2019年高考文科数学全国1卷(附答案)

合集下载

(完整word版)2019年高考数学试卷全国卷1文科真题附答案解析

(完整word版)2019年高考数学试卷全国卷1文科真题附答案解析

2019年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设312iz i-=+,则||(z = ) A .2B .3C .2D .12.(5分)已知集合{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7},则(UBA = )A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}3.(5分)已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5151(0.61822--≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm5.(5分)函数2sin ()cos x xf x x x+=+的图象在[π-,]π的大致为( ) A .B .C .D .6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,⋯,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生7.(5分)tan 255(︒= ) A .23-B .23-+C .23D .23+8.(5分)已知非零向量a ,b 满足||2||a b =,且()a b b -⊥,则a 与b 的夹角为( ) A .6πB .3π C .23π D .56π 9.(5分)如图是求112122++的程序框图,图中空白框中应填入( )A .12A A=+ B .12A A=+C .112A A=+ D .112A A=+10.(5分)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C 的离心率为( ) A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒11.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则(bc= )A .6B .5C .4D .312.(5分)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。

完整)2019年高考文科数学全国1卷(附答案)

完整)2019年高考文科数学全国1卷(附答案)

完整)2019年高考文科数学全国1卷(附答案)12B-SX-xxxxxxx2019年普通高等学校招生全国统一考试文科数学全国I卷注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.设z=(3-i)/(1+2i),则z=(B)2.2.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则A∩B={2,3,4,5},所以A'∩B'={1,6,7},故选项为(B){1,7}。

3.已知a=log0.2 2,b=2,c=0.20.3,则a<c<b,故选项为(D)b<c<a。

4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是黄金分割比例,即(5-1)/2≈0.618.最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是黄金分割比例。

设身高为x,则x/(5x/8)= (5-1)/2,解得x=1.85m,即(C)185cm。

5.函数f(x)=sinx+x/cosx+x^2在[-π,π]的图像大致为(C)。

注:文章中的格式错误已删除,明显有问题的段落已删除,每段话进行了小幅度的改写。

已删除明显有问题的段落。

6.某学校为了解1,000名新生的身体素质,采用系统抽样方法等距抽取100名学生进行体质测验。

如果46号学生被抽到,那么下面4名学生中被抽到的是哪个?解答:由于是等距抽取,因此每隔10个学生抽取一个,因此46号学生是第5组中的学生。

要求下面4名学生中被抽到的,就是在第5组中再选4个学生,因此答案是C.616号学生。

2019年高考文科数学全国1卷(附答案)

2019年高考文科数学全国1卷(附答案)

专业文档_ -__ - ___-__:-号-学-__-___ -___-____线__封__密___ - _:-名姓---班 - ___-___ - _年 -____线__封_密__-___ - ___-___ - ___-___ - ___ -:校-学-12B-SX-0000022绝密★启用前2019 年普通高等学校招生全国统一考试文科数学全国I卷本试卷共23 小题,满分150 分,考试用时120 分钟(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12 小题,每小题5 分,共 60 分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.设 z3i,则 z =12iA. 2 B .3C.2D. 12.已知集合 U1,2,3,4,5,6,7,A2,3,4,5,B2,3,6,7 ,则B e AUA. 1,6B. 1,7C. 6,7D. 1,6,73.已知 a log2 0.2,b 20.2, c0.20.3,则A. a b c B. a c bC. c a b D. b c a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之专业文档比是51( 5 1 ≈ 0.618,称为黄金分割比例 ),著名 22的 “断臂维纳斯 ”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是51 .若某人满足 2上述两个黄金分割比例,且腿长为 105cm ,头顶至脖子下 端的长度为 26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm5. 函数 f(x)= sin x x 2 在 [—π, π]的图像大致为cos x xA. B.C. D.6.某学校为了解 1 000 名新生的身体素质,将这些学生编号为 1, 2, ⋯ , 1 000,从这些新生中用系统抽样方法等距抽取 100 名学生进行体质测验 .若 46 号学生被抽到,则下面 4 名学生中被抽到的是A .8 号学生B . 200 号学生C . 616 号学生D .815 号学生7.tan255 =° A .-2-3B .-2+ 3C .2- 3D .2+ 3-1--2-专业文档12B-SX-00000228.已知非零向量a, b 满足 a = 2b ,且( a–b)b,则 a 与 b 的夹角为ππ 2 π 5 πA .B.C. D .6336 19. 如图是求21的程序框图,图中空白框中应填入2121 A. A=A2B. A=21A1C. A=2 A1D. A=112 Ax2y21(a 0,b0) 的一条渐近线的倾斜角为130 °,则 C 的10.双曲线 C:b2a2离心率为A . 2sin40 °B . 2cos40 °C.11D.cos50 sin5011.△ABC 的内角 A, B, C 的对边分别为a, b,c,已知 asinA- bsinB=4csinC,cosA=-1,则b=4cA . 6B . 5C. 4D. 312.已知椭圆 C 的焦点为 F1( 1,0),F2(1,0),过 F2 的直线与 C 交于 A,B 两点 .若|AF |2|F B|, |AB| |BF|,则 C 的方程为221专业文档A. x2y21B. x2y21232x2y21x2y21C.3D .445二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2019高考全国卷1文科数学详细答案

2019高考全国卷1文科数学详细答案
23.解:(1)因为 ,又 ,故有
.
所以 .
(2)因为 为正数且 ,故有
=24.
所以 .
2019年普通高等学校招生全国统一考试
文科数学·参考答案
一、选择题
1.C2.C 3.B4.B5.D6.C
7.D8.B9.A10.D11.A12.B
二、填空题
13.y=3x14. 15.−416.
三、解答题
17.解:
(一)必考题:60分。
17.解:
(1)由调查数据,男顾客中对该商场服务满意的比率为 ,因此男顾客对该商场服务满意的概率的估计值为0.8.
女顾客中对该商场服务满意的比率为 ,因此女顾客对该商场服务满意的概率的估计值为0.6.
(2) .
由于 ,故有95%的把握认为男、女顾客对该商场服务的评价有差异.
18.解:
(2)过C作C1E的垂线,垂足为H.
由已知可得 , ,所以DE⊥平面 ,故DE⊥CH.
从而CH⊥平面 ,故CH的长即为C到平面 的距离,
由已知可得CE=1,C1C=4,所以 ,故 .
从而点C到平面 的距离为 .
20.解:
(1)设 ,则 .
当 时, ;当 时, ,所以 在 单调递增,在 单调递减.
又 ,故 在 存在唯一零点.
解析:∵asinA-bsinB=4csinC
答案:B
解析:
二、填空题:本题共4小题,每小题5分,共20分。
答案:y=3x
解析:
∴y=3x
答案:
解析:
答案: -4
解析:
答案:
解析:∵点P到∠ACB两边AC,BC的距离均为 ,过P做PE⊥CA,PF⊥CB,PO⊥平面ABC,连接OE,OF

2019年高考文科数学全国1卷(附答案)

2019年高考文科数学全国1卷(附答案)

12B-SX-0000022_ _ _ _ _ _ _ _ :----绝密★启用前2019年普通高等学校招生全国统一考试文科数学全国I 卷本试卷共23 小题,满分150 分,考试用时120 分钟比是 5 1( 5 1≈0.618 ),称为黄金分割比例,著名22的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉号学_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ :名姓-----线封密-----(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

3 i1.设z ,则z =1 2i的长度与咽喉至肚脐的长度之比也是 512上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cmsin x x函数f(x)= 2cos x x.若某人满足在[—π,π的]图像大致为班_ _ _ _ _ _ _ 年_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ :校学----线封密---------A.2 B. 3 C. 2 D.12.已知集合U 1,2,3,4,5,6,7 ,A 2,3,4,5 ,B 2,3,6,7 ,则B e AUA.1,6 B.1,7 C.6,7 D.1,6,73.已知0.2 0.3a log 0.2,b 2 ,c0.2 ,则2A.a b c B.a c bC.c a b D.b c a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之A. B.C. D.6.某学校为了解1 000 名新生的身体素质,将这些学生编号为1,2,⋯,1 000,从这些新生中用系统抽样方法等距抽取100 名学生进行体质测验.若46 号学生被抽到,则下面4名学生中被抽到的是A .8 号学生B.200 号学生C.616 号学生D.815 号学生7.tan255 =°A .-2- 3 B.-2+ 3 C.2- 3 D.2+ 3- 1 - - 2 -12B-SX-00000228.已知非零向量 a ,b 满足 a =2 b ,且(a –b )b ,则 a 与 b 的夹角为A . π 6B . π 3C .2 π3 D .5 π 619. 如图是求2 2 1 12的程序框图,图中空白框中应填入222x y 3222x y 5 4x21yB .1D .A .C .2112 2x y4 3二、填空题:本题共4小题,每小题5分,共20分。

2019年高考数学全国卷1文(附详解)

2019年高考数学全国卷1文(附详解)

求! $0$0!!$





#
图中空白框中应填入 $!!%
*%+'$0!+
,%+'$0
! +
-%+'!0!$+ .%+'!0$!+
第8题图
!#!双曲 线 .,'#$$ ((&$$ '!$')##()#%的一 条 渐 近 线 的 倾 斜 角
为!+#;#则 . 的离心率为
$! ! %
*%$9/:)#; ,%$529)#; -%9/:!"#;
#!"# '!所 以 &%(%'!
故选 1!
/!答 案 1
解析设某人身高为 )56脖子下端至肚脐的长度为*56
则由腿 长 为 !#-56可 得)!)#!-#-& 槡-")!'#!0!7解 得 )&!0$!7$#!
由头 顶 至 脖 子 下 端 的 长 度 为 "056可 得"*0& 槡-")!'#!
所 以 抽 样 间 隔 为!!#####'!#! 因为/0除以!#余0所 以 抽 到 的 号 码 都 是 除 以 !# 余 0 的 数 结 合 选 项 知 应 为 0!0! 故选 %! ,!答 案 8 解 析<=:"-->'<=:!7#>+,->'<=:,->'<=:/->+(#>'
则 . 的方程为$!!%
*%#$$ 0&$'!

2019年高考文科数学全国卷Ⅰ文数(附参考答案和详解)

2019年高考文科数学全国卷Ⅰ文数(附参考答案和详解)

绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(全国卷Ⅰ)数学(文史类)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸、答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。

4、考试结束后,将本试卷和答题卡一并上交。

第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2019全国卷Ⅰ·文)设3i12iz -=+,则||z =( )A.2D.1【解析】因为3i (3i)(12i)17i12i (12i)(12i)5z ----===++-,所以||z =故选C.【答案】C2.(2019全国卷Ⅰ·文)已知集合{1,2,3,4,5,6,7}U =,{2,3,4,5}A =,{2,3,6,7}B =,则U B A =I ð( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【解析】因为{1,2,3,4,5,6,7}U =,{2,3,4,5}A =,所以{1,6,7}U A =ð. 又{2,3,6,7}B =,所以U B A =I ð{6,7}.故选C.【答案】C3.(2019全国卷Ⅰ·文)已知2log 0.2a =,0.22b =,0.30.2c =,则( )A.a b c <<B.a c b <<C.c a b <<D.b c a <<【解析】由对数函数的单调性可得22log 0.2log 10a =<=,由指数函数的单调性可得0.20221b =>=,0.300.2100.2c <==<,所以a c b <<.故选B.【答案】B4.(2019全国卷Ⅰ·文)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A.165cmB.175cmC.185cmD.190cm【解析】设某人身高为m cm ,脖子下端至肚脐的长度为n cm , 则由腿长为105 cm,可得1050.618105m ->≈,解得169.890m >. 由头顶至脖子下端的长度为26 cm,可得260.618n >≈,解得42.071n <. 所以头顶到肚脐的长度小于2642.07168.071+=.68.072110.1470.618≈≈. 所以此人身高68.071110.147178.218m <+=. 综上,此人身高m 满足169.890178.218m <<. 所以其身高可能为175 cm.故选B. 【答案】B5.(2019全国卷Ⅰ·文)函数2sin ()cos x xf x x x +=+在[π,π]-的图象大致为( )A. B.C. D.【解析】因为22sin()sin ()()cos()()cos x x x xf x f x x x x x --+-==-=--+-+,所以()f x 为奇函数,排除选项A.令πx =,则22sin ()0cos 1f πππππππ+==>+-+,排除选项B ,C.故选D.【答案】D6.(2019全国卷Ⅰ·文)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,,1000L ,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A.8号学生 B.200号学生 C.616号学生 D.815号学生【解析】根据题意,系统抽样是等距抽样,所以抽样间隔为100010100=. 因为46除以10余6,所以抽到的号码都是除以10余6的整数,结合选项知正确号码为616.故选C. 【答案】C7.(2019全国卷Ⅰ·文)tan255=o ( )A.2--B.2-+C.2D.2【解析】1tan 45tan 3075tan(tan255tan(4530)2180)tan 71tan 45tan 305+++=+===+=-=ooo o o o o o o o .故选D. 【答案】D.8.(2019全国卷Ⅰ·文)已知非零向量a ,b 满足||2||=a b ,且()-⊥a b b ,则a 与b 的夹角为( )A.π6B.π3C.2π3 5π6【解析】设a ,b 的夹角为θ,因为()-⊥a b b ,所以()0-=g a b b ,即2||0-=g a b b .又||||cos ,||2||θ==g g a b a b a b , 所以222||cos ||0θ-=b b ,所以1cos 2θ=. 又因为0θπ≤≤,所以3πθ=.故选B.【答案】B9.(2019全国卷Ⅰ·文)如图是求112122++的程序框图,图中空白框中应填入( )A.12A A=+ B.12A A =+C.112A A=+ D.112A A=+【解析】对于选项A ,第一次循环,1122A =+;第二次循环,112122A =++,此时3k =,不满足2k ≤,输出112122A =++的值.故A 正确;经验证选项B ,C ,D 均不符合题意.故选A.【答案】A10.(2019全国卷Ⅰ·文)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130o ,则C 的离心率为( )A.2sin40oB.2cos40oC.1sin50oD.1cos50o【解析】由题意可得tan130ba-=︒,所以11|cos130|cos50e ====︒︒.故选D.【答案】D11.(2019全国卷Ⅰ·文)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则bc=( )A.6B.5C.4D.3【解析】因为sin sin 4sin a A b B c C -=,所以由正弦定理得2224a b c -=,即2224a c b =+.由余弦定理得222222222(4)31cos 2224b c a b c c b c A bc bc bc +-+-+-====-,所以6bc=.故选A. 【答案】A12.(2019全国卷Ⅰ·文)已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A.2212x y +=B.22132x y +=C.22143x y += D.22154x y += 【解析】设椭圆的标准方程为22221(0)bx y a b a +=>>,由椭圆定义可得11||||||4AF AB BF a ++=. 因为1||||AB BF =, 所以1||2||4AF AB a +=. 又22||2||AF F B =, 所以23||||2AB AF =,所以12||3||4AF AF a +=. 又因为12||||2AF AF a +=,所以2||AF a =. 所以A 为椭圆的短轴端点.如图,不妨设(0,)A b ,又2(1,0)F ,222AF F B =u u u u r u u u u r ,所以3,22b B ⎛⎫- ⎪⎝⎭.将B 点坐标代入椭圆方程22221(0)b x y a b a +=>>,得2229144b ba +=,所以22223,2a b a c ==-=.所以椭圆C 的方程为22132x y +=.故选B.【答案】B第Ⅱ卷二、填空题:本题共4小题,每小题5分。

2019高考新课标全国1卷文科数学试题及答案

2019高考新课标全国1卷文科数学试题及答案

2019高考新课标全国1卷文科数学试题及答案2019年普通高等学校招生全国统一考试真题文科数学本试卷共5页,满分150分。

考生注意:1.答卷前,务必将准考证号、姓名填写在答题卡上,并核对条形码上的信息是否正确。

2.选择题用铅笔将答案标号涂黑,非选择题需写在答题卡上。

3.考试结束后,将试题卷和答题卡交回。

一、选择题(共12小题,每小题5分,共60分)1.已知集合A={x|x0},则B={x|x<3/2},故选C。

2.要评估农作物亩产量的稳定程度,应该考虑其数据的离散程度,即标准差,故选B。

3.i(1+i)2=i(1+2i-i2)=i(1+2i+1)=2i,为纯虚数,故选A。

4.由于黑色部分和白色部分关于正方形中心对称,且黑色部分占整个圆的面积为1/2,故选A。

5.双曲线的对称轴为x=1,故焦点左侧的点P不在双曲线上,面积为0,故选A。

6.由于正方体A、B的对角线垂直于MNQ平面,故不与该平面平行,故选D。

7.根据约束条件,可得x≥y+1,即z=x+y≥y+2,故最大值为2,故选C。

8.函数y=sin2x的图像为一条上下振荡的曲线,故选B。

frac{16}{3}$,求AB的长度。

19.(12分)已知函数$f(x)=\frac{1}{2}\sin2x-\sin x+1$,$g(x)=\frac{1}{2}\cos2x+\cos x$。

1)证明$f(x)$在$(0,\pi)$内单调递减;2)若$f(x)=g(x)$,求$x$的取值。

20.(12分)已知函数$f(x)=\frac{1}{x^2-2x+2}$,$g(x)=\frac{x^2}{x^2+1}$。

1)求$f(x)$和$g(x)$的定义域;2)证明:对于任意$x\in(0,1]$,都有$f(x)\geq g(x)$。

21.(12分)如图,在$\triangle ABC$中,$AB=AC$,$D$为$BC$中点,$E$为$AD$的中点,$F$为$\triangle ADE$的重心。

2019年全国卷1(文科数学)含答案

2019年全国卷1(文科数学)含答案

绝密★启用前2019年普通高等学校招生全国统一考试文科数学(全国Ⅰ卷)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .40.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[-π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c= A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。

2019年高考全国一卷文科数学真题卷(含答案)

2019年高考全国一卷文科数学真题卷(含答案)

的程序框图,图中空白框中应填入
2
D. 5π 6
A.A= 1 2 A
B.A= 2 1 A
C.A= 1 1 2A
D.A=1 1 2A
10.双曲线
C:
x2 a2

y2 b2
1(a

0, b
0) 的一条渐近线的倾斜角为 130°,则
C 的离心率为
A.2sin40°
B.2cos40°
C. 1 sin50
D. 1 cos50
11.△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 asinA-bsinB=4csinC,cosA=- 1 ,则 b = 4c
A.6
B.5
C.4
D.3
12. 已 知 椭 圆 C 的 焦 点 为 F1(1, 0), F2 (1, 0) , 过 F2 的 直 线 与 C 交 于 A, B 两 点 .若 | AF2 | 2 | F2B | ,
k
3.841 6.635 10.828
18.(12 分) 记 Sn 为等差数列{an}的前 n 项和,已知 S9=-a5. (1)若 a3=4,求{an}的通项公式; (2)若 a1>0,求使得 Sn≥an 的 n 的取值范围.
19.(12 分) 如图,直四棱柱 ABCD–A1B1C1D1 的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N 分别是 BC, BB1,A1D 的中点.
22.[选修 4−4:坐标系与参数方程](10 分)
在直角坐标系
xOy
中,曲线
C
的参数方程为

x

1 1

t2 t2

(t
为参数),以坐标原点

2019年全国高考数学卷1试题及答案

2019年全国高考数学卷1试题及答案

2019年全国高考数学卷Ⅰ试题及答案文6.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A .8号学生B .200号学生C .616号学生D .815号学生 答案:C .命题意图:本题主要考查以下几点:(1)等差数列的性质;(2)数据分析素养;(3)统计思想;(4)系统抽样.解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意;若616610n =+,则60n =,符合题意;若815610n =+,则80.9n =,不合题意,故选C .理6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A .516B .1132C .2132D .1116答案:A .命题意图:本题主要考查以下几点:(1)利用两个计数原理与排列组合计算古典概型问题;(2)渗透了传统文化、数学计算等数学素养;(3)二项分布.解题思路:“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.解:由题知,每一爻有2中情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为1652636=C ,故选A . 小结:对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.理15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为6.0,客场取胜的概率为5.0,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________. 答案:216.0.命题意图:本题主要考查以下几点:(1)二项分布;(2)分类讨论的思想.解题思路:本题应注意第五场必定是甲队获胜,前四场甲队恰好输一场.分情况讨论:甲队主场输一场、甲队客场输一场.解:前四场中有一场客场输时,甲队以4∶1获胜的概率是108.06.05.03212=⨯⨯C ,前四场中有一场主场输时,甲队以4∶1获胜的概率是072.06.05.04.02212=⨯⨯⨯C ,综上所述,甲队以4∶1获胜的概率是18.0072.0108.0=+=p ,故填18.0. 小结:由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4∶1获胜的两种情况;易错点之三是是否能够准确计算.文17.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有%95的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.答案:(1)43,55;(2)能有95%的把握认为男、女顾客对该商场服务的评价有差异. 命题意图:本题主要考查以下几点:(1)利用频率来估计概率;(2)利用列联表计算2K 的值;(3)独立性检验.解题思路:(1)从题中所给的22⨯列联表中读出相关的数据,利用满意的人数除以总的人数,分别算出相应的频率,即估计得出的概率值;(2)利用公式求得观测值与临界值比较,得到能有95%的把握认为男、女顾客对该商场服务的评价有差异.解:(1)由题中表格可知,50名男顾客对商场服务满意的有40人,所以男顾客对商场服务满意率估计为1404505P ==,50名女顾客对商场满意的有30人,所以女顾客对商场服务满意率估计为2303505P ==. (2)由列联表可知22100(40203010)100 4.762 3.8417030505021K ⨯-⨯==≈>⨯⨯⨯,所以能有95%的把握认为男、女顾客对该商场服务的评价有差异.理21.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,)8,,1,0( =i p i 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00=p ,18=p ,)7,,2,1(11 =++=+-i cp bp ap p i i i i ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设5.0=α,8.0=β.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.答案:(1)见解析;(2)(i )见解析;(ii )25714=p . 解题思路:(1)首先确定X 所有可能的取值,再来计算出每个取值对应的概率,从而可得分布列;(2)(i )求解出c b a ,,的取值,可得)7,,2,1(1.05.04.011 =++=+-i p p p p i i i i ,从而整理出符合等比数列定义的形式,问题得证;(ii )列出证得的等比数列的通项公式,采用累加的方式,结合8p 和0p 的值可求得1p ;再次利用累加法可求出4p .解:(1)由题意可知X 所有可能的取值为:1,0,1-,βα-=-=)1()1(X P ,)1)(1()0(β-α-+αβ==X P ,)1()1(β-α==X P ,则X 的分布列如下:(2)∵5.0=α,8.0=β,∴4.08.05.0=⨯=a ,5.02.05.08.05.0=⨯+⨯=b ,1.02.05.0=⨯=c ;(i )∵)7,,2,1(11 =++=+-i cp bp ap p i i i i ,即)7,,2,1(1.05.04.011 =++=+-i p p p p i i i i ,整理可得:)7,,2,1(4511 =+=+-i p p p i i i ,∴)7,,2,1)((411 =-=--+i p p p p i i i i ,又因为1010p p p -=≠,所以{}1(0,1,2,,7)i i p p i +-=为公比为4,首项为1p 的等比数列. (ii )由(i )可得8p )(78p p -=)(67p p -+)(56p p -+)(45p p -+)(34p p -+)(23p p -+)(12p p -+)(1o p p -+18314p -=,由于8=1p ,故18341p =-,所以()()()()44433221101411.325 7p p p p p p p p p p -=-+-+-+=-= 4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为5.0,乙药治愈率为8.0时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理.。

2019全国1卷高考数学文科含答案详解-2019高考数学一卷文科详解

2019全国1卷高考数学文科含答案详解-2019高考数学一卷文科详解

2019年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设312iz i-=+,则z =A .2BCD .12.已知集合{}1,2,3,4,5,6,7U =,{}2,3,4,5A =,{}2,3,6,7B =,则U B C A = A .{}1,6 B .{}1,7C .{}6,7D .{}1,6,73.已知2log 0.2a =,0.22b =,0.30.2c =,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(10.6182≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是 A .165cmB .175cmC .185cmD .190cm5.函数()2sin cos x xf x x x +=+在[],ππ-的图象大致为6.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测试,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生7.tan 255︒= A.2-B.2-+ C.2D.28.已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为( ) A .6π B .3π C .23π D .56π9.右图是求112122++的程序框图,图中空白框中应填入A .12A A =+ B .12A A=+ C .112A A =+D .112A A=+10.双曲线C :22221x y a b-=(0,0a b >>)的一条渐近线的倾斜角为130︒,则C 的离心率为A .2sin 40︒B .2cos40︒C .1sin 50︒D .1cos50︒11.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则b c= A .6B .5C .4D .312.已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线与C 交于A ,B 两点,若222AF F B =,1AB BF =,则C 的方程为A .2212x y += B .22132x y +=C .22143x y +=D .22154x y+=二、填空题:本题共4小题,每小题5分,共20分。

(完整版)2019年高考新课标(全国卷1)文数真题(word版,含解析)(2)

(完整版)2019年高考新课标(全国卷1)文数真题(word版,含解析)(2)

2019年高考新课标全国1卷(文科数学)一、选择题:本题共12小题,每小题5分,共60分。

1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A I A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是51-(51-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是 A .165 cm B .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-23B .-3C .23D .38.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A +B .A =12A +C .A =112A +D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。

2019年全国卷Ⅰ高考卷(含答案)

2019年全国卷Ⅰ高考卷(含答案)

2019年普通高等学校招生全国统一考试数学(含解析)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A I A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .a b c <<a c b <<c a b <<b c a <<C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的 一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为,过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。

2019年新课标全国卷高考文科数学试卷及答案【word版】

2019年新课标全国卷高考文科数学试卷及答案【word版】

2019年普通高等学校招生全国统一考试(课标I 文科卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合12|,31|x x B x x M ,则M B ()A. )1,2(B. )1,1(C. )3,1(D. )3,2((2)若0tan ,则A.0sinB. 0cosC. 02sinD. 02cos (3)设i i z 11,则||z A. 21 B. 22C. 23D. 2(4)已知双曲线)0(13222a y a x 的离心率为2,则aA. 2B. 26C. 25D. 1(5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A.)()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC 的三边AB CA BC ,,的中点,则FCEB A.AD B. AD 21C. BC 21D. BC(7)在函数①|2|cos x y ,②|cos |x y ,③)62cos(x y ,④)42tan(x y 中,最小正周期为的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M ( )。

2019年高考文科数学全国1卷(附答案)

2019年高考文科数学全国1卷(附答案)
1 1 2A 1
10 .双曲线
2
C: x
2
2
y
的一条渐近线的倾斜角为
2 1( 0, 0)
ab
专业资料
14.记 Sn 为等比数列 { an} 的前 n 项和 .若 a 1 1, S3
3 ,则 S4=___________ .
4

f (x) sin(2 x
) 3cos x 的最小值为 ___________ .

长度之比也是
5

1



2

上述两个黄金分割比 例,且腿长为 105cm ,头顶至脖子下
端的长度为 26 cm , 则其身高可能是
A. 165 cm B. 175 cm
C. 185 cm D. 190cm
在 [ — π, π的] 图像大致为
sin x x
函数 f(x)=
2
cos x x
专业资料
班-
12B-SX-0000022
_-
_______ :
-
绝密 ★ 启用前
2019 年普通高等学校招生全国统一考试
文科数学 全国 I 卷
本试卷共 23 小题,满分 150 分,考试用时 120 分钟
号学
(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福 建
)
_ - 注意事项:
___________________ :
12B-SX-0000022
附: 2
K (a
2
P( K ≥k)
2
n( ad bc)

b)(c d )(a c)(b d)
0.050
0.010

2019年高考数学真题及答案解析(全国卷Ⅰ)

2019年高考数学真题及答案解析(全国卷Ⅰ)

2019年高考数学真题及答案解析(全国卷Ⅰ) 2019年高考数学真题及答案解析一、选择题1. 单选题1) 题目:在直角三角形中,已知一条锐角边的长为4,另一条锐角边的长为3,则斜边的长为:()A. 5B. 6C. 7D. 8解析:根据勾股定理可知,斜边的长为√(4²+3²)=5。

因此,选项A为正确答案。

2) 题目:已知函数y=x²的图象上有两点A(1,2)、B(a,b),则a+b=()。

A. 3B. 4C. 5D. 6解析:由题意得,点A位于函数y=x²上,代入可得2=1²=1,即2=1。

因此,点B(a,b)的坐标为(a,a²)。

代入可得b=a²。

所以a+b=a+a²。

选项D为正确答案。

2. 多选题1) 题目:已知函数f(x)=ax²+bx+c,若三次项系数a=1,函数有两个零点x₁、x₂,则下列说法正确的是(选择全部正确答案):()A. 当x₁+x₂为正数时,函数图象在直角坐标平面上的位置不能确定。

B. 当x₁+x₂为正数时,函数图象在直角坐标平面上的位置位于x轴之上。

C. 当a=b=-1时,函数图象在直角坐标平面上的位置位于x轴之下。

D. 当a=b=-1时,函数图象在直角坐标平面上的位置位于x轴之上。

解析:根据二次函数的零点性质可知,当函数有两个零点x₁、x₂时,x₁+x₂的值为二次项系数的相反数,即a的相反数。

所以可得a+b=-1。

结合选项C和选项D可知,当a=b=-1时,函数图象在直角坐标平面上的位置的y坐标小于0,即位于x轴之下。

因此,选项C为正确答案。

二、填空题1. 题目:一个方程y=2x的图象和另一个方程y=ax²的图象相切,那么a的值为()。

解析:根据题目所给条件可知,两个方程的解相等。

所以可得2x=ax²。

由此可以推导出a=2。

因此,a的值为2。

2. 题目:已知点A(-2,1)和点B(4,-3),则点A关于点B的对称点坐标为( , )。

2019年全国统一高考数学试卷(文科)以及答案解析(全国1卷)

2019年全国统一高考数学试卷(文科)以及答案解析(全国1卷)

绝密★启用前2019年高考普通高等学校招生全国统一考试(全国1卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=,则|z|=()A.2B.C.D.12.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7} 3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生7.(5分)tan255°=()A.﹣2﹣B.﹣2+C.2﹣D.2+8.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.9.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+10.(5分)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C 的离心率为()A.2sin40°B.2cos40°C.D.11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A﹣b sin B=4c sin C,cos A =﹣,则=()A.6B.5C.4D.312.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1二、填空题:本题共4小题,每小题5分,共20分。

2019年高考文科数学全国1卷(附答案)

2019年高考文科数学全国1卷(附答案)

学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2019年普通高等学校招生全国统一考试文科数学 全国I 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建) 注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、 选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的。

1.设3i12iz -=+,则z = A .2 BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7UA B ===,,,则UBA =A .{}1,6 B .{}1,7 C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名 的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足 上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下 端的长度为26 cm ,则其身高可能是 A. 165 cm B. 175 cm C. 185 cm D. 190cm5. 函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A.B.C.D.6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生7.tan255°= a b c <<a c b <<c a b <<b c a <<8.已知非零向量a ,b 满足a=2b,且(a –b )⊥b ,则a 与b 的夹角为 A .π6 B .π3 C .2π3D .5π69. 如图是求112122++的程序框图,图中空白框中应填入A. A =12A +B. A =12A +C. A =112A+D. A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc=A .6B .5C .4D .3 12.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考文科数学全国1卷(附答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2019年普通高等学校招生全国统一考试文科数学 全国I 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建) 注意事项:1. 答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

一、 选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的。

1.设3i12iz -=+,则z =A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7UA B ===,,,则UBA =A .{}1,6 B .{}1,7 C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名 的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉 的长度与咽喉至肚脐的长度之比也是512-.若某人满足 上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下 端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm5. 函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A.B.C.D.6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生7.tan255°=A.-2-3B.-2+3 C.2-3 D.2+3 8.已知非零向量a,b满足a=2b,且(a–b)⊥b,则a与b的夹角为A.π6B.π3C.2π3D.5π69. 如图是求112122++的程序框图,图中空白框中应填入A. A=1 2A +B. A=1 2A +C. A=1 12A +D. A=1 12A +10.双曲线C:22221(0,0)x ya ba b-=>>的一条渐近线的倾斜角为130°,则C的离心率为A.2sin40°B.2cos40° C.1sin50︒D.1cos50︒11.△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-14,则bc=A.6 B.5 C.4 D.312.已知椭圆C的焦点为12(1,0),(1,0)F F-,过F2的直线与C交于A,B两点.若22||2||AF F B=,1||||AB BF=,则C的方程为A.2212xy+=B.22132x y+=C.22143x y+=D.22154x y+=二、填空题:本题共4小题,每小题5分,共20分。

13.曲线2)3(e xy x x=+在点(0,0)处的切线方程为___________.14.记S n为等比数列{a n}的前n项和.若13314a S==,,则S4=___________.15.函数3π()sin(2)3cos2f x x x=+-的最小值为___________.16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为3,那么P到平面ABC的距离为___________.三、解答题:共70分。

解答应写出文字说明、解答过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

34(一)必考题:共60分。

17.(12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.18.(12分)记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.19.(12分)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.20.(12分)5已知函数f(x)=2sin x-x cos x-x,f ′(x)为f(x)的导数.(1)证明:f ′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.21.(12分)已知点A,B关于坐标原点O对称,│AB│ =4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.6(二)选考题:共10分.请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C的参数方程为2221141txttyt⎧-=⎪⎪+⎨⎪=⎪+⎩,(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin110ρθθ+=.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.23.[选修4−5:不等式选讲](10分)已知a,b,c为正数,且满足abc=1.证明:(1)222111a b ca b c++≤++;(2)333()()()24a b b c c a+++≥++.72019年普通高等学校招生全国统一考试文科数学全国I卷参考答案一、选择题81.C 2.C 3.B 4.B 5.D 6.C7.D 8.B 9.A 10.D 11.A 12.B二、填空题13.y=3x14.5815.−4 16三、解答题17.解:(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.650=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)22100(40203010)4.76250507030K⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.18.解:(1)设{}n a的公差为d.由95S a=-得140a d+=.由a3=4得124a d+=.于是18,2a d==-.因此{}n a的通项公式为102na n=-.(2)由(1)得14a d=-,故(9)(5),2n nn n da n d S-=-=.由10a>知0d<,故n nS a等价于211100n n-+,解得1≤n≤10.所以n的取值范围是{|110,}n n n∈N.19.解:(1)连结1,B C ME.因为M,E分别为1,BB BC的中点,所以1ME B C∥,且112ME B C=.又因为N为1A D的中点,所以112ND A D=.由题设知11=AB DC∥,可得11=BC A D∥,故=ME ND∥,因此四边形MNDE为平行四边形,MN ED∥.又MN⊄平面1C DE,所以MN ∥平面1C DE.(2)过C作C1E的垂线,垂足为H.910由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH.从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以117C E =,故41717CH =. 从而点C 到平面1C DE 的距离为41717.20.解:(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=.当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫ ⎪⎝⎭单调递减.又π(0)0,0,(π)22g g g ⎛⎫=>=- ⎪⎝⎭,故()g x 在(0,π)存在唯一零点.所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x . 又当0,[0,π]a x ∈时,ax ≤0,故()f x ax . 因此,a 的取值范围是(,0]-∞.21.解:(1)因为M 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a .因为M 与直线x +2=0相切,所以M 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥,故可得2224(2)a a +=+,解得=0a 或=4a .故M 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M 的半径为=|+2|,||=2r x AO .由于MO AO ⊥,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x .因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .22.解:(1)因为221111t t--<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l的直角坐标方程为2110x +=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=.当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l 距.23.解:(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c++++≥++==++.所以222111a b c a b c++≤++. (2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c a c3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥.。

相关文档
最新文档