电磁场与电磁波试题 (2)

合集下载

电磁场与电磁波试题

电磁场与电磁波试题

电磁场与电磁波试题一、选择题1.物体自带的静电荷可以产生()电场。

A. 近距离的 B. 远距离的 C. 高速的 D. 恒定的2.下列哪个物理量是电场强度的定义? A. 电荷的大小 B. 电势差的变化C. 电场线的形状D. 电场力的大小3.两个相同电量的电荷之间的力为F,若电荷1的电量变为原来的4倍,电荷2的电量变为原来的2倍,则两个电荷之间的力变为原来的()倍。

A. 1/8B. 1/4C. 1/2D. 24.以下哪个物理量在电路中是守恒的? A. 电流 B. 电荷 C. 电压 D. 电功5.电流方向由正极流动到负极。

这是因为电流是由()极到()极流动的。

A. 正极,负极 B. 负极,正极 C. 高电势,低电势 D. 低电势,高电势二、填空题1.电场强度的单位是()。

2.在均匀介质中,电位与电势之间的关系是:()。

3.电容的单位是()。

4.电容和电容器的关系是:()。

三、解答题1.简述电场的概念及其性质。

答:电场是由电荷周围的空间所产生的物理现象。

当电荷存在时,它会在其周围产生一个电场。

电场有以下性质:–电场是矢量量,具有大小和方向。

–电场的强度随着距离的增加而减弱,遵循反比例关系。

–电场由正电荷指向负电荷,或由高电势指向低电势。

–电场相互叠加,遵循矢量相加原则。

–电场线表示了电场的方向和强度,线的密度表示电场强度的大小。

2.简述电流的概念及其特性。

答:电流是指单位时间内通过导体截面的电荷量,用符号I表示,单位是安培(A)。

电流具有以下特性:–电流的方向由正极流向负极,与电子的运动方向相反。

–电流是守恒量,即在封闭电路中,电流的大小不会改变。

–电流的大小与导体电阻、电势差和电阻之间的关系符合欧姆定律:I = U/R,其中I为电流,U为电势差,R为电阻。

3.电容器与电场之间有怎样的关系?答:电容器是一种用于储存电荷和电能的元件。

当电容器充电时,电荷会从一极板移动到另一极板,形成了电场。

电容器的电容决定了电容器储存电荷和电能的能力。

电磁场与电磁波练习题

电磁场与电磁波练习题

电磁场与电磁波练习题一、单项选择题(每小题1分,共15分)1、电位不相等的两个等位面()A. 可以相交B. 可以重合C. 可以相切D. 不能相交或相切2、从宏观效应看,物质对电磁场的响应包括三种现象,下列选项中错误的是()A.磁化B.极化C.色散D.传导3、电荷Q 均匀分布在半径为a 的导体球面上,当导体球以角速度ω绕通过球心的Z 轴旋转时,导体球面上的面电流密度为()A.sin 4q e a ?ωθπB.cos 4q e a ?ωθπC.2sin 4q e a ?ωθπD.33sin 4q e r aωθπ 4、下面说法错误的是()A.梯度是矢量, 其大小为最大方向导数,方向为最大方向导数所在的方向。

B.矢量场的散度是标量,若有一个矢量场的散度恒为零,则总可以把该矢量场表示为另一个矢量场的旋度。

C.梯度的散度恒为零。

D.一个标量场的性质可由其梯度来描述。

5、已知一均匀平面波以相位系数30rad/m 在空气中沿x 轴方向传播,则该平面波的频率为()A.81510π?HzB.8910?HzC.84510π?Hz D.9910?Hz6、坡印廷矢量表示()A.穿过与能量流动方向相垂直的单位面积的能量B.能流密度矢量C.时变电磁场中空间各点的电磁场能量密度D.时变电磁场中单位体积内的功率损耗7、在给定尺寸的矩形波导中,传输模式的阶数越高,相应的截止波长()A.越小B.越大C.与阶数无关D.与波的频率有关8、已知电磁波的电场强度为(,)cos()sin()x y E z t e t z e t z ωβωβ=---,则该电磁波为()A. 左旋圆极化波B. 右旋圆极化波C. 椭圆极化波D.直线极化波9、以下矢量函数中,可能表示磁感应强度的是()A. 3x y B e xy e y =+B.x y B e x e y =+C.22x y B e x e y =+D. x y B e y e x =+10、对于自由空间,其本征阻抗为()A. 0η=B.0η=C. 0η=D. 0η=11、自感和互感与回路的()无关。

电磁场与电磁波复习题(简答题)

电磁场与电磁波复习题(简答题)

电磁场与电磁波复习题第一部分矢量分析1、请解释电场与静电场的概念。

静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。

不随时间变化的电场称为静电场。

2、请解释磁场与恒定磁场的概念。

运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。

不随时间变化的磁场称为恒定磁场。

3、请解释时变电磁场与电磁波的概念。

如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。

时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。

4、请解释自由空间的概念。

电磁场与电磁波既然是一种物质,它的存在和传播无需依赖于任何媒质。

在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。

因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。

5、举例说明电磁场与波的应用。

静电复印、静电除尘以及静电喷漆等技术都是基于静电场对于带电粒子具有力的作用。

电磁铁、磁悬浮轴承以及磁悬浮列车等,都是利用磁场力的作用。

当今的无线通信、广播、雷达、遥控遥测、微波遥感、无线因特网、无线局域网、卫星定位以及光纤通信等信息技术都是利用电磁波作为媒介传输信息的。

6、请解释常矢与变矢的概念。

若某一矢量的模和方向都保持不变,此矢量称为常矢,如某物体所受到的重力。

而在实际问题中遇到的更多的是模和方向或两者之一会发生变化的矢量,这种矢量我们称为变矢,如沿着某一曲线物体运动的速度v等。

7、什么叫矢性函数?设t是一数性变量,A为变矢,对于某一区间G[a,b]内的每一个数值t,A 都有一个确定的矢量A(t)与之对应,则称A为数性变量t的矢性函数。

8、请解释静态场和动态场的概念。

如果在某一空间区域内的每一点,都对应着某个物理量的一个确定的值,则称在此区域内确定了该物理量的一个场。

换句话说,在某一空间区域中,物理量的无穷集合表示一种场。

电磁场和电磁波练习(有答案)

电磁场和电磁波练习(有答案)

电磁场和电磁波练习一、选择题(每题4分,共60分)1.A关于电磁场和电磁波.下列说法正确的是A.电场和磁场总是相互联系,电场和磁场统称为电磁场B.电磁场从发生区域由近及远的传播称为电磁波C.电磁波是一种物质,可在真空中传播.所以平日说真空是没有实物粒子,但不等于什么都没有,可以有“场”这种特殊物质D.电磁波传播速度总是3×108m/s答案:BC2.A建立完整电磁场理论并首先预言电磁波存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:D3.A第一个用实验验证电磁波客观存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:C4.A任何电磁波在真空中都具有相同的A.频率B.波长C.波速D.能量答案:C5.A在磁场周围欲产生一个不随时间变化的电场区域,则该磁场应按图中的何种规律变化答案:BC6.A甲、乙两个LC振荡电路中,两电容器电容之比C1:C2=1:9,两线圈自感系数之比L1:L2=4:1,则这两个振荡电路发射电磁波的频率之比和波长之比分别为A.f1:f2=4:9,λ1:λ2=9:4B.f1:f2=9:4,λ1:λ2=4:9C.f1:f2=3:2,λ1:λ2=2:3D.f1:f2=2:3,λ1:λ2=3:2答案:C7.A关于麦克斯韦电磁场理论,下列说法正确的是A.在电场周围空间一定存在着磁场B.任何变化的电场周围一定存在着变化的磁场C.均匀变化的磁场周围一定存在着变化的电场D.振荡电场在它的周围空间一定产生同频率的振荡磁场答案:D8.A电磁波在不同介质中传播时,不变的物理量是A.频率B.波长C.振幅D.波速答案:A9.B 下列哪些现象是由于所产生的电磁波而引起的A.用室内天线接收微弱电视信号时,人走过时电视机画面发生变化B.用天线接收电视信号时,汽车开过时电视机画面发生变化C.把半导体收音机放到开着的日光灯旁听到噪声D.在边远地区用无线电话机通活,有时会发生信号中断的现象答案:BC10.B 如图所示,直线MN 周围产生了一组闭合电场线,则A.有方向从M→N迅速增强的电流B.有方向从M→N迅速减弱的电流C.有方向从M→N迅速增强的磁场D.有方向从M→N迅速减弱的磁场答案:D二、填空题(每空3分,共18分)11.A 有一振荡电路,线圈的自感系数L=8μH ,电容器的电容C=200pF ,此电路能在真空中产生电磁波的波长是________m 答案:75.412.A 电磁波在传播过程中,其电场分量和磁场分量总是相互________(填“垂直”、“平行”下同),而且与波的传播方向________,电磁波也可以发生反射、折射、干涉和衍射.其中长波衍射要比短波衍射________(填“易”、“难”).答案:垂直、垂直、易13.B 如图中,正离子在垂直于匀强磁场的固定光滑轨道内做匀速圆周运动,当磁场均匀增大时,离子动能将________,周期将________.答案:减小、增大三、计算题(每题11分,共22分)14.B 一个LC 振荡电路,电感L 的变化范围是0.1~0.4mH ,电容C 的变化范围是4~90pF ,求此振荡电路的频率范围和产生电磁波的波长范围.答案: 2.65×105Hz~7.65×106Hz, 1130(m)~ 37.7(m)15.C 某卫星地面站向地球同步通信卫星发送无线电波,经它立即转发到另一卫星地面站,测得从发送开始到地面站接收到电磁波的时间为0.24s ,取地球半径6400km.据此条件估算地球的质量为多少千克?(结果取1位有效数字,G=6.67×1011N·m 2/kg 2) 答案:解:由s=ct 可知同步卫星距地面的高度:h=3.6×107(m)由牛顿运动定律可知()()h R T m h R Mm G +⎪⎭⎫ ⎝⎛=+222π故地球质量:M=()=+3224h R GT π()()21137623600241067.6106.3104.614.34⨯⨯⨯⨯+⨯⨯⨯-=6×1024kg。

第四章第2节电磁场与电磁波练习(word版含答案)

第四章第2节电磁场与电磁波练习(word版含答案)

2021-2022学年人教版(2019)选择性必修第二册第四章第2节电磁场与电磁波过关演练一、单选题1.下列关于电磁波的说法,正确的是()A.只要有电场和磁场就能产生电磁波B.电场随时间变化时一定能产生电磁波C.要想产生持续的电磁波,变化的电场(或磁场)产生的磁场(或电场)必须是均匀变化的D.振荡电流能在空间中产生电磁波2.对于电磁波的发现过程,下列说法正确的是()A.麦克斯韦通过实验证实了电磁波的存在B.麦克斯韦预言了电磁波的存在C.赫兹根据自然规律的统一性,提出变化的电场产生磁场D.电磁波在任何介质中的传播速度均为8310m/s3.关于电磁波的形成机理,一些认识,正确的是()A.电磁波由赫兹预言提出,并指出光也属于电磁波B.磁场能产生电场,电场也能产生磁场C.变化的磁场能产生电场,所产生的这个电场还能继续产生磁场D.变化的电场能产生磁场,所产生的这个磁场不一定还能继续产生电场4.如图所示是我国500m口径球面射电望远镜(F AST),它可以接收来自宇宙深处的电磁波。

关于电磁波,下列说法正确的是()A.赫兹预言了电磁波的存在B.麦克斯韦通过实验捕捉到电磁波C.频率越高的电磁波,波长越长D.电磁波可以传递信息和能量5.以下有关电磁场理论,正确的是()A.稳定的电场周围产生稳定的磁场B.有磁场就有电场C.变化的电场周围产生变化的电场D.周期性变化的磁场产生周期性变化的电场6.关于电磁场和电磁波,下列叙述中不正确的是()A.均匀变化电场在它的周围产生均匀变化的磁场B.振荡电场在它的周围产生同频振荡的磁场C.电磁波从一种介质进入另一种介质,频率不变,传播速度与波长发生变化D.电磁波能产生干涉和衍射现象7.下列说法正确的是()A.电磁波在真空中的传播速度与电磁波的频率有关B.电磁波可以由电磁振荡产生,若波源的电磁振荡停止,空间的电磁波随即消失C.声波从空气进入水中时,其波速增大,波长变长D.均匀变化的磁场产生变化的电场,均匀变化的电场产生变化的磁场E.当波源与观察者相向运动时,波源自身的频率变大8.关于电磁波理论,下列说法正确的是()A.在变化的电场周围一定产生变化的磁场,在变化的磁场周围一定产生变化的电场B.均匀变化的电场周围一定产生均匀变化的磁场C.做非匀变速运动的电荷可以产生电磁波D.麦克斯韦第一次用实验证实了电磁波的存在9.下列说法正确的是()A.电场随时间变化时一定产生电磁波B.X射线和 射线的波长比较短,穿透力比较弱C.太阳光通过三棱镜形成彩色光谱,这是光衍射的结果D.在照相机镜头前加装偏振滤光片拍摄日落时水面下的景物,可使景物清晰10.真空中所有电磁波都有相同的()A.频率B.波长C.波速D.能量二、多选题11.以下叙述正确的是()A.法拉第发现了电磁感应现象B.电磁感应现象即电流产生磁场的现象C.只要闭合线圈在磁场中做切割磁感线的运动,线圈内部便会有感应电流D.感应电流遵从楞次定律所描述的方向,这是能量守恒的必然结果12.下列说法正确的是()A.波的衍射现象必须具备一定的条件,否则不可能发生衍射现象B.要观察到水波明显的衍射现象,必须使狭缝的宽度远大于水波波长C.波长越长的波,越容易发生明显的衍射现象D.只有波才有衍射现象13.间距为L=1m的导轨固定在水平面上,如图甲所示,导轨的左端接有阻值为R=10Ω的定值电阻,长度为L=1m、阻值为r=10Ω的金属棒PQ放在水平导轨上,与导轨有良好的接触,现在空间施加一垂直导轨平面的磁场,磁感应强度随时间的变化规律如图乙所示,已知磁场的方向如图甲所示,且0~0.2s的时间内金属棒始终处于静止状态,其他电阻不计。

电磁场与电磁波考试试题

电磁场与电磁波考试试题

电磁场与电磁波考试试题一、选择题(每题 3 分,共 30 分)1、真空中的介电常数为()。

A 885×10^(-12) F/mB 4π×10^(-7) H/mC 0D 无穷大2、静电场中,电场强度的环流恒等于()。

A 电荷的代数和B 零C 电场强度的大小D 不确定3、磁场强度的单位是()。

A 安培/米B 伏特/米C 牛顿/库仑D 特斯拉4、对于时变电磁场,以下说法正确的是()。

A 电场和磁场相互独立B 电场是无旋场C 磁场是无散场D 电场和磁场没有关系5、电磁波在真空中的传播速度为()。

A 光速B 声速C 无限大D 不确定6、以下哪种波不是电磁波()。

A 可见光B 超声波C 无线电波D X 射线7、均匀平面波在理想介质中传播时,电场和磁场的相位()。

A 相同B 相反C 相差 90 度D 不确定8、电位移矢量 D 与电场强度 E 的关系为()。

A D =εEB D =ε0ECD =μH D D =μ0H9、坡印廷矢量的方向表示()。

A 电场的方向B 磁场的方向C 能量的传播方向D 电荷的运动方向10、电磁波的极化方式不包括()。

A 线极化B 圆极化C 椭圆极化D 方极化二、填空题(每题 3 分,共 30 分)1、库仑定律的表达式为________。

2、静电场的高斯定理表明,通过任意闭合曲面的电通量等于该闭合曲面所包围的________。

3、安培环路定理表明,磁场强度沿任意闭合回路的线积分等于穿过该回路所包围面积的________。

4、位移电流的定义式为________。

5、麦克斯韦方程组的四个方程分别是________、________、________、________。

6、电磁波的波长、频率和波速之间的关系为________。

7、理想导体表面的电场强度________,磁场强度________。

8、均匀平面波的电场强度和磁场强度的比值称为________。

9、线极化波可以分解为两个________极化波的合成。

(完整word版)电磁场与电磁波波试卷3套含答案

(完整word版)电磁场与电磁波波试卷3套含答案

《电磁场与电磁波》试卷1一. 填空题(每空2分,共40分)1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 无漩涡流动 .另一个是环流量不为0,表明矢量场的 流体沿着闭合回做漩涡流动 .2.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个 等电位体 ,电荷分布在导体的 表面 。

3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为 3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程 来求解。

4.求解边值问题时的边界条件分为3类,第一类为 整个边界上的电位函数为已知 ,这种条件成为狄利克莱条件.第二类为已知 整个边界上的电位法向导数 ,成为诺伊曼条件。

第三类条件为 部分边界上的电位为已知,另一部分边界上电位法向导数已知 ,称为混合边界条件。

在每种边界条件下,方程的解是 唯一的 。

5.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是 12()0n B B ⋅-=,12()s n H H J ⨯-=.6.亥姆霍兹定理可以对Maxwell 方程做一个简单的解释:矢量场的 旋度 ,和 散度 都表示矢量场的源,Maxwell 方程表明了 电磁场 和它们的 源 之间的关系。

二.简述和计算题(60分)1.简述均匀导波系统上传播的电磁波的模式。

(10分)答:(1)在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内,这种模式的电磁波称为横电磁波,简称TEM 波.(2)在电磁波传播方向上有电场和但没有磁场分量,即磁场在横平面内,这种模式的电磁波称为横磁波,简称TM 波。

因为它只有纵向电场分量,又成为电波或E 波.(3)在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内,这种模式的电磁波称为横电波,简称TE 波。

因为它只有纵向磁场分量,又成为磁波或M 波。

《电磁场与电磁波》试题含答案

《电磁场与电磁波》试题含答案

图1
20.如图 2 所示的导体槽,底部保持电位为 (1) 写出电位满足的方程; (2) 求槽内的电位分布
U 0 ,其余两面电位为零,
无穷远
图2
五、综合题(10 分)
21.设沿 + z 方向传播的均匀平面电磁波垂直入射到理想导体,如图 3 所示,该电磁波电场
ˆ x E 0 e − j βz E=e 只有 x 分量即
图1 20.设时变电磁场的电场强度和磁场强度分别为:
� � E = E 0 cos(ωt − φ e )
� � H = H 0 cos(ωt − φ m )
(1) 写出电场强度和磁场强度的复数表达式
� � 1 � S av = E 0 × H 0 cos(φ e − φ m ) 2 (2) 证明其坡印廷矢量的平均值为:
5.在无源区域中,变化的电场产生磁场,变化的磁场产生电场,使电磁场以 播出去,即电磁波。 6.随时间变化的电磁场称为 场。 。
的形式传
7.从场角度来讲,电流是电流密度矢量场的
8.一个微小电流环,设其半径为 a 、电流为 I ,则磁偶极矩矢量的大小为 9.电介质中的束缚电荷在外加

作用下,完全脱离分子的内部束缚力时,我们把这种
ρ V ,电位
3.时变电磁场中,坡印廷矢量的数学表达式为 4.在理想导体的表面,电场强度的
5.表达式
� � � ( ) A r ⋅ d S ∫
S
� � A 称为矢量场 ( r ) 穿过闭合曲面 S 的
。 。 。 。 。 场,因此,它可用磁矢
6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 9.对横电磁波而言,在波的传播方向上电场、磁场分量为 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 位函数的旋度来表示。

电磁场与电磁波(第4版)_习题第2章

电磁场与电磁波(第4版)_习题第2章

2.3 电荷q 均匀分布在半径为a 的导体球面上,当导体球以角速度ω绕通过球心的z 轴旋转时,试计算导体球面上的面电流密度。

解 导体球上的面电荷密度为24S qa ρπ=球面上任一点的位置矢量为r a =r e ,当导体球以角速度ω绕通过球心的z 轴旋转时,该点的线速度为sin z r a a φωωθ=⨯=⨯=v r e e e ω则得导体球面上的面电流密度为sin 4S S q aφωρθπ==J v e2.6 平行板真空二极管两极板间的电荷体密度为42330049U d x ρε--=-,阴极板位于x =0处,阳极板位于x =d处,极间电压为0U ;如果040V,1cm U d ==,横截面210cm s =,求:(1)x =0至x =d 区域内的总电荷量;(2)x =d /2至x =d 区域的总电荷量。

解 (1) 142310004d ()d 9dV q V U d x S x ρε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2) 243232004d ()d 9d V d q V U d x S x ρε--==-=⎰⎰11004(10.9710C 3U S d ε---=-⨯2.7 在真空中,点电荷10.3q c μ=-位于点A (25,-30,15)cm ;点电荷20.5q c μ=位于点B(-10,8,12)cm 。

求:(1)坐标原点处的电场强度;(2)点P(15,20,50)cm 处的电场强度。

解 (1)源点的位置矢量及其大小分别为1122253015cm,41.83cm 10812cm,17.55cmx y z x y z ''=-+==''=-++==r e e e r r e e e r而场点O 的位置矢量00=r ,故坐标原点处的电场强度为1200033001021[()()]4q q πε''=-+-''--E r r r r r r r r6223010.310(253015)104(41.8310)x y z πε---⎡-⨯=-++⨯+⎢⨯⎣e e e 62230.510(10812)10(17.5510)x y z ---⎤⨯--⨯⎥⨯⎦e e e 92.3777.6294.37KV/m x y z =--e e e(2)场点P 的位置矢量为152050cm P x y z =++r e e e故12105035251238P x y z P x y z '-=-++'-=++r r e e e r r e e e则6230110.310(105035)104p x y z P πε--⎡-⨯=-++⨯+⎢'-⎢⎣E e e e r r 62320.510(251238)10x y z P --⎤⨯++⨯⎥'-⎥⎦e e e r r 11.940.54912.4KV/m x y z =-+e e e2.9 无限长线电荷通过点(6,8,0)且平行于z 轴,线电荷密度为l ρ;试求点P (x ,y ,z )处的电场强度E 。

电磁场与电磁波_章二习题答案

电磁场与电磁波_章二习题答案

静电场 恒定电场习题解答主要问题: 1) 矢量标量书写不加区分(忘记在矢量顶部加箭头) 2) 机械抄袭标准答案,不理解其含义3)不理解极化电荷面密度和极化电荷体密度含义:极化电荷面密度仅仅存在于介质表面,静电场情形下导体表面没有极化电荷面密度(题2-15) 4)所谓验证边界条件对静电场而言有两种方法(题2-13),一是从电位着手判断电位是否连续(12?Φ=Φ)法向电位条件如何?(1212s n nεερ∂Φ∂Φ-+=∂∂,这里格外需要注意说明边界上有没有电荷?s ρ=)二是判断切向电场是不是连续,法向电通密度是不是相等,要是不等,面电荷密度是多少 这两种方法等价。

5)2-2题很多人和标准答案中的坐标图不一致,答案却一样,明显错误2-1、半径为a 的球内充满介电常数为1ε的均匀介质,球外是介电常数为2ε的均匀介质。

若已知球内和球外的电位分别为:122(,) ()(,) ()r Ar r a Aa r r a rθθθθΦ=≤⎧⎪⎨Φ=≥⎪⎩ 式中A 为常数。

求1) 两种介质中的E 和D ;2) 两种介质中的自由电荷密度。

解:1) 在r < a 区域内:111111111A Ar r A A θθεεθε∂Φ∂Φ=-∇Φ=--=--∂∂==--rθr θ1r θE e e e e D E e e , 在r > a 区域内:()()2222222121Aa r r rAarθθεεθ∂Φ∂Φ=-∇Φ=--=-∂∂==-2r θr θ22r θE e e e e D E e e 2) 在r < a 区域内:。

()()()21112111sin sin 2cot r r D D r r r Arθρθθθεθθ∂∂=∇⋅=+∂∂=-+1D在r > a 区域内:()()2222222311sin sin cot r r D D r r r Aa rθρθθθεθ∂∂=∇⋅=+∂∂=-2D 在球面r = a 上,电荷面密度()()()12s r a r a A ρεεθ===⋅-=⋅-=+21r 21n D D e D D2-2一个半径为a 的半圆环上均匀分布线电荷ρl ,求垂直于半圆环平面的轴线z =a 处的电场强度。

电磁场与电磁波精彩试题问题详解

电磁场与电磁波精彩试题问题详解

《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B ϖ和磁场H ϖ满足的方程为: 。

2.设线性各向同性的均匀媒质中,02=∇φ称为 方程。

3.时变电磁场中,数学表达式H E S ϖϖϖ⨯=称为 。

4.在理想导体的表面, 的切向分量等于零。

5.矢量场)(r A ϖϖ穿过闭合曲面S 的通量的表达式为: 。

6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。

7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。

8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。

9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。

10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。

二、简述题 (每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ϖϖ,试说明其物理意义,并写出方程的积分形式。

12.试简述唯一性定理,并说明其意义。

13.什么是群速?试写出群速与相速之间的关系式。

14.写出位移电流的表达式,它的提出有何意义?三、计算题 (每小题10分,共30分)15.按要求完成下列题目 (1)判断矢量函数y x e xz ey B ˆˆ2+-=ϖ是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。

16.矢量z y x e e e A ˆ3ˆˆ2-+=ϖ,z y x e e eB ˆˆ3ˆ5--=ϖ,求(1)B A ϖϖ+ (2)B A ϖϖ⋅17.在无源的自由空间中,电场强度复矢量的表达式为 ()jkz y x e E e E eE --=004ˆ3ˆϖ(1) 试写出其时间表达式; (2)说明电磁波的传播方向;四、应用题 (每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。

试求(1) 球任一点的电场强度 (2)球外任一点的电位移矢量。

电磁场与电磁波习题及答案

电磁场与电磁波习题及答案

1麦克斯韦方程组的微分形式是:.D H J t∂∇⨯=+∂u v u u v u v ,BE t ∂∇⨯=-∂u v u v ,0B ∇=u v g ,D ρ∇=u vg2静电场的基本方程积分形式为:0CE dl =⎰u v u u v g Ñ S D ds ρ=⎰u v u u vg Ñ3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:3.00n S n n n Se e e e J ρ⎧⋅=⎪⋅=⎪⎨⨯=⎪⎪⨯=⎩D B E H rr r r r r r r r 4线性且各向同性媒质的本构关系方程是:4.D E ε=u v u v ,B H μ=u v u u v ,J E σ=uv u v5电流连续性方程的微分形式为:5.J t ρ∂∇=-∂r g6电位满足的泊松方程为2ρϕε∇=-; 在两种完纯介质分界面上电位满足的边界 。

12ϕϕ=1212n n εεεε∂∂=∂∂ 7应用镜像法和其它间接方法解静态场边值问题的理论依据是: 唯一性定理。

8.电场强度E ϖ的单位是V/m ,电位移D ϖ的单位是C/m2 。

9.静电场的两个基本方程的微分形式为 0E ∇⨯=ρ∇=g D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用1.在分析恒定磁场时,引入矢量磁位A u v,并令B A =∇⨯u v u v 的依据是( 0B ∇=u vg )2. “某处的电位0=ϕ,则该处的电场强度0=E ϖ”的说法是(错误的 )。

3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln(1aaD C -=πε )。

4. 点电荷产生的电场强度随距离变化的规律为(1/r2)。

5. N 个导体组成的系统的能量∑==Ni ii q W 121φ,其中iφ是(除i 个导体外的其他导体)产生的电位。

6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。

《电磁场与电磁波》试题含答案

《电磁场与电磁波》试题含答案

ρ V ,电位
3.时变电磁场中,坡印廷矢量的数学表达式为 4.在理想导体的表面,电场强度的
5.表达式
� � � ( ) A r ⋅ d S ∫
S
� � A 称为矢量场 ( r ) 穿过闭合曲面 S 的
。 。 。 。 。 场,因此,它可用磁矢
6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 9.对横电磁波而言,在波的传播方向上电场、磁场分量为 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 位函数的旋度来表示。
5.在无源区域中,变化的电场产生磁场,变化的磁场产生电场,使电磁场以 播出去,即电磁波。 6.随时间变化的电磁场称为 场。 。
的形式传
7.从场角度来讲,电流是电流密度矢量场的
8.一个微小电流环,设其半径为 a 、电流为 I ,则磁偶极矩矢量的大小为 9.电介质中的束缚电荷在外加

作用下,完全脱离分子的内部束缚力时,我们把这种
18.均匀带电导体球,半径为 a ,带电量为 Q 。试求 (1) 球内任一点的电场强度 (2) 球外任一点的电位移矢量。 19.设无限长直导线与矩形回路共面, (如图 1 所示) , (1)判断通过矩形回路中的磁感应强度的方向(在图中标出) ; (2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。
《电磁场与电磁波》试题 1
填空题(每小题 1 分,共 10 分)
1.在均匀各向同性线性媒质中,设媒质的导磁率为 µ ,则磁感应强度 B 和磁场 H 满足的 方程为: 。
2


2.设线性各向同性的均匀媒质中, ∇ φ = 0 称为

电磁场与电磁波试题与答案

电磁场与电磁波试题与答案

电磁场与微波技术基础试题一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。

每小题2分,共20分)1.设一个矢量场 =x x+2y y+3z z,则散度为( )A. 0B. 2C. 3D. 62.人们规定电流的方向是( )运动方向。

A.电子B.离子C.正电荷D.负电荷3.在物质中没有自由电子,称这种物质为( )A.导体B.半导体C.绝缘体D.等离子体4.静电场能量的来源是( )A.损耗B.感应C.极化D.做功5.对于各向同性介质,若介电常数为ε,则能量密度we为( )A. •B. E2C. εE2D. εE26.电容器的大小( )A.与导体的形状有关B.与导体的形状无关C.与导体所带的电荷有关D.与导体所带的电荷无关7.电矩为的电偶极子在均匀电场中所受的作用力和库仑力矩为( )A. =0,Tq= •B. =0, = ×C. = • ,= ×D. = • , =08.在 =0的磁介质区域中的磁场满足下列方程( )A. × =0, • =0B. × ≠0, • ≠0C. × ≠0, • =0D. × =0, • ≠09.洛伦兹条件人为地规定的( )A.散度B.旋度C.源D.均不是10.传输线的工作状态与负载有关,当负载短路时,传输线工作在何种状态?( )A.行波B.驻波C.混合波D.都不是二、填空题(每空2分,共20分)1.两个矢量的乘法有______和______两种。

2.面电荷密度ρs( )的定义是______,用它来描述电荷在______的分布。

3.由库仑定律可知,电荷间作用力与电荷的大小成线性关系,因此电荷间的作用力可以用______原理来求。

4.矢量场的性质由它的______决定。

5.在静电场中,电位相同的点集合形成的面称为______。

6.永久磁铁所产生的磁场,称之为______。

7.在电场中电介质在外电场的作用下会产生______,使电场发生变化。

2 电磁场与电磁波第二章习题答案

2 电磁场与电磁波第二章习题答案

第二章 习题解答2.5试求半径为a ,带电量为Q 的均匀带电球体的电场。

解:以带电球体的球心为球心,以r 为半径,作一高斯面,由高斯定理S D dS ∙⎰ =Q ,及D E ε= 得,错误!未找到引用源。

r ≤a 时, 由S D dS ∙⎰ =224433Qr a ππ⨯,得34Qr D a π= 304Qr E a πε= 错误!未找到引用源。

r>a 时,由S D dS ∙⎰ =Q ,得34Qr D r π= 304Qr E rπε= 2.5 两无限长的同轴圆柱体,半径分别为a 和b (a<b ),内外导体间为空气。

设同轴圆柱导体内、外导体上的电荷均匀分布,其电荷密度分别为1S ρ和2S ρ,求: 错误!未找到引用源。

空间各处的电场强度;错误!未找到引用源。

两导体间的电压;错误!未找到引用源。

要使ρ>b 区域内的电场强度等于零,则1S ρ和2S ρ应满足什么关系?解:错误!未找到引用源。

以圆柱的轴为轴做一个半径为r 的圆柱高斯面,由高斯定理S D dS ∙⎰ =q及D E ε= 得,当0<r<a 时,由S D dS ∙⎰ =q=0,得D =0,E =0当a ≤r ≤b 时,由S D dS ∙⎰ =q,得D r l π⨯2⨯= 1S ρa l π⨯2⨯D =1S r e r ρ ,10S r aE e rρε= 当b<r 时,由S D dS ∙⎰ =q,得D r l π⨯2⨯= 1S ρa l π⨯2⨯+2S ρb l π⨯2⨯D =12s s r a b e r ρρ+ ,E =120s s r a b e rρρε+ Equation.DSMT4 11ab 00ln b b s s a a a a a E dr dr r b ρρεε∅===⎰⎰ Equation.DSMT4 ρ>0的区域外电场强度为0,即:E =120s s r a b e rρρε+ =0,得1S ρ=2s b a ρ- 2.9 一个半径为a 的薄导体球壳,在其内表面覆盖了一层薄的绝缘膜,球内充满总电量为Q的电荷,球壳上又另充了电量为Q 的电荷,已知内部的电场为4()r r E a a= ,计算: = 2 \* GB2 ⑵球的外表面的电荷分布;布;= 4 \* GB2 ⑷球心的电位。

电磁场与电磁波试题及答案.

电磁场与电磁波试题及答案.

1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。

2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)〔说明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场〔位移电流〕也是磁场的源;除电荷外,变化的磁场也是电场的源。

1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。

2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。

(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规与洛仑兹规的意义。

2. 答矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。

库仑规与洛仑兹规的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规用在静态场,洛仑兹规用在时变场。

1. 简述穿过闭合曲面的通量及其物理定义 2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。

假设Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面向外扩散,说明S 面有正源假设Ф< 0,那么流入S 面的通量大于流出的通量,即通量向S 面聚集,说明S 面有负源。

假设Ф=0,那么流入S 面的通量等于流出的通量,说明S 面无源。

1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。

2. 证明在直角坐标系里计算,那么有()()x y z x y z r r e e e e x e y e z xy z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭3x y zx y z∂∂∂=++=∂∂∂ 假设在球坐标系里计算,那么232211()()()3r r r r r r r r r∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。

电磁场与电磁波自测题集(8套)2

电磁场与电磁波自测题集(8套)2

自测题八一、填空题(每题2分.共10分)1、已知真空中有恒定电流J(r).则空间任意点磁感应强度B的旋度为。

2、极化方向既不平行也不垂直于入射面的线极化波斜入射在一个无限大介质平面上.__________________时反射波只有平行极化分量。

3、自由空间中原点处的源(ρ或J)在t时刻发生变化.此变化将在时刻影响到r处的位函数(ψ或A)。

4、在球坐标系中.电偶极子辐射场(远场)的空间分布与坐标的关系是_______。

5、已知体积为V的介质的介电常数为ε.其中的静电荷(体密度为ρ)在空间形成电位分布ψ和电场分布E和D.则空间的静电能量密度为。

空间的总静电能量为________________。

二、选择填空题(每题2分.共10分.每题只能选择一个答案.否则判为错)1、以下关于时变电磁场的叙述中.不正确的是()。

A.电场是有旋场B.电场和磁场相互激发C.电荷可以激发电场D.磁场是有源场2、以下关于在导电媒质中传播的电磁波的叙述中.正确的是()。

A.不再是平面波B.电场和磁场不同相C.振幅不变D.以TE波形式传播3、两个载流线圈之间存在互感.对互感没有影响的是()。

A.线圈的尺寸B.两个线圈的相对位置C.线圈上的电流D.空间介质4、用镜像法求解静电场边值问题时.判断镜像电荷的选取是否正确的根据是()。

A.镜像电荷是否对称B.电位ψ所满足的方程是否改变C.边界条件是否改变D.同时选择B和C5、区域V全部用非导电媒质填充.当此区域中的电磁场能量减少时.一定是()。

A.能量流出了区域B.能量在区域中被损耗C.电磁场做了功D.同时选择A和C自测题八答案一、1. μJ(r)2. θ=θB3. t+r/c4. ∝sinθ/r二、1.D 2.B 3.C 4.D 5.A自测题七一、填空题(每题2分.共20分;选择填空题每题只能选择一个答案.否则判为错)1、已知真空中的电荷分布为ρ(r).则空间任意点电场强度E的散度为_______。

电磁场与电磁波试题及参考答案

电磁场与电磁波试题及参考答案

2010-2011-2学期《电磁场与电磁波》课程考试试卷参考答案及评分标准命题教师:李学军 审题教师:米燕一、判断题(10分)(每题1分)1. 旋度就是任意方向的环量密度 ( × )2. 某一方向的的方向导数是描述标量场沿该方向的变化情况 ( √ )3. 点电荷仅仅指直径非常小的带电体 ( × )4. 静电场中介质的相对介电常数总是大于 1 ( √ )5. 静电场的电场力只能通过库仑定律进行计算 ( × )6. 理想介质和导电媒质都是色散媒质 ( × )7. 均匀平面电磁波在无耗媒质里电场强度和磁场强度保持同相位 ( √ )8. 复坡印廷矢量的模值是通过单位面积上的电磁功率 ( × )9. 在真空中电磁波的群速与相速的大小总是相同的 ( √ ) 10 趋肤深度是电磁波进入导体后能量衰减为零所能够达到的深度 ( × )二、选择填空(10分)1. 已知标量场u 的梯度为G ,则u 沿l 方向的方向导数为( B )。

A. G l ⋅B. 0G l ⋅ C. G l ⨯2. 半径为a 导体球,带电量为Q ,球外套有外半径为b ,介电常数为ε的同心介质球壳,壳外是空气,则介质球壳内的电场强度E 等于( C )。

A.24Q r π B. 204Q r πε C. 24Qr πε3. 一个半径为a 的均匀带电圆柱(无限长)的电荷密度是ρ,则圆柱体内的电场强度E 为( C )。

A. 22a E r ρε= B. 202r E a ρε= C. 02r E ρε=4. 半径为a 的无限长直导线,载有电流I ,则导体内的磁感应强度B 为( C )。

A.02Irμπ B. 02Ir a μπ C. 022Ir a μπ5. 已知复数场矢量0x e E =E ,则其瞬时值表述式为( B )。

A. ()0cos y x e E t ωϕ+B. ()0cos x x e E t ωϕ+C. ()0sin x x e E t ωϕ+ 6. 已知无界理想媒质(ε=9ε0, μ=μ0,σ=0)中正弦均匀平面电磁波的频率f=108 Hz ,则电磁波的波长为( C )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.'.《电磁场与电磁波》测验试卷﹙一﹚一、 填空题(每题8分,共40分)1、在国际单位制中,电场强度的单位是________;电通量密度的单位是___________;磁场强度的单位是____________;磁感应强度的单位是___________;真空中介电常数的单位是____________。

2、静电场→E 和电位Ψ的关系是→E =_____________。

→E 的方向是从电位_______处指向电位______处。

3、位移电流与传导电流不同,它与电荷___________无关。

只要电场随__________变化,就会有位移电流;而且频率越高,位移电流密度___________。

位移电流存在于____________和一切___________中。

4、在两种媒质分界面的两侧,电场→E的切向分量E 1t -E 2t =________;而磁场→B的法向分量B 1n -B 2n =_________;电流密度→J 的法向分量J 1n -J 2n =___________。

5、沿Z 轴传播的平面电磁波的复数表示式为:_____________________=→E,____________________=→H 。

二、计算题(题,共60分) 1、(15分)在真空中,有一均匀带电的长度为L 的细杆, 其电荷线密度为τ。

求在其横坐标延长线上距 杆端为d 的一点P 处的电 场强度E P 。

2、(10分)已知某同轴电容器的内导体半径为a ,外导体的内半径为c ,在a ﹤r ﹤b (b ﹤c)部分填充电容率为ε的电介质,求其单位长度上的电容。

3、(10分)一根长直螺线管,其长度L =1.0米,截面积S =10厘米2,匝数N 1=1000匝。

在其中段密绕一个匝数N 2=20匝的短线圈,请计算这两个线圈的互感M 。

4、(10分)某回路由两个半径分别为R 和r 的 半圆形导体与两段直导体组成,其中通有电流I 。

求中心点O 处的磁感应强度→B 。

5、电场强度为)2106(7.378Z t COS EY a ππ+⨯=→→伏/米的电磁波在自由空间传播。

问:该波是不是均匀平面波?并请说明其传播方向。

求:(1)波阻抗; (2)相位常数; (3)波长; (4)相速; (5)→H 的大小和方向;(6)坡印廷矢量。

《电磁场与电磁波》测验试卷﹙二﹚ (一)、问答题(共50分)1、(10分)请写出时变电磁场麦克斯韦方程组的积分形式和微分形式,并写出其辅助方程。

2、(10分)在两种媒质的交界面上,当自由电荷面密度为ρs 、面电流密度为J s 时,请写出→→→→H B D ,,,E 的边界条件的矢量表达式。

3、(10分)什么叫TEM 波,TE 波,TM 波,TE 10波?4、(10分)什么叫辐射电阻?偶极子天线的辐射电阻与哪些因素有关?5、什么是滞后位?请简述其意义。

(二)、计算题(共60分)1、(10分)在真空里,电偶极子电场中的任意点M (r 、θ、φ)的电位为2cos 41r P θπε=Φ(式中,P 为电偶极矩,l q P =), 而 →→→∂Φ∂+∂Φ∂+∂Φ∂=Φ000sin 11φφθθθr r r r 。

试求M 点的电场强度→E 。

2、(15分)半径为R 的无限长圆柱体均匀带电,电荷体密度为ρ。

请以其轴线为参考电位点, 求该圆柱体内外电位的分布。

3、(10分)一个位于Z 轴上的直线电流I =3安培,在其旁边放置一个矩形导线框,a =5米,b =8米,h =5米。

最初,导线框截面的法线与I 垂直(如图),然后将该 截面旋转900,保持a 、b 不变,让其法线与I 平行。

求:①两种情况下,载流导线与矩形线框的互感系数M 。

②设线框中有I ′=4安培的电流,求两者间的互感磁能。

4、(10分)P 为介质(2)中离介质边界极近的一点。

已知电介质外的真空中电场强度为→1E ,其方向与 电介质分界面的夹角为θ。

在电介质界面无自由电荷存在。

求:①P 点电场强度→2E 的大小和方向;5、(15分)在半径为R、电荷体密度为ρ的球形均匀带电体内部有一个不带电的球形空腔,其半径为r, 两球心的距离为a(r<a<R)。

介电常数都按ε0计算。

求空腔内的电场强度E。

《电磁场与电磁波》测验试卷﹙三﹚ 二、 填空题(每题8分,共40分)RO ra x.'. 1、真空中静电场高斯定理的内容是:_______________________________________________________________________________________________________________________________________________________________________________________。

2、等位面的两个重要性质是:①_____________________________________________,②____________________________________________________________________。

3、真空中的静电场是__________场和__________场;而恒定磁场是____________场和__________场。

4、传导电流密度___________=→J。

位移电流密度___________=→dJ。

电场能量密度W e=___________。

磁场能量密度W m=___________。

5、沿Z轴传播的平面电磁波的三角函数式:=→E_____________________,=→H_________________________________;其波速V=__________________________,波阻抗η=__________________,相位常数β=_______________________。

(二)计算题(共50分)1、(10分)如图内外半径分别为r、R的同轴电缆,中间充塞两层同心介质:第一层ε1=2ε0,其半径为r';第二层ε2=3ε0 。

现在内外柱面间加以直流电压U。

求:①电缆内各点的场强E 。

②单位长度电缆的电容。

③单位长度电缆中的电场能。

2、(10分)在面积为S、相距为d的平板电容器里,填以厚度各为d/2、介电常数各为εr1和εr2的介质。

将电容器两极板接到电压为U0的直流电源上。

求:①电容器介质εr1和εr2内的场强;②电容器极板所带的电量;③电容器中的电场能量。

3、(10分)有一半径为R的圆电流I。

求:①其圆心处的磁感应强度→B=?②在过圆心的垂线上、与圆心相距为H的一点P,其→B=?4、(10分)在Z轴原点,安置一个电偶极子天线。

已知电偶极子轴射场的表示式为:)(sin2krtjrlIjEe-=ϖθεμλθQEHηφ1=求:①在Y轴上距O点为r处的平均能流密度。

②和天线成450而距O点同样为r的地方的平均能流密度。

5、(10分)有一根长L=1m的电偶极子天线,,其激励波长λ=10m,激励波源的电流振幅I=5A。

试求该电偶极子天线的辐射电阻R r和辐射功率PΣ。

《电磁场与电磁波》学习提要第一章场论简介1、方向导数和梯度的概念;方向导数和梯度的关系。

2、通量的定义;散度的定义及作用。

3、环量的定义;旋度的定义及作用;旋度的两个重要性质。

4、场论的两个重要定理:高斯散度定理和斯托克斯定理。

第二章静电场1、电场强度的定义和电力线的概念。

2、点电荷的场强公式及场强叠加原理;场强的计算实例。

3、静电场的高斯定理;用高斯定理求场强方法与实例。

4、电压、电位和电位差的概念;点电荷电位公式;电位叠加原理。

5、等位面的定义;等位面的性质;电位梯度,电位梯度与场强的关系。

6、静电场环路定理的积分形式和微分形式,静电场的基本性质。

7、电位梯度的概念;电位梯度和电场强度的关系。

8、导体静电平衡条件;处于静电平衡的导体的性质。

9、电偶极子的概念。

10、电位移向量;电位移向量与场强的关系;介质中高斯定理的微分形式和积分形式;求介质中的场强。

11、介质中静电场的基本方程;介质中静电场的性质。

12、独立导体的电容;两导体间的电容;求电容及电容器电场的方法与实例。

13、静电场的能量分布,和能量密度的概念。

第三章电流场和恒定电场1、传导电流和运流电流的概念。

2、电流强度和电流密度的概念;电流强度和电流密度的关系。

3、欧姆定律的微分形式和积分形式。

4、电流连续性方程的微分形式和积分形式;恒定电流的微分形式和积分形式及其意义。

5、电动势的定义。

6、恒定电场的基本方程及其性质。

第四章恒定磁场1、电流产生磁场,恒定电流产生恒定磁场。

2、电流元与电流元之间磁相互作用的规律-安培定律。

3、安培公式;磁感应强度矢量的定义;磁感应强度矢量的方向、大小和单位。

4、洛仑兹力及其计算公式。

5、电流元所产生的磁场元:比奥-萨伐尔定律;磁场叠加原理;磁感应线。

计算磁场的方法和实例。

rrRεε12.6、磁通的定义和单位。

7、磁通连续性原理的微分形式、积分形式和它们的意义。

8、通量源和旋涡源的定义。

9、安培环路定律的积分形式和微分形式。

10、安培环路定律的应用。

11、磁场强度的定义,磁场强度的单位,磁场强度矢量和磁感应强度矢量的关系。

12、磁介质中的安培环路定律的积分形式微分形式。

13、用安培环路定律的积分形式来计算磁感应强度。

14、磁通、磁链和自感。

求电感的方法和实例。

15、互感;求互感的方法和实例。

第五章时变电磁场1、法拉第电磁感应定律的积分形式和微分形式;感应电动势的正方向;感应电场的特点;感应电场电力线的特点;感应电动势的计算实例。

2、位移电流密度;位移电流特点;推广的安培环路定律的积分形式和微分形式;全电流连续定律。

3、麦克斯韦方程组的积分形式、微分形式和辅助方程;这些方程的物理意义。

4、电磁场的边界条件及其推导方法。

5、理想导体表面处的边界条件。

6、电磁场的能量密度;坡印廷定理;坡印廷矢量。

第六章电磁波的传播1、无源空间电磁波一维波动方程的解(即方程6.1-4a至6.1-4f)的物理意义;E0、H0、ω、v、λ和k的物理意义。

2、平面电磁波的基本性质;波阻抗的概念。

3、平面简谐电磁波的平均能量密度;平均能流密度矢量。

4、传播常数、相位常数和衰减常数的概念。

5、电磁波在均匀导电媒质中的传播规律;透入深度的概念6、圆极化波、椭圆极化波的特点。

7、反射定律和折射定律。

8、半波损失、布儒斯特角、光密媒质、光密媒质和全反射的概念。

第七章传输线和波导1、自由电磁波的概念;导行波的概念。

2、高频电磁波在传输线中传播时的特点;“长线”和“短线”的概念。

相关文档
最新文档