的活化能是(kJ·mol-1):(A) 120 (B) 240 (C) 360 (D) 609.物质A 发生两个一级平行反应A B,A C,设两反应的指前因子相近且与温度无关,若E1> E2,则有:(A) k1> k2 (B) k2 > k1 (C) k2= k1 (D) 无法比较k1, k2 的大小10.催化剂能极大地改变反应速率,以下说法不正确的是:(A) 催化剂改变了反应历程(B) 催化剂降低了反应的活化能(C) 催化剂改变了反应的平衡,以致使转化率大大地提高了(D) 催化剂能同时加快正向和逆向反应速率11.下面四种说法中不正确的是:(A)在具有速控步的反应历程中,达到稳态后,速控步后的各个步骤的反应速率都等于速控步的反应速率,速控步前的各步骤均处于平衡状态(B) 根据微观可逆性原理,在反应历程中不可能出现2A → C + 3D 这样的基元反应(C) 在光化学反应中,体系的Gibbs自由能总是在不断地降低(D) 在采用温度跃变的驰豫法来研究溶液中的快速反应时,该反应必须是放热或吸热反应12.除多光子吸收外,一般引起化学反应的光谱,其波长范围应是:(A) 可见光(400 - 800 nm) 及紫外光(150 - 400 nm)(B) X射线(5 - 10-4 nm)(C) 远红外射线(D) 微波及无线电波13.在光的作用下,O2可转变为O3,当1 mol O3生成时,吸收了3.01×1023个光子,则该反应之总量子效率Φ为:(A) Φ=1 (B) Φ=1.5(C) Φ=2 (D) Φ=314.根据微观可逆性原理,反应物分子能量消耗的选择性和产物能量分配的特殊性 有对应关系,因此对正向反应产物主要是平动激发,则对逆向反应更有利于促进反 应进行的能量形式应为:(A)振动能 (B)转动能(C)平动能 (D)能量形式不限,只要足够高 15.对Einstain 光化当量定律的认识下述说法正确的是:(A) 对初级,次级过程均适用 (B) 对任何光源均适用 (C) 对激光光源及长寿命激发态不适用 (D) 对大、小分子都适用 16.在简单碰撞理论中,有效碰撞的定义是:(A) 互撞分子的总动能超过E c (B) 互撞分子的相对总动能超过E c (C)互撞分子联心线上的相对平动能超过E c (D)互撞分子的内部动能超过E c 17.在碰撞理论中校正因子P 小于1的主要因素是:(A) 反应体系是非理想的 (B) 空间的位阻效应 (C) 分子碰撞的激烈程度不够 (D) 分子间的作用力 18.Lindemann 单分子反应机理是假定多原子分子被振动激发后 (A) 立即分解 (B) 有一时滞 (C) 发出辐射 (D) 引发链反应19.同一个反应在相同反应条件下未加催化剂时平衡常数及活化能为k 及E a ,加入正催化剂后则为k '、E a ',则存在下述关系: (A) k '=k , E a =E a ' (B) k '≠k , E a ≠E a ' (C) k '=k , E a >E a ' (D) k '<k , E a '<E a20.过渡态理论的速率常数的公式为()()()k k T h q q q E RT =≠-B AB//exp /∆0,下述说法正确的是(A) q ≠不是过渡态的全配分函数 (B) q A , q B 是任意体积中分子的配分函数 (C) q A , q B , q ≠均是分子在基态时的配分函数(D) ()k T h B /是过渡态M≠中任一个振动自由度配分函数二、 判断题1.关于催化剂特征的不正确描述是在反应前后催化剂的物理性质和化学性质全不改变。

物理化学(第五版傅献彩)第12_化学动力学基础2

物理化学(第五版傅献彩)第12_化学动力学基础2

k

K
≠ c
=
kBT h
f fA
≠'
fBC
exp


E0 RT

一般基元反应 k 的计算式为
k
=
kBT h
f ≠' ΠfB
exp


E0 RT

常温
kBT ≈ 1013 s−1 h
36
A (单原子) + B(单原子) ‡ˆˆˆ†ˆ[ALB]≠ (双原子)
( ) k = kBT ( ) ( ) h
25
势能面
Ep
OT ≠
rAB
A+RBC
D
P
rBC
AB+C
A+B+C
26
R点:是反应物A+BC分子的基态。随A原子靠近, 势能沿RT 升高,到T点形成活化络合物 随C原子离去,势能沿TP线下降
P点:是生成物AB+C分子 的基态
D点:是离解为A,B,C原 子时的势能
OEP一侧是原子间 的相斥能,很高
f
3 t
fr2

f
3 t
A
f
3 t
B
exp


E0 RT

1个振动自由度用于活化络合物的分解
37
A
(
N
,非线型多原子分子
A
)
+
B
(
N
,非线型多原子分子
B
)
‡ˆˆˆ†ˆ[ALB]≠ ( NA + NB,非线型多原子分子)
( ) k = kBT
( ) ( ) h

南京大学《物理化学》练习第十一章化学动力学基础_二_

南京大学《物理化学》练习第十一章化学动力学基础_二_

南京⼤学《物理化学》练习第⼗⼀章化学动⼒学基础_⼆_第⼗⼀章化学动⼒学基础(⼆)返回上⼀页1. 将1.0 g氧⽓和0.1 g氢⽓于300 K时在1 dm3的容器内混合,试计算每秒钟内单位体积内分⼦的碰撞数为若⼲?设O2和H2为硬球分⼦,其直径分别为0.339和0.247 nm.2. 某双原⼦分⼦分解反应的阈能为83.68 kJ/mol,试分别计算300 K及500 K时,具有⾜够能量可能分解的分⼦占分⼦总数的分数为多少?3. 某⽓相双分⼦反应, 2A(g) ---> B(g)+C(g),能发⽣反应的临界能为100 kJ/mol.已知A的相对分⼦量为60,分⼦直径为0.35 nm,试计算在300 K 时,该分解作⽤的速率常数k 值.4. 松节油萜(液体)的消旋作⽤上⼀级反应,在457.6 K和510.1 K时的速率常数分别为2.2×和3.07×min-1,试求反应的实验活化能E a,在平均温度时的活化焓和活化熵.5. 在298 K时某化学反应,如加了催化剂后使其活化熵和活化焓⽐不加催化剂是时分别下降了10 J/(mol·K)和10 kJ/mol,试求不加催化剂与加了催化剂的两个速率常数的⽐值.6. 在298 K时有两个级数相同的基元反应A和B,其活化焓相同,但速率常数k A=10k B,求两个反应的活化熵相差多少?7. 某顺式偶氮烷烃在⼄醇溶液中不稳定,通过计量其分解放出的N2⽓来计算其分解的速率常数k值,⼀系列不同温度下测定的k值如下所⽰:T/ k 248 252 256 260 264k×/s-1 1.22 2.31 4.39 8.50 14.3试计算该反应在298K时的实验活化能,活化焓,活化熵和活化吉布斯⾃由能.8. 对下述⼏个反应,若增加溶液中的离⼦强度,则其反应速率常数是增⼤,减⼩还是不变?(1) NH4+ +CNO- --->CO(NH2)2(2) 酯的皂化作⽤.(3) S2O82- + I- --->P9. 在298 K时,反应N2O4(g)2NO2(g)的速率常数k1=4.80×s-1,已知NO2和N2O4的⽣成吉布斯⾃由能分别为51.3和97.8 kJ/mol,试求(1)298 K时, N2O4的起始压⼒为101.325 kPa时, NO2(g)的平衡分压?(2)该反应的弛豫时间?10. ⽤温度跳跃技术测量⽔的离解反应: H2O H+ + OH-,在298 K时的弛豫时间τ=37×s,试求该反应正向和逆向反应的速率常数k1和k-2.11. 在光的影响下,蒽聚合为⼆蒽.由于⼆蒽的热分解作⽤⽽达到光化平衡.光化反应的温度系数(即温度每增加10K反应速率所增加的倍数)是1.1,热分解的温度系数是2.8,当达到光化平衡时,温度每升⾼10K.⼆蒽产量是原来的多少倍?12. ⽤波长为313nm的单⾊光照射⽓态丙酮,发⽣下列分解反应:(CH3)2CO +hv---> C2H6 + CO ,若反应池的容量是0.059 dm3,丙酮吸收⼊射光的分数为0.915,在反应过程中,得到下列数据:反应温度:840 K 照射时间t=7 h起始压⼒:102.16 kPa ⼊射能48.1×J/s,终了压⼒:104.42 kPa计算此反应的量⼦效率.13. 有⼀酸催化反应A+B C+D,已知该反应的速率公式为d[C]/dt=k[H+][A][B] ,当[A]0=[B]0=0.01 mol·dm-3时,在pH=2的条件下,在298 K时的反应的半衰期为1 h,若其他条件不变,在288 K时t1/2为2 h,试计算(1)在298 K时反应的速率常数k值。

物理化学12章_化学动力学基础(二)

物理化学12章_化学动力学基础(二)
低通道,但必须越过势能垒
Eb。Eb。是活化络合物与反应物最 低势能之差,E0是两者零点能
之间的差值。
这个势能垒的存在说明了实验活化能的实质。
上一内容 下一内容 回主目录
返回
2021/1/16
势能面剖面图
上一内容 下一内容 回主目录
返回
2021/1/16
三原子系统振动方式
式中r0是分子中双原子分子间的平衡核间 距,De是势能曲线的井深,a为与分子结构有 关的常数.
上一内容 下一内容 回主目录
返回
2021/1/16
双原子分子的莫尔斯势能曲线
AB双原子分子根据该公式 画出的势能曲线如图所示。
当r>r0时,有引力,即化学键力。 当r<r0时,有斥力。 0时的能级为振动基态能级,E0为零点能。
物理化学12章_化学动力学基础(二 )
上一内容 下一内容 回主目录
返回
物理化学电子教案—第十二章
上一内容 下一内容 回主目录
返回
2021/1/16
第十二章 化学动力学基础(二)
§12.1 碰撞理论 *§12.2 过渡态理论
§12.3 单分子反应理论 * §12.4 分子反应动态学简介
§12.5 在溶液中进行的反应 * §12.6 快速反应的几种测试手段
Ea≈ E
上一内容 下一内容 回主目录
返回
2021/1/16
概率因子(probability factor)
由于简单碰撞理论所采用的模型过于简单, 没有考虑分子的结构与性质,所以用概率因子 来校正理论计算值与实验值的偏差。
P=k(实验)/k(理论)
概率因子又称为空间因子或方位因子。
上一内容 下一内容 回主目录

傅献彩《物理化学》(第5版)笔记和课后习题(含考研真题)详解(化学动力学基础(二))【圣才出品】

傅献彩《物理化学》(第5版)笔记和课后习题(含考研真题)详解(化学动力学基础(二))【圣才出品】

二、过渡态理论 1.过渡态理论基本要点
3 / 52
圣才电子书 十万种考研考证电子书、题库视频学习平台

(1)反应物到产物必须经过一种过渡状态,即反应物分子活化形成活化络合物的中间 状态,反应物与活化络合物之间能很快速成化学平衡。
(2)活化络合物又可分解为产物,活化络合物分解步骤为慢步骤,化学反应速率由活 化络合物分解步骤决定。
Ep (r) De[exp{2a(r r0)} 2exp{a(r r0)}]
计算双原子分子势能 Ep 最常用的经验公式。式中 r0 是分子中双原子分子间的平衡核间
4 / 52
圣才电子书 十万种考研考证电子书、题库视频学习平台

距,De 是势能曲线的井深,a 为与分子结构有关的常数。
③活化络合物,就向产物转化,这步是反应的速决步。
(2)对于一般基元反应,速率常数的计算式为
k kBT f ' exp( E0 )
h fB
RT
B
4.过渡状态理论的优缺点
(1)优点
①形象地描绘了基元反应进展的过程。
②原则上可以从原子结构的光谱数据和势能面计算宏观反应的速率常数。
(3)反应物分子间相互作用势能是分子间相对位置的函数,反应物转化为产物的过程 是体系势能不断变化的过程。
(4)过渡状态理论提供了由物质基本结构系数[υ(振动频率),m(质量),r(核间距) 等]计算反应速率常数的方法。
过渡态理论:由反应物分子变成生成物分子,中间一定要经过一个过渡态,而形成这个过 渡态必须吸取一定的活化能,即反应物分子活化形成活化络合物的中间状态,所以又称为活 化络合物理论。用该理论,只要知道分子的振动频率、质量、核间距等基本物性,就能计算 反应的速率常数,所以又称为绝对反应速率理论。

第十一章_化学动力学基础(二)

第十一章_化学动力学基础(二)

第十一章化学动力学基础(二)通过本章学习理解碰撞、过渡态和单分子反应理论,了解一些特殊反应的动力学规律。

(一)基本要求和基本内容:基本要求1.了解化学反应动力学的碰撞、过渡态和单分子反应理论的基本内容,弄清几个能量的不同物理意义及相互关系。

2.了解溶液中反应的特点和溶剂对反应的影响。

3.了解快速反应所常用的测定方法及弛豫时间4.了解光化学反应和催化反应的特点。

重点和难点:过渡态理论中E c、E b、E0、ϑmrH#∆、ϑmrS#∆与Ea之间的关系:基本内容一、碰撞理论1.双分子的互碰频率2.硬球碰撞模型3.微观反应和宏观反应之间的关系4.反应阈能与实际活化能的关系5.概率因子二、过渡态理论1.势能面2.由过渡态理论计算反应速率3.E c、E b、E0、θmrH∆、θmrS∆与Ea和指前因子A之间的关系三、单分子反应理论四、在溶液中进行的反应1.溶剂对反应速率的影响2.原盐效应3.扩散控制反应五、快速反应的测试1.弛豫法2.闪光光解六、光化学反应1.光化学基本定律2.量子产率3.分子的能态4.光化反应动力学5.光化平衡和温度对光化学反应的影响6.感光反应、化学发光七、催化反应动力学1.催化剂与催化作用2.均相酸碱催化3.络合催化(配位催化)4.酶催化反应(二) 基本理论及公式1. 碰撞理论 ⑴ 要点① 反应物分子必须经过碰撞过程才有可能变成产物 ② 只有能量较大的活化分子的碰撞才能发生化学反映⑵ 计算公式① 不同种物质分子间的碰撞次数 [][]B A RTLdB dA Z ABπμπ222⎪⎭⎫ ⎝⎛+=② 同种物质分子间的碰撞次数 []2222A RTLd Z AA AA πμπ=③ 有效碰撞分数)e x p (RTE q C -= E C 为临界能,是基元反应所必需的能量。

④ 不同种分子间碰撞反应的速率常数⎪⎭⎫⎝⎛-=RT E M RTLd k C AB exp 82ππ ⑤ 同种分子间碰撞反应的速率常数⎪⎭⎫⎝⎛-=RT E M RTLd k C AA exp 22ππ ⑶ 解决的问题① 揭示了反应究竟是如何进行的一个简明﹑清晰的物理现象 ② 解释了简单反应速率公式及阿累尼乌斯公式成立的依据③ 解决了反应速率常数的求算问题 ④ 说明了Ea 与T 间的关系RT E E C a 21+=2. 过渡状态理论 ⑴ 要点反应物先形成不稳定的活化络合物,活化络合物与反应物之间迅速达成化学平衡,另一方面活化络合物转化为产物[]C B A C B A C B A +-→⋅⋅⋅⋅⋅⋅⇔-+≠⑵ 计算公式① 用统计热力学方法计算速率常数⎪⎭⎫ ⎝⎛-⋅⋅=∏≠RT E f f hT k k BBB 0'exp② 用热力学方法计算速率常数 (ⅰ) ()()⎪⎪⎭⎫ ⎝⎛∆-⋅⋅=≠-ΘRT G Ch T k k l nB exp 1 或,≠⋅=C B K h Tk k 或,()⎪⎪⎭⎫⎝⎛∆-⋅⎪⎪⎭⎫⎝⎛∆-⋅⋅=Θ≠-ΘRT H R S ChT k k m r mr nB exp exp 1 (ⅱ) ⎪⎪⎭⎫⎝⎛∆-⋅⎪⎭⎫⎝⎛⋅=≠-RTG RT P h T k k PnB exp 1 或 ⎪⎪⎭⎫⎝⎛∆-⋅⎪⎪⎭⎫⎝⎛∆-⋅⎪⎭⎫⎝⎛⋅=Θ≠-RT H RS RT P h T k k P r Pr nB exp exp 1 ③ 几个能量及其关系 (ⅰ) RT E EC a 21+=Ea 活化能,Ec 分子发生有效反应所必须超过的临界能 (ⅱ)mRT E E a +=0E 0 活化络合物的零点能与反应物零点能之差式中m 包括了普适常数项中及配分函数项中所有与T 有关的因子,对一定的反应体系,m 有定值。

第十二章-化学动力学基础(二)

第十二章-化学动力学基础(二)

第十二章 化学动力学基础〔二〕1.在K 300时,将)(0.12g gO 和)(1.02g gH 在30.1gdm 的容器内混合,试计算每秒钟、每单位体积内分子碰撞的总数?设)(2g O 和)(2g H 为硬球分子,其直径分别为nm 339.0和nm 247.0。

解:)(1093.2102247.0339.0210922m d d d H O AB --⨯=⨯+=+=)(10896.110016.200.32016.200.321332222---⋅⨯=⨯+⨯=+⋅=mol kg M M M M H O H O μ)(10881.110111002.600.320.13253232--⨯=⨯⨯⨯⨯==m n n O A )(10968.210111002.6016.21.03253232--⨯=⨯⨯⨯⨯==m n n H B 25253210210986.210881.110896.114.3300314.88)1093.2(14.38⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯==--B A ABAB n n RTd Z πμπ )(1077.21335--⋅⨯=s m Z AB2.请计算恒容下,温度每增加K 10时, 〔1〕碰撞频率增加的百分数;〔2〕碰撞时在分子连心线上的对平动能超过180-⋅=mol kJ E c 的活化分子对的增加百分数;〔3〕由上述计算结果可得出什么结论?解:〔1〕B A ABAB n n RTd Z πμπ82=T n n Rd Z B A ABAB ln 21)8ln(ln 2+=∴πμπ TdT Z d AB 21ln =或T dT Z dZ AB AB 2= 当温度变化范围不太大时,有TTZ Z AB AB 2∆=∆ 如K T 298=,K T 10=∆时,有%68.1298210=⨯=∆ABAB Z Z〔2〕)exp(RTE q c-= RTE q q d c=∴ln dT RTE q dqc 2= 当K T 298=,180-⋅=mol kJ E c ,K T 10=∆时%10810)298(314.81080232=⨯⨯⨯=∆=∆T RT E q q c 〔3〕通过计算结果可以看出,温度升高时,碰撞频率的增加并不明显,而活化分子数成倍增加。

化学动力学基础(二)精品课件

化学动力学基础(二)精品课件

rd d c tZ L AA eR E cT 2dA 2L A R M AT eR E cT A2k A2
kAB dA 2 B L 8RTeR EcTAeR EcT
kAA2dA2 AL
RTeREcT
MA
碰撞理论说明了经验式中的指前因子相当于碰撞频率,故又 称为频率因子
反应阈能与实验活化能的关系
理论的共同点是:首先选定一个微观模型,用气体分子 运动论(碰撞理论)或量子力学(过渡态理论)的方法,并 经过统计平均,导出宏观动力学中速率常数。
由于所采用模型的局限性,使计算值与实验值不能完全 吻合,还必须引入一些校正因子,使理论的应用受到一定的 限制。
碰撞理论的基本假设
(1)将分子看作硬球,无内部结构和相互作用;(硬球碰撞理论) (2)反应物分子必须发生碰撞才能发生反应; (3)并非每次碰撞都能发生反应,相互碰撞的两个分子相对 平动能在质心连心线上分量大于某值时,才能发生反应, 碰撞才有效为有效碰撞;
VVRV T
8 .3 7 10 40
Z H H I I2d A 2L A 2
RT N A 2 1 .0 2 130 m 1 3s 1 M HIV
在常温常压下,碰撞频率约为 1035m3s1
有效碰撞数q
只有当A、B两个分子在质心连线上的相对移动能超过 某一数值时方能发生反应,人们将这一数值称为化学 反应的临界能或阈能,用Ec表示。 根据Boltzmann公式,能量具有Ec的活性分子在总分子 中所占的分数q 为:
等于 dA2B。
分子间的碰撞和有效直径
两个A分子的互碰频率
当系统中只有一种A分子,两个A分子互碰的
相对速度为:
ur
(2 8RT )1/2
MA

化学动力学基础(二)

化学动力学基础(二)

§12.2
势能面
过渡态理论
由过渡态理论计算反应速率常数 *活化络合物的活化能Ea和指前因子A与 诸热力学函数之间的关系
过渡态理论(transition state theory)
过渡态理论是1935年由Eyring,Evans和
Polany 等人在统计热力学和量子力学的基础上
提出来的。 他们认为由反应物分子变成生成物分子,中 间一定要经过一个过渡态,而形成这个过渡态必
设有反应
ABP
若每次碰撞都能起反应,则反应速率为 dnA Z AB dt 改用物质的浓度表示(单位体积) dnA dcA L
8RT dcA dnA 1 Z AB 2 d AB L cA cB dt dt L L
dcA kcA cB dt
k d L
但必须越过势能垒 Eb
Eb是活化络合物与反 应物最低势能之差,E0是
势 能
Eb E0
A B C ≠
两者零点能之间的差值。
这个势能垒的存在说 明了实验活化能的实质。
AB+C
A+BC
反应坐标
势能剖面图
势能面投影图
将三维势能面投影到平面上,就得到势能面的
投影图。 图中曲线是相同
势能的投影,称为等
NA NB V V
8RT

或 Z AB d L
2 2 AB
8 RT

[A][B]
MAMB 式中 MA MB
NA [A]L V
NB [B]L V
两个A分子的互碰频率
当系统中只有一种A分子,两个A分子互碰 的相对速度为: u (2 8 RT )1/ 2
r
MA

化学动力学

化学动力学

RT
1
k2dA 2BLRT Me
2
eEa
RT
1
A2dA2BLRTMe 2
1
A2dA2BLRM T 2
kkB hTcθ1nexp R Sm θ exp R H Tm θ
适用范围:凝聚相反应
kkB h T R pT 1nexp R Sm θ exp R H Tm θ
Carbon Dioxide Fixation into Chemicals Methyl Formate at High Yields by Surface Coupling over a Pd/Cu/ZnO Nanocatalyst
Gm θRTlnKcθ
G m θRTlnKc

n1
Gm θ RT
lnKc

n1

K n1 c
expRG Tm θ
Kc cθ 1nexpRG Tm θ
k
kBT h
K
c
kkBT h

1nexpR G Tm θ
G
m
标准摩尔反应活化Gibbs自由能变
G m θ H m θT Sm θ
kkB h Tcθ1nexp R Sm θ exp E aR T R T
kkB hTcθ1nexp R Sm θ exp R T R TE a
kkBTcθ h
1nexp R Sm θexp1R E T a
kkBTecθ h
1nexp R Sm θexp R E Ta
rk2KccAcBC
根据过渡状态理论的假设活化络合物只 进行一次非对称伸缩振动就能断裂发生 反应因此反应速率为
k2
rr K cccAcBC

苏州大学物理化学考研、期末考试复习-第十二章化学动力学基础二练习题及答案

苏州大学物理化学考研、期末考试复习-第十二章化学动力学基础二练习题及答案

第十二章化学动力学基础二练习题一、选择题1. 化学反应发生的条件是:()(A) (Δr G m)T, p<0 (B) (Δr G m)T, p>0(C) (Δr G m)T, p=0 (D) (Δr G m)T, p≠03. 单原子分子A,B间发生反应,若忽略振动基态能量之差,则实验活化能E a,临界能E c,势垒E b间存在关系为:( )(A) E a=E c+12RT=E b+12RT(B) E a=E b+12RT=E c+RT(C) E a=E c-12RT=E b-12RT(D) E a=E b+RT=E c+RT4. 在T = 300 K,如果分子A和B要经过每一千万次碰撞才能发生一次反应,这个反应的临界能将是:( )(A) 170 kJ·mol-1(B) 10.5 kJ·mol-1(C) 40.2 kJ·mol-1(D) -15.7 kJ·mol-15. 选用适当的催化剂后,使反应活化能比未加催化剂时降低了8500J·mol-1,则二者速率常数比(k cat/k0) ( )(A) 31倍 (B) 61倍(C) 92倍 (D) 4.5倍6. 下列双分子反应中:(1) Br + Br → Br2(2) CH3CH2OH + CH3COOH → CH3CH2COOCH3+ H2O(3) CH4+ Br2→ CH3Br + HBr碰撞理论中方位因子P的相对大小是∶( )(A) P(1) > P(2) > P(3)(B) P(1) > P(3) > P(2)(C) P(1) < P(2) < P(3)(D) P(1) < P(3) < P(2)7. 破坏臭氧的反应机理为:NO + O3 NO→2+ O2NO2+ O NO + O→2在此机理中,NO 是:( )(A) 总反应的产物(B) 总反应的反应物(C) 催化剂(D) 上述都不是8. 对于水溶液中的反应[ Co(NH 3)5Br]2+ + OH - [Co(NH →3)5OH]2+ + Br -如果增加离子强度,此反应的速率将: ( ) (A) 不变 (B) 降低(C) 达到爆炸极限 (D) 增大9. 根据活化络合物理论,液相分子重排反应之活化能E a 和活化焓Δ≠H m 之间的关系是:( )(A) E a = Δ≠H m(B) E a = Δ≠H m - RT(C) E a = Δ≠H m + RT(D) E a = Δ≠H m / RT二、填空题11. 化学反应的简单碰撞理论中能发生化学反应的判据有两个,即__________________________________ _______________________________,____________________________________________。

第十一章化学动力学基础(二) 本章内容:介绍碰撞理论,过渡状态理论

第十一章化学动力学基础(二) 本章内容:介绍碰撞理论,过渡状态理论

第十一章化学动力学基础(二)本章内容:介绍碰撞理论,过渡状态理论和单分子反应理论。

了解分子反应动力学的常用实验方法,快速反应所常用的测试方法,说明溶液中反应的特点和溶剂对反应的影响;了解光化学反应的特点及量子产率的计算;介绍催化反应的特点和常见的催化反应的类型。

第一节碰撞理论(simple collision theory)一、碰撞理论基本论点分子碰撞理论是在接受了阿仑尼乌斯活化态、活化能概念的基础上,利用分子运动论于1918 年由路易斯建立起来的。

其基本论点是:1.反应物分子要发生反应必须碰撞,反应物分子间的接触碰撞是发生反应的前提;2.不是任何反应物分子间的碰撞均能发生反应,只有那些能量较高的活化分子、并满足一定的空间配布几何条件的碰撞反应才能发生;3.活化分子的能量较普通能量高,它们碰撞时,松动并部分破坏了反应物分子中的旧键,并可能形成新键,从而发生反应,这样的碰撞称为有效碰撞或非弹性碰撞,活化分子愈多,发生化学反应的可能性就愈大;4.若从Z A,B表示单位时间、单位体积内A,B分子碰撞总数,以q代表有效碰撞在总碰撞数Z A,B中所占的百分数,则反应速率可表示为二、双分子的互碰频率设A、B两种分子都是完全弹性的、无压缩性的刚球,二者半径各为1/2d A, 1/2d B, 单位体积中A的分子数为nN A/V, A分子运动的平均速率为〈U A〉。

假定B分子是静止的,那么一个A 分子与静止B 分子的碰撞次数为,A、B 分子的碰撞直径为d AB = 1/2(d A +d B),碰撞截面为πd2AB,,在时间t内,A分子走过的路程为〈U A〉t,碰撞截面所掠过的体积为〈U A〉tπd2AB, 凡是质心落在这个体积内的静态B分子都可能与A碰撞。

所以移动着的A分子在单位时间内与静止B分子相碰的次数(即碰撞频率)为,由于B分子也在运动,因此要用相对速率u r来代替平均速率(u),A与B的相对速率有几种情况考虑平均情况,则那么,一个运动着的A 分子与运动着的B 分子互相碰撞频率为那么,单位时间、单位体积内所有运动着的A、B 分子碰撞的总次数为对于浓度为[A]的同种分子,则三、硬球碰撞摸型设A.和B为两个没有结构的硬球分子,质量分别为m A和m B,折合质量为μ,运动速度分别为u A、u B,总能量E为'四、微观反应与宏观反应之间的关系反应截面是微观反应动力学基本参数,而速率常数k和实验活化能E a 等是宏观反应动力学参数。

第十二章 化学动力学(二)自测题

第十二章 化学动力学(二)自测题

第十二章 化学动力学基础(二)自测题Ⅰ.选择题1.在简单硬球碰撞理论中,有效碰撞的定义是(c ) (a)互撞分子的总动能超过E c (b)互撞分子的相对动能超过E c(c)互撞分子的相对平动能在连心线上的分量超过E c (d)互撞分子的内部动能超过E c2.某双原子分子分解反应的阀能E c =83.68 kJ·mol -1,则在300 k 时活化分子所占的分数是(d ) (a)3.719×10-14 (b)6.17×10-15 (c)2.69×10-11 (d)2.69×10-153.有一稀溶液反应33CH COOCH OH P -+→,根据原盐效应,当溶液总的离子强度增加时,反应速率常数k 值将(c )(a)变大 (b)变小 (c)不变 (d)无确定关系 4.已知HI 的光分解反应机理如下:HI H +I hv +→⋅⋅ 2H HI H I ⋅+→+⋅ 2I I M I M ⋅+⋅+→+则该反应的反应物消耗的量子效应(b ) (a)1 (b)2 (c)4 (d)1065.某一反应在一定条件下的平衡转化率为25%,当加入合适的催化剂后,反应速率提高10倍,其平衡转化率将(c )(a)大于25% (b)小于25% (c)不变 (d)不确定 6.设某基元反应在500 K 时的实验活化能为83.14 kJ·mol -1,则此反应的阀能E c 为(d ) (a)2.145 kJ·mol -1 (b)162.1 kJ·mol -1 (c)83.14 kJ·mol -1 (d)81.06 kJ·mol -1 7.根据过渡态理论,液相双分子反应的实验活化能E a 与活化焓r m H ≠∆之间的关系为(b ) (a)a r m E H ≠=∆ (b)a r m E H RT ≠=∆+ (c)a r m E H RT ≠=∆- (d)a r m 2E H RT ≠=∆+ 8.设两个单原子气体A 和B 发生化合反应。

(医学课件)化学动力学基础ppt演示课件

(医学课件)化学动力学基础ppt演示课件


则单位体积内所有运动着的 A 分子与 B 分 子的碰撞频率为:
NA Z AB ZAB V d
2 AB
N A NB 2 2 u A u B ( 3) 2 V
.中国科学技术大学化学物理系屠兢

11
由分子运动论得:
〈u A〉 8RT , 〈u B〉 M A 8RT M B
NA 2 u A V
2 AA
2d
NA 8RT V M A
.中国科学技术大学化学物理系屠兢
ZAA 2d
15
2 AA
NA 8RT有 A 分子间的碰撞频率即为:
Z AA
1 NA ZAA 2 V
1 乘以系数 是因为每一对碰撞 A i A j 2 被重复计算了两次 :A i A j; A i A j
.中国科学技术大学化学物理系屠兢

17
常温常压下,ZAB ~ 1035 m3s1,若每次
碰撞均为可发生反应:A + B P 的有
效碰撞,则单位体积内 A 分子的消耗速
率即为 A、B 分子的碰撞频率:
NA d( ) d[ A] V L Z AB dt dt
.中国科学技术大学化学物理系屠兢
23 1 3 1 3
Z AB:m
s
1
.中国科学技术大学化学物理系屠兢
Z AB d
14
2 AB
NB 2 2 u A uB V

若体系中只有一种 A 分子,则单位体积内某 一 A i 分子与其它 A j ( j i ) 分子的碰撞频率:
ZAA d
2 AA
b)无效碰撞频率远大于(高能分子的)有效

复习题-物理化学

复习题-物理化学

第十二章化学动力学基础(二)【复习题】【1】简述碰撞理论和过渡态理论所用的模型、基本假设和忧缺点。

【解】碰撞理论模型:将反应物分子看成无内部结构刚性球体,它们的碰撞完全是弹性碰撞。

基本假设:是反应物分子只有经过碰撞才能发生反应,但并不是所有碰撞分子都能发生反应,只有当分子的相对碰撞能等于或超过临界能时才能发生反应。

优点:(1)碰撞理论为人们描述了一幅虽然粗造但十分明确的反应图象,在反应速率理论的发展中起了很大作用;(2)对Arrheinus公式中的指数项,指前因子或阈能提出了较明确的物理意义,认为指数项相当于有效碰撞分数,指前因子A相当于碰撞频率;(3)解释了一部分实验事实,理论所计算的速率常数k与较简单的反应实验值相符。

缺点:(1)要从碰撞理论来计算速率常数k,必须要知道临界能E c,它本身不能预言E c的大小,还需通过Arrheinus公式来求,而Arrheinus公式中的E a的求得,首先需要从实验测得k,这就使该理论失去了从理论上预言k的意义,说明该理论为半经验理论;(2)在该理论中曾假设反应物分子是无内部结构的刚性球体,这种假设过于粗糙,因此只对比较简单的反应,理论值与实验值符合的较好,但对更多的反应,计算值与实验值有很大的差别。

过渡态理论模型:描绘出势能面基本假设:a 化学反应不是通过简单的碰撞完成的,分子相遇后,先形成一种过渡态物种——活化络合物;b活化络合物很不稳定,一方面与反应物建立动态平衡,另一方面可分解成产物;c活化络合物分解成产物的步骤是整个反应的决速步;d 活化络合物分解的速率决定与活化络合物的浓度和性质。

优点:a 形象地描绘了基元反应进展的过程;b 原则上可以从原子结构的光谱数据和势能面计算宏观的反应速率常数;c对Arrheinus公式的指前因子作了理论说明,认为它与活化熵有关;d用势能面形象的说明了为什么需要活化能以及反应遵循的能量最低原理。

缺点:a引进了平衡假设和速决步假设并不能符合所有的实验事实;b活化络合物的结构现在还无法从实验上确定,在很大程度上具有猜测性; c 计算方法过于复杂,在实际应用上还存在很大困难,尤其是对于复杂的多原子反应;d 绘制势能面有困难,使该理论受到一定的限制。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对Arrhenius公式中的指数项、指前因子和阈能 都提出了较明确的物理意义,认为指数项相当于有 效碰撞分数,指前因子A 相当于碰撞频率。
反应阈能Ec与温度无关,但无法测定,要从
实验活化能Ea计算。
在温度不太高时
Ea≈ Ec
将Ea代入速率常数的计算式,得:
ksct (T ) dA2BL
8kBTe
exp
Ea RT
与Arrhenius经验式对照,得指前因子的表示式为:
A dA2BL
8kBTe
概率因子(probability factor)
Z AB
E
e RT
dt L
dA2BL
8RT
E
e RT cAcB
kcAcB
r dA2BL
8RT
e
E RT
cAcB
对照Arrhenius公式
Ea
k Ae RT
k dA2BL
8RT
e
E RT
E
Ae RT
A dA2BL
8RT
碰撞理论说明了经验式中的指前因子相当于 碰撞频率,故又称为频率因子
ksct
(T
)
d
2 AB
L
8kBT exp( c )
kBT

ksct
(T
)
d
2 AB
L
8RT exp( Ec )
RT
对于相同分子的双分子反应,则有
kSCT T
2 2
dA2A
ቤተ መጻሕፍቲ ባይዱ
L
8kBT
MA
exp
c
kBT
反应阈能与实验活化能的关系
根据实验活化能的定义:
Ea
RT 2
d ln k(T ) dT
由于简单碰撞理论所采用的模型过于简单,没有 考虑分子的结构与性质,所以用概率因子来校正理论 计算值与实验值的偏差。
P=k(实验)/k(理论)
概率因子又称为空间因子或方位因子。
则速率常数的计算式为
k
T
P
A
exp
Ea RT
理论计算值与实验值发生偏差的原因主要有:
(1) 从理论计算认为分子已被活化,但由于有的分 子只有在某一方向相撞才有效;
2020/10/16
速率理论的共同特点
速率理论的共同点是:反应物分子之间的“碰撞”是反应 进行的必要条件,但并不是所有“碰撞”都会引起反应。是否 能反应取决于能量等因素,与碰撞时具体变化过程密切相关。 讨论碰撞时具体变化过程也正是速率理论的关键所在。
碰撞时实际变化过程的研究需要首先选定一个微观模型, 用气体分子运动论(碰撞理论)或量子力学(过渡态理论)的 方法,并经过统计平均,导出宏观动力学中速率常数的计算公 式。
8RT
cAcB
dcA dt
kcAcB
k dA2BL
8RT
k dA2BL
8RT
这就是根据简单碰撞理论导出的速率常数计算式
在常温常压下,碰撞频率约为 1035 m3 s1
由于不是每次碰撞都能发生反应,所以要
乘以有效碰撞分数q
r dcA ZAB q dt L
E
q e RT
r dcA
碰撞才能发生反应。 4.求出单位时间单位体积中分子间的碰撞数(即碰撞
频率)以及活化碰撞所占分数,即可导出速率方 程。 r ∝q·Z AB
A与B分子互碰频率
将A和B分子看作硬球, 根据气体分子运动论,它们 以一定角度相碰。
互碰频率为:
ZAB
dA2B
NA V
NB V
(8RT )1/ 2

Z AB
dA2B
k dA2BL
8RT
e
E RT
将上式写为
k
A'T
1
2e
E RT
将上式取对数 再对温度微分
ln k ln A' 1 ln T E
2
RT
d ln k
E
1 2
RT
dT
RT 2
当 1 RT E 2
d ln k E dT RT 2
这就是Arrhenius经验式。
若用物质的量浓度表示,则速率常数的计算式为
物理化学电子教案—第十二章
2020/10/16
第十二章 化学动力学基础(二)
§12.1 碰撞理论 §12.2 过渡态理论 §12.3 单分子反应理论 * §12.4 分子反应动态学简介 §12.5 在溶液中进行的反应 * §12.6 快速反应的几种测试手段 §12.7 光化学反应 * §12.8 化学激光简介 §12.9 催化反应动力学
碰撞理论(Collision Theory)
碰撞理论在一些假设的基础上得到了气相双分子反 应速率的计算公式,其理论要点是:
1. 分子是一个没有内部结构的硬球;故简单碰撞理 论(SCT)又称为硬球碰撞理论。
2. 气体分子A和B必须通过碰撞才可能发生反应; 3. 只有碰撞动能大于或等于某临界能[或阈能]的活化
双分子的互碰频率和速率常数的推导 *硬球碰撞模型——碰撞截面与反应阈能 *反应阈能与实验活化能的关系
概率因子
§12.1 碰撞理论
碰撞理论是在气体分子运动论的基础上在20 世纪初发展起来的。该理论认为发生化学反应的 先决条件是反应物分子的碰撞接触,但并非每一 次碰撞都能导致反应发生。
简单碰撞理论是以硬球碰撞为模型,导出宏 观反应速率常数的计算公式,故又称为硬球碰撞 理论。
各速率理论的主要区别也主要体现在这一微观模型的差别。
速率理论
与热力学的经典理论相比,动力学理论发展 较迟。先后形成的碰撞理论、过渡态理论都是20 世纪后建立起来的,尚有明显不足之处。
由于所采用模型的局限性,使计算值与实验 值不能完全吻合,还必须引入一些校正因子,使 理论的应用受到一定的限制。
§12.1 碰撞理论
(2) 有的分子从相撞到反应中间有一个能量传递过 程,若这时又与另外的分子相撞而失去能量,则反 应仍不会发生;
(3) 有的分子在能引发反应的化学键附近有较大的 原子团,由于位阻效应,减少了这个键与其它分子相 撞的机会等等。
碰撞理论的优点:
碰撞理论为我们描述了一幅虽然粗糙但十分明确 的反应图像,在反应速率理论的发展中起了很大作用
已知
ksct (T ) dA2BL
8RT exp( Ec )
RT
将与T无关的物理量总称为B,取对数:

ln
ksct (T )
Ec RT
1 2
ln T
ln
B
对T微分,得:
d ln ksct (T ) dT
Ec RT 2
1 2T
代入活化能定义式,得:
1 Ea Ec 2 RT
Ea
Ec
1 2
RT
L2
(
8 RT
)1/ 2 [A][B]
式中 M A M B
MA MB
NA [A]L V
NB [B]L V
速率常数的推导
设有反应
ABP
若每次碰撞都能起反应,则反应速率为
dnA dt
ZAB
改用物质的浓度表示
dnA dcA L
dcA dnA 1 ZAB dt dt L L
dA2BL
相关文档
最新文档