线性代数第四版课后习题答案
《线性代数》同济大学第四版课后答案
《线性代数》同济⼤学第四版课后答案线性代数同济⼤学第四版课后答案习题⼀习题⼀1-5 SslO(3)1 1 1 ab c a2 b2 c2^c^+cc^+ab^-ac^-bc^-cb2 -(a-b)(b-c)(c-a).(4)X v X+ V解v x+ V X■:v+v * V⼆MvH") i+i:论+i ')+(.r+v) VX-1'34-C T+I)3-.T32解逆序数为4: 4h 43, 42. 32,3解逆序数为5: 3 2.3 L 42. 4 1,2 L4L利⽤对⾓线法则计算下列三阶⾏列式:2 0 1-18 3(1) 1(1)1+■XVX1cV-+VT1⽅沪=3.n (.Y+>)-i^3- 3.T2=-2(.?+V^⼯按⾃然数从⼩到⼤为标准次序.求下列各排列的逆序数:(1)1 23 4(2)4 13 2(3)34 2 1(4)24 1 3(5)1 3 …(2沪1) 2 4 …O);(6)1 3 ?… (⼒—1) (2?z) (2n-2)…* ⼯(1)解逆序数为0解逆序数为3: 2 1.4 1.4 3-(5)解逆序数为观驴:32(1 个)5 2,5 4(2 个)7 2, 7 4. 7 6(3 个)(”1)2, 011)4, (”1)6,…为(”1)(”2) (n-1 个)(6)解逆序数为乃(『Li):32(1 个)5 2,5 4(2 ^t) (2n-1)2, (2n-l)4, (”1)6,…、(2/L1)(2/L2)(n-l个)42(1 个)6 2,6 4(2 个)(5)2, (2M)4, (2n)6,…,(2n)(2n-2) (n-1个)3.写出四阶⾏列式中含有因⼦GU723的项.解含因⼦①畑的项的⼀般形式为(-])%的冰X町其中帀是2和4构成的排列,这种排列共有两个,即24和42.所以含因⼦a^a23的项分别是(-1 )衍1似23他刃44⼆(⼀1 )^11^32^44=-^!凶曲的轴(⼀1 )%1攸曲琢也⼫(T )%1⼝滋34偽⼫&1也刃曲42?4. 计算下列各⾏列式:4 12 4(iho 5 2 0; 0 1172 14 1 (2) ? ¥ ? i ;⼀ ab ac ae(3) bd ⼀ cd de cf -ef *94 -1 109 9 10— 1 2 -20 0 —2 =0-[0 3 14 勺+扭3 P 17 143+ 4O 42021Ci0 00 —1 0 0 -i1 c o -1 d-1230411100上q42 07 202112 5 141100解\170200-1-2102 02 4 9-36172023 15119-9-O--00-0 0 4 23 011-12 0「-310—12 3 O 4 1210■1-12 O解\1-ab ac ae-bee 解bd -cd de =acif b -c eif 灯-叮b c -ehl 1 1 / =adfbce 1-11 = Aabcdef |1 1 -1 (4)l+c/b a 00+此2〔1+甸 a0)(—严才打⼀冷55.证明:cP ab b 1(1) 2a c/+b 2b 1 1 1=(?-/>)3, 证明a obb \c 2-c A ⼔2 ab —R ⼣—⼚F2r/ a+b 勿 2z? b-a 2b-2a 1 1 1 | GT 11 0 0 cix+bv av+bz ciz+bx v v zc/y+bz az+bx ax+by-(q 3+b 3)y ⼆ x az+bx ay+bv av+bz z A VA --!A-oo 1<7 o1 c - 1Ty ⼀o d -l oo0 1+ab cioo 1〃15 B-loTooad \+cd 0n 计呼豐严⽫cdTLab-ci 1 b-a l^-a 2 2b-2a⼆@-a)(b-氓件 J(⼚Tp证明ax+bv av+bz az+bx civ+bz az+bx cix+bv■6C +bx ay+by ay+ bzx ciy+bz ciz+bx y ciy+bz az+bx=a v1az+bx ca+bv / ■<+b z az+bx ca+bv⼆ax+by ay+bz x ax+by ay+bz .x ay+bz z v⼆ciz+bx y az+bx x■JV g+by⼆crx+bv v V v av+ bzilr-'x y z y z x=a3y⼆x+b3⼆Y yz x y\x v zX V⼆,v V z-d y ⼆Y +⼣V S Xar ⼆X V ■■<⼆H ⼆x\z x va2(“+1)2 (c+2)2 (n+3¥⑶b2 (〃+l『0+2)2(b+3Y=0;c2 (c+1)2 (c+2)3 (c+3)2 d2 (H+l¥ (d+2)2 (〃+3⼙—1—iu CM⼨*-+scP-£cl J1+冷£r +Krl E + w S +U ;+-+gI+吕C(E+P)令+⼷)N+m"(E ) c (cl+9) 泾⼗ q)+0 N+q)(R £1bz)2i47/2(5)10 0 b(b-ci)0 b 2(b 2-a 2) c 2(c 1 d-a d(d - a) )d 2(d 2-a 2) 1 1 =(b - a)(c - a)(d-a) b _ c b-a1 c-a c(c ⼀ a)2-a 7-(b ⼀ ci)(c ⼀ ci)(ci ⼀ ct)5b 2(b^ra)c 2(c-\-ci)d 2{d-Va\ R 1 1 6 c-b d-b 0 c(c-b)(c+b^d) d(d-b)(d+b+a)-(b - a)(c ⼀ c)(" - a)(c — Z?)(rf- b)1 1 咚+b+a) d(d+b+ci)oo ⼆X“~h(7 [T 丫+ * … ⼗亿科证明⽤数学归纳法证明.当⼼2时"2⼆诊⼗g+%命题成⽴?假设对于(7L1)阶⾏列式命题成⽴.即⼑刑_1=* ?+⼗岛_2⼯+馮_”则及按第⼀列展开更有—1 0 ■…0 2-1 OO2⼆也门乜(-1严上卫⼆1 1 …⼆xQ 起⼀1+。
线性代数答案第四版(高等教育出版社)
−ab ac ae (3) bd −cd de ;
bf cf −ef
a 1 00 (4) −1 b 1 0 .
0 −1 c 1 0 0 −1 d
解: (1)
4 124
1 202
1202
1 2 0 2 ==r1=↔=r=2= − 4 1 2 4 ==r=2−=4=r=1= − 0 −7 2 −4
10 5 2 0
(2) ay + bz az + bx ax + by = (a3 + b3) y z x ;
az + bx ax + by ay + bz
zxy
4
第一章 行列式
证明: ax + by ay + bz az + bx
x ay + bz az + bx
y ay + bz az + bx
ay + bz az + bx ax + by ==按=第==1=列== a y az + bx ax + by + b z az + bx ax + by
xyz
yzx
=再==次=a3 y z x + b3 z x y
裂开
zxy
xyz
xyz
xyz
xyz
=a3 y z x + b3(−1)2 y z x = (a3 + b3) y z x .
zxyzxyzxy源自此题有一个 “经典” 的解法:
ax + by ay + bz az + bx
ax ay az
by bz bx
ay + bz az + bx ax + by = ay az ax + bz bx by
第二章-线性代数(第四版)习题答案
y2 = 3 3 y2
5 3
x2 = 6 3 x3
−7 y2 . y3 −4
即
y1 = −7x1 − 4x2 + 9x3 , y2 = 6x1 + 3x2 − 7x3 , y = 3x + 2x − 4x . 3 1 2 3
由数学归纳法知: Ak =
8 .设 A = 0
解: 方法一. 首先计算
1 = 0 0 λ λ3 0 λn 猜测: An = 0 0 nλn−1 λn 0
同理得 y2 = 6x1 + 3x2 − 7x3 , y3 = 3x1 + 2x2 − 4x3 .
2 . 已知两个线性变换 x1 = 2y1 + y3 , x2 = −2y1 + 3y2 + 2y3 , x = 4y + y + 5y , 3 1 2 3 y1 = −3z1 + z2 , y 2 = 2 z1 + z3 , y = −z + 3z , 3 2 3
1 0 (6) 0 0
1 3 (1) AB = BA 吗?
5. 设A=
1
2
,B=
1 1
0 2
, 问:
(2) (A + B )2 = A2 + 2AB + B 2 吗? (3) (A + B )(A − B ) = A2 − B 2 吗?
解: (1) 因为
AB = 3 4 4 6 , BA = 1 2 3 8 ,
线性代数第四版课后习题答案
线性代数第四版课后习题答案线性代数是数学的一个分支,研究向量空间及其上的线性变换。
它在许多领域中都有广泛的应用,如物理学、计算机科学、经济学等。
而《线性代数第四版》是一本经典的教材,它深入浅出地介绍了线性代数的基本概念和理论,并提供了大量的习题供读者练习。
本文将为读者提供《线性代数第四版》课后习题的答案,以帮助读者更好地理解和掌握线性代数的知识。
第一章:线性方程组1.1 习题答案:1. 解:设方程组的解为x,代入方程组得:2x + 3y + z = 74x + 2y + 5z = 43x + 4y + 2z = 5解得x = 1,y = -1,z = 2。
1.2 习题答案:1. 解:设方程组的解为x,代入方程组得:x - 2y + 3z = 12x + y + z = 23x + 4y - 5z = -1解得x = 1,y = 0,z = 0。
第二章:矩阵代数2.1 习题答案:1. 解:设矩阵A为:3 45 6则A的转置矩阵为:1 3 52 4 62.2 习题答案:1. 解:设矩阵A为:1 23 4则A的逆矩阵为:-2 13/2 -1/2第三章:向量空间3.1 习题答案:1. 解:设向量v为:123则v的范数为sqrt(1^2 + 2^2 + 3^2) = sqrt(14)。
3.2 习题答案:1. 解:设向量v为:23则v的单位向量为v/||v||,即:1/sqrt(14)2/sqrt(14)3/sqrt(14)第四章:线性变换4.1 习题答案:1. 解:设线性变换T为将向量顺时针旋转90度的变换,即:T(x, y) = (y, -x)4.2 习题答案:1. 解:设线性变换T为将向量缩放2倍的变换,即:T(x, y) = (2x, 2y)通过以上习题的答案,我们可以看到线性代数的一些基本概念和理论在实际问题中的应用。
通过解答这些习题,读者可以更好地理解和掌握线性代数的知识,提高自己的解题能力和思维能力。
线性代数第四版答案
第一章行列式1利用对角线法则计算下列三阶行列式(1)解2(4)30(1)(1)1180132(1)81(4)(1)2481644(2)解acb bac cba bbb aaa ccc3abc a3b3c3(3)解bc2ca2ab2ac2ba2cb2(a b)(b c)(c a)(4)解x(x y)y yx(x y)(x y)yx y3(x y)3x33xy(x y)y33x2y x3y3x32(x3y3)2按自然数从小到大为标准次序求下列各排列的逆序数(1)1 2 3 4解逆序数为0(2)4 1 3 2解逆序数为441 43 42 32(3)3 4 2 1解逆序数为5 3 2 3 1 4 2 4 1, 2 1(4)2 4 1 3解逆序数为3 2 1 4 1 4 3(5)1 3 (2n1) 2 4 (2n)解逆序数为3 2 (1个)5 2 5 4(2个)7 2 7 4 7 6(3个)(2n1)2(2n1)4(2n1)6(2n1)(2n2) (n1个)(6)1 3 (2n1) (2n) (2n2) 2解逆序数为n(n1)3 2(1个)5 2 5 4 (2个)(2n1)2(2n1)4(2n1)6(2n1)(2n2) (n1个)4 2(1个)6 2 6 4(2个)(2n)2 (2n)4 (2n)6 (2n)(2n2) (n1个) 3写出四阶行列式中含有因子a11a23的项解含因子a11a23的项的一般形式为(1)t a11a23a3r a4s其中rs是2和4构成的排列这种排列共有两个即24和42所以含因子a11a23的项分别是(1)t a11a23a32a44(1)1a11a23a32a44a11a23a32a44(1)t a11a23a34a42(1)2a11a23a34a42a11a23a34a424计算下列各行列式(1)解(2)解(3)解(4)解abcd ab cd ad1 5证明:(1)(a b)3;证明(a b)3(2);证明(3);证明(c4c3c3c2c2c1得)(c4c3c3c2得)(4)(a b)(a c)(a d)(b c)(b d)(c d)(a b c d);证明=(a b)(a c)(a d)(b c)(b d)(c d)(a b c d)(5)x n a1x n1a n1x a n证明用数学归纳法证明当n2时命题成立假设对于(n1)阶行列式命题成立即D n1x n1a1x n2a n2x a n1则D n按第一列展开有xD n1a n x n a1x n1a n1x a n因此对于n阶行列式命题成立6设n阶行列式D det(a ij), 把D上下翻转、或逆时针旋转90、或依副对角线翻转依次得证明D3D证明因为D det(a ij)所以同理可证7计算下列各行列式(D k为k阶行列式)(1), 其中对角线上元素都是a未写出的元素都是0解(按第n行展开)a n a n2a n2(a21)(2);解将第一行乘(1)分别加到其余各行得再将各列都加到第一列上得[x(n1)a](x a)n1(3);解根据第6题结果有此行列式为范德蒙德行列式(4);解(按第1行展开)再按最后一行展开得递推公式D2n a n d n D2n2b nc n D2n2即D2n(a n d n b n c n)D2n2于是而所以(5) D det(a ij)其中a ij|i j|;解a ij|i j|(1)n1(n1)2n2(6), 其中a1a2a n0解8用克莱姆法则解下列方程组(1)解因为所以(2)解因为所以9问取何值时齐次线性方程组有非零解?解系数行列式为令D0得0或1于是当0或1时该齐次线性方程组有非零解10问取何值时齐次线性方程组有非零解?解系数行列式为(1)3(3)4(1)2(1)(3)(1)32(1)23令D0得02或3于是当02或3时该齐次线性方程组有非零解第二章矩阵及其运算1已知线性变换求从变量x1x2x3到变量y1y2y3的线性变换解由已知故2已知两个线性变换求从z1z2z3到x1x2x3的线性变换解由已知所以有3设求3AB2A 及A T B解4计算下列乘积(1)解(2)解(132231)(10) (3)解(4)解(5)解(a 11x 1a 12x 2a 13x 3a 12x 1a 22x 2a 23x 3a 13x 1a 23x 2a 33x 3)5 设 问(1)AB BA 吗? 解 ABBA因为 所以AB BA(2)(A B )2A 22AB B 2吗? 解 (AB )2A 22AB B 2因为但所以(A B)2A22AB B2(3)(A B)(A B)A2B2吗?解(A B)(A B)A2B2因为而故(A B)(A B)A2B26举反列说明下列命题是错误的(1)若A20则A0解取则A20但A0(2)若A2A则A0或A E解取则A2A但A0且A E(3)若AX AY且A0则X Y解取则AX AY且A0但X Y7设求A2A3A k解8设求A k解首先观察用数学归纳法证明当k2时显然成立假设k时成立,则k1时,由数学归纳法原理知9设A B为n阶矩阵,且A为对称矩阵,证明B T AB也是对称矩阵证明因为A T A所以(B T AB)T B T(B T A)T B T A T B B T AB从而B T AB是对称矩阵10设A B都是n阶对称矩阵,证明AB是对称矩阵的充分必要条件是AB BA证明充分性因为A T A B T B且AB BA所以(AB)T(BA)T A T B T AB即AB是对称矩阵必要性因为A T A B T B且(AB)T AB所以AB(AB)T B T A T BA11求下列矩阵的逆矩阵(1)解 |A|1故A1存在因为故(2)解|A|10故A1存在因为所以(3)解 |A|20故A1存在因为所以(4)(a1a2a n0)解由对角矩阵的性质知12解下列矩阵方程(1)解(2)解(3)解(4)解13利用逆矩阵解下列线性方程组(1)解方程组可表示为故从而有(2)解方程组可表示为故故有14设A k O(k为正整数)证明(E A)1E A A2A k1证明因为A k O所以E A k E又因为E A k(E A)(E A A2A k1)所以(E A)(E A A2A k1)E由定理2推论知(E A)可逆且(E A)1E A A2A k1证明一方面有E(E A)1(E A)另一方面由A k O有E(E A)(A A2)A2A k1(A k1A k)(E A A2A k1)(E A)故(E A)1(E A)(E A A2A k1)(E A)两端同时右乘(E A)1就有(E A)1(E A)E A A2A k115设方阵A满足A2A2E O证明A及A2E都可逆并求A1及(A2E)1证明由A2A2E O得A2A2E即A(A E)2E或由定理2推论知A可逆且由A2A2E O得A2A6E4E即(A2E)(A3E)4E或由定理2推论知(A2E)可逆且证明由A2A2E O得A2A2E两端同时取行列式得|A2A|2即|A||A E|2故|A|0所以A可逆而A2E A2 |A2E||A2||A|20故A2E也可逆由A2A2E O A(A E)2EA1A(A E)2A1E又由A2A2E O(A2E)A3(A2E)4E(A2E)(A3E) 4 E所以(A2E)1(A2E)(A3E)4(A 2 E)116设A为3阶矩阵求|(2A)15A*|解因为所以|2A1|(2)3|A1|8|A|1821617设矩阵A可逆证明其伴随阵A*也可逆且(A*)1(A1)*证明由得A*|A|A1所以当A可逆时有|A*||A|n|A1||A|n10从而A*也可逆因为A*|A|A1所以(A*)1|A|1A又所以(A*)1|A|1A|A|1|A|(A1)*(A1)*18设n阶矩阵A的伴随矩阵为A*证明(1)若|A|0则|A*|0(2)|A*||A|n1证明(1)用反证法证明假设|A*|0则有A*(A*)1E由此得A A A*(A*)1|A|E(A*)1O所以A*O这与|A*|0矛盾,故当|A|0时有|A*|0(2)由于则AA*|A|E取行列式得到|A||A*||A|n若|A|0则|A*||A|n1若|A|0由(1)知|A*|0此时命题也成立因此|A*||A|n119设AB A2B求B解由AB A2E可得(A2E)B A故20设且AB E A2B求B解由AB E A2B得(A E)B A2E即(A E)B(A E)(A E)因为所以(A E)可逆从而21设A diag(12 1)A*BA2BA8E求B 解由A*BA2BA8E得(A*2E)BA8EB8(A*2E)1A18[A(A*2E)]18(AA*2A)18(|A|E2A)18(2E2A)14(E A)14[diag(21 2)]12diag(12 1)22已知矩阵A的伴随阵且ABA1BA13E求B解由|A*||A|38得|A|2由ABA1BA13E得AB B3AB3(A E)1A3[A(E A1)]1A23设P1AP其中求A11解由P1AP得A P P1所以A11 A=P11P1.|P|3而故24设AP P其中求(A)A8(5E6A A2)解()8(5E62)diag(1158)[diag(555)diag(6630)diag(1125 )]diag(1158)diag(1200)12diag(100)(A)P()P125设矩阵A、B及A B都可逆证明A1B1也可逆并求其逆阵证明因为A1(A B)B1B1A1A1B1而A1(A B)B1是三个可逆矩阵的乘积所以A1(A B)B1可逆即A1B1可逆(A1B1)1[A1(A B)B1]1B(A B)1A 26计算解设则而所以即27取验证解而故28设求|A8|及A4解令则故29设n阶矩阵A及s阶矩阵B都可逆求(1)解设则由此得所以(2)解设则由此得所以30求下列矩阵的逆阵(1)解设则于是(2)解设则第三章矩阵的初等变换与线性方程组1把下列矩阵化为行最简形矩阵(1)解(下一步r2(2)r1r3(3)r1 ) ~(下一步r2(1)r3(2) )~(下一步r3r2 )~(下一步r33 )~(下一步r23r3 )~(下一步r1(2)r2r1r3 )~(2)解(下一步r22(3)r1r3(2)r1 )~(下一步r3r2r13r2 )~(下一步r12 )~(3)解(下一步r23r1r32r1r43r1 )~(下一步r2(4)r3(3) r4(5) )~(下一步r13r2r3r2r4r2 )~(4)解(下一步r12r2r33r2r42r2 ) ~(下一步r22r1r38r1r47r1 ) ~(下一步r1r2r2(1)r4r3 )~(下一步r2r3 )~2设求A解是初等矩阵E(12)其逆矩阵就是其本身是初等矩阵E(1 2(1))其逆矩阵是E(1 2(1))3试利用矩阵的初等变换求下列方阵的逆矩阵(1)解~~~~故逆矩阵为(2)解~~~~~故逆矩阵为4(1)设求X使AX B解因为所以(2)设求X使XA B解考虑A T X T B T因为所以从而5设AX2X A求X解原方程化为(A2E)X A因为所以6在秩是r的矩阵中,有没有等于0的r1阶子式? 有没有等于0的r阶子式?解在秩是r的矩阵中可能存在等于0的r1阶子式也可能存在等于0的r阶子式例如R(A)3是等于0的2阶子式是等于0的3阶子式7从矩阵A中划去一行得到矩阵B问A B的秩的关系怎样?解R(A)R(B)这是因为B的非零子式必是A的非零子式故A的秩不会小于B的秩8求作一个秩是4的方阵它的两个行向量是(1 0 1 0 0) (11 0 0 0)解用已知向量容易构成一个有4个非零行的5阶下三角矩阵此矩阵的秩为4其第2行和第3行是已知向量。
线性代数答案第四版(高等教育出版社)
(1) 1 2 3 4;
(2) 4 1 3 2;
(3) 3 4 2 1;
(4) 2 4 1 3;
(5) 1 3 · · · (2n − 1) 2 4 · · · (2n);
(6) 1 3 · · · (2n − 1) (2n) (2nห้องสมุดไป่ตู้− 2) · · · 2.
解
(1) 逆序数为 0.
(2) 逆序数为 4: 4 1, 4 3, 4 2, 3 2.
(4)
x
y x+y
y x + y x = x(x + y)y + yx(x + y) + (x + y)yx − y3 − (x + y)3 − x3
x+y x
y
= 3xy(x + y) − y3 − 3x2y − 3y2x − x3 − y3 − x3 = −2(x3 + y3).
2 . 按自然数从小到大为标准次序, 求下列各排列的逆序数:
70
第一章 行列式
课后的习题值得我们仔细研读. 本章建议重点看以下习题: 5.(2), (5); 7; 8.(2). (这几个题号建立有超级链接.) 若 您发现有好的解法, 请不吝告知.
1 . 利用对角线法则计算下列三阶行列式:
201 (1) 1 −4 −1 ;
−1 8 3
abc (2) b c a ;
1
2
第一章 行列式
(3) 逆序数为 5: 3 2, 3 1, 4 2, 4 1, 2 1.
(4) 逆序数为 3: 2 1, 4 1, 4 3.
(5)
逆序数为
n(n−1) 2
:
3 2...........................................................................1 个 5 2, 5 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 个 7 2, 7 4, 7 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 个 .................................................................................. (2n − 1) 2, (2n − 1) 4, (2n − 1) 6, . . . , (2n − 1) (2n − 2). . . . . . . . . . . . . .(n − 1) 个
线性代数--吴赣昌-第四版--课后习题答案
线性代数(理工类第四版吴赣昌主编)(中国人民大学出版社)第一章习题1-11.(1)= x3—X2—1-(5)解原式= 11 —・log* = 0.2.(1)解原式= 1x1x1 +3x3 x 3 + 2 x 2x2一2x1x3-3x2x1—1x3x2 =18.(3)GLv r H +;・)z —H肥峠—— f f ——Ex ——x mi f E I .rHEH —(A ・+X)itrfH「H1E(H + .¥)—E£——A4・J J —严g l s r D I J gexEHuIm —qqq I尊厨X L I -X Q X E I O x s x n —) —守 X E X (I ——)+o x o x =+【X S X I H M ^*r(2)二ny 严<亠*-T雷■严< « J sJ ® S915 -N 5 i s J S AH IA +gN ('f lft r g Fz */-!- (寸・*<£1 ^3 ss 村气* 喘If!"帖+ = H寸《c^l Tr村來?l第X - i sTJ W 2A r u•n u口T c f fA f e J W ^ - A s r J H # EN H k s n ■ N ・r s ^& g・ J s用『A x* </代 </N s n *uE和 ■ t i -,-km J 8Pn A JL H-cL i c L r ® I L ?啊叫==o/fd ?T T T TT巧鎂 r 曲!1^_曲亦7^犬+BSrh q — ■ ) j /v (冇 "*夕性F*孑才吉换堵样K 丰”习题1-31=1OOO < 34工■吕 一>=—<> I 2^<)<»<> ■(2)Fi 23 1 2 31 2 =o 1 2 =0 «111o -1 -2(3)ab CTCb cebd z=5b —</ Qbf</he—e—11 1—1 1 11 —111 1 11 1 — 111—1—1U o■= adfbcc1 O 2=4122. ( 1)曲于SUVI £I 黔2 <><><>23^tZ 1 W 28092I OOO 1 <M><>=1 OOOK4N 1 牙 ^WOOZ12 2 212 2 012 0 0( l)<ff_ 11 JI !.(4)(5)1- I 1 I --(2)3. ( 1)a、lih、ft | + (? 1 C |ci | + kh y b\C] a i + kb | C j Ci -uE.fl z H- kb 2 b±-\-t'i c 2=^2 + ^*2 b2 C2+a z kb 2 c2 c2«3 + kb j b3 + c3 c j S + AAj h、c3較bs c a »)+ kb} b r j S b\ c1b\ b、Ga2l A T A2 /?3t?i=巧S i A b2 b2 Ci口主+人为古Z>3s心5 b 古H c y(2)4. ( 1)(2)习题1-4y z +工JZ A:JC - 7=工 少+ f+-討z - 4- ATZ -V + yJ-v yJ 7 + zy z x2P*'x yX y z :=:A ; y z 十y Z AT =2* yz x yj c y zy z X十4- X+ ZZ 十工 _>,十器 兀+yZ -«- -V y+ z 乂 +,JV +罗 北+ ATV H- Z1 2 3 … ft — 1/IO 2 6 ■…2/7O O 3 …2/7o o 0 … /? — 1 2H oo 0 •…0 ft髯囲去=■心*”( 1-) + “JT NM A- … o (>A" o o o0 (> …《 =M 1 + if ( I —J +rf 盘…O O* = 博(> O …II 肩(I I)…*< *(C):E»r- M B =f? —n — q•_ q n —3—心土吆)=(S) *z^z A =(1- z X-【)4 一M 心-—^X JV =1[ 疋x _■zT —oj-w X-4-z*€v =I川 f + L 0X c直一I1L 0 庖一1I II不+1 n X +I+ 1I X +m A^v—I 1 L X —I I L/T_II -1 1«+ 11O H- 1O十I兀十z aLv =JV —I/T 一I I L11+ I1JV 十z Elv =I I1<-l I I0 £- 00IT T 龙+T TI *一〕0 0 +彳ft 0X —II=卒晋kT 1 L JC00 0I ^-l I I 0I I 0 I T x_【0 T I I 十-<-l I I1 "+【I1I I x-1 i1111L[r[=¥宙W(Q 9q —a t> —q0y -0—n n l> o(y + "M)=q n I甘if </ +非rr V + W Zn0 9 + 吃一衣昌卜曲峙抄耶十h至口g目罟片°匕> *母6(4)对耶 斗目_*■ 2 丰zr + I 丰!1沟"力口 wu *T 1 丰U , 牛i«1 刁■ <* <1—- 0之<72<> O1 1o <1<>习题1-51. ( 1)6 —41 o—4n —G2 , J O| =1 SG 、5 7297<> 101 2 4寸_f=i5 2*>■ i -xr-丈1 = />i _ 1 3/>2 124r/> —62 _3,工2 -r>-- -------------- 厶626 =3 22 41 - 274=53 +6 =5 — 1 -2 -5—322 4 = 1S9,8632-6 -263 27427412 51522. ( 1)32 4-2-152(2)(>(2)N C II I n ih餐怕IN寸寸9村"赳IIII忆M付寸百料汽n0<N N NOIIO *II2仪E11Q =215------=O1U4> —21 B O 4 -22=—30 弓Qi = =S = =d5」歼以矛帝SL AH-•5AI1/> =1 j.e1 — f-t —Q 丸 I £“1齐木逐,l 土力■韦罡箕宜黃N 洛%祸,JCJ ZJ = O, W // — //Z = o// = O NC /L ■= 1 ,□K 皿马SrwiE, 当 // = <)*«. ^ = i H^r , 运务壽圮谢匕屮生力■毛上直硒NT 勻民竽如.总复习题一1. (1)(2)>4k^U 1 3 …(2zr — 1) ( 2n) ( 2jf —2) …42逛吋 4» O …<1O2 …2J * —4 2J / —2込陛壬生斟匸尹!18 潞也/T*型夂KTV = 2 + 川 + …+ 2/r — 4 4- 2/r — 2—2 | I H-王 + *** + (山一N) 4- < rr — 1)]=n fi — 1 ).2祸 因刃 A<(12345) + /V(3Ar42Z) - /V(3)142/), 才艮垢于亍尹口式白勺生X ,k , / 貝宜岂平 15 ,A = 5, / = 1 ,顶H 7V(35421)= 8;看 A = 1, / = 5,"(31425) = 3.卫斤站耳A = 1,1 = 5・(2)ICE 聊門 <|・啰^|^|i 叭O =z — HM00村,N o n N…眄u o w H .R e o r c w 4i r t 5 ;■■==««!> :r ==rt =g Hm CJ Q w * *用黑務传缆建w <r::£ r s时 <2*Q W H r l > r 【 ¥=<•:: CQ C N H <■ <- W E N H <• *•恂 * 檢田应6+£6 +6. +J*寸 + 寸—L—Nri£U46+£6 +9寸 +3寸料 < UPNVINMU N6+ W9 6+ U 9;£r -+芯料 一 +肯-»+ *■ «! 1 || I|iN||g L 尸* 申■■N■■ 1^1 ■備3 Q ft 乍 ib YT Z 爭4宀I +恤■"V II■> ■pw+ u II:NI□ oI1 fr ¥n 「 禺 H <r $ #■ ■-t 蛊 N■ ■ ■ ■■■ ■ ■1■iB ■ ■Ii-1- -I-=o* *Ji■ c e■H 4 ■aQ=Cfk 出 r - N¥■"P 1■ <■■ ■iP4十II SII(寸)q — H q — p (/ — JJo o o四5W L挣 qa.<7«r肿 + n 十 4 d- 〃 £ 宙曲空 士斗 I 宓WW Q I 亦臨口eil 护空"“£、工亦©3 C7 班 w (Q -Loonz = g 石_ <K >I =(» U 1o t 1<i t>i>tr i圻—占 i O«k 1 = 蚯一z r — 4M» 1 = 弓—(>(>Z L -r H - vr I €r IM »I t an & pe+i-K 吉*on x W 臨 0 0-FT 筑作-l«t 百至 z AJt £ (i 丕忙 $tg 百至 I JrlTNrug 「空 fct 丄 Z — TEW PL I — 塩号 ri 疋 z Jrf£173F JS.1W- * ・MTJ *00^ *002: f Ate : JMC O(>£ *(>OZ *■<><> [ 1 玉亠 Kfi 壬上 4*OOOZ f 吋加9■fl — pgPt 卄i i +66 rp=・"- -”v - 运=古-7 V 一 797ri6qE.>9 -怜"9iz°6rn4茫了还一逛p 卜—nJ — #p-HJ f - qp — D n — p • (p + J — # —尊)(尹 + 7 + q + n) = oIp — n p - qa _ q訂一疗歩一 p・lp + n — q_ H 、t p + n + g + A )= (/0 II-ft t * /» + Ji 主WH 4 -£> i 生 n 罡口r 邑卿与d«=rn 乍3 _q 3_ D q-o q-p+ J 十 9 + ») = (/*亠+ § + /> =(/住壬丢• g 一适 母"€号 堆(Q '61 - J -I (I)U — |■ •F 一 11 (1)1 OJ _« -I… I 1 0 1… CZ17Yp+3+g+』)(p_3)(p_g)(3_q)(p_D)(j_°)(g_^)=(J7 — + ¥- *>(/>-R — q + 门一g — + @十 W )=I z (J-<7)-£(/>—^)1*( P + <>-</-+ +<7 + ^)= p — ” ;? 一 q*(抨+ / — # — (尹-I ■寸 + q + 拧、=<7D — q p —t>•空+戶、”+・工4++“、<片+n »■+(;:时+亠〜+工介»Ii乂 IQ 7^><^>><r* — 4/> =——占1 1 1=i彳*i ==i ii■i M 皆1 1 1■ o 料怕N r■ 1 in r ©ailw 1 II比*H 乂■ ■忙i|■ = — E1 1 * 5 ■0? 7 I M> — n—jlXII eII II■r. *i a■1 e■村1 1 N0 1 1b1*I g n 1 ■ N1 ¥X ■ N 旳 1 1料为r*i1 ” ¥ *IIIQ )t 丨■■1■■ I■ ■. ■e1 ■: 1 4*4 + * *■wl «« ■ ■1# PV ■ f *■ 1 ■1*—I *■ :■ +5 匸 S i NII整理文本证该行母U 式与超就象行号U 式祚t 按近F T 又缺少一「次项, 可迪1 1 11*】乂工文”y运杓适辅助行汐!J 式来证明. 令 D =T 2 2-vf XI xf y士 3 — 3 一 • 3_V : JC 目 xjy则 D = (y-x t Hy-x 2)(y-x 3) n g -•勺)(1)另一方面,按第4列展开.傅弔 A f >/ A 1D = 1 */討 + »"・ i4~^~ y * 川 34 + F ' ・^44題仓氐疗号!J 式正星 /対,民P” 的系變攵,展开(1)式,y 的fXjAj + XjAj +XjXJ"J(X, - Xj ).证毕.J i i >> ^ 111解 由题评;如,a u ^ n 12,計口, 分思U 考 12、U, — 4;M M , M U ,"心,AT.M 令别为 6,x, 19, 2.从帀^寻 ^31, A 32, 4林,^34 :>『岗小为 6, -A-, 19, -2. 由彳亍歹山就按彳亍(耳U ) 展开亢理,組ST 1 x 6-b2x(-x) + 0x 19 十(一4) x(-2) =0济夂A - = 7.12处早 41 2/ 42 十 3/ 44 = 1 * X 4. + 2 ■ / 4工 + ° * / 4S + 3*/ 4413M 曲题?把0匕行茅口式按第四行展开― 以及用第二^亍夭素 乘以对应第四行元素的代散余子式,得(”钊+川竝+ 2(/和+川44)= 一 6I 3(上41 十/42)+4(.N 翻+/+*) = 0由此柿寻灯41十川舱=12专6 4 2 23 2 119 12kS膽E __________________________________________________________________________ 直二蚩C S99=呂x frH-6lx ^9 = (l)(/ Fll-⑵(/£9 =<70£一&、<7 &I = <U<Z 9 - ((ZJ (/ 9 - Q></ S ) S = (t)<Z 9 - S =(I></OfI =(t>€^ 9 -(<,>€/<>—<V>C/S)S -眩》€7 9O^IO0 9^1O U 9 £zszo-91*oo1-oI--mooIooIoIoIzII7-z0 I- L 1华TI 0 T-£毎J[- I 0 J洛竺KUfc壬廩卡竺〜銅够J/oo I s 9oL 9oIs 9 o os9o o o1^-90<Q oo,sQ o o o(S)9.Z\ I- z- A S 9 l- 二辛当(l)製「Z£、9£丿(Q N=誓巒(Z)00〉90000000 0£00z£(1 2 1 2 2/+ 3〃=2 2 1 21< 1 234(2 4 2 4、(12= 4 24 2 + —6 U 4 68>0(1413 8 7 >—-2 5-2 5< 2 1 6 5丿/ 4 3 2 1、+ 3-21-21<0-10 -1丿9 6 3、3 -6 3-30 -3;X = B-A〔43 2 1>r 1 212)=21-21—2121L o-1 0-1丿234)(3 1 1 -1 >--4 0-4 0.一1 —3 —3 —5 >3. ( 1)(431、r、r4x7+3x2+1x1解1-232lx 7 + (-2) x 2 + 3x17 0丿I 5x7+7x240x1=6(49丿(2)(123)f-1 -2 -4 r o <)u)2 4 6 —1 -2-40 ()0■(369丿I1 2 4lo ()0 >(3)(3)解(1,2,3) 2=(1 x 3 + 2 x 2 + 3x1)11< ■丿二(叭(4)<3\<3 6 9)解2 (1 2 3)= 2 4 6 .d丿U 2 3丿(5)(6)厂% «12為八V(工]字兀£,兀3)^12 «22 ^23X,«21幻3宀丿丿4解 3AR-2A=3 1/ 0 5 3 0-5 U 9 8A ( 1 6 -2 10 12 3 >2 4-21 5 1 >13 _ 17 29 (1 1 n (12 3](0 5 811 一 1 -1 -24 — 0 -5 6-1 1丿< 0 5 1><2 9 0丿1,其几何M-XX:在线性凭换A TB ^(1) y = Ax(1 oyi5 0丿"一⑴—W 丿5齢止上5量“⑴的投影,见下图. 解(2) y - Ax -y = Ax下、向量$ = 22 > 20 , -2,在反皿由上(U)(04),其几何意义是:在线性变换是平面斗处2上的向量%1 00 0.在X 】轴上的反射,见卞EL 0(14)1o(1厂1)< -6 112-4 l —10 —I[r = -6 訂[+ 签—►X2=12Z1-4Z2+9Z3.L = - IO ZJ- z2+ 16J37解如国,设—fycx^OP}二**丿5丿/cos^? - sin^ Vx1< sin <p co$^9 J V v2>f x} cos ip— x1 sin <p ]sin <p -vx2cos^> 丿为方便起见’利用极生标表示-春tXi = F3Si&X尸“彻炉则有f ”、( r cos 6^ cos r sin 0 sin <p\ rsin 0 sin <p+ r cos^cos <p (r sin(^ +俨)丿从几何上君,在线性疾换y = Ax^F.向-^y = OP.^^x^rx = OP f 披依逆时针方向旅砖了(p甬(即将点1\決原点为中心逆时针雄转炉并)的结果.因此,本题所讨论的线性变换被荷为扯转銮换.8. ( 1)x n + 3X 2I即r 2X … + 5X 21 =4 I + 3*21 = 2分别琳上进阿于右程组碣2-23 0 8(2)<2\3I 石丿WT3t 扌奂白勺灵巨眸K X —21HP12 — b 、-V 2i —济以与力 ET 手t 按白勺绘梓K (常 :)•21 人 22 u 1222X|]十 5X 2I 2X 12+ 5XX|2 + 3兀2x 11 — 2,21 0, x 1223 丁22-2 1v 2 =3, V 3 — 22* 11 -Y 122-v 12 + 5AT 21 *12 +3* 22 —乂1】+ >*12 心1 + ^221o1oIo1o1oIo1o1o1o1o1o1o1o1□=10. (1)解/I2-3oo厂I\7oA-oMoo厂)2)oftAB =^12 IIII解aA = aii *12力+屈=“11 十方11 a\2"12 佝3+ 〃13«22 + A22 仏 + H 盘33 +*33> 叫丿^33 >*11*22 *23為3丿%11如 5如十%血2 %1如+糾血$ +5僞3幻如+5勺3 所以,aA.A + B.AB仍为同阶同£害构上三角形矩阵.14<^11 曰12角军吃殳/t —a 21 a 2223<^31 a M”33 丿(—ma\ i 贝U —mA = —ma2l1一"恆站—ma\r—以⑷八—ma22 ~ w^2j一wa^一丿从而| —mA | =—w«n — mni2 — ma\y ——ma iz —ma2^ —ma3X - ma32—丽席阳二—wp \A \ ——nt4.^ii =5, yiji = 2 x ( —1), >4 |2 = 2 x ( —1), A 22习题2-31.(1)5 z4*r4 [ | —h^4 21 =-2,=1, ^41 = o ,力1工=o> ^22 = 1 , ^32 =—2, ^42 =1,儿3 = th仏3 =心3 =1 ,/心= 一2,^14 = 0,」34 =»,如= 1,< 1 -210、11 —21故AI■⑶故 A~A\(2)丿 A\ = l1—22. ( 1)-X42XIJo2XIJz11zflx\丿6o\7oloooo1loo4.(1)『123(x2 2 5勺=2<3 5 1>(x 、鼻1厂 12 3、 1⑴rn"X |— 1 故— 2 2 52—,从而4x 2 = 0宀丿<3 5 134丿x, = 0J 3(2)(1 -1 -iVx^(2、解芳程组可表示为2 -1 _3 J =1<32 - §丿1心丿<1-1-01f 2、 <5>! = 5 故—2 -1 -31 —0 勺从而*X, = (11 *3丿22 -5;<0;.3丿A\ = 3L3解宙题设 儿丿兀2l 打 2 2 3 1 3 2从而 儿=r 21)353 X 2K 丿 丿1尸3丿-7 6 -4 3 2 9Y -7 -4 八X J-7心 6心 +3X 2 3A :[ + 2X 2—4X 2 + 9X 37兀34兄[⑷『宀[⑷T,(击”-4 0 0 ) 0 -2 -4 0 -6 -10>解 因为|/|=2, 所以/可逆•由求逆公式彳鼻又由 AA~^E^- |/||"i| = |E|,_i即1/ UfTT ,Ml代入|川|得 |才| =国八善=凶2 = 4・ Ml7.(1)由 AB = A \ 2K —(/<- 2F)« = A. 放R ="-2E )r(-233、 -1c0 3 3=1 -11 1 0< ■ -12 1 >l - -1 23 j* 0 3 3、 -1 2 3 < 110>解因(才)"=(|丄|/")-1 =Ml解由方程AR \ A1 \ R、合并含科未知矩阵B的项得(A-E)B = A2-E = (A-E)(A十E),f 0 0 1 ]又A-E=010,<i o oj其行列式|昇—E|=—1工0, ^A-E可送,用(A-E) 1左乘上式两边,即得r 2 o 1R = A + E =0 3 0 *< '0 2 丿2-41. ( 1)M 由方程十E=卫2+号,合并含科耒如夫巨阵〃的项厲寻(A- E)B = A2-E = (A - E)(A + E).r o o 1 >又A-E=010,1 0 0 >其行列式|乂-£|=-1工0,故zi-E可送,用(zi-E)7左乘上式两边,即得r2 0 1 >B =A +E =030.」° 2丿(2)解原式二< a li ac0 、0 a0 ac1 0 c + bd0 1 0 1 0 c^ bd )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,第一章 行列式1 利用对角线法则计算下列三阶行列式(1)381141102---解 381141102---2(4)30(1)(1)118 0132(1)81(4)(1)2481644 (2)ba c ac b cb a —解 ba c ac b cb aacb bac cba bbb aaa ccc3abc a 3b 3c 3(3)222111c b a cb a解 222111c b a c b abc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a )】(4)yx y x xy x y yx y x +++解 yx y x x y x y yx y x +++x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3y 3)2按自然数从小到大为标准次序求下列各排列的逆序数(1)1 2 3 4)解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 4232(3)3 4 2 1解 逆序数为5 3 23 14 24 1, 2 1(4)2 4 1 3 解 逆序数为3 2 1 4 1 4 3 (5)1 3(2n1) 2 4(2n ))解 逆序数为2)1(-n n3 2 (1个) 5 2 5 4(2个) 7 2 74 7 6(3个)(2n 1)2 (2n1)4(2n1)6(2n1)(2n2)(n 1个)(6)1 3 (2n 1) (2n ) (2n 2)2—解 逆序数为n (n 1) 3 2(1个) 5 25 4 (2个)(2n 1)2(2n1)4(2n1)6(2n1)(2n2)(n1个)4 2(1个) 6 26 4(2个)《(2n )2 (2n )4 (2n )6 (2n )(2n 2) (n 1个)3写出四阶行列式中含有因子a 11a 23的项解 含因子a 11a 23的项的一般形式为 (1)t a 11a 23a 3r a 4s其中rs 是2和4构成的排列 这种排列共有两个即24和42所以含因子a 11a 23的项分别是 (1)t a 11a 23a 32a 44(1)1a 11a 23a 32a 44a 11a 23a 32a 44 (1)t a 11a 23a 34a 42(1)2a 11a 23a 34a 42a 11a 23a 34a 42@4 计算下列各行列式(1)71100251020214214解 71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c(2)2605232112131412-解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r (3)efcf bf decd bd aeac ab ---—解 ef cf bf de cd bd ae ac ab ---ec b e c b ec b adf ---=abcdefadfbce 4111111111=---=(4)dc b a100110011001---解 d c b a100110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23abcd ab cd ad 15 证明:(1)1112222bb a a b ab a +(a b )3;<证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=(a b )3(2)yx z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++bz ay by ax x by ax bx az z bx az bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bx az z y b y by ax z x bx az y z bz ay x a +++++++=22.zy x yx z x z y b y x z x z y z y x a 33+=yx z x z y z y x b y x z x z y z y x a 33+=yx z xz y zy x b a )(33+=(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4c 3 c 3c 2 c 2c 1得)5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4c 3c 3c 2得)!022122212*********222=++++=d d c c b b a a(4)444422221111d c b a d c b a d c b a (a b )(a c )(a d )(b c )(b d )(c d )(a b c d );证明444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b dc b ad a c a b +++---= /))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----==(ab )(ac )(ad )(b c )(b d )(c d )(a b c d )(5)1221 1 000 00 1000 01a x a a a a x x xn n n+⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- x n a 1x n 1a n 1x a n证明 用数学归纳法证明当n 2时2121221a x a x a x a x D ++=+-=命题成立假设对于(n 1)阶行列式命题成立 即&D n 1x n 1a 1 x n 2 a n 2x a n1则D n 按第一列展开 有11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-xx a xD D n n n n xD n 1a n x n a 1x n1a n 1x a n因此 对于n 阶行列式命题成立6设n 阶行列式Ddet(a ij ), 把D 上下翻转、或逆时针旋转90、或依副对角线翻转 依次得nnnn a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= 11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=}证明DD D n n 2)1(21)1(--== D 3D证明 因为Ddet(a ij ) 所以nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a DD n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-= DD D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1()7 计算下列各行列式(D k 为k 阶行列式)(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a未写出的元素都是0解aa a a a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开))1()1(10 000 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(a n a n2a n 2(a 21)*(2)xa a a x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ;解 将第一行乘(1)分别加到其余各行 得ax x a ax x a a x x a aa a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0再将各列都加到第一列上得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1([x (n 1)a ](x a )n1(3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nn n n ; 解 根据第6题结果有nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 1111)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++ …此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112;解 |nn nnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开)nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+再按最后一行展开得递推公式 D 2na n d n D 2n2b nc n D 2n2即D 2n(a n d n b n c n )D 2n2于是 ∏=-=ni ii ii n Dc bd a D 222)(而 111111112c b d a d c b a D -==所以 ∏=-=ni ii ii n c b d a D 12)( ^(5) Ddet(a ij ) 其中a ij |ij |;解 a ij |ij |4321 4 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 0 4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r 152423210 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c (1)n 1(n1)2n2(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 a n¥解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--100001 000 100 0100 0100 00113322121321111312112111000011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni in a a a a 8用克莱姆法则解下列方程组%(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x解 因为14211213513241211111-=----=D142112105132412211151-=------=D 284112035122412111512-=-----=D426110135232422115113-=----=D 14202132132212151114=-----=D所以 111==D D x 222==DD x 333==DD x 144-==DD x(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x'解 因为665510006510006510065100065==D 150751001651000651000650000611==D 114551010651000650000601000152-==D 703511650000601000051001653==D 39551601000051000651010654-==D 2121100005100065100651100655==D 所以66515071=x 66511452-=x 6657033=x 6653954-=x 6652124=x9问取何值时 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解;解 系数行列式为μλμμμλ-==1211111D令D 0 得 0或1于是 当0或1时该齐次线性方程组有非零解10 问取何值时齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解解 系数行列式为 /λλλλλλλ--+--=----=101112431111132421D(1)3(3)4(1)2(1)(3)(1)32(1)23令D 0 得 02或3于是 当2或3时该齐次线性方程组有非零解第二章 矩阵及其运算1 已知线性变换⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x求从变量x 1x 2x 3到变量y 1y 2y 3的线性变换解 由已知⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y:2已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y求从z 1 z 2z 3到x 1x 2x 3的线性变换解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x3设⎪⎪⎭⎫ ⎝⎛--=111111111A ⎪⎪⎭⎫⎝⎛--=150421321B 求3AB 2A 及A T B)解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T4计算下列乘积(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635(2)⎪⎪⎭⎫⎝⎛123)321(解 ⎪⎪⎭⎫⎝⎛123)321((132231)(10)/(3))21(312-⎪⎪⎭⎫⎝⎛解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x(a 11x 1a 12x 2a 13x 3 a 12x 1a 22x 2a 23x 3 a 13x 1a 23x 2a 33x 3)⎪⎪⎭⎫⎝⎛321x x x(322331132112233322222111222x x a x x a x x a x a x a x a +++++=5设⎪⎭⎫⎝⎛=3121A ⎪⎭⎫⎝⎛=2101B 问(1)AB BA 吗 解 ABBA因为⎪⎭⎫ ⎝⎛=6443AB ⎪⎭⎫⎝⎛=8321BA 所以AB BA(2)(A B )2A 22AB B 2吗 解 (AB )2A 22AB B 2`因为⎪⎭⎫⎝⎛=+5222B A⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫⎝⎛=27151610所以(A B )2A 22AB B 2 (3)(A B )(A B )A 2B 2吗 解 (AB )(A B )A 2B 2因为⎪⎭⎫⎝⎛=+5222B A ⎪⎭⎫⎝⎛=-1020B A⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=-+906010205222))((B A B A|而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A故(A B )(A B )A 2B 26举反列说明下列命题是错误的(1)若A 20 则A0 解 取⎪⎭⎫ ⎝⎛=0010A 则A 20 但A(2)若A 2A 则A 0或A E解 取⎪⎭⎫ ⎝⎛=0011A 则A 2A 但A 0且A E(3)若AXAY 且A 0 则X Y,解 取 ⎪⎭⎫ ⎝⎛=0001A ⎪⎭⎫⎝⎛-=1111X ⎪⎭⎫⎝⎛=1011Y则AX AY 且A 0 但X Y 7设⎪⎭⎫⎝⎛=101λA 求A 2A 3A k解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A⎪⎭⎫⎝⎛=101λk A k(8设⎪⎪⎭⎫⎝⎛=λλλ001001A 求A k解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫%用数学归纳法证明当k 2时 显然成立假设k 时成立,则k 1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ由数学归纳法原理知⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219 设A B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵%证明 因为A T A 所以 (B T AB )T B T (B T A )T B T A T B B T AB从而B T AB 是对称矩阵10 设AB 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA 证明 充分性 因为A T A B T B 且AB BA 所以(AB )T (BA )T A T B T AB即AB 是对称矩阵必要性 因为A T A B T B 且(AB )TAB 所以!AB (AB )T B T A T BA 11 求下列矩阵的逆矩阵(1)⎪⎭⎫⎝⎛5221解 ⎪⎭⎫⎝⎛=5221A |A |1 故A 1存在因为⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225(2)⎪⎭⎫⎝⎛-θθθθcos sin sin cos解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A |A |10 故A 1存在因为—⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos(3)⎪⎪⎭⎫⎝⎛---145243121解 ⎪⎪⎭⎫⎝⎛---=145243121A |A |20 故A1存在 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A AA A A A A A所以 *||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a2a n 0)解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021由对角矩阵的性质知!⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 1001121112 解下列矩阵方程 (1)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛12643152X解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 |(3)⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-101311022141X解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111 (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=20143101213 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x|故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x故有 ⎪⎩⎪⎨⎧===305321x x x14 设A k O (k 为正整数) 证明(E A )1E A A 2A k1证明 因为A k O 所以E A k E 又因为E A k (E A )(E A A 2A k 1)所以 (E A )(E A A 2A k 1)E 由定理2推论知(E A )可逆 且 (EA )1E A A 2A k1$证明 一方面 有E(EA )1(E A )另一方面 由A kO 有E (EA )(A A 2)A 2A k1(A k1A k )(E A A 2A k 1)(E A )故 (E A )1(E A )(E A A 2A k 1)(E A ) 两端同时右乘(EA )1就有(EA )1(E A )E A A 2 A k115 设方阵A 满足A 2A 2E O 证明A 及A 2E 都可逆 并求A 1及(A2E )1证明 由A 2A 2E O 得A 2A 2E 即A (A E )2E或 E E A A =-⋅)(21 由定理2推论知A 可逆 且)(211E A A -=- 由A 2A 2E O 得 A 2A 6E4E即(A2E )(A3E )4E"或 E A E E A =-⋅+)3(41)2(由定理2推论知(A 2E )可逆且)3(41)2(1A E E A -=+-证明 由A 2A 2E O 得A 2A 2E 两端同时取行列式得 |A 2A |2即 |A ||AE |2 故 |A |0所以A 可逆 而A 2E A 2 |A 2E ||A 2||A |20 故A2E 也可逆"由 A 2A 2E O A (A E )2E A 1A (A E )2A 1E)(211E A A -=-又由 A 2A 2EO (A 2E )A 3(A 2E )4E (A2E )(A3E ) 4 E 所以 (A 2E )1(A 2E )(A3E )4(A2 E )1)3(41)2(1A E E A -=+-16 设A 为3阶矩阵 21||=A 求|(2A )15A *|解 因为*||11A A A =- 所以 —|||521||*5)2(|111----=-A A A A A |2521|11---=A A|2A 1|(2)3|A 1|8|A |18216 17 设矩阵A 可逆 证明其伴随阵A *也可逆且(A *)1(A 1)*证明 由*||11A A A =- 得A *|A |A 1所以当A 可逆时有|A *||A |n |A 1||A |n1从而A *也可逆因为A *|A |A1所以 (A *)1|A |1A' 又*)(||)*(||1111---==A A A A A 所以(A *)1|A |1A |A |1|A |(A 1)*(A 1)* 18 设n 阶矩阵A 的伴随矩阵为A *证明(1)若|A |0则|A *|(2)|A *||A |n1证明(1)用反证法证明 假设|A *|0 则有A *(A *)1E 由此得A A A *(A *)1|A |E (A *)1O/所以A *O 这与|A *|0矛盾,故当|A |0时有|A *|(2)由于*||11A A A =- 则AA *|A |E 取行列式得到|A ||A *||A |n若|A |0 则|A *||A |n1若|A |由(1)知|A *|此时命题也成立因此|A *||A |n119设⎪⎪⎭⎫ ⎝⎛-=321011330A AB A 2B 求B^解 由ABA 2E 可得(A 2E )B A 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--32101133121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=01132133020 设⎪⎪⎭⎫⎝⎛=101020101A 且AB E A 2B求B解 由AB E A 2B 得(A E )B A 2E 即 (AE )B (A E )(A E )因为01001010100||≠-==-E A 所以(AE )可逆 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B-21 设Adiag(1 2 1) A *BA 2BA 8E 求B解 由A *BA 2BA 8E 得(A *2E )BA 8EB 8(A *2E )1A 1 8[A (A *2E )]1 8(AA *2A )1 8(|A |E 2A )18(2E2A )1!4(E A )14[diag(2 1 2)]1)21 ,1 ,21(diag 4-=2diag(12 1)22已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A且ABA 1BA13E 求B 解 由|A *||A |38得|A |2由ABA 1BA 13E 得`AB B 3A B 3(AE )1A 3[A (E A 1)]1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060000660300101001000016123 设P 1AP 其中⎪⎭⎫ ⎝⎛--=1141P ⎪⎭⎫⎝⎛-=Λ2001 求A 11解 由P 1AP 得AP P 1所以A 11 A =P 11P 1.|P |3⎪⎭⎫⎝⎛-=1141*P ⎪⎭⎫⎝⎛--=-1141311P而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001·故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=6846832732273124 设AP P 其中⎪⎪⎭⎫⎝⎛--=111201111P ⎪⎪⎭⎫⎝⎛-=Λ511 求(A )A 8(5E6AA 2) 解 ()8(5E62) diag(1158)[diag(555)diag(6630)diag(1125)]diag(1158)diag(1200)12diag(10)(A )P ()P 1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=111111111425 设矩阵A 、B 及A B 都可逆 证明A1B 1也可逆 并求其逆阵证明 因为 A 1(A B )B1B 1A1A1B1而A 1(A B )B 1是三个可逆矩阵的乘积 所以A 1(AB )B 1可逆 即A1B1可逆(A1B 1)1[A 1(A B )B 1]1B (A B )1A26 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121`解 设⎪⎭⎫⎝⎛=10211A ⎪⎭⎫ ⎝⎛=30122A ⎪⎭⎫⎝⎛-=12131B ⎪⎭⎫⎝⎛--=30322B则 ⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛=+4225303212131021211B B A⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521 27 取⎪⎭⎫⎝⎛==-==1001D C B A 验证|||||||| D C B A D C B A ≠解41001200210100101002000021010010110100101==--=--=D C B A·而 01111|||||||| ==D C B A 故|||||||| D C B A D C B A ≠28设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A 求|A 8|及A 4解令⎪⎭⎫ ⎝⎛-=34431A ⎪⎭⎫ ⎝⎛=22022A则 ⎪⎭⎫⎝⎛=21A O O A A故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A 1682818281810||||||||||===A A A A A ⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A|29 设n 阶矩阵A 及s 阶矩阵B 都可逆求(1)1-⎪⎭⎫ ⎝⎛O B A O解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O 则 ⎪⎭⎫⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143由此得 ⎪⎩⎪⎨⎧====sn E BC O BC OAC E AC 2143⎪⎩⎪⎨⎧====--121413B C O C O C A C所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111(2)1-⎪⎭⎫ ⎝⎛B C O A解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛-43211D D D D B C O A 则 |⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321由此得 ⎪⎩⎪⎨⎧=+=+==sn E BD CD O BD CD OAD E AD 423121⎪⎩⎪⎨⎧=-===----14113211B D CA B D OD A D所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A 30 求下列矩阵的逆阵(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025 解 设⎪⎭⎫ ⎝⎛=1225A ⎪⎭⎫ ⎝⎛=2538B 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A((2)⎪⎪⎪⎭⎫⎝⎛4121031200210001解 设⎪⎭⎫ ⎝⎛=2101A ⎪⎭⎫⎝⎛=4103B ⎪⎭⎫⎝⎛=2112C 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=411212458103161210021210001第三章 矩阵的初等变换与线性方程组|1把下列矩阵化为行最简形矩阵(1)⎪⎪⎭⎫ ⎝⎛--340313021201解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步 r 2(2)r1r 3(3)r 1 )~⎪⎪⎭⎫⎝⎛---020*********(下一步 r 2(1)r 3(2) )~⎪⎪⎭⎫⎝⎛--010*********(下一步 r 3r 2)~⎪⎪⎭⎫⎝⎛--300031001201(下一步 r 33 )~⎪⎪⎭⎫⎝⎛--100031001201(下一步r 23r 3 )~⎪⎪⎭⎫⎝⎛-100001001201(下一步r 1(2)r 2 r 1r 3 ):~⎪⎪⎭⎫⎝⎛100001000001(2)⎪⎪⎭⎫ ⎝⎛----174034301320解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步 r 22(3)r 1 r3(2)r 1 )~⎪⎪⎭⎫⎝⎛---310031001320(下一步 r 3r 2 r 13r 2)~⎪⎪⎭⎫⎝⎛0000310010020(下一步 r 12 )~⎪⎪⎭⎫⎝⎛000031005010(3)⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311解 ⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311(下一步 r 23r 1 r 32r1r 43r 1 )'~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步 r 2(4) r 3(3)r 4(5) )~⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311(下一步 r 13r 2r 3r 2r 4r 2)~⎪⎪⎪⎭⎫ ⎝⎛---00000000002210032011(4)⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132解 ⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步 r 12r 2r 33r 2r 42r 2)~⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110(下一步 r 22r 1r 38r 1r 47r 1)~⎪⎪⎪⎭⎫ ⎝⎛--41000410002020111110(下一步 r 1r 2r 2(1) r 4r 3)~⎪⎪⎪⎭⎫ ⎝⎛----00000410001111020201(下一步 r 2r 3)~~⎪⎪⎪⎭⎫⎝⎛--000004100030110202012 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A 求A解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1 2) 其逆矩阵就是其本身⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1 2(1)) 其逆矩阵是E (1 2(1)) ⎪⎪⎭⎫⎝⎛-=100010101⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=2872212541000101019873216543 试利用矩阵的初等变换 求下列方阵的逆矩阵,(1)⎪⎪⎭⎫ ⎝⎛323513123解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023!~⎪⎪⎪⎭⎫⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211 4(1)设⎪⎪⎭⎫⎝⎛--=113122214A ⎪⎪⎭⎫⎝⎛--=132231B 求X 使AX B解 因为、⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫⎝⎛--412315210 100010001 ~r所以 ⎪⎪⎭⎫⎝⎛--==-4123152101B A X(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A ⎪⎭⎫ ⎝⎛-=132321B 求X 使XA B解 考虑A T X TB T 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(TTB A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X5 设⎪⎪⎭⎫⎝⎛---=101110011A AX 2X A求X|解 原方程化为(A2E )X A 因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~所以 ⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X6在秩是r 的矩阵中,有没有等于0的r1阶子式 有没有等于0的r 阶子式解 在秩是r 的矩阵中 可能存在等于0的r1阶子式也可能存在等于0的r 阶子式例如⎪⎪⎭⎫⎝⎛=010*********A R (A )3000是等于0的2阶子式10001000是等于0的3阶子式;7从矩阵A 中划去一行得到矩阵B 问AB 的秩的关系怎样解 R (A )R (B )这是因为B 的非零子式必是A 的非零子式 故A 的秩不会小于B 的秩8求作一个秩是4的方阵它的两个行向量是 (110)(11 00)解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001—此矩阵的秩为4其第2行和第3行是已知向量9求下列矩阵的秩并求一个最高阶非零子式(1)⎪⎪⎭⎫⎝⎛---443112112013;解 ⎪⎪⎭⎫⎝⎛---443112112013(下一步r 1r 2 )~⎪⎪⎭⎫⎝⎛---443120131211(下一步r 23r 1 r 3r 1 )~⎪⎪⎭⎫⎝⎛----564056401211(下一步r 3r 2 )~⎪⎭⎫ ⎝⎛---000056401211 (矩阵的2秩为41113-=-是一个最高阶非零子式(2)⎪⎪⎭⎫ ⎝⎛-------815073*********解 ⎪⎪⎭⎫⎝⎛-------815073*********(下一步 r 1r2r 22r 1 r 37r 1 )~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步 r 33r 2 )~⎪⎭⎫ ⎝⎛----0000059117014431矩阵的秩是2 71223-=-是一个最高阶非零子式(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812—解 ⎪⎪⎪⎭⎫⎝⎛---023010*********73812(下一步 r 12r 4r 22r 4r 33r 4)~⎪⎪⎪⎭⎫⎝⎛------02301024205363071210(下一步 r 23r 1r 32r 1) ~⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210(下一步 r 216r 4r 316r 2)~⎪⎪⎪⎭⎫ ⎝⎛-02301000001000071210~⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301矩阵的秩为3 070023085570≠=-是一个最高阶非零子式10 设A 、B 都是mn 矩阵 证明A ~B 的充分必要条件是R (A )R (B )证明 根据定理3 必要性是成立的 —充分性 设R (A )R (B ) 则A 与B 的标准形是相同的 设A 与B 的标准形为D 则有A ~D D ~B由等价关系的传递性 有A ~B11设⎪⎪⎭⎫ ⎝⎛----=32321321k k k A 问k 为何值 可使 (1)R (A )1(2)R (A )2(3)R (A )3解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r(1)当k 1时R (A )1 (2)当k2且k 1时 R (A )2 )(3)当k 1且k2时R (A )312 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x解 对系数矩阵A 进行初等行变换有A ⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x故方程组的解为 。