【数学】培优易错试卷相似辅导专题训练含详细答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、相似真题与模拟题分类汇编(难题易错题)

1.如图,在△ABC中,∠C=90°,AC=8,BC=6。P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N设AP=x.

(1)在△ABC中,AB= ________;

(2)当x=________时,矩形PMCN的周长是14;

(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明。

【答案】(1)10

(2)5

(3)解:∵PM⊥AC,PN⊥BC,

∴∠AMP=∠PNB=∠C=90º.

∴AC∥PN,∠A=∠NPB.

∴△AMP∽△PNB∽△ABC.

当P为AB中点时,可得△AMP≌△PNB

此时S△AMP=S△PNB= ×4×3=6

而S矩形PMCN=PM·MC=3×4=12.

所以不存在x的值,能使△AMP的面积、△PNB的面积与矩形PMCN面积同时相等.

【解析】【解答】(1)∵△ABC为直角三角形,且AC=8,BC=6,

( 2 )∵PM⊥AC PN⊥BC

∴MP∥BC,AC∥PN(垂直于同一条直线的两条直线平行),

∴,

∵AP=x,AB=10,BC=6,AC=8,BP=10-x,

∴矩形PMCN周长=2(PM+PN)=2( x+8- x)=14,解得x=5;

【分析】在△ABC中,∠C=90°,AC=8,BC=6根据勾股定理,可求出AB的长;AP=x,可以得到矩形PMCN的周长的表达式,构造方程,解方程得到x值.可以证明

△AMP∽△PNB∽△ABC,只有当P为AB中点时,可得△AMP≌△PNB,此时S△AMP=S△PNB,分别求出当P为AB中点时△PAM的面积、△PBN的面积与矩形PMCN的面积比较即可.

2.如图,在一间黑屋子里用一盏白炽灯照一个球.

(1)球在地面上的影子是什么形状?

(2)当把白炽灯向上平移时,影子的大小会怎样变化?

(3)若白炽灯到球心的距离是1 m,到地面的距离是3 m,球的半径是0.2 m,则球在地面上影子的面积是多少?

【答案】(1)解:球在地面上的影子的形状是圆.

(2)解:当把白炽灯向上平移时,影子会变小.

(3)解:由已知可作轴截面,如图所示:

依题可得:OE=1 m,AE=0.2 m,OF=3 m,AB⊥OF于H,

在Rt△OAE中,

∴OA= = = (m),

∵∠AOH=∠EOA,∠AHO=∠EAO=90°,

∴△OAH∽△OEA,

∴,

∴OH= == (m),

又∵∠OAE=∠AHE=90°,∠AEO=∠HEA,

∴△OAE∽△AHE,

∴ = ,

∴AH= ==2625 (m).

依题可得:△AHO∽△CFO,

∴ AHCF=OHOF ,

∴CF= AH⋅OFOH = 2625×32425=64 (m),

∴S影子=π·CF2=π· (64)2 = 38 π=0.375π(m2).

答:球在地面上影子的面积是0.375π m2.

【解析】【分析】(1)球在灯光的正下方,根据中心投影的特点可得影子是圆.

(2)根据中心投影的特点:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;所以白炽灯向上移时,阴影会逐渐变小.

(3)作轴截面(如图)由相似三角形的判定得三组三角形相似,再根据相似三角形的性质对应边成比例,可求得阴影的半径,再根据面积公式即可求出面积.

3.已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.

(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:________.

(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.

(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.

【答案】(1)PA=PB

(2)解:把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下:

如图②,过C作CE⊥n于点E,连接PE,

∵三角形CED是直角三角形,点P为线段CD的中点,∴PD=PE,

∴PC=PE;∵PD=PE,∴∠CDE=∠PEB,∵直线m∥n,∴∠CDE=∠PCA,

∴∠PCA=∠PEB,又∵直线l⊥m,l⊥n,CE⊥m,CE⊥n,∴l∥CE,∴AC=BE,

在△PAC和△PBE中,∴△PAC∽△PBE,∴PA=PB

(3)解:如图③,延长AP交直线n于点F,作AE⊥BD于点E,

∵直线m∥n,∴,∴AP=PF,∵∠APB=90°,∴BP⊥AF,又∵AP=PF,∴BF=AB;

在△AEF和△BPF中,∴△AEF∽△BPF,∴,∴AF•BP=AE•BF,

∵AF=2PA,AE=2k,BF=AB,∴2PA•PB=2k.AB,∴PA•PB=k•AB.

【解析】【解答】解:(1)∵l⊥n,∴BC⊥BD,∴三角形CBD是直角三角形,又∵点P 为线段CD的中点,

∴PA=PB.

【分析】(1)根据直角三角形斜边上的中线等于斜边上的一半;

(2)把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下:如图②,过C作CE⊥n于点E,连接PE,根据直角三角形斜边上的中线等于斜边上的一半得出PD=PE=PC,根据等边对等角得出∠CDE=∠PEB,根据二直线平行,内错角相等得出∠CDE=∠PCA,故∠PCA=∠PEB,根据夹在两平行线间的平行线相等得出AC=BE,然后利用SAS判断出△PAC∽△PBE,根据全等三角形的对应边相等得出PA=PB;

(3)如图③,延长AP交直线n于点F,作AE⊥BD于点E,根据平行线分线段成比例定理得出AP=PF,根据线段垂直平分线上的点到线段两个端点的距离相等得出BF=AB;然后判断出△AEF∽△BPF,根据相似三角形的对应边成比例即可得出AF•BP=AE•BF,根据等量代换得出2PA•PB=2k.AB,即PA•PB=k•AB.

4.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.

(1)求证:PC是⊙O的切线;

相关文档
最新文档