浅论金属材料疲劳断裂的原因及危害
金属材料的疲劳断裂机理解析
金属材料的疲劳断裂机理解析疲劳断裂是一种金属材料在受到反复加载后,由于应力集中作用而在载荷作用下出现的断裂现象。
在工程应用中,经常会受到相反方向的交替载荷的作用,这样会引起疲劳断裂问题。
因此,了解金属材料的疲劳断裂机理对于确保工程结构的安全可靠性至关重要。
疲劳断裂机理的研究历史可以追溯到20世纪初期,最初是在航空领域进行的。
人们开始注意到,航空器上的零件由于反复加载而发生疲劳断裂,如轴、桁架、螺栓等零部件。
在研究中,人们发现疲劳断裂与材料中的微观缺陷有关。
这些缺陷可以是材料内的夹杂、异相、孔洞、裂纹等,也可以是表面上的裂纹、腐蚀痕迹等。
对于金属材料疲劳断裂机理的研究,人们通常采用线应力范围S-N曲线进行实验研究。
这种曲线是将载荷幅值S和疲劳寿命N 以双对数坐标轴上绘制,研究者根据实验结果绘制不同应力幅值下的S-N曲线。
在这种曲线上可以找到最小疲劳强度极限,也就是金属可以承受多少次疲劳循环,最终导致疲劳断裂。
线应力范围S-N曲线的研究是设计金属零部件的必要环节之一,只有在了解材料特性中的疲劳强度极限和影响因素之后,才能够准确地进行零部件的设计。
在实际的工程应用中,疲劳断裂机理是多种多样的。
因此,根据组织结构不同,疲劳断裂机理也有所不同。
下面我们对金属材料的疲劳断裂机理进行详细分析:1. 基体内夹杂贡献金属材料中的夹杂是人工制备和自然形成的,包括铁锈、铝夹杂、夹杂物等。
这些夹杂在载荷作用下可以引起应力集中作用,从而在周围材料中形成一个高应力集中区域。
当这个区域受到一定数量的冲击时,就会导致夹杂物内部的微裂纹增长。
这些微裂纹随着载荷的增加而逐渐扩展,最终导致疲劳断裂。
2. 不均匀形变贡献金属材料在受到载荷作用时,所受到的变形十分不均匀。
在材料中,往往存在一些应力集中区域,这些区域所受到的变形也会比周围的区域更大。
这种不均匀形变会导致表面裂纹、夹杂物等缺陷的内部发生更多的塑性变形,因此这些缺陷的情况也会随着时间的推移变得更加严重。
金属材料疲劳破坏的机理
一、名词解释1、交变应力:构件中一点应力随着时间变化而变化时,这种应力称为“交变应力”;2、疲劳:在交变应力作用下发生的破坏现象,称为“疲劳失效”或“疲劳破坏”,简称“疲劳”。
疲劳失效与静载作用下的强度失效,有着本质上的差别。
在交变应力作用下,材料的强度性能则不仅与材料有关,而且与应力变化情况、构件的形状和尺寸,以及表面加工质量等因素有着很大关系。
二、疲劳破坏特点1、破坏应力值远低于材料在静载下的强度指标。
2、构件在确定的应力水平下发生疲劳破坏需要一个过程,即需要一定量的应力交变次数。
3、构件在破坏前和破坏时都没有明显的塑性变形,即使在静载下塑性很的材料,也特呈现脆性断裂。
4、同一疲劳破坏断口,一般都明显的两个区域:光滑区域和颗粒区域。
三、疲劳破坏原因以多晶体金属为例,它由很多强弱不等的晶粒所组成,在晶粒边界上或夹杂物处,强度更弱。
在外力作用下,受力较大或强度较弱的晶粒以及晶粒边界上将出现错动的滑移带。
随着应力变化次数的增加,滑移加剧,滑移带变宽,最后沿滑移带裂开,形成裂纹。
这些最初形成的微裂大都是疲劳破坏的发源区,称为“疲劳源”。
再经过若干次应力交变之后,宏观裂纹继续扩展,致使构件截面削弱,类似在构件上作成尖锐的“切口”。
结果,在很低的名义应力(不考虑应力集中时算得的应力),水平下,构件便发生破坏。
裂纹的生成和扩展是一个复杂的过程,它与构件的外形、尺寸、应力交变的类型,以及构件所处的介质等因素有很大关系。
1、应力集中对疲劳极限的影响在构件上截面突变处,如阶梯轴的过渡段、开孔、切槽等处,会产生应力集中现象,即在这些局部区域内,应力有可能达到很高数值。
2、构件尺寸对疲劳极限的影响构件尺寸对疲劳极限有着明显的影响,这是疲劳强度问题与静载强度问题的重要差别之一。
实验结果表明,当构件横截面上的应力非均匀颁布时,构件尺寸越大,疲劳极限越低。
3、构件表面加工质量对疲劳极限的影响粗糙的机械加工,会在构件表面形成深浅不同的刻痕,这些刻痕本身就是初始裂纹。
金属材料疲劳
金属材料疲劳金属材料疲劳是指金属在受到循环应力作用下,随着时间的推移逐渐产生裂纹并最终破坏的现象。
疲劳是金属材料的一种重要破坏形式,也是工程实践中不可忽视的问题。
本文将从金属材料疲劳的基本原理、影响因素以及预防措施等方面进行探讨。
首先,金属材料疲劳的基本原理是由于金属在受到交变应力作用下,其晶格结构发生变化,从而引起金属内部的微观损伤,最终导致裂纹的生成和扩展。
这种微观损伤主要包括位错的运动和集聚、晶界的滑移和变形等。
随着循环载荷的不断作用,这些微观损伤逐渐积累,最终导致金属材料的疲劳破坏。
其次,金属材料疲劳受到许多影响因素的制约。
首先是应力水平的大小,循环载荷的幅值越大,金属材料的疲劳寿命就越短。
其次是应力的频率,循环载荷的频率越高,金属材料的疲劳寿命也越短。
此外,温度、环境介质、金属材料的组织结构等因素也会对金属材料的疲劳性能产生重要影响。
为了预防金属材料的疲劳破坏,可以采取一系列的措施。
首先是对金属材料进行合理的设计,尽量避免应力集中和裂纹的敏感区域。
其次是对金属材料进行表面处理,提高其抗疲劳性能。
此外,可以采用合适的工艺控制和热处理手段,提高金属材料的抗疲劳性能。
另外,科学合理地进行应力分析和寿命预测,也是预防金属材料疲劳破坏的重要手段。
总之,金属材料疲劳是一种普遍存在的现象,对于工程实践具有重要的影响。
了解金属材料疲劳的基本原理和影响因素,采取有效的预防措施,对于延长金属材料的使用寿命,提高工程结构的安全性具有重要意义。
因此,我们应该加强对金属材料疲劳的研究和应用,不断提高金属材料的抗疲劳性能,为工程实践提供更加可靠的保障。
通过对金属材料疲劳的基本原理、影响因素和预防措施的探讨,我们可以更加深入地了解金属材料疲劳的本质,为工程实践提供更加可靠的保障。
希望本文能够对相关领域的研究和实践工作有所帮助,推动金属材料疲劳领域的进一步发展。
材料的疲劳和断裂行为
材料的疲劳和断裂行为疲劳和断裂是材料工程中的重要研究领域。
疲劳是指材料在经历了重复加载或应力变化后,由于内部微观缺陷逐渐积累,最终导致材料的失效。
而断裂则是指材料在承受高应力或者外力集中作用下发生裂纹扩展的现象。
本文将深入探讨材料的疲劳和断裂行为,并分析其机理和影响因素。
一、疲劳行为材料的疲劳行为广泛存在于我们生活和工作的各个领域。
例如,金属材料在机械工程中的零部件、桥梁结构和飞机构件等地方,由于长期受到复杂的力学载荷,易出现疲劳失效。
疲劳失效不仅会给工程的安全性和可靠性带来威胁,也会增加维修和更换的成本。
1. 疲劳断裂机理在受疲劳加载作用下,材料内部的微观缺陷会逐渐积累导致裂纹的形成和扩展。
这些微观缺陷包括晶界、夹杂物、夹层、腐蚀坑等。
当应力斑马纹通过这些缺陷时,会导致位错的生成和扩展,从而引起材料的疲劳断裂。
2. 疲劳寿命与应力幅关系材料的疲劳寿命与应力幅之间存在一定的关系。
应力幅越大,疲劳寿命越短;应力幅越小,疲劳寿命越长。
这是由于应力幅增加会导致材料内部位错、裂纹等缺陷的生成和扩展速度增加,从而缩短了材料的使用寿命。
3. 影响疲劳行为的因素除了应力幅外,疲劳行为还受到多种因素的影响。
其中包括材料的力学性能、表面质量、温度、湿度、载荷频率、环境介质等。
材料的力学性能如强度、韧性、硬度等,对材料的疲劳行为具有重要影响。
同时,表面质量的好坏、温度和湿度的变化也会引起材料内部微观缺陷的形成和扩展。
二、断裂行为除了疲劳行为外,材料的断裂行为也是值得重视的。
断裂指的是材料在受到高应力或者外力集中作用下发生裂纹扩展的现象。
在工程实践中,为了减缓断裂失效对工程结构和设备造成的危害,需要对材料的断裂行为进行深入研究。
1. 断裂机理材料的断裂机理可以分为静态断裂和动态裂纹扩展两个阶段。
静态断裂是指在裂纹形成之前,材料的应力集中到达临界值,导致断裂开始。
而动态裂纹扩展则是指裂纹在外力作用下迅速扩展,直到材料完全失效。
金属材料疲劳断裂机理分析
金属材料疲劳断裂机理分析一、引言金属材料常见的失效形式之一是疲劳断裂,而疲劳断裂机理的分析对于提高金属材料的使用寿命具有重要意义。
本文将对金属材料疲劳断裂机理进行详细分析。
二、金属材料的疲劳断裂1. 疲劳断裂的概念疲劳断裂是材料受到循环或重复应力作用后,出现裂纹并扩展,最终导致材料破坏的一种失效形式。
2. 疲劳断裂的特点(1)与静态断裂不同,疲劳断裂通常在应力水平低于静态破坏强度时出现。
(2)疲劳断裂往往发生在金属材料受到循环应力或者滞后循环应力的情况下。
(3)疲劳断裂是一个逐渐形成的过程,通常由细小的裂纹开始,然后扩展到整个截面并导致材料断裂。
3. 疲劳断裂的影响因素(1)应力幅值对于金属材料疲劳断裂的影响很大。
一般来说,应力幅值越大,疲劳断裂的损伤就越严重。
(2)材料的力学性质对于疲劳断裂也有很大的影响。
通常来说,强度越高的材料越难发生疲劳断裂,但是当强度相同时,材料的硬度越高,就越容易疲劳断裂。
(3)疲劳断裂还受到持续时间、温度、材料的化学成分和缺陷的影响。
4. 疲劳断裂的分类根据裂纹的扩展速率和应力比,疲劳断裂可以分为以下几类:(1)低周疲劳断裂:在循环应力下,材料的裂纹扩展速率很慢,往往需要上百万以上次循环才会导致疲劳断裂。
(2)中周疲劳断裂:循环应力下材料的裂纹扩展速率较快,在千-十万次循环后就能导致疲劳断裂。
(3)高周疲劳断裂:循环应力下材料的裂纹扩展速率极快,在数十万-数百万次循环内就会导致疲劳断裂。
5. 疲劳断裂的机理(1)金属材料的疲劳断裂过程一般分为始裂阶段和稳定扩展阶段。
(2)始裂阶段:在材料表面出现较小的裂纹,形成的原因是在应力作用下,材料中的微小缺陷和夹杂物开始聚集和扩散。
(3)稳定扩展阶段:当裂纹扩展到一定长度时,会出现塑性形变,当扩展到一定程度时,材料就会出现断裂。
(4)材料疲劳断裂机理可以采用形变、断裂学和金相学等多方面知识进行解释。
三、疲劳断裂机理分析1. 循环应力下的金属变形材料在循环应力下,会出现塑性变形和弹性变形两种不同的变形形式。
金属材料疲劳破坏机理研究
金属材料疲劳破坏机理研究引言金属材料是工程领域中使用最广泛的材料之一,但是金属材料的使用寿命和安全性受到了很大的挑战,这是由于金属材料容易经历疲劳破坏。
因此,金属材料疲劳破坏的机理研究非常重要。
本文将对金属材料疲劳破坏的机理、原因和如何应对进行探讨。
金属材料疲劳破坏的机理疲劳破坏是由于金属材料长时间受到循环载荷而引起的。
当载荷频率足够高时,金属材料表面就会产生微小的裂纹,而这些微小的裂纹则会逐渐扩大并最终导致金属材料疲劳破坏。
这个过程可以通过疲劳寿命曲线来描述。
疲劳寿命曲线通常包括S-N曲线和ε-N曲线。
S-N曲线描述了在不同的应力水平下金属材料的循环寿命,而ε-N曲线描述了在不同的应变水平下金属材料的循环寿命。
疲劳寿命曲线与金属材料的组织、应力水平、载荷频率有很大关系。
金属材料疲劳破坏的原因金属材料疲劳破坏的原因与材料本身的性质以及工作环境有关。
以下是金属材料疲劳破坏的主要原因:1.应力水平过高:当金属材料受到高应力,尤其是超过其疲劳极限时,就会产生疲劳破坏。
2.载荷频率过高:当金属材料受到高频率的循环载荷,就会产生裂纹并发生疲劳破坏。
3.材料损伤:金属材料的缺陷、氧化、腐蚀等都会导致金属材料的微小裂纹,进而导致疲劳破坏。
4.温度:在不同的温度下,金属材料的疲劳寿命也不同,因为温度会影响金属材料的性质和行为。
如何应对金属材料疲劳破坏为了防止金属材料疲劳破坏,我们有以下几种方法:1.提高材料的强度和韧性。
在设计过程中我们应该选择高强度、高韧性的材料来降低金属材料在受到循环载荷时的疲劳破坏风险。
2.避免应力集中。
应力集中会影响金属材料的强度和疲劳性能,因此应该避免在设计过程中出现尖锐角或其他应力集中的地方。
3.控制载荷频率。
控制载荷频率有助于延长金属材料的使用寿命。
4.减少金属材料的损伤。
通过在材料表面添加防腐剂或其他化学物质,可以减少金属材料的损伤,从而降低金属材料的疲劳破坏风险。
结论金属材料疲劳破坏是工程领域中的一个重要问题,对我们的工程设计和安全性造成了极大的影响。
金属材料的断裂行为分析
金属材料的断裂行为分析金属材料在实际应用中经常面临着受力情况,而断裂行为是其中一个重要的因素。
本文将对金属材料的断裂行为进行分析,探讨其原因和影响因素。
一、断裂行为的定义金属材料的断裂行为指的是在外部作用力的作用下,材料发生断裂的过程。
断裂是材料失去载荷传递能力的结果,其破坏表现为断口形成。
二、断裂行为的原因1. 内部缺陷:金属材料内部可能存在各种缺陷,如气孔、夹杂物、晶界、位错等。
这些缺陷会集中应力,导致断裂的发生。
2. 外部影响:金属材料在使用过程中,承受着多种外部作用力,如拉伸、压缩、弯曲、挤压等。
这些作用力会引起金属的应力集中,进而导致断裂。
三、断裂行为的影响因素1. 材料的强度:金属材料的强度越高,其抵抗断裂的能力也就越强。
因此,金属的强度是断裂行为的一个重要影响因素。
2. 温度:温度对金属材料的断裂行为有着显著的影响。
在高温下,金属易于软化和熔化,从而导致断裂;而在低温下,金属脆性增加,也容易发生断裂。
3. 加载速率:加载速率是指外部作用力施加的速度。
在较高的加载速率下,金属材料容易发生动态断裂;而在较低的加载速率下,金属更容易发生静态断裂。
四、断裂行为的分析方法1. 断裂力学:通过断裂力学的理论和方法,可以定量分析金属材料的断裂行为。
其中,最常用的方法包括线弹性断裂力学、弹塑性断裂力学和韧性断裂力学。
2. 断口分析:通过观察金属材料的断口形貌,可以初步判断断裂的类型和原因。
常见的断口形貌有韧性断口、脆性断口等。
3. 数值模拟:利用有限元方法等数值模拟手段,可以模拟金属材料在受力下的断裂行为。
通过数值模拟可以更加准确地分析和预测金属材料的断裂行为。
五、断裂行为的应用对金属材料的断裂行为进行分析可以为材料的选用、设计和使用提供重要的依据。
通过了解材料的断裂性能,可以避免在实际应用中出现断裂导致的事故和损失。
六、结论金属材料的断裂行为是一个复杂而重要的问题。
内部缺陷和外部作用力是断裂行为的主要原因,而材料的强度、温度和加载速率是断裂行为的关键影响因素。
金属材料产生疲劳断裂的原因
金属材料产生疲劳断裂的原因疲劳断裂是金属材料在循环载荷作用下出现的一种失效形式。
它是由于金属材料在受到循环载荷作用下,长时间内不断发生应力集中、应力变化和应力幅值逐渐增大等因素的共同作用下,导致金属内部的微观缺陷逐渐扩展并最终导致断裂的现象。
金属材料产生疲劳断裂的原因主要包括以下几个方面。
1. 应力集中:应力集中是金属材料产生疲劳断裂的主要原因之一。
当金属材料受到循环载荷作用时,存在着一些缺陷、凹坑或过小的弯曲等不均匀应力分布的情况,这些地方会承受更高的应力,导致疲劳断裂更容易发生。
2. 应力变化:金属材料在受到循环载荷作用时,会经历应力的周期性变化。
这种应力的变化会导致金属材料内部的晶粒、相界、夹杂物等微观缺陷发生塑性变形和应力集中,从而引起疲劳断裂。
3. 应力幅值:应力幅值是指金属材料在循环载荷作用下,应力的最大值与最小值之间的差值。
应力幅值越大,金属材料的疲劳寿命就越低。
当应力幅值超过金属材料的疲劳极限时,金属材料容易发生疲劳断裂。
4. 微观缺陷:金属材料内部存在着各种微观缺陷,如晶粒界、夹杂物和位错等。
这些微观缺陷在金属材料受到循环载荷作用时会发生塑性变形和应力集中,从而导致疲劳断裂的发生。
5. 环境因素:金属材料的疲劳断裂还受到环境因素的影响。
例如,高温、湿气、腐蚀介质等会加速金属材料的腐蚀和损伤,从而降低金属材料的疲劳寿命,增加疲劳断裂的风险。
为了减少金属材料的疲劳断裂风险,可以采取以下措施:1. 提高材料的强度和韧性,选择具有较高的疲劳强度和延展性的金属材料。
2. 优化设计,避免应力集中区域的产生,减少应力集中的程度,通过合理的几何形状和结构设计来改善金属材料的应力分布情况。
3. 控制循环载荷的幅值,避免超过金属材料的疲劳极限,合理选择载荷幅值,以延长金属材料的使用寿命。
4. 进行表面处理和防护措施,如表面喷涂、镀层和防腐涂层等,减少金属材料与环境因素的接触,降低腐蚀和损伤的风险。
浅论金属材料疲劳断裂的原因及危害
青岛黄海学院机电工程学院2013—2014学年第二学期期中考试科目:工程材料及机械制造基础**:***学号: **********班级: 2011级本科三班专业:机械制造及其自动化浅论金属材料发生疲劳断裂的原因及危害摘要:从人类开始制造结构以来,断裂就是社会面对的一个问题。
早在100多年以前,人们就发现了金属疲劳给各个方面带来的损害。
但由于技术的落后,还不能查明疲劳破坏的原因,直到显微镜和电子显微镜等高科技器具的相继出现之后,使人类在揭开金属疲劳秘密的道路上不断取得新的成果。
本文浅论金属材料发生疲劳断裂的原因及危害,使人们初步了解金属疲劳断裂的相关知识。
关键词:疲劳断裂原因危害一、金属材料的疲劳现象工程中有许多金属零件,如齿轮、弹簧、滚动轴承、叶片、发动机曲轴等都是在变动载荷下工作的。
根据变动载荷的作用方式不同,金属零件承受的应力可分为交变应力和循环应力。
在交变应力下,虽然零件所承受的应力低于材料的抗拉强度甚至低于材料的屈服强度,但经过较长时间的工作后产生裂纹或突然发生完全断裂的现象称为金属的疲劳。
人的疲劳感觉来自于长期的劳累或一次过重的负荷,金属材料也是一样。
金属的机械性能会随着时间而慢慢变弱,这就是金属的疲劳。
在正常使用机械时,重复的推、拉、扭或其他的外力情况都会造成机械部件中金属的疲劳。
这是因为机械受压时,金属中原子的排列会大大改变,从而使金属原子间的化学键断裂,导致金属裂开。
二、金属材料疲劳的种类金属材料的疲劳现象,按条件不同可分为下列几种:(1)高周疲劳:指在低应力(工作应力低于材料的屈服极限,甚至低于弹性极限)条件下,应力循环周数在100000以上的疲劳。
它是最常见的一种疲劳破坏。
高周疲劳一般简称为疲劳。
(2)低周疲劳:指在高应力(工作应力接近材料的屈服极限)或高应变条件下,应力循环周数在10000~100000以下的疲劳。
由于交变的塑性应变在这种疲劳破坏中起主要作用,因而,也称为塑性疲劳或应变疲劳。
金属材料的疲劳断裂行为研究
金属材料的疲劳断裂行为研究金属材料是现代工业中广泛使用的重要材料之一,其疲劳断裂行为的研究对于确保工程结构的可靠性具有重要意义。
在长期使用和重复加载的情况下,金属材料往往会发生疲劳断裂,给工程结构带来严重的威胁。
因此,了解金属材料的疲劳断裂行为以及其影响因素成为了材料科学研究的重要方向之一。
疲劳断裂行为是指金属材料在循环加载下逐渐发生的裂纹扩展造成断裂的现象。
疲劳断裂是一种隐蔽的破坏模式,往往无明显的预兆,因此引起了广泛的关注。
研究表明,金属材料的疲劳断裂是由于裂纹在材料内部的扩展而导致的。
在外力加载下,金属材料的晶粒结构会发生变化,出现位错和弧形分布,这会使材料产生内部应力集中,从而引发裂纹的形成和扩展。
金属材料的疲劳断裂行为不仅与材料本身的特性有关,还与加载条件、环境因素等有着密切的联系。
首先,金属材料的微观结构对疲劳断裂行为有着重要影响。
晶粒的大小、形状以及相互之间的排列方式都会影响材料的疲劳寿命。
此外,材料的力学性能,如强度、硬度等也是影响疲劳断裂行为的重要因素。
其次,加载条件对于疲劳断裂行为的影响也不可忽视。
加载模式、频率、幅值等都会直接影响材料的疲劳寿命。
最后,环境因素对疲劳断裂行为的影响也非常重要。
例如,氧化剂的存在会加速金属材料的腐蚀速度,从而加剧疲劳断裂的发生。
为了更好地理解金属材料的疲劳断裂行为,科学家们开展了大量的研究工作。
一种常用的研究方法是使用疲劳试验机进行实验。
通过加载不同幅值和频率的循环载荷,观察材料的应力-应变曲线和断裂形态,研究材料在疲劳加载下的断裂行为。
此外,还可以借助计算机模拟方法,通过建立数学模型和计算力学模型来模拟疲劳裂纹扩展的过程,从而预测材料的疲劳寿命。
除了疲劳断裂行为的研究,科学家们还致力于寻找延长材料疲劳寿命的方法。
一种常用的方法是通过合金化来提高材料的强度和韧性。
同时,也可以通过表面处理、热处理等方法来改善材料的疲劳性能。
例如,表面镀层可以提高材料的耐腐蚀性能,从而减缓疲劳裂纹的扩展速度。
钢结构的疲劳与断裂机理
钢结构的疲劳与断裂机理钢结构作为一种重要的建筑材料,广泛应用于桥梁、建筑和机械设备等领域。
然而,长期使用下,钢结构可能会遭受到疲劳和断裂的影响。
本文将对钢结构的疲劳与断裂机理进行探讨,以加深我们对钢结构疲劳与断裂问题的理解。
一、疲劳机理在日常使用过程中,钢结构会受到重复荷载的影响,这种反复荷载容易导致疲劳破坏。
钢材的疲劳机理可以通过以下几个因素来解释。
1. 应力水平:应力水平是引起钢材疲劳破坏的重要因素。
当应力水平超过一定的界限时,就会加速钢材的疲劳破坏。
因此,合理的设计和施工中应避免超过钢材所能承受的应力水平。
2. 微观缺陷:微观缺陷是导致钢材疲劳破坏的另一重要原因。
钢材内部可能存在的缺陷包括夹杂物、气孔、夹杂、夹渣等,这些缺陷破坏了钢材内部的完整性,从而影响了钢材的疲劳性能。
3. 循环次数:钢材的疲劳破坏与其受到的循环次数密切相关。
当循环次数超过一定的界限时,钢材开始出现微观损伤,进而导致疲劳破坏。
二、断裂机理钢结构的断裂机理是指钢材在外部载荷作用下发生严重破坏的过程。
钢材的断裂机理主要包括以下几个方面。
1. 韧性失效:钢材在受到较大的荷载作用时,可能首先经历韧性失效。
韧性失效是指钢材内部发生较大的塑性变形和局部断裂,并伴随能量吸收的过程。
2. 脆性失效:当荷载进一步增加到超过钢材的承载能力时,钢材可能会发生脆性失效。
脆性失效是指钢材发生了无法承受塑性变形的破坏,并伴随能量释放的过程。
3. 断裂韧性:断裂韧性是评价钢材抵御断裂的能力强弱的指标。
高断裂韧性的钢材在外部载荷作用下能够延缓断裂的扩展,从而提高结构的安全性。
三、预防措施为了延长钢结构的使用寿命并减少疲劳和断裂破坏的风险,我们可以采取以下预防措施。
1. 合理设计:在钢结构设计中,需要准确估计外部荷载,合理选择钢材的规格和强度等级。
同时,应设计合理的几何形状,以提高钢结构的整体刚度和稳定性。
2. 定期检查:定期对钢结构进行检查,并采取必要的维护和保养措施。
金属材料疲劳与断裂行为的研究与分析
金属材料疲劳与断裂行为的研究与分析引言:金属材料在工程领域中扮演着至关重要的角色,然而,其长期受力与损伤的过程中,金属可能会经历疲劳与断裂行为。
疲劳与断裂是金属材料失效的主要形式之一,对金属材料的可靠性和耐久性提出了严峻的挑战。
因此,深入了解金属材料的疲劳与断裂行为是非常重要的。
本文将从疲劳机制、疲劳寿命预测和断裂行为分析三个方面进行讨论,以便提供关于金属材料疲劳与断裂行为的综合研究与分析。
一、疲劳机制:疲劳是由金属受到交替应力加载后,在相对较小的应力水平下发生的失效过程。
疲劳失效是由汇集的微观损伤逐渐积累形成裂纹并扩展最终导致材料断裂。
金属疲劳过程中的微观损伤主要包括晶体内部的位错累积和裂纹的扩展。
位错的累积导致了晶体结构的畸变,使材料内部出现了一系列的变形和塑性变化。
裂纹的扩展是疲劳过程中的关键步骤,裂纹的扩展速率与应力强度因子和材料的断裂韧性密切相关。
二、疲劳寿命预测:疲劳寿命预测是确定金属材料在一定应力水平下能够承受多少次应力循环才会发生断裂的关键问题。
常见的疲劳寿命预测方法主要包括基于应力和应变的疲劳寿命预测和基于损伤评估的疲劳寿命预测。
基于应力和应变的疲劳寿命预测方法主要根据试验得到的应力和应变历程来计算相应的疲劳寿命。
而基于损伤评估的疲劳寿命预测方法则基于损伤累积理论,将微观损伤累积与宏观疲劳寿命进行关联。
这些方法可以通过模拟疲劳试验、应用损伤累积模型以及进行试验验证,对金属材料的疲劳寿命进行预测。
三、断裂行为分析:金属材料在疲劳过程中的断裂行为对于工程结构的安全和可靠性至关重要。
断裂行为的分析需要考虑到断裂的机制和断裂韧性。
断裂机制主要包括韧突和韧面断裂两种形式。
韧突断裂是由于材料的塑性行为导致断裂过程中发生大量能量的耗散,形成一个粗糙的表面。
而韧面断裂则是由于材料的脆性行为导致断裂过程中几乎没有能量的耗散,形成一个相对平滑的断口。
断裂韧性则是描述材料抵抗断裂的能力。
通常使用断裂韧性指标如塞克斯克曼断裂韧性来评估材料的断裂行为。
金属材料疲劳断裂的问题分析
金属材料疲劳断裂的问题分析摘要:汽车冷却器在车辆运行的过程中,受到较为复杂、严苛的使用工况。
汽车冷却器产品的失效模式中,疲劳断裂失效是最常见的失效模式之一。
本文件介绍了汽车冷却器发生疲劳断裂时的影响因素,如振动失效、应力集中、表面加工质量、环境温度等。
关键词:汽车冷却器;疲劳断裂;影响因素;预防措施疲劳是材料在承受扰动应力,且足够多的交变循环之后形成裂纹或者完全断裂,致使材料局部结构永久变化,导致产品失效的过程。
为了保证车辆安全可靠地运行,在结构设计中,要对汽车冷却器进行疲劳寿命预测和结构的疲劳可靠性评估。
从优选材料选型、优化制造工艺、完善设计方案等方面延长汽车冷却器的疲劳寿命。
疲劳造成的破坏被认为是由三个过程组成的:疲劳裂缝的产生、其扩散和最终的瞬时破坏。
疲劳的破坏往往没有明显的塑性变形,不容易察觉,因此,汽车冷却器的疲劳失效研究具有重要的意义。
一、疲劳的概念汽车冷却器在振动、冷热冲击等复杂的使用工况下,受到交变应力载荷的连续作用下形成疲劳失效。
疲劳失效主要分为三个区域:断裂源区、裂纹扩展区域、瞬断区域,通常裂纹扩展区域存在典型的“海滩条带”状的疲劳辉纹,如图1所示。
疲劳裂纹扩展区存在“疲劳辉纹”,纹路与扩展方向垂直,以同心圆从表面的裂纹源向材料内部扩展。
交变应力小,扩展速度慢、扩展大;交变应力大,扩展速度快、扩展小。
图1 疲劳辉纹疲劳失效根据交变应力载荷循环次数又分为高周疲劳失效与低周疲劳失效。
高周疲劳循环次数N>104~105,为低应力高周疲劳断裂,裂纹扩展应力低,速度慢;循环次数N<104~105,为高应力低周疲劳断裂,裂纹扩展应力高,速度快。
二、影响疲劳强度的因素1、温度和环境影响。
汽车冷却器连接着发动机,在整车行驶的过程中不仅受到多维振动的影响,与此同时受到高低温的冲击,致使汽车冷却器进气口、进水口、冷却管都极易发生疲劳失效。
温度对疲劳的影响类似于对弯曲强度的影响。
温度升高,疲劳强度降低。
金属疲劳断裂的微观机理分析
金属疲劳断裂的微观机理分析一、金属疲劳断裂的基本概念金属疲劳断裂是指金属材料在受到重复或循环加载作用下,经过一定周期后发生的断裂现象。
这种现象在工程结构中极为常见,对材料的可靠性和安全性构成了严重威胁。
金属疲劳断裂是一个复杂的物理过程,涉及到材料的微观结构、应力状态、加载条件等多种因素。
1.1 金属疲劳断裂的定义与分类金属疲劳断裂通常可以分为低周疲劳和高周疲劳两种类型。
低周疲劳是指在较少的循环次数下,材料因塑性变形累积而发生断裂;而高周疲劳则是在大量的循环加载下,材料在没有明显塑性变形的情况下发生断裂。
此外,根据断裂的微观机制,金属疲劳断裂还可以进一步细分为穿晶断裂和沿晶断裂。
1.2 金属疲劳断裂的影响因素金属疲劳断裂的影响因素众多,包括但不限于材料的化学成分、微观组织、晶粒大小、应力集中、加载频率、环境条件等。
这些因素通过不同的机制影响材料的疲劳寿命和断裂行为。
1.3 金属疲劳断裂的研究意义深入研究金属疲劳断裂的微观机理,对于提高工程结构的可靠性、预测和防止疲劳失效具有重要的理论和实际意义。
通过优化材料设计、改进加工工艺、采用合理的加载方式等措施,可以有效延长材料的疲劳寿命,减少因疲劳断裂导致的损失。
二、金属疲劳断裂的微观机理金属疲劳断裂的微观机理是材料科学领域的研究热点之一。
通过对金属疲劳断裂过程中微观结构变化的观察和分析,可以揭示疲劳裂纹的萌生、扩展和最终断裂的内在机制。
2.1 疲劳裂纹的萌生机理疲劳裂纹通常在材料表面或内部的应力集中区域萌生。
在循环加载作用下,材料表面或内部的微观缺陷(如夹杂、孔洞、晶界等)会逐渐发展成为微裂纹。
微裂纹的形成和发展与材料的微观结构、应力状态和加载条件密切相关。
2.2 疲劳裂纹的扩展机理当微裂纹形成后,会在循环应力的作用下逐渐扩展。
疲劳裂纹的扩展过程可以分为三个阶段:裂纹的微观扩展、宏观扩展和快速断裂。
在微观扩展阶段,裂纹主要沿着晶粒内部扩展,受到晶粒取向、位错运动等因素的影响。
金属材料的疲劳性能
金属材料的疲劳性能金属材料是工程领域中常用的材料之一,其疲劳性能对于工程结构的安全性和可靠性具有重要影响。
疲劳是指材料在交变载荷作用下,经过一定次数的循环加载和卸载后,产生裂纹并最终破坏的现象。
本文将介绍金属材料的疲劳机理、影响因素以及改善疲劳性能的方法。
一、疲劳机理金属材料的疲劳机理主要包括以下几个方面:1. 微观裂纹形成和扩展:在交变载荷作用下,金属材料内部会产生微观裂纹,这些裂纹会随着循环加载和卸载的重复作用逐渐扩展,最终导致材料破坏。
2. 塑性变形和应力集中:在循环加载和卸载的过程中,金属材料会发生塑性变形,这会导致应力集中,从而加速裂纹的形成和扩展。
3. 金属材料的内部缺陷:金属材料内部存在各种缺陷,如夹杂物、气孔等,这些缺陷会成为裂纹的起始点,加速裂纹的扩展。
二、影响因素金属材料的疲劳性能受到多种因素的影响,主要包括以下几个方面:1. 材料的力学性能:材料的强度、韧性、硬度等力学性能对疲劳性能有重要影响。
强度高的材料能够承受更大的载荷,韧性好的材料能够吸收更多的能量,硬度高的材料能够抵抗塑性变形。
2. 循环载荷的幅值和频率:循环载荷的幅值和频率对疲劳性能有直接影响。
幅值越大、频率越高,材料的疲劳寿命越短。
3. 温度和环境条件:温度和环境条件对金属材料的疲劳性能也有一定影响。
高温环境下,金属材料的疲劳寿命会降低。
4. 表面处理和应力状态:表面处理和应力状态对金属材料的疲劳性能有重要影响。
表面处理可以改善材料的表面质量,减少裂纹的形成和扩展;应力状态的合理控制可以减少应力集中,延缓裂纹的扩展。
三、改善疲劳性能的方法为了改善金属材料的疲劳性能,可以采取以下几种方法:1. 优化材料的组织结构:通过合理的热处理、合金设计等方法,优化金属材料的组织结构,提高其强度和韧性,从而提高疲劳寿命。
2. 表面处理:采用表面处理技术,如喷丸、镀层等,可以改善金属材料的表面质量,减少裂纹的形成和扩展。
3. 控制应力状态:通过合理的设计和加工工艺,控制金属材料的应力状态,减少应力集中,延缓裂纹的扩展。
金属材料的疲劳断裂机理研究
金属材料的疲劳断裂机理研究引言:金属材料的疲劳断裂是工程实践中的一个重要问题,它会直接影响到金属材料的使用寿命和安全性。
研究金属材料的疲劳断裂机理,对于改进材料性能、提高材料的耐久性和安全性至关重要。
本文将介绍金属材料疲劳断裂机理的研究现状和相关研究方法。
一、疲劳断裂机理概述疲劳断裂是金属材料长期受循环荷载作用造成的破坏,其特点是在荷载循环过程中,金属经历了多次的应力变化,最终导致断裂。
疲劳断裂的机理可以分为微观和宏观两个层面。
二、微观疲劳断裂机理微观疲劳断裂机理主要从物理层面来解释,并且与材料内部的微结构和原子排列有关。
最常见的机理是裂纹的形成和扩展。
金属材料中的晶界、位错和内部杂质等缺陷对裂纹的形成起着重要的作用。
此外,局部疲劳循环过程中的塑性变形和能量耗散也会影响裂纹的扩展速率。
三、宏观疲劳断裂机理宏观疲劳断裂机理主要从宏观的角度来考虑,并且与材料的力学性能和结构形态有关。
宏观疲劳断裂机理关注的是裂纹的扩展路径和断裂形态。
通常,宏观断裂形态可以分为韧性断裂和脆性断裂两种情况。
韧性断裂主要出现在高塑性和高韧性材料中,而脆性断裂则主要出现在低韧性材料中。
四、研究方法为了研究金属材料的疲劳断裂机理,科学家采用了许多实验和模拟方法。
其中,传统的实验方法包括疲劳试验、断口分析和电镜观察等。
通过对疲劳试验中材料的应力-应变曲线、断口形态和金相组织等特征进行分析,可以得到关于材料疲劳断裂机理的一些基本信息。
另外,电镜观察可以揭示材料内部缺陷和裂纹的形成与扩展情况。
近年来,基于计算机模拟的方法也得到了广泛应用,例如分子动力学模拟和有限元分析等。
这些方法可以更好地揭示材料疲劳断裂的微观机理和宏观行为。
五、疲劳断裂机理的应用疲劳断裂机理的研究不仅仅是理论上的探索,也对工程实践有重要意义。
通过了解材料的疲劳断裂机理,可以制定更合理的材料使用和维护策略,从而延长材料的寿命和提高使用安全性。
此外,在金属材料的设计和制造过程中,疲劳断裂机理的研究也是十分关键的,可以指导金属材料的改进和优化。
金属材料的疲劳与断裂行为研究
金属材料的疲劳与断裂行为研究疲劳和断裂是金属材料使用过程中常见的失效形式,对于确保材料的可靠性和安全性具有重要意义。
本文将对金属材料的疲劳与断裂行为进行研究,并讨论相关的影响因素和改进措施。
一、疲劳行为金属材料在长期交变载荷的作用下会发生疲劳失效。
疲劳失效一般经历三个阶段:裂纹的起源、裂纹的扩展和材料的断裂。
研究表明,疲劳寿命与应力水平、应力幅值、应力比、环境条件和材料微观结构等因素密切相关。
1. 影响因素1.1 应力水平:应力水平是指疲劳曲线上的平均应力水平,通常用最大应力的一半表示。
应力水平越高,材料的疲劳寿命越短。
1.2 应力幅值:应力幅值是指疲劳曲线上最大应力与最小应力之差。
应力幅值越大,材料的疲劳寿命越短。
1.3 应力比:应力比是指峰值应力与谷值应力之比。
当应力比为1时,称为纯轴向载荷;当应力比不等于1时,称为非纯轴向载荷。
非纯轴向载荷下的疲劳寿命一般比纯轴向载荷下的疲劳寿命短。
1.4 环境条件:环境条件如湿度、温度、气体环境等会对金属材料的疲劳寿命产生影响。
例如,高温、高湿度和腐蚀介质会加速材料的疲劳失效。
1.5 材料微观结构:金属材料的微观结构如晶格结构、晶界、夹杂物、相变等会影响其疲劳寿命。
晶界的孔隙、夹杂物的尺寸和分布、相变的位错等缺陷都可能成为疲劳裂纹的起始点。
2. 改进措施2.1 材料选择和设计:选择适合工作条件的高强度材料,并根据应力分布进行合理的结构设计,以减小疲劳应力集中。
2.2 表面处理:通过表面处理方式如喷丸、镀层等来改善材料表面的质量和性能,提高其抗疲劳性能。
2.3 控制工艺参数:通过合理的热处理、冷加工等工艺参数的控制,减小材料内部的缺陷和应力集中。
二、断裂行为金属材料在受到破坏性载荷的作用下,会发生断裂失效。
断裂行为通常经历两个阶段:裂纹的起源和断裂的扩展。
研究表明,断裂行为与应力状态、载荷速率、温度和材料韧性等因素密切相关。
1. 影响因素1.1 应力状态:金属材料的断裂行为受应力状态的影响。
浅论金属材料发生疲劳断裂的原因及危害
浅论金属材料发生疲劳断裂的原因及危害零件在这种交变动载荷作用下,经过长时间的工作而发生断裂的现象成为疲劳,因此疲劳是零件在循环或交变应力作用下,经过一段时间发生失效的现象。
法国的J.-V.彭赛列于1839年首先论述了疲劳问题并提出“疲劳”这一术语。
但疲劳研究的奠基人则是德国的A.沃勒。
他在19世纪50~60年代首先得到表征疲劳性能的S-N曲线,并提出疲劳极限的概念。
疲劳研究虽有百余年历史,文献极多,但理论不够完善。
近年来,断裂力学的进展,丰富了传统疲劳理论的内容,促进了疲劳理论的发展。
当前的发展趋势是把微观理论和宏观理论结合起来从本质上探究疲劳破坏的机理。
为什么金属疲劳时会产生破坏作用呢?这是因为金属内部结构并不均匀,从而造成应力传递的不平衡,有的地方会成为应力集中区。
与此同时,金属内部的缺陷处还存在许多微小的裂纹。
在力的持续作用下,裂纹会越来越大,材料中能够传递应力部分越来越少,直至剩余部分不能继续传递负载时,金属构件就会全部毁坏。
金属疲劳破坏可分为三个阶段:①微观裂纹扩展阶段。
在循环加载下,由于物体内部微观组织结构的不均匀性,某些薄弱部位首先形成微观裂纹,此后,裂纹即沿着与主应力约成45°角的最大剪应力方向扩展。
在此阶段,裂纹长度大致在0.05毫米以内。
若继续加载,微观裂纹就会发展成为宏观裂纹。
②宏观裂纹扩展阶段。
裂纹基本上沿着与主应力垂直的方向扩展。
借助电子显微镜可在断口表面上观察到此阶段中每一应力循环所遗留的疲劳条带。
③瞬时断裂阶段。
当裂纹扩大到使物体残存截面不足以抵抗外载荷时,物体就会在某一次加载下突然断裂。
在疲劳宏观断口上往往有两个区域:光滑区域和颗粒状区域。
疲劳裂纹的起始点称作疲劳源。
实际构件上的疲劳源总是出现在应力集中区,裂纹从疲劳源向四周扩展。
由于反复变形,裂纹的两个表面时而分离,时而挤压,这样就形成了光滑区域,即疲劳裂纹第二阶段扩展区域。
第三阶段的瞬时断裂区域表面呈现较粗糙的颗粒状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛黄海学院机电工程学院2013—2014学年第二学期期中考试
科目:工程材料及机械制造基础
**:***
学号: **********
班级: 2011级本科三班
专业:机械制造及其自动化
浅论金属材料发生疲劳断裂的原因及危害
摘要:从人类开始制造结构以来,断裂就是社会面对的一个问题。
早在100多年以前,人们就发现了金属疲劳给各个方面带来的损害。
但由于技术的落后,还不能查明疲劳破坏的原因,直到显微镜和电子显微镜等高科技器具的相继出现之后,使人类在揭开金属疲劳秘密的道路上不断取得新的成果。
本文浅论金属材料发生疲劳断裂的原因及危害,使人们初步了解金属疲劳断裂的相关知识。
关键词:疲劳断裂原因危害
一、金属材料的疲劳现象
工程中有许多金属零件,如齿轮、弹簧、滚动轴承、叶片、发动机曲轴等都是在变动载荷下工作的。
根据变动载荷的作用方式不同,金属零件承受的应力可分为交变应力和循环应力。
在交变应力下,虽然零件所承受的应力低于材料的抗拉强度甚至低于材料的屈服强度,但经过较长时间的工作后产生裂纹或突然发生完全断裂的现象称为金属的疲劳。
人的疲劳感觉来自于长期的劳累或一次过重的负荷,金属材料也是一样。
金属的机械性能会随着时间而慢慢变弱,这就是金属的疲劳。
在正常使用机械时,重复的推、拉、扭或其他的外力情况都会造成机械部件中金属的疲劳。
这是因为机械受压时,金属中原子的排列会大大改变,从而使金属原子间的化学键断裂,导致金属裂开。
二、金属材料疲劳的种类
金属材料的疲劳现象,按条件不同可分为下列几种:
(1)高周疲劳:指在低应力(工作应力低于材料的屈服极限,甚至低于弹性极限)条件下,应力循环周数在100000以上的疲劳。
它是最常见的一种疲劳破坏。
高周疲劳一般简称为疲劳。
(2)低周疲劳:指在高应力(工作应力接近材料的屈服极限)或高应变条件下,应力循环周数在10000~100000以下的疲劳。
由于交变的塑性应变在这种疲劳破坏中起主要作用,因而,也称为塑性疲劳或应变疲劳。
(3)热疲劳:指由于温度变化所产生的热应力的反复作用,所造成的疲劳破坏。
(4)腐蚀疲劳:指机器部件在交变载荷和腐蚀介质(如酸、碱、海水、活性气体等)的共同作用下,所产生的疲劳破坏。
(5)接触疲劳:这是指机器零件的接触表面,在接触应力的反复作用下,出现麻点剥落或表面压碎剥落,从而造成机件失效破坏。
三、金属材料疲劳断裂的特点
零件在交变应力作用下损坏叫做疲劳破坏。
据统计,在机械零件失效中有80%以上属于疲劳破坏。
例如大多数轴类零件,通常受到的交变应力为对称循环应力,这种应力可以是弯曲应力、扭转应力、或者是两者的复合。
如火车的车轴,是弯曲疲劳的典型,汽车的传动轴、后桥半轴主要是承受扭转疲劳,柴油机曲轴和汽轮机主轴则是弯曲和扭转疲劳的复合。
再如齿轮在啮合过程中,所受的负荷在零到某一极大值之间变化,而缸盖螺栓则处在大拉小拉的状态中,这类情况叫做拉-拉疲劳;连杆不同于螺栓,始终处在小拉大压的负荷中,这类情况叫做拉-压疲劳。
我们还可以列举很多常用的机械零件所受的负荷情况,综合这些情况就会得到上面已经提过的结论:大多数零件的失效是属于疲劳破坏的。
金属零件在使用中发生断裂时并无明显的宏观塑性变形,断裂前没有明显的预兆,而是突然地破坏;引起疲劳断裂的应力一般很低,常常低于静载时的屈服强度;断口上经常可观察到特殊的、反映断裂各阶段宏观及微观过程的特殊花样,而且疲劳破坏能清楚地显示出裂纹的发生、扩展和最后断裂三个组成部份;金属疲劳断裂时载荷应力是交变的,载荷的作用时间较长;断裂是瞬时发生的;无论是塑性材料还是脆性材料,在疲劳断裂区都是脆性的;断裂时还具有高度局部性及对各种缺陷的敏感性等特点。
所以,疲劳断裂是工程上最常见、最危险的断裂形式。
四、金属材料发生疲劳断裂的原因
产生疲劳断裂的原因,一般认为是由于零件的结构形状不合理,即在零件中的最薄弱的部位存在转角、孔、槽、螺纹等形状的突变而造成过大的应力集中或者材料本身强度较低的部位,例如原有裂纹、软点、脱碳、夹杂、刀痕等缺陷处,在交变或循环应力的反复下产生了疲劳断裂,并随着应力的循环周次
的增加,疲劳裂纹不断扩展,使零件承受载荷的有效面积不断减小,最后当减小到不能承受外加载荷的作用时,零件即发生突然断裂。
不同的切削加工方式(车、铣、刨、磨、抛光)会形成不同的表面粗糙度,即形成不同大小尺寸和尖锐程度的小缺口。
这种小缺口与零件几何形状突变所造成的应力集中效果是相同的。
由于表面状态不良导致疲劳裂纹的形成是金属零件发生疲劳断裂的另一重要原因。
材料选用不当或在生产过程中由于管理不善而错用材料造成的疲劳断裂也时有发生。
金属材料的组织状态不良是造成疲劳断裂的常见原因。
一般的说,回火马氏体较其它混合组织,如珠光体加马氏体及贝氏体加马氏体具有更高的疲劳抗力;铁素体加珠光体组织钢材的疲劳抗力随珠光体组织相对含量的增加而增加;任何增加材料抗拉强度的热处理通常均能提高材料的疲劳抗力。
组织的不均匀性,如非金属夹杂物、疏松、偏析、混晶等缺陷均使疲劳抗力降低而成为疲劳断裂的重要原因。
装配与连接效应对构件的疲劳寿命有很大的影响。
正确的拧紧力矩可使金属零件疲劳寿命提高5倍以上;相反,过大的拧紧力矩会对金属零件造成严重的影响,当金属零件承受不了这种作用时就会产生变形甚至断裂。
环境因素(低温、高温及腐蚀介质等)的变化,使材料的疲劳强度显著降低,往往引起零件过早的发生断裂失效。
总之,金属材料发生疲劳断裂有很多原因。
五、金属材料发生疲劳断裂的危害
据150多年来的统计,金属部件中有80%以上的损坏是由于疲劳而引起的。
在工程中,构件可能会因为受到各种载荷的作用而产生破坏,其中由于交变载荷而导致的疲劳破坏占到了50%~90%。
航天设备、船舶、轨道车辆等大型机械结构,其服役环境的复杂性,载荷历程的多变性,可能导致结构失效。
在人们的日常生活中,也同样会发生金属疲劳带来危害的现象。
一辆正在马路上行走的自行车突然前叉折断,造成车翻人伤的后果。
炒菜时铝铲折断、挖地时铁锨断裂、刨地时铁镐从中一分为二等现象更是屡见不鲜。
国际民航组织 (ICAO)发表的“涉及金属疲劳断裂的重大飞机失事调查”指出:
80年代以来,由金属疲劳断裂引起的机毁人亡重大事故,平均每年100次。
(不包括中、苏)
比较确切的例子:
事件一
1979年5月25日,一架满载乘客的美国航空公司DG—10型三引擎巨型喷气客机,从芝加哥起飞不久,就失去了左边一具引擎,随即着火燃烧,然后爆炸坠地。
机上273名乘客和机组人员无一幸免。
这是世界航空史上最悲惨的事件之一。
事后,有关当局对这架失事飞机的残骸进行检查后发现,这架飞机上连接一具引擎与机翼的螺栓因金属疲劳折断,从而导致引擎燃烧爆炸。
事件二
1998年6月3日,德国一列高速列车在行驶中突然出轨,造成100多人遇难身亡的严重后果。
事后经过调查,人们发现,造成事故的原因竟然是因为一节车厢的车轮内部疲劳断裂而引起,从而导致了这场近50年来德国最惨重铁路事故的发生。
事件三
由于金属材料的疲劳一般难以发现,因此常常造成突然的事故。
在第二次世界大战期间,美国的5000艘货船共发生1000多次破坏事故,有238艘完全报废,其中大部分要归咎于金属的疲劳断裂。
六、结论
金属疲劳是造成机械损坏的重要原因,可能直接导致事故的发生,因此我们应该学会有效防止金属材料疲劳的发生,如对所有机械皆需定期检查、维修、更换零件,让金属疲劳所产生的危害降至最低。
参考文献
【1】朱莉,王运炎主编/机械工程材料/北京:机械工业出版社,2010.8
【2】谭雪松,漆向军编著/机械制造基础/北京:人民邮电出版社,2008.5
【3】濮良贵,陈国定,吴立言主编/机械设计/北京:高等教育出版社,2013.5
【4】林江主编/工程材料及机械制造基础/北京:机械工业出版社,2013.7。