2020中考数学压轴题选择填空

合集下载

2020年中考数学选择填空压轴题汇编几何综合结论含解析

2020年中考数学选择填空压轴题汇编几何综合结论含解析

几何综合结论1. (2020深圳)如图,矩形纸片個8中,AB=6. 5(7=12.将纸片折叠,使点3落在边"的延长线上的点 G 处,折痕为肪 点E 、尸分别在边血和边證上.连接%,交CD 于点、K, FG 交CD 于点、H.给出以下结 论: ① EF1BG ;② GE=GF :③ 冰和2X00的而积相等;④ 当点尸与点Q 重合时,Z/?£F=75° ,其中正确的结论共有( )【解答】解:如图,连接宓设EFG BG 交于点0,•••将纸片折叠,使点〃落在边〃的延长线上的点G 处,B. 2个 C. 3个D. 4个:.EFIBG, BO=GO. BE=EG, BF= FG,故①正确,AD//BC.:・ZEGO= ZFBO、又T ZEOG= ZBOF,:.、BOZ'GOE (ASA\:・BF=EG,:・BF=EG=GF、故②正确,•: BE=EG=BF=FG、・••四边形购沪是菱形,:•乙BEF= ZGEF,当点尸与点Q重介时,则BF=BC=BE=\2,TsinZ 遊「,•••ZM5=30° ,:・ZDEF=W,故④正确,由题意无法证明△宓和△GAZf的而积相等,故③错误:故选:C.2.(2020贵州铜仁)如图,正方形個力的边长为4,点厅在边曲上,BE=\,ZQLW=45°,点尸在射线刖上,且过点尸作“的平行线交BA的延长线于点H, 67■与初相交于点G,连接EC、EG、EF.下列结论:①尸的而积为S②△庇G的周长为&③必=亦+血:其中正确的是()A.①(D ③B. @@C.①②【解答】解:如图,在正方形個8中,AD//BC. AB=BC=AD=49AZZ£W=90° ,HF//AD.AZ J ^=90° ,VZ2£4F=90° - ZMQ45° >AAFH=AHAF.:.AH=HF=\=BE.:.EH=AE^AH=AB- BE ・AH=4 = BC 、:AEHFg'CBE (SAS'、:・EF=EC, ZHEF= ZBCE,•:乙BCE+乙BEC=9$ ,:・HEHZBEC=9y »:.ZFEC=9Q° ,:■ \ CEF 是等腰直角三角形, 在 R 仏CBE 中,BE=1. BC=A. H 刀D.②③ ZB=ZBAD=9Q Q ,:.EC=BE+BC = 17.=i=g =兰:£g云EF・EC 2EC 2\故①正确;过点尸作FQLBC于0,交.AD于P,•••Z 时=90° = ZH= ZHAD.・••四边形北明是矩形,•: AH=HF,.•・矩形册叨是正方形,:.AP=PH=AH=\,同理:四边形测是矩形,:.PQ=AB=\y BQ=AP1、FQ=FP-PQ=z. CQ=BO BQ=3、•: AD〃BC,•••△/TVs △磁,FP _况. 五一&在RtAEAG 中,根据勾股宦理得,EG°V/i^=4,=空 Is t 2旳工空 Is 产云 :・E C 羊D C+B E,故③错误,・•・正确的有①故选:C.:.AG=AP^PG'AEG 的周长为 AG-E&rAEI r 3=8,敬②正确; 25:.DG^BE 1£7•: EC= ( 3:.DG=AD- AG3. (2020黑龙江鹤岗)如图,正方形 馭7?的边长为⑦ 点&在边月万上运动(不与点川3重合),ADAM= 45°,点尸在射线凡『上,且AF ^^BE,仔■与血相交于点G,连接应'、EF 、EG.则下列结论: ① ZECF= 45° :② △近的周长为(1 <3:③ B »D C=E C ;④△轩的而积的最大值是肚其中正确的结论是( )•:BE=BH, Z 翊=90° ,:・AF=EH,⑤当BE 二;a 时,G 是线段初的中点.A.①②③B.②④⑤C.①®®D.①④⑤ 【解答】解:如图1中, 任BC 上截取BH=庞,连接筋•: ZDAM=ZEHB=45° , Z馳?=90° ,:・ZFAE=ZEHC=\35° ,•: BA=BC, BE= BH,:.AE=HC.:仏FAE^HEHC (SAS)、:・EF=EC, ZAEF= ZECH,•:乙EC出乙CEB=90° ,:.AAEF^ACEB=W y•••Z亦*90° ,:•乙ECF= ZEFC='M ,故①正确,如图2中.延长初到/ 使得BE,则厶CBMHCDH ISAS). :・ZECB= ZDCH、:.2LECH= ABCD=W ,:.ZECG=ZGCH=45° ,•: CG=CG、CE=CH.:.HGCE^HGCH (SAS),:・EG=GH,V GH=D&rDH. DH=BE、:・EG=BE+DG.故③错误,'AEG的周长=AE^EG-AG= AE-AH= AD-DH^AE= AE^E&vAD= A&rAD= 2a.故②错误,二屈 设殆F 贝^AE=a-x. AF 阳=—- 十一■ ■£> 2 W.Y ax解得-Y •:.AG=GD.故⑤正确,故选:D.4. (2020黑龙江绥化)如图,在Rt △磁中,G9为斜边初的中线,过点。

2020年中考数学选择填空压轴题汇编最值问题含解析

2020年中考数学选择填空压轴题汇编最值问题含解析

2020年中考数学选择填空压轴题汇编:最值问题1.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2 2 .【解答】解:如图,连接BE,BD.由题意BD2,∵∠MBN=90°,MN=4,EM=NE,∴BE MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为22.故答案为22.2.(2020•玉林)把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A.﹣4 B.0 C.2 D.6【解答】解:∵把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y =﹣a(x﹣1)2+4a,∴原二次函数的顶点为(1,﹣4a),∴原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,∴b=﹣2a,c=﹣3a,∵(m﹣1)a+b+c≤0,∴(m﹣1)a﹣2a﹣3a≤0,∵a>0,∴m﹣1﹣2﹣3≤0,即m≤6,∴m的最大值为6,故选:D.3.(2020•河南)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.【解答】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′2,的长l,∴阴影部分周长的最小值为2.故答案为:.4.(2020•鄂州)如图,已知直线y x+4与x、y轴交于A、B两点,⊙O的半径为1,P为AB上一动点,PQ切⊙O于Q点.当线段PQ长取最小值时,直线PQ交y轴于M点,a为过点M的一条直线,则点P到直线a的距离的最大值为2.【解答】解:如图,在直线y x+4上,x=0时,y=4,当y=0时,x,∴OB=4,OA,∴tan∠OBA,∴∠OBA=30°,由PQ切⊙O于Q点可知:OQ⊥PQ,∴PQ,由于OQ=1,因此当OP最小时PQ长取最小值,此时OP⊥AB,∴OP OB=2,此时PQ,BP2,∴OQ OP,即∠OPQ=30°,若使点P到直线a的距离最大,则最大值为PM,且M位于x轴下方,过点P作PE⊥y轴于点E,∴EP BP,∴BE3,∴OE=4﹣3=1,∵OE OP,∴∠OPE=30°,∴∠EPM=30°+30°=60°,即∠EMP=30°,∴PM=2EP=2.故答案为:2.5.(2020•荆门)在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动,A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为()A.2B.2C.6D.3【解答】解:设C(m,0),∵CD=2,∴D(m+2,0),∵A(0,2),B(0,4),∴AC+BD,∴要求AC+BD的最小值,相当于在x轴上找一点P(m,0),使得点P到M(0,2)和N(﹣2,4)的距离和最小,(PM+PN),如图1中,作点M关于原点O的对称点Q,连接NQ交x轴于P′,连接MP′,此时P′M+P′N的值最小,∵N(﹣2,4),Q(0,﹣2)P′M+P′N的最小值=P′N+P′M=P′N+P′Q=NQ2,∴AC+BD的最小值为2.故选:B.6.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为2 .【解答】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD=4,OE=3,∴DE5,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴,∴,∴MN,当点C与C′重合时,△C′DE的面积最小,最小值5×(1)=2,故答案为2.7.(2020•徐州)在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为99 .【解答】解:作△ABC的外接圆⊙O,过C作CM⊥AB于M,∵弦AB已确定,∴要使△ABC的面积最大,只要CM取最大值即可,如图所示,当CM过圆心O时,CM最大,∵CM⊥AB,CM过O,∴AM=BM(垂径定理),∴AC=BC,∵∠AOB=2∠ACB=2×45°=90°,∴OM=AM AB3,∴OA3,∴CM=OC+OM=33,∴S△ABC AB•CM6×(33)=99.故答案为:99.8.(2020•扬州)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为9.【解答】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4,∵四边形ECGF是平行四边形,∴EF∥CG,∴△EOD∽△GOC,∴,∵DF DE,∴,∴,∴,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4,∴GO=5,∴EG的最小值是,故答案为:9.9.(2020•聊城)如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为4+2.【解答】解:∵点A(1,1),点C的纵坐标为1,∴AC∥x轴,∴∠BAC=45°,∵CA=CB,∴∠ABC=∠BAC=45°,∴∠C=90°,∵B(3,3)∴C(3,1),∴AC=BC=2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,则EF=BC=2,AF=6﹣2=4,∴AE2,∴最小周长的值=AC+BC+AE=4+2,故答案为:4+2.10.(2020•泰安)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A. 1 B.C.2 1 D.2【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,∵OB=OD=2,∠BOD=90°,∴BD=2,∴CD=21,∴OM CD,即OM的最大值为;故选:B.11.(2020•乐山)如图,在平面直角坐标系中,直线y=﹣x与双曲线y交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.B.C.﹣2 D.【解答】解:点O是AB的中点,则OQ是△ABP的中位线,当B、C、P三点共线时,PB最大,则OQ BP最大,而OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,设点B(m,﹣m),则(m﹣2)2+(﹣m﹣2)2=32,解得:m2,∴k=m(﹣m),故选:A.12.(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为15 .【解答】解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB10,∵A′H⊥AB,∴AH=HB=5,∴A′H AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.13.(2020•新疆)如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为 6 .【解答】解:如图所示,作点A关于BC的对称点A',连接AA',A'D,过D作DE⊥AC于E,∵△ABC中,∠BAC=90°,∠B=60°,AB=2,∴BH=1,AH,AA'=2,∠C=30°,∴Rt△CDE中,DE CD,即2DE=CD,∵A与A'关于BC对称,∴AD=A'D,∴AD+DE=A'D+DE,∴当A',D,E在同一直线上时,AD+DE的最小值等于A'E的长,此时,Rt△AA'E中,A'E=sin60°×AA'23,∴AD+DE的最小值为3,即2AD+CD的最小值为6,故答案为:6.。

2020年中考数学5.几何综合选择填空压轴题(含解析)

2020年中考数学5.几何综合选择填空压轴题(含解析)

几何综合-填空选择压轴题51、以正方形ABCD勺边AD作等边△ ADE则/ BEC勺度数是 __________2、如图.在厶ABC中, / ACB=60 , AC=1, D是边AB的中点,E是边BC上一点.若DE平分△ ABC的周长,则DE的长是 ____ .3、已知CD是△ ABC的边AB上的高,若CD・3,AD=1AB=2AC则BC的长为__4、如图,将面积为32V2的矩形ABCC沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=J,贝U AP的长为____ .p5、如图,△ ABC是等边三角形,△ ABD是等腰直角三角形,/ BAD=90 , AE L BD 于点E,连CD分别交AE AB于点F, G过点A作AH L CD交BD于点H.则下列结论:①/ ADC=15 :② AF=AG ③ AH=DF ④厶AF3A CBQ ⑤AF= (V3 - 1)EF.其中正确结论的个数为()A. 5 B . 4 C . 3 D . 26 已知O 0的半径为10cm AB CD是O O的两条弦,AB// CD AB=16cm CD=12cm则弦AB和CD之间的距离是cm513 13 13 7 77、如图,将矩形ABCD 沿 EF 折叠,使点B 落在AD 边上的点G 处,点C 落在点H 处,已知/ DGH=30,连接BG 则/ AGB ________ .8、如图,?ABCD 勺对角线相交于点 0,且A 》CD 过点0作OM L AC,交AD 于点 M.如果△ CDM 勺周长为8,那么?ABCD 勺周长是 _____ .9、如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为 49,则 sin a - COS a =( ) A 13 B10、如图,P是厶ABC的内心,连接PA PB PC, △ PAB △ PBG △ PAC的面积分别为S、S、S.则Si ____ S2+S3.(填“v” 或“二”或“〉”)11、如图,△ ABC中, AB=AC AD L BC 于D点,DEL AB 于点E, BF 丄AC 于点F,DE=3cryi 则BF= ______ cm12、如图,已知半圆O与四边形ABCD勺边AD AB BC都相切,切点分别为DE、C,半径OC=1 则AE?BE=_.13、《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,冋该直角二角形能容纳的正方形边长最大是多少步?”该问题的答案是____________ 步.14、如图,以AB为直径的。

2020年中考选择填空压轴题

2020年中考选择填空压轴题

初三数学冲刺资料1.如图,△ABC的顶点A在反比例函数y=(x>0)的图象上,顶点C在x轴上,AB∥x轴,若点B的坐标为(1,3),S△ABC=2,则k的值为()A.4B.﹣4C.7D.﹣72.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD 的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5B.﹣4C.﹣3D.﹣23.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.B.1C.D.2第1题图第2题图第3题图4.如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.5.如图,四边形ABCD的∠BAD=∠C=90∘,AB=AD,AE⊥BC于E,△BEA 旋转后能与△DFA重合.若AE=5cm,则四边形AECF的面积为________.6.如图,在四边形ABCD中,∠ADC=∠ABC=90∘,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是________.第4题图第5题图第6题图7.如图,在扇形AOB中,∠AOB=90∘,C为弧AB中点,点D在OB上,点E在OB 的延长线上,当正方形CDEF的边长为42时,则阴影部分的面积为________.8如图,.四边形ABCD中,AB=CD,AD // BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=5,则图中阴影部分扇形面积___.9.如图,菱形ABCD的边长为2cm,以点O为圆心,OA长为半径的AD 经过点C,作CE⊥OD,垂足为点E,则阴影部分面积为________.第8题图第9题图第10题图10.如图,在圆心角为90∘的扇形OAB中,半径OA=2cm,C为弧AB的中点,D是OA的中点,则图中阴影部分的面积为________cm2.11.如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π12.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_______.第10题图第11题图第12题图13.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以2cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC CB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y 与x之间关系的是()14.如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.15.如图,已知AO为Rt△ABC的角平分线,∠ACB=90∘,AC BC=43,以O为圆心,OC为半径的圆分别交AO,BC于点D,E,连接ED并延长交AC于点F.(1)求证:AB是⊙O的切线;(2)求tan∠CAO的值.。

2020年中考数学压轴题每日一练(含答案)

2020年中考数学压轴题每日一练(含答案)

2020年中考数学压轴题每日一练(4.18)一、选择题1.如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12 B.﹣10 C.﹣9 D.﹣62.如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE =2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.则线段OF长的最小值()A.2B.+2 C.2﹣2 D.5二、填空题3.如图,等腰直角△ABC中,∠C=90°,AC=BC=,E、F为边AC、BC上的两个动点,且CF=AE,连接BE、AF,则BE+AF的最小值为.4.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.三、解答题5.如图,矩形ABCD中,AB=a,BC=b,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记P A=x,点D到直线P A的距离为y,且y关于x的函数图象大致如图:(1)a=,b=;(2)求y关于x的函数关系式,并直接写出x的取值范围;(3)当△PCD的面积是△ABP的面积的时,求y的值.6.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+P A的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【答案与解析】一、选择题1.【分析】设A(m,),C(0,n),则D(m,0),E(m,0),由AB=BC,推出B(,),根据点B在y=上,推出•=k,可得mn=3k,连接EC,OA.因为AB=BC,推出S△AEC=2•S△AEB=14,根据S△AEC=S△AEO+S△ACO﹣S△ECO,构建方程即可解决问题;【解答】解:设A(m,),C(0,n),则D(m,0),E(m,0),∵AB=BC,∴B(,),∵点B在y=上,∴•=k,∴k+mn=4k,∴mn=3k,连接EC,OA.∵AB=BC,∴S△AEC=2•S△AEB=14,∵S△AEC=S△AEO+S△ACO﹣S△ECO,∴14=•(﹣m)•+•n•(﹣m)﹣•(﹣m)•n,∴14=﹣k﹣+,∴k=﹣12.故选:A.2.【分析】连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,证明△EDO≌△FDM,可得FM=OE=2,由条件可得OM=5,根据OF+MF≥OM,即可得出OF的最小值.【解答】解:如图,连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,∵DE=DF,DO=DM,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,AB=2,O是BC边的中点,∴OC=,∴OD=,∴OM=,∵OF+MF≥OM,∴OF≥.故选:D.二、填空题3.如图,等腰直角△ABC中,∠C=90°,AC=BC=,E、F为边AC、BC上的两个动点,且CF=AE,连接BE、AF,则BE+AF的最小值为.【分析】如图,作点C关于直线AB的对称点D,连接AD,BD,延长DA到H,使得AH=AD,连接EH,BH,DE.想办法证明AF=DE=EH,BE+AF的最小值转化为EH+EB 的最小值.【解答】解:如图,作点C关于直线AB的对称点D,连接AD,BD,延长DA到H,使得AH=AD,连接EH,BH,DE.∵CA=CB,∠C=90°,∴∠CAB=∠CBA=45°,∵C,D关于AB对称,∴DA=DB,∠DAB=∠CAB=45°,∠ABD=∠ABC=45°,∴∠CAD=∠CBD=∠ADC=∠C=90°,∴四边形ACBD是矩形,∵CA=CB,∴四边形ACBD是正方形,∵CF=AE,CA=DA,∠C=∠EAD=90°,∴△ACF≌△DAE(SAS),∴AF=DE,∴AF+BE=ED+EB,∵CA垂直平分线段DH,∴ED=EH,∴AF+BE=EB+EH,∵EB+EH≥BH,∴AF+BE的最小值为线段BH的长,BH==,∴AF+BE的最小值为,故答案为.4.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于2或1cm.【分析】根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ =30°,再由PN与DC平行,得到∠PF A=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.【解答】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=,即DE=cm,根据勾股定理得:AE=2cm,∵M为AE的中点,∴AM=AE=cm,在Rt△ADE和Rt△PNQ中,,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PF A=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=,∴AP===2cm;由对称性得到AP′=DP=AD﹣AP=3﹣2=1cm,综上,AP等于1cm或2cm.故答案为:1或2.三、解答题5.如图,矩形ABCD中,AB=a,BC=b,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记P A=x,点D到直线P A的距离为y,且y关于x的函数图象大致如图:(1)a=3,b=4;(2)求y关于x的函数关系式,并直接写出x的取值范围;(3)当△PCD的面积是△ABP的面积的时,求y的值.【分析】(1)根据函数的图象,即可得出a、b的值;(2)分点P在线段AB上跟点P在线段BC上讨论,依据相似三角形的性质,即可得出y与x之间的关系;(3)由等高三角形的面积比等于底边长之比,可得出BP的长,根据勾股定理得出x的值,代入到(2)中的关系式中即可求出y的值.【解答】解:(1)当点P在线段AB上时,D到AB的距离为AD,由函数图象可看出,AD=4,即BC=b=4,当点P运动到线段BC上时,D到AB的距离出现变化,由函数图象可看出,AB=3=a.故答案为:3;4.(2)①当点P在线段AB上时,有0≤AP≤AB,即0≤x≤3,此时y=4.②当点P在线段BC上时,连接AC,过点D作DE⊥AP于点E,如图,由勾股定理可得:AC==5.∵此时P点过B点向C点运动,∴AB<AP≤AC,即3<x≤5.∵AD∥BC,∴∠DAE=∠APB,又∵∠ABP=∠DEA=90°,∴△DAE∽△APB,∴=,即=,∴y=.综合①②得:y=.(3)∵△PCD的面积是△ABP的面积的,且两三角形等高,∴BP=3PC,∵BP+PC=BC=4,∴BP=3,由勾股定理可得:x==3,将x=3代入,得y==2.故当△PCD的面积是△ABP的面积的时,y的值为2.6.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+P A的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据点B,C的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可得出点A的坐标,由点B,C的坐标可得出直线BC的解析式,作O关于BC的对称点O′,则点O′的坐标为(3,3),由两地之间线段最短可得出当A,P,O′共线时,PO+P A取最小值,由点O′,A的坐标可求出该最小值,由点A,O′的坐标,利用待定系数法可求出直线AO′的解析式,联立直线AO′和直线BC的解析式成方程组,通过解方程组可求出点P的坐标;(3)由点B,C,D的坐标可得出BC,BD,CD的长,由CD2+BC2=BD2可得出∠BCD=90°,由点A,C的坐标可得出OA,OC的长度,进而可得出=,结合∠AOC=∠DCB=90°可得出△AOC∽△DCB,进而可得出点Q与点O重合时△AQC∽△DCB;连接AC,过点C作CQ⊥AC,交x轴与点Q,则△ACQ∽△AOC∽△DCB,由相似三角形的性质可求出AQ的长度,进而可得出点Q的坐标.综上,此题得解.【解答】解:(1)将B(3,0),C(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+3.(2)当y=0时,﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴点A的坐标为(﹣1,0).∵点B的坐标为(3,0),点C的坐标为(0,3),∴直线BC的解析式为y=﹣x+3.如图1,作O关于BC的对称点O′,则点O′的坐标为(3,3).∵O与O′关于直线BC对称,∴PO=PO′,∴PO+P A的最小值=PO′+P A=AO′==5.设直线AO′的解析式为y=kx+m,将A(﹣1,0),Q′(3,3)代入y=kx+m,得:,解得:,∴直线AO′的解析式为y=x+.联立直线AO′和直线BC的解析式成方程组,得:,解得:,∴点P的坐标为(,).(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点D的坐标为(1,4).又∵点C的坐标为(0,3),点B的坐标为(3,0),∴CD==,BC==3,BD==2,∴CD2+BC2=BD2,∴∠BCD=90°.∵点A的坐标(﹣1,0),点C的坐标为(0,3),∴OA=1,OC=3,∴==.又∵∠AOC=∠DCB=90°,∴△AOC∽△DCB,∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图2,连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽DCB,∴=,即=,∴AQ=10,∴点Q的坐标为(9,0).综上所述:当Q的坐标为(0,0)或(9,0)时,以A,C,Q为顶点的三角形与△BCD相似.。

2020年中考数学选择填空压轴题汇编函数综合结论含解析.docx

2020年中考数学选择填空压轴题汇编函数综合结论含解析.docx

函数综合结论图象上的任意四点,现有以下结论:1.(2020•福建)设A,B,C,D是反比例函数y=kk①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是①④.(写出所有正确结论的序号)【解答】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④2.(2020•广东)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;=1,可得b=﹣2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−k2k由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.的部分图象如图所示,有以下结论:3.(2020•玉林)已知:函数y1=|x|与函数y2=1|k|①当x<0时,y1,y2都随x的增大而增大;②当x<﹣1时,y1>y2;③y1与y2的图象的两个交点之间的距离是2;④函数y=y1+y2的最小值是2.则所有正确结论的序号是②③④.【解答】解:补全函数图象如图:①当x<0时,y1随x的增大而增大,y2随x的增大而减小;故①错误;②当x<﹣1时,y1>y2;故②正确;③y1与y2的图象的两个交点之间的距离是2;故③正确;④由图象可知,函数y=y1+y2的最小值是2,故④正确.综上所述,正确的结论是②③④.故答案为②③④.4.(2020•遵义)抛物线y=ax2+bx+c的对称轴是直线x=﹣2.抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,下列结论中正确的个数有()①4a﹣b=0;②c≤3a;③关于x的方程ax2+bx+c=2有两个不相等实数根;④b2+2b>4ac.A.1个B.2个C.3个D.4个=−2,【解答】解:∵抛物线的对称轴为直线x=−k2k∴4a﹣b=0,所以①正确;∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴x =﹣1时y >0,且b =4a ,即a ﹣b +c =a ﹣4a +c =﹣3a +c >0,∴c >3a ,所以②错误;∵抛物线与x 轴有两个交点,且顶点为(﹣2,3),∴抛物线与直线y =2有两个交点,∴关于x 的方程ax 2+bx +c =2有两个不相等实数根,所以③正确;∵抛物线的顶点坐标为(﹣2,3),∴4kk −k 24k =3,∴b 2+12a =4ac ,∵4a ﹣b =0,∴b =4a ,∴b 2+3b =4ac ,∵a <0,∴b =4a <0,∴b 2+2b >4ac ,所以④正确;故选:C .5.(2020•大兴安岭)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点(4,0),其对称轴为直线x =1,结合图象给出下列结论:②4a﹣2b+c>0;③当x>2时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:抛物线开口向上,因此a>0,与y轴交于负半轴,因此c<0,故ac<0,所以①正确;抛物线对称轴为x=1,与x轴的一个交点为(4,0),则另一个交点为(﹣2,0),于是有4a﹣2b+c=0,所以②不正确;x>1时,y随x的增大而增大,所以③正确;抛物线与x轴有两个不同交点,因此关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根,所以④正确;综上所述,正确的结论有:①③④,故选:C.6.(2020•牡丹江)如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B(4,0),则下列结论中,正确的个数是()②4a+b>0;③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;④若抛物线的对称轴是直线x=3,m为任意实数,则a(m﹣3)(m+3)≤b(3﹣m);⑤若AB≥3,则4b+3c >0.A.5 B.4 C.3 D.2【解答】解:如图,抛物线开口向下,与y轴交于负半轴,对称轴在y轴右侧,∴a<0,c<0,−k2k>0,∴b>0,∴abc>0,故①正确;如图,∵抛物线过点B(4,0),点A在x轴正半轴,∴对称轴在直线x=2右侧,即−k2k>2,∴2+k2k =4k+k2k<0,又a<0,∴4a+b>0,故②正确;∵M(x1,y1)与N(x2,y2)是抛物线上两点,0<x1<x2,可得:抛物线y=ax2+bx+c在0<k<−k2k上,y随x的增大而增大,在k>−k2k上,y随x的增大而减小,∴y1>y2不一定成立,故③错误;=3,即b=﹣6a,若抛物线对称轴为直线x=3,则−k2k则a(m﹣3)(m+3)﹣b(3﹣m)=a(m﹣3)2≤0,∴a(m﹣3)(m+3)≤b(3﹣m),故④正确;∵AB≥3,则点A的横坐标大于0或小于等于1,当x=1时,代入,y=a+b+c≥0,当x=4时,16a+4b+c=0,∴a=4k+k,−16+k+k≥0,整理得:4b+5c≥0,则4b+3c≥﹣2c,又c<0,则4k+k−16﹣2c>0,∴4b+3c>0,故⑤正确,故正确的有4个.故选:B.7.(2020•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0 B.1 C.2 D.3【解答】解:对于①:二次函数开口向下,故a <0,与y 轴的交点在y 的正半轴,故c >0,故ac <0,因此①错误;对于②:二次函数的图象与x 轴相交于A (﹣2,0)、B (1,0),由对称性可知,其对称轴为:k =−2+12=−12,因此②错误; 对于③:设二次函数y =ax 2+bx +c 的交点式为y =a (x +2)(x ﹣1)=ax 2+ax ﹣2a ,比较一般式与交点式的系数可知:b =a ,c =﹣2a ,故2a +c =0,因此③正确;对于④:当x =﹣1时对应的y =a ﹣b +c ,观察图象可知x =﹣1时对应的函数图象的y 值在x 轴上方,故a ﹣b +c >0,因此④正确.∴只有③④是正确的.故选:C .8.(2020•荆门)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A 、B ,顶点为C ,对称轴为直线x =1,给出下列结论:①abc <0;②若点C 的坐标为(1,2),则△ABC 的面积可以等于2;③M (x 1,y 1),N (x 2,y 2)是抛物线上两点(x 1<x 2),若x 1+x 2>2,则y 1<y 2; ④若抛物线经过点(3,﹣1),则方程ax 2+bx +c +1=0的两根为﹣l ,3.其中正确结论的序号为 ①④ .【解答】解:①抛物线的对称轴在y 轴右侧,则ab <0,而c >0,故abc <0,正确,符合题意; ②△ABC 的面积=12AB •y C =12×AB ×2=2,解得:AB =2,则点A (0,0),即c =0与图象不符,故②错误,不符合题意;③函数的对称轴为x =1,若x 1+x 2>2,则12(x 1+x 2)>1,则点N 离函数对称轴远,故y 1>y 2,故②错误,不符合题意;④抛物线经过点(3,﹣1),则y′=ax2+bx+c+1过点(3,0),根据函数的对称轴该抛物线也过点(﹣1,0),故方程ax2+bx+c+1=0的两根为﹣l,3,故④正确,符合题意;故答案为:①④.9.(2020•随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴的正半轴交于点C,顶点为D,则下列结论:①2a+b=0;②2c<3b;③当△ABC是等腰三角形时,a的值有2个;.④当△BCD是直角三角形时,a=−√22其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵二次函数y=ax2+bx+c的图象与x轴交于A(﹣1,0),B(3,0)两点,=1,∴对称轴为直线x=−k2k∴b=﹣2a,∴2a+b=0,故①正确,当x=1时,0=a﹣b+c,∴a+2a+c=0,∴c=﹣3a,∴2c=3b,故②错误;∵二次函数y=ax2﹣2ax﹣3a,(a<0)∴点C(0,﹣3a),当BC=AB时,4=√9+9k2,∴a=−√7,3当AC=BC时,4=√1+9k2,,∴a=−√153∴当△ABC是等腰三角形时,a的值有2个,故③正确;∵二次函数y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴顶点D(1,4a),∴BD2=4+16a2,BC2=9+9a2,CD2=a2+1,若∠BDC=90°,可得BC2=BD2+CD2,∴9+9a2=4+16a2+a2+1,∴a=−√2,2若∠DCB=90°,可得BD2=CD2+BC2,∴4+16a2=9+9a2+a2+1,∴a=﹣1,,故④错误.∴当△BCD是直角三角形时,a=﹣1或−√22故选:B.10.(2020•武汉)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是①③(填写序号).【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=﹣4,故①正确;=−1,函数图象开口向下,若点C(﹣5,y1),D(π,y2)在该抛物该抛物线的对称轴为直线x=2+(−4)2线上,则y1>y2,故②错误;当x=﹣1时,函数取得最大值y=a﹣b+c,故对于任意实数t,总有at2+bt+c≤a﹣b+c,即对于任意实数t,总有at2+bt≤a﹣b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为﹣3和1或﹣2和0或﹣1和﹣1,故p的值有三个,故④错误;故答案为:①③.11.(2020•襄阳)二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.其中正确的有()A.4个B.3个C.2个D.1个【解答】解:①∵抛物线开口向上,且与y轴交于负半轴,∴a>0,c<0,∴ac<0,结论①正确;②∵抛物线对称轴为直线x=1,=1,∴−k2k∴b=﹣2a,∵抛物线经过点(﹣1,0),∴a﹣b+c=0,∴a+2a+c=0,即3a+c=0,结论②正确;③∵抛物线与x轴由两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,结论③正确;④∵抛物线开口向上,且抛物线对称轴为直线x=1,∴当x<1时,y随x的增大而减小,结论④错误;故选:B.12.(2020•湘西州)已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是()A.①③B.②⑤C.③④D.④⑤【解答】解:①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;②由于a<0,所以﹣2a>0.又b>0,所以b﹣2a>0,故此选项错误;③当x=﹣1时,y=a﹣b+c<0,故此选项错误;④当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确;⑤当x=3时函数值小于0,y=9a+3b+c<0,且该抛物线对称轴是直线x=−k2k =1,即a=−k2,代入得9(−k2)+3b+c<0,得2c<3b,故此选项正确;故④⑤正确.故选:D.13.(2020•南京)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是①②④.【解答】解:①∵二次函数y=﹣(x﹣m)2+m+1(m为常数)与函数y=﹣x2的二次项系数相同,∴该函数的图象与函数y=﹣x2的图象形状相同,故结论①正确;②∵在函数y=﹣(x﹣m)2+m2+1中,令x=0,则y=﹣m2+m2+1=1,∴该函数的图象一定经过点(0,1),故结论②正确;③∵y=﹣(x﹣m)2+m2+1,∴抛物线开口向下,对称轴为直线x=m,当x>m时,y随x的增大而减小,故结论③错误;④∵抛物线开口向下,当x=m时,函数y有最大值m2+1,∴该函数的图象的顶点在函数y=x2+1的图象上.故结论④正确,故答案为①②④.14.(2020•烟台)二次函数y=ax2+bx+c的图象如图所示,下列结论:.①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为−1k 其中正确结论的序号是②③④.【解答】解:①由二次函数的图象开口向上可得a>0,对称轴在y轴的右侧,b<0,∴ab<0,故①错误;②由图象可知抛物线与x轴的交点为(1,0),与y轴的交点为(0,﹣1),∴c=﹣1,∴a+b﹣1=0,故②正确;③∵a+b﹣1=0,∴a﹣1=﹣b,∵b<0,∴a﹣1>0,∴a>1,故③正确;④∵抛物线与与y轴的交点为(0,﹣1),∴抛物线为y=ax2+bx﹣1,∵抛物线与x轴的交点为(1,0),,故④正确;∴ax2+bx﹣1=0的一个根为1,根据根与系数的关系,另一个根为−1k故答案为②③④.15.(2020•枣庄)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个=1,因此b>0,与y轴交于正半轴,因此c>【解答】解:抛物线开口向下,a<0,对称轴为x=−k2k0,于是有:ac<0,因此①正确;=1,得2a+b=0,因此③不正确,由x=−k2k抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c =0,故④正确,综上所述,正确的结论有①②④,故选:C.16.(2020•凉州)二次函数y=ax2+bx+c的图象如图所示,有如下结论:①abc>0;②2a+b=0;③3b﹣2c<0;④am2+bm≥a+b(m为实数).其中正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,∵c<0∴abc>0故①正确;②∵对称轴x=−k2k=1,∴2a+b=0;故②正确;③∵2a+b=0,∴a=−12b,∵当x=﹣1时,y=a﹣b+c>0,∴−12b﹣b+c>0∴3b﹣2c<0故③正确;④根据图象知,当x=1时,y有最小值;当m为实数时,有am2+bm+c≥a+b+c,所以am2+bm≥a+b(m为实数).故④正确.本题正确的结论有:①②③④,4个;故选:D.17.(2020•南充)关于二次函数y=ax2﹣4ax﹣5(a≠0)的三个结论:①对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则−43<a≤﹣1或1≤a<43;③若抛物线与x轴交于不同两点A,B,且AB≤6,则a<−54或a≥1.其中正确的结论是()A .①②B .①③C .②③D .①②③ 【解答】解:∵二次函数y =ax 2﹣4ax ﹣5的对称轴为直线x =−4k2k=2,∴x 1=2+m 与x 2=2﹣m 关于直线x =2对称,∴对任意实数m ,都有x 1=2+m 与x 2=2﹣m 对应的函数值相等; 故①正确;当x =3时,y =﹣3a ﹣5,当x =4时,y =﹣5, 若a >0时,当3≤x ≤4时,﹣3a ﹣5<y ≤﹣5, ∵当3≤x ≤4时,对应的y 的整数值有4个,∴1≤a <43,若a <0时,当3≤x ≤4时,﹣5≤y <﹣3a ﹣5, ∵当3≤x ≤4时,对应的y 的整数值有4个,∴−43<a ≤﹣1,故②正确;若a >0,抛物线与x 轴交于不同两点A ,B ,且AB ≤6, ∴△>0,25a ﹣20a ﹣5≥0,∴{16k 2+20k>05k −5≥0, ∴a ≥1,若a <0,抛物线与x 轴交于不同两点A ,B ,且AB ≤6, ∴△>0,25a ﹣20a ﹣5≤0,∴{16k 2+20k>05k −5≤0, ∴a <−54, 综上所述:当a <−54或a ≥1时,抛物线与x 轴交于不同两点A ,B ,且AB ≤6. 故选:D .18.(2020•内江)已知抛物线y 1=﹣x 2+4x (如图)和直线y 2=2x +b .我们规定:当x 取任意一个值时,x对应的函数值分别为y 1和y 2.若y 1≠y 2,取y 1和y 2中较大者为M ;若y 1=y 2,记M =y 1=y 2.①当x =2时,M 的最大值为4;②当b =﹣3时,使M >y 2的x 的取值范围是﹣1<x <3;③当b =﹣5时,使M =3的x 的值是x 1=1,x 2=3;④当b ≥1时,M 随x 的增大而增大.上述结论正确的是 ②③④ .(填写所有正确结论的序号)【解答】解:①当x =2时,y 1=4,y 2=4+b ,无法判断4与4+b 的大小,故①错误.②如图1中,b =﹣3时,由{k =−k 2+4k k =2k −3,解得{k =−1k =−5或{k =3k =3, ∴两个函数图象的交点坐标为(﹣1,﹣5)和(3,3),观察图象可知,使M >y 2的x 的取值范围是﹣1<x <3,故②正确,③如图2中,b =﹣5时,图象如图所示,M =3时,y 1=3,∴﹣x 2+4x =3,解得x =1或3,故③正确,④当b =1时,由{k =2k +1k =−k 2+4k,消去y 得到,x 2﹣2x +1=0, ∵△=0,∴此时直线y =2x +1与抛物线只有一个交点,∴b >1时,直线y =2x +b 与抛物线没有交点,∴M 随x 的增大而增大,故④正确.19.(2020•宜宾)函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点(2,0),顶点坐标为(﹣1,n ),其中n>0.以下结论正确的是( )①abc >0;②函数y =ax 2+bx +c (a ≠0)在x =1和x =﹣2处的函数值相等;③函数y =kx +1的图象与y =ax 2+bx +c (a ≠0)的函数图象总有两个不同交点;④函数y =ax 2+bx +c (a ≠0)在﹣3≤x ≤3内既有最大值又有最小值.A .①③B .①②③C .①④D .②③④ 【解答】解:依照题意,画出图形如下:∵函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点(2,0),顶点坐标为(﹣1,n ),其中n >0.∴a <0,c >0,对称轴为x =−k 2k =−1,∴b =2a <0,∴abc >0,故①正确,∵对称轴为x =﹣1, ∴x =1与x =﹣3的函数值是相等的,故②错误;∵顶点为(﹣1,n ),∴抛物线解析式为;y =a (x +1)2+n =ax 2+2ax +a +n , 联立方程组可得:{k =kk +1k =kk 2+2kk +k +k , 可得ax 2+(2a ﹣k )x +a +n ﹣1=0,∴△=(2a ﹣k )2﹣4a (a +n ﹣1)=k 2﹣4ak +4a ﹣4an ,∵无法判断△是否大于0,∴无法判断函数y =kx +1的图象与y =ax 2+bx +c (a ≠0)的函数图象的交点个数,故③错误;当﹣3≤x ≤3时,当x =﹣1时,y 有最大值为n ,当x =3时,y 有最小值为16a +n ,故④正确,故选:C .20.(2020•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=12.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a<−12.其中,正确结论的个数是()A.0 B.1 C.2 D.3【解答】解:∵抛物线的对称轴为直线x=12,而点(2,0)关于直线x=12的对称点的坐标为(﹣1,0),∵c>1,∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=12,∴−k2k =12,∴b=﹣a>0,∴abc<0,故①错误;∵抛物线开口向下,与x轴有两个交点,∴顶点在x轴的上方,∵a<0,∴抛物线与直线y=a有两个交点,∴关于x的方程ax2+bx+c=a有两个不等的实数根;故②正确;∵抛物线y=ax2+bx+c经过点(2,0),∴4a+2b+c=0,∵b=﹣a,∴4a﹣2a+c=0,即2a+c=0,∴﹣2a=c,∵c>1,∴﹣2a>1,,故③正确,∴a<−12故选:C.。

2020年中考数学选择填空压轴题汇编:规律探索

2020年中考数学选择填空压轴题汇编:规律探索

2020年中考数学选择填空压轴题汇编:规律探索1.(2020甘肃天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【解答】解:∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.故选:A.2.(2020贵州铜仁)观察下列等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;2+22+23+24+25=26﹣2;…已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m,则220+221+222+223+224+…+238+239+240=m(2m﹣1)(结果用含m的代数式表示).【解答】解:∵220=m,∴220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+221﹣2)=m(2m﹣1).故答案为:m(2m﹣1).3.(2020黑龙江鹤岗)如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1).过点B作EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x轴的垂线交MA于点A1,以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2.….则点B2020的坐标2×32020﹣1,32020.【解答】解:∵点B坐标为(1,1),∴OA=AB=BC=CO=CO1=1,∵A1(2,3),∴A1O1=A1B1=B1C1=C1O2=3,∴B1(5,3),∴A2(8,9),∴A2O2=A2B2=B2C2=C2O3=9,∴B2(17,9),同理可得B4(53,27),B5(161,81),…由上可知,Bn(2×3n﹣1,3n),∴当n=2020时,Bn(2×32020﹣1,32020).故答案为:(2×32020﹣1,32020).4.(2020黑龙江齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4√2),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12√2,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是22020.【解答】解:∵点A1(0,2),∴第1个等腰直角三角形的面积=12×2×2=2,∵A2(6,0),∴第2个等腰直角三角形的边长为√2=2√2,∴第2个等腰直角三角形的面积=12×2√2×2√2=4=22,∵A4(10,4√2),∴第3个等腰直角三角形的边长为10﹣6=4,∴第3个等腰直角三角形的面积=12×4×4=8=23,…则第2020个等腰直角三角形的面积是22020;故答案为:22020(形式可以不同,正确即得分).5.(2020黑龙江绥化)如图各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,…,按此规律,第10个图中黑点的个数是119.【解答】解:∵图1中黑点的个数2×1×(1+1)÷2+(1﹣1)=2,图2中黑点的个数2×2×(1+2)÷2+(2﹣1)=7,图3中黑点的个数2×3×(1+3)÷2+(3﹣1)=14,……∴第n个图形中黑点的个数为2n(n+1)÷2+(n﹣1)=n2+2n﹣1,∴第10个图形中黑点的个数为102+2×10﹣1=119.故答案为:119.6.(2020•湖北鄂州)如图,点A1,A2,A3…在反比例函数y=1x(x>0)的图象上,点B1,B2,B3,…B n在y轴上,且∠B1OA1=∠B2B1A2=∠B3B2A3=…,直线y=x与双曲线y=1x交于点A1,B1A1⊥OA1,B2A2⊥B1A2,B3A3⊥B2A3…,则B n(n为正整数)的坐标是()A.(2√n,0)B.(0,√2n+1)C.(0,√2n(n−1))D.(0,2√n)【解答】解:由题意,△OA1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,∵A1(1,1),∴OB1=2,设A2(m,2+m),则有m(2+m)=1,解得m=√2−1,∴OB2=2√2,设A3(a,2√2+n),则有n=a(2√2+a)=1,解得a=√3−√2,∴OB3=2√3,同法可得,OB4=2√4,∴OB n=2√n,∴B n(0,2√n).故选:D.7.(2020湖北恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).8.(2020湖北仙桃)如图,已知直线a:y=x,直线b:y=−12x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为21010.【解答】解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y=−12x上,∴1=−12x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=212n,∴P2020的横坐标为212×2020=21010,故答案为:21010.9.(2020湖南常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F【解答】解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),应停在第12k(k+1)﹣7p格,这时P是整数,且使0≤12k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,12k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k =7+t (t =1,2,3)代入可得,12k (k +1)﹣7p =7m +12t (t +1),由此可知,停棋的情形与k =t 时相同,故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到. 故选:D .10.(2020湖南衡阳)如图,在平面直角坐标系中,点P 1的坐标为(√22,√22),将线段OP 1绕点O 按顺时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2;又将线段OP 2绕点O 按顺时针方向旋转45°,长度伸长为OP 2的2倍,得到线段OP 3;如此下去,得到线段OP 4,OP 5,…,OP n (n 为正整数),则点P 2020的坐标是 (0,﹣22019) .【解答】解:∵点P 1的坐标为(√22,√22),将线段OP 1绕点O 按逆时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2; ∴OP 1=1,OP 2=2,∴OP 3=4,如此下去,得到线段OP 4=23,OP 5=24…, ∴OP n =2n ﹣1,由题意可得出线段每旋转8次旋转一周, ∵2020÷8=252…4,∴点P 2020的坐标与点P 4的坐标在同一直线上,正好在y 轴的负半轴上, ∴点P 2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).11.(2020湖南怀化)如图,△OB1A1,△A1B2A2,△A2B3A3,…,△A n﹣1B n A n,都是一边在x轴上的等边三角形,点B1,B2,B3,…,B n都在反比例函数y=√3x(x>0)的图象上,点A1,A2,A3,…,A n,都在x轴上,则A n的坐标为(2√n,0).【解答】解:如图,过点B1作B1C⊥x轴于点C,过点B2作B2D⊥x轴于点D,过点B3作B3E⊥x轴于点E,∵△OA1B1为等边三角形,∴∠B1OC=60°,OC=A1C,∴B1C=√3OC,设OC的长度为t,则B1的坐标为(t,√3t),把B1(t,√3t)代入y=√3x得t•√3t=√3,解得t=1或t=﹣1(舍去),∴OA1=2OC=2,∴A1(2,0),设A1D的长度为m,同理得到B2D=√3m,则B2的坐标表示为(2+m,√3m),把B2(2+m,√3m)代入y=√3x得(2+m)×√3m=√3,解得m=√2−1或m=−√2−1(舍去),∴A1D=√2−1,A1A2=2√2−2,OA2=2+2√2−2=2√2,∴A2(2√2,0)设A2E的长度为n,同理,B3E为√3n,B3的坐标表示为(2√2+n,√3n),把B3(2√2+n,√3n)代入y=√3x得(2√2+n)•√3n=√3,∴A2E=√3−√2,A2A3=2√3−2√2,OA3=2√2+2√3−2√2=2√3,∴A3(2√3,0),综上可得:A n(2√n,0),故答案为:(2√n,0).12.(2020湖南湘西州)观察下列结论:(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也会有类似的结论,你的结论是A1N=A n M,∠NOA n=(n−2)×180°n.【解答】解:∵(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=(3−2)×180°3=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD= (4−2)×180°4=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE= (5−2)×180°5=108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也有类似的结论是A1N=A n M,∠NOA n=(n−2)×180°n.故答案为:A1N=A n M,∠NOA n=(n−2)×180°n.13.(2020山东德州)如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202【解答】解:根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.14.(2020山东菏泽)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,…按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.1100B.120C.1101D.2101【解答】解:由题意知,第100个图形中,正方体一共有1+2+3+……+99+100=5050(个),其中写有“心”字的正方体有100个,∴抽到带“心”字正方体的概率是1005050=2101,故选:D .15.(2020山东威海)如图①,某广场地面是用A ,B ,C 三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B 型)地砖记作(2,1)…若(m ,n )位置恰好为A 型地砖,则正整数m ,n 须满足的条件是 m 、n 同为奇数或m 、n 同为偶数 .【解答】解:观察图形,A 型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m ,n )位置恰好为A 型地砖,正整数m ,n 须满足的条件为m 、n 同为奇数或m 、n 同为偶数. 故答案为m 、n 同为奇数或m 、n 同为偶数.16.(2020山东潍坊)如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的.其中:DA 1̂的圆心为点A ,半径为AD ;A 1B 1̂的圆心为点B ,半径为BA 1;B 1C 1̂的圆心为点C ,半径为CB 1;C 1D 1̂的圆心为点D ,半径为DC 1;⋯DA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,…的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则A 2020B 2020̂的长是 4039π .【解答】解:由图可知,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD =AA 1=1,BA 1=BB 1=2,……,AD n ﹣1=AA n =4(n ﹣1)+1,BA n =BB n =4(n ﹣1)+2,故A 2020B 2020̂的半径为BA 2020=BB 2020=4(2020﹣1)+2=8078,A 2020B 2020̂的弧长=90180×8078π=4039π.故答案为:4039π.17.(2020四川达州)已知k 为正整数,无论k 取何值,直线11:y =kx +k +1与直线12:y =(k +1)x +k +2都交于一个固定的点,这个点的坐标是 (﹣1,1) ;记直线11和12与x 轴围成的三角形面积为S k ,则S 1=14,S 1+S 2+S 3+…+S 100的值为50101.【解答】解:∵直线11:y =kx +k +1=k (x +1)+1, ∴直线12:y =(k +1)x +k +2经过点(﹣1,1);∵直线12:y =(k +1)x +k +2=k (x +1)+(x +1)+1=(k +1)(x +1)+1, ∴直线12:y =(k +1)x +k +2经过点(﹣1,1).∴无论k 取何值,直线l 1与l 2的交点均为定点(﹣1,1). ∵直线11:y =kx +k +1与x 轴的交点为(−k+1k ,0), 直线12:y =(k +1)x +k +2与x 轴的交点为(−k+2k+1,0),∴S K =12×|−k+1k +k+2k+1|×1=12k(k+1), ∴S 1=12×11×2=14; ∴S 1+S 2+S 3+…+S 100=12[11×2+12×3+⋯1100×101]=12[(1−12)+(12−13)+…+(1100−1101)]=12×(1−1101) =12×100101 =50101. 故答案为(﹣1,1);14;50101.18.(2020四川遂宁)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a 1,第2幅图中“▱”的个数为a 2,第3幅图中“▱”的个数为a 3,…,以此类推,若2a 1+2a 2+2a 3+⋯+2a n=n 2020.(n 为正整数),则n 的值为 4039 .【解答】解:由图形知a 1=1×2,a 2=2×3,a 3=3×4, ∴a n =n (n +1), ∵2a 1+2a 2+2a 3+⋯+2a n=n2020,∴21×2+22×3+23×4+⋯+2n(n+1)=n2020,∴2×(1−12+12−13+13−14+⋯⋯+1n−1n+1)=n2020,∴2×(1−1n+1)=n2020,1−1n+1=n4040,解得n=4039,经检验:n=4039是分式方程的解,故答案为:4039.19.(2020四川自贡)如图,直线y=−√3x+b与y轴交于点A,与双曲线y=kx在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,...的边OE1,E1E2,E2E3, (x)上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=4√3,前25个等边三角形的周长之和为60.【解答】解:设直线y=−√3x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.∵y=−√3x+b,∴当y=0时,x=√33b,即点D的坐标为(√33b,0),当x=0时,y=b,即A点坐标为(0,b),∴OA=﹣b,OD=−√33b.∵在Rt△AOD中,tan∠ADO=OAOD=√3,∴∠ADO=60°.∵直线y=−√3x+b与双曲线y=kx在第三象限交于B、C两点,∴−√3x+b=k x,整理得,−√3x2+bx﹣k=0,由韦达定理得:x1x2=√33k,即EB•FC=√33k,∵EBAB=cos60°=12,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC=4√33k=16,解得:k=4√3.由题意可以假设D1(m,m√3),∴m2•√3=4√3,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,√3n),∵(4+n)•√3n=4√3,解得n=2√2−2,∴E1E2=4√2−4,即第二个三角形的周长为12√2−12,设D3(4√2+a,√3a),由题意(4√2+a)•√3a=4√3,解得a=2√3−2√2,即第三个三角形的周长为12√3−12√2,…,∴第四个三角形的周长为12√4−12√3,∴前25个等边三角形的周长之和12+12√2−12+12√3−12√2+12√4−12√3+⋯+12√25−12√24=12√25=60,故答案为4√3,60.。

2020年中考数学压轴题(含答案) (2)

2020年中考数学压轴题(含答案) (2)

2020年中考数学压轴题一、选择题1.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.第1题第2题2.如图,在平面直角坐标系xOy中,A(﹣3,0),B(3,0),若在直线y=﹣x+m上存在点P满足∠APB=60°,则m的取值范围是()A.≤m≤B.﹣﹣5≤m≤+5C.﹣2≤m≤+2D.﹣﹣2≤m≤+2二、填空题18.如图,点G是矩形ABCD的对角线BD上一点,过点G作EF∥AB交AD于E,交BC 于F,若EG=5,BF=2,则图中阴影部分的面积为.第3题第4题24.如图为二次函数y=ax2+bx+c图象,直线y=t(t>0)与抛物线交于A,B两点,A,B 两点横坐标分别为m,n.根据函数图象信息有下列结论:①abc>0;②若对于t>0的任意值都有m<﹣1,则a≥1;③m+n=1;④m<﹣1;⑤当t为定值时,若a变大,则线段AB变长.其中,正确的结论有(写出所有正确结论的序号)三、解答题5.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)若F为CD上一动点,求出当△DEF与△COD相似时点F的坐标;(2)过E作x轴的垂线l,在直线l上是否存在一点Q,使∠CQO=∠CDO?若存在,求出Q点的坐标;若不存在,请说明理由.6.如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.【答案与解析】一、选择题1.【分析】根据平行线分线段成比例定理列出比例式,再分别对每一项进行判断即可.【解答】A.∵EF∥AB,∴=,故本选项正确,B.∵DE∥BC,∴=,∵EF∥AB,∴DE=BF,∴=,∴=,故本选项正确,C.∵EF∥AB,∴=,∵CF≠DE,∴≠,故本选项错误,D.∵EF∥AB,∴=,∴=,故本选项正确,故选:C.2.【分析】作等边三角形ABE,然后作外接圆,求得直线y=﹣x+m与外接圆相切时的m的值,即可求得m的取值范围.【解答】解:如图,作等边三角形ABE,∵A(﹣3,0),B(3,0),∴OA=OB=3,∴E在y轴上,当E在AB上方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P1重合时m的值最大,当P与P1重合时,连接QP1,则QP1⊥直线y=﹣x+m,∵OA=3,∴OE=3,设⊙Q的半径为x,则x2=32+(3﹣x)2,解得x=2,∴EQ=AQ=PQ=2,∴OQ=,由直线y=﹣x+m可知OD=OC=m,∴DQ=m﹣,CD=m,∵∠ODC=∠P1DQ,∠COD=∠QP1D,∴△QP1D∽△COD,∴=,即=,解得m=+2,当E在AB下方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P2重合时m的值最小,当P与P2重合时,同理证得m=﹣﹣2,∴m的取值范围是﹣﹣2≤m≤+2,故选:D.二、填空题3.【分析】由矩形的性质可证明S矩形AEGM=S矩形CFGN=2×5=10,即可求解.【解答】解:作GM⊥AB于M,延长MG交CD于N.则有四边形AEGM,四边形DEGN,四边形CFGN,四边形BMGF都是矩形,∴AE=BF=2,S△ADB=S△DBC,S△BGM=S△BGF,S△DEG=S△DNG,∴S矩形AEGM=S矩形CFGN=2×5=10,∴S阴=S矩形CFGN=5,故答案为:5.4.【分析】由图象分别求出a>0,c=﹣2,b=﹣a<0,则函数解析式为y=ax2﹣ax﹣2,则对称轴x=,由开口向上的函数的图象开口与a的关系可得:当a变大,函数y=ax2﹣ax﹣2的开口变小,依据这个性质判断m的取值情况.【解答】解:由图象可知,a>0,c=﹣2,∵对称轴x=﹣=,∴b=﹣a<0,∴abc>0;∴①正确;A、B两点关于x=对称,∴m+n=1,∴③正确;a>0时,当a变大,函数y=ax2﹣ax﹣2的开口变小,则AB的距离变小,∴⑤不正确;若m<﹣1,n>2,由图象可知n>1,∴④不正确;当a=1时,对于t>0的任意值都有m<﹣1,当a>1时,函数开口变小,则有m>﹣1的时候,∴②不正确;故答案①③.三、解答题5.【分析】(1)当△DEF∽△COD时,=,DF=DE cos∠CDO=,据此求出EF的长度和点F的坐标即可;(2)首先以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=;然后求出点P的坐标是多少;设Q(﹣1,a),则()2+(a﹣)2=,据此求出a的值是多少,进而求出Q点坐标是多少即可.【解答】解:(1)∵A(1,0),B(0,3),∴OA=1,OB=3,∵将△AOB绕点O逆时针旋转90°,得到△COD,∴OC=1,OD=3,∴C(0,1),D(﹣3,0),如图1,当△DEF∽△COD时,=∴EF=,∴F(﹣1,);当△DEF∽△COD时,DF=DE cos∠CDO=,作FK⊥OD于K,则FK=DF sin∠CDO=,DK=DF cos∠CDO=,∴F(﹣,);(2)如图2,以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=,又∵P为CD中点,P(﹣,),设Q(﹣1,a),则()2+(a﹣)2=,解得a=2或﹣1,∴Q(﹣1,2)或(﹣1,﹣1).6.【分析】(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;(2)作PF∥BO交AB于点F,证△PFD∽△OBD,得比例线段,则PF取最大值时,求得的最大值;(3)(i)点F在y轴上时,P在第一象限或第二象限,如图2,3,过点P作PH⊥x轴于H,根据正方形的性质可证明△CPH≌△FCO,根据全等三角形对应边相等可得PH=CO=2,然后利用二次函数解析式求解即可;(ii)点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,可得PS=PK,则P点的横纵坐标互为相反数,可求出P点坐标;点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,可得PN=PM,则P点的横纵坐标相等,可求出P点坐标.由此即可解决问题.【解答】解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,若P在第二象限,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,x=﹣1+(舍去).∴,如图3,点F在y轴上时,若P在第一象限,同理可得点P的纵坐标为2,此时P2点坐标为(﹣1+,2)(ii)如图4,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴,解得x=2(舍去),x=﹣2,∴,如图5,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.。

2020年中考数学压轴题专题复习:一次函数与反比例函数-答案

2020年中考数学压轴题专题复习:一次函数与反比例函数-答案

2020年中考数学压轴题专题复习:一次函数与反比例函数一、选择题(本大题共6道小题)1. 如图,A 、B 两点在反比例函数y =k 1x 的图象上,C 、D 两点在反比例函数y =k 2x的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1=( )A. 4B.143 C. 163D. 62. 已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A. k >1,b <0B. k >1,b >0C. k >0,b >0D. k >0,b <03. 下列函数中,满足y 的值随x 的值增大而增大的是( )A. y =-2xB. y =3x -1C. y =1xD. y =x 24. 设函数y =kx (k ≠0,x >0)的图象如图所示,若z =1y,则z 关于x 的函数图象可能为( )5. 二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0)的图象如图所示,则一次函数y =ax+b 与反比例函数y =cx的图象可能是( )6. 若式子k-1+(k-1)0有意义,则一次函数y=(1-k)x+k-1的图象可能是()二、填空题(本大题共5道小题)7. 已知反比例函数y =k x的图象在每一个象限内y 随x 的增大而增大,请写一个符合条件的反比例函数解析式____________.8. 如图所示,已知点C (1,0),直线y =-x +7与两坐标轴分别交于A ,B 两点,D ,E分别是AB ,OA 上的动点,则△CDE 周长的最小值是________.9. 将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象,若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为____________.10. 如图,一次函数y =kx +b 的图象分别与反比例函数y =a x的图象在第一象限交于点A (4,3),与y 轴的负半轴交于点B ,且OA =OB .(1)求函数y =kx +b 和y =ax的表达式;(2)已知点C (0,5),试在该一次函数图象上确定一点M ,使得MB =MC .求此时点M 的坐标.11. 如图,已知点A ,C 在反比例函数y =a x的图象上,点B ,D 在反比例函数y =b x的图象上,a >b >0,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB =34,CD =32,AB 与CD 间的距离为6,则a -b 的值是________.三、解答题(本大题共4道小题)12. 如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A (43,53),点D 的坐标为(0,1). (1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE相似时,求点E的坐标.13. 九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下,已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.14. 如图,已知抛物线y=x2-(m+3)x+9的顶点C在x轴正半轴上,一次函数y=x+3与抛物线交于A、B两点,与x、y轴分别交于D、E两点.(1)求m的值;(2)求A、B两点的坐标;(3)点P(a,b)(-3<a<1)是抛物线上一点,当△P AB的面积是△ABC面积的2倍时,求a、b的值.15. 如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A、B两点之间的一动点,横坐标为x(2<x<6).写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.答案一、选择题(本大题共6道小题)1. 【答案】A 【解析】设E (x 1,0),F (x 2,0),则A (x 1,k 1x 1),D (x 2,k 2x 2),B (x 2,k 1x 2),C (x 1,k 2x 1),∴AC =k 1-k 2x 1=2,BD =k 2-k 1x 2=3,∴k 1-k 2=2x 1,k 2-k 1=3x 2,∴2x 1+3x 2=0,又∵EF =x 2-x 1=103,∴x 2=43,∴k 2-k 1=3x 2=3×43=4.2. 【答案】A 【解析】原解析式可变形为y =(k -1)x +b ,∵函数值y 随自变量x 的增大而增大,∴k -1>0,∴k >1,∵图象与x 轴正半轴相交,∴b <0,∴满足题意的k 、b 情况为k >1,b <0.3. 【答案】B 【解析】一次函数y =-2x 中,y 随x 增大而减小;一次函数y =3x -1中,y 随x 的增大而增大;反比例函数y =1x 中,在每一个分支上,y 随x 的增大而减小;二次函数y =x 2中,当x >0时,y 随x 增大而增大,当x <0时,y 随x 的增大而减小,故答案为B .4. 【答案】D 【解析】函数y =k x(k ≠0,x >0)的图象在第一象限,则k >0,x >0.由已知得z =1y =1k x=xk,所以z 关于x 的函数图象是一条射线,且在第一象限,故选D.5. 【答案】C 【解析】抛物线开口向上,所以a >0,对称轴在y 轴右侧,所以a 、b异号,所以b <0,抛物线与y 轴交于负半轴,所以c <0,所以直线y =ax +b 过第一、三、四象限,反比例函数y =cx位于第二、四象限,故答案为C.6. 【答案】C 【解析】式子k -1+(k -1)0有意义,则k >1,所以1-k <0,k -1>0,所以一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.二、填空题(本大题共5道小题)7. 【答案】y =-2x(答案不唯一) 【解析】∵反比例函数的图象在每一个象限内y 随x的增大而增大,∴k <0,∴k 可取-2(答案不唯一).8. 【答案】10 【解析】作点C 关于y 轴的对称点C 1(-1,0),点C 关于直线AB 的对称点C 2,连接C 1C 2交OA 于点E ,交AB 于点D ,则此时△CDE 的周长最小,且最小值等于C 1C 2的长.∵OA =OB =7,∴CB =6,∠ABC =45°.∵AB 垂直平分CC 2,∴∠CBC 2=90°,∴C 2的坐标为(7,6).在Rt △C 1BC 2中,C 1C 2=C 1B 2+C 2B 2=82+62=10.即△CDE 周长的最小值是10.9. 【答案】-4<b<-2 【解析】先求出直线y =2与y =|2x +b|的交点的横坐标,再由已知条件列出关于b 的不等式组,便可求出结果.由⎩⎪⎨⎪⎧y =2y =|2x +b|,得⎩⎪⎨⎪⎧y =2y =2x +b或⎩⎪⎨⎪⎧y =2y =-2x -b ,解得x =2-b 2或x =-2+b2,∵0<x<3,∴⎩⎨⎧2-b2<3-b +22>0,解得-4<b<-2.10. 【答案】(1)【思路分析】由点A 的坐标和OA =OB 可得点B 的坐标,用待定系数法即可求出一次函数的解析式;将点A 的坐标代入反比例函数解析式中即可求出反比例函数的解析式.解:∵点A(4,3),∴OA =42+32=5,∴OB =OA =5, ∴B(0,-5),将点A(4, 3),点B(0, -5)代入函数y =kx +b 得,⎩⎪⎨⎪⎧4k +b =3b =-5,解得⎩⎪⎨⎪⎧k =2b =-5,(2分) ∴一次函数的解析式为y =2x -5, 将点A(4, 3)代入y =ax 得,3=a 4, ∴a =12,∴反比例函数的解析式为y =12x, ∴所求函数表达式分别为y =2x -5和y =12x.(4分) (2)【思路分析】由题意可知,使MB =MC 的点在线段BC 的垂直平分线上,故求出线段BC 的垂直平分线和一次函数的交点即可.解:如解图,∵点B 的坐标为(0, -5),点C 的坐标为(0, 5),∴x 轴是线段BC 的垂直平分线, ∵MB =MC ,∴点M 在x 轴上,又∵点M 在一次函数图象上,∴点M 为一次函数的图象与x 轴的交点,如解图所示, 令2x -5=0,解得x =52,(6分)∴此时点M 的坐标为(52, 0).(8分)11. 【答案】3 【解析】设点A 的纵坐标为y 1,点C 的纵坐标为y 2,∵AB ∥CD ∥x轴,∴点B 的纵坐标为y 1,点D 的纵坐标为y 2,∵点A 在函数y =ax 的图象上,点B 在函数y =b x 的图象上,且AB =34,∴a y 1-b y 1=34,∴y 1=4(a -b )3,同理y 2=2(b -a )3,又∵AB与CD 间的距离为6,∴y 1- y 2=4(a -b )3-2(b -a )3=6,解得a -b =3.三、解答题(本大题共4道小题)12. 【答案】解:(1)设直线AD 的解析式为y =kx +b(k≠0), 将D(0,1)、A(43,53)代入解析式得⎩⎪⎨⎪⎧b =143k +b =53, 解得⎩⎪⎨⎪⎧b =1k =12,∴直线AD 的解析式为y =12x +1.(3分) (2)直线AD 的解析式为y =12x +1,令y =0,得x =-2, ∴B(-2,0),即OB =2.∵直线AC 的解析式为y =-x +3,令y =0,得x =3,∴C(3,0),即BC =5,设E(x ,12x +1), ①当E 1C ⊥BC 时,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC ,∴△BOD ∽△BCE 1,此时点C 和点E 1的横坐标相同,将x =3代入y =12x +1, 解得:y =52, ∴E 1(3,52).(6分) ②当CE 2⊥AD 时,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2,∴△BOD ∽△BE 2C ,如解图,过点E 2作E 2F ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°.∵∠E 2BF +∠BE 2F =90°,∠CE 2F +∠BE 2F =90°,∴∠E 2BF =∠CE 2F ,∴△E 2BF ∽△CE 2F ,则E 2F BF =CF E 2F, 即E 2F 2=CF·BF ,(12x +1)2=(3-x)(x +2),解得:x 1=2,x 2=-2(舍去),∴E 2(2,2);(9分)③当∠EBC =90°时,此情况不存在.综上所述,点E 的坐标为E 1(3,52)或E 2(2,2).(10分)13. 【答案】解:(1)当0≤x≤50时,设商品的售价y 与时间x 的函数关系式为y =kx +b(k 、b 为常数且k≠0),∵y =kx +b 经过点(0,40),(50,90),∴⎩⎪⎨⎪⎧b =4050k +b =90, 解得⎩⎪⎨⎪⎧k =1b =40, ∴y =x +40,∴y 与x 的函数关系式为:y =⎩⎨⎧x +40 (0≤x≤50,且x 为整数)90 (50<x≤90,且x 为整数),(2分) 由数据可知每天的销售量p 与时间x 成一次函数关系.设每天的销售量p 与时间x 的函数关系式为p =mx +n(m ,n 为常数,且m≠0), ∵p =mx +n 过点(60,80),(30,140),∴⎩⎪⎨⎪⎧60m +n =8030m +n =140,解得⎩⎪⎨⎪⎧m =-2n =200, ∴p =-2x +200(0≤x≤90,且x 为整数),(3分)当0≤x≤50时,w =(y -30)·p=(x +40-30)(-2x +200),=-2x 2+180x +2000,当50<x≤90时,w =(90-30)×(-2x +200)=-120x +12000,综上所述,每天的销售利润w 与时间x 的函数关系式是:w =⎩⎨⎧-2x 2+180x +2000 (0≤x≤50,且x 为整数)-120x +12000 (50<x≤90,且x 为整数).(5分) (2)当0≤x≤50时,w =-2x 2+180x +2000=-2(x -45)2+6050,∵a =-2<0且0≤x≤50,∴x =45时,w 最大=6050(元),(6分)当50<x≤90时,w =-120x +12000,∵k =-120<0,∴w 随x 增大而减小.∴x =50时,w 最大=6000(元),∵6050>6000,∴x =45时,w 最大=6050(元),即销售第45天时,当天获得的销售利润最大,最大利润是6050元.(8分)(3)24天.(10分)【解法提示】①当0≤x ≤50,若w 不低于5600元,则w =-2x 2+180x +2000≥5600,解得30≤x ≤60,∴30≤x ≤50;②当50<x ≤90时,若w 不低于5600元,则w =-120x +12000≥5600,解得x ≤1603, ∴50<x ≤1603, 综合①②可得30≤x ≤1603, ∴从第30天到第53天共有24天利润不低于5600元.14. 【答案】解:(1)∵抛物线y =x 2-(m +3)x +9的顶点在x 轴的正半轴上,∴方程x 2-(m +3)x +9=0有两个相等的实数根,∴b 2-4ac =[-(m +3)]2-4×9=0,解得m =3或m =-9,又∵抛物线对称轴大于0,即m +3>0,∴m =3.(3分)(2)由(1)可知抛物线解析式为y =x 2-6x +9,联立一次函数y =x +3,可得⎩⎪⎨⎪⎧y =x 2-6x +9y =x +3, 解得⎩⎪⎨⎪⎧x =1y =4或⎩⎪⎨⎪⎧x =6y =9, ∴A(1,4),B(6,9).(6分)(3)如解图,分别过A 、B 、P 三点作x 轴的垂线,垂足分别为R 、S 、T ,∵A(1,4),B(6,9),C(3,0),P(a ,b),∴AR =4,BS =9,RC =3-1=2,CS =6-3=3,RS =6-1=5,PT =b ,RT =1-a ,ST =6-a ,∴S △ABC =S 梯形ABSR -S △ARC -S △BCS =12×(4+9)×5-12×2×4-12×3×9=15, S △PAB =S 梯形PBST -S 梯形ARTP -S 梯形ARSB =12(9+b)(6-a)-12(b +4)(1-a)-12×(4+9)×5=12(5b -5a -15).(8分)又∵S △PAB =2S △ABC ,∴12(5b -5a -15)=30,即b -a =15, ∴b =15+a ,∵P 点在抛物线上,∴b =a 2-6a +9,∴15+a =a 2-6a +9,解得a =7±732, ∵-3<a<1,∴a =7-732, ∴b =15+7-732=37-732.(10分)15. 【答案】解:(1)∵二次函数y =ax 2+bx 的图象经过点A(2,4)与B(6,0).∴⎩⎪⎨⎪⎧4a +2b =436a +6b =0, 解得⎩⎪⎨⎪⎧a =-12b =3.(4分) (2)如解图①,过点A 作x 轴的垂线,垂足为点D(2,0),连接CD ,过点C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为点E ,点F ,则S △OAD =12OD·AD =12×2×4=4, S △ACD =12AD·CE =12×4×(x -2)=2x -4, S △BCD =12BD·CF =12×4×(-12x 2+3x)=-x 2+6x , 则S =S △OAD +S △ACD +S △BCD =4+(2x -4)+(-x 2+6x)=-x 2+8x.∴S 关于x 的函数表达式为S =-x 2+8x(2<x<6).(10分)∵S =-(x -4)2+16,∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.(12分)图①【一题多解】解法一:由(1)知y =-12x 2+3x ,如解图②,连接AB ,则 S =S △AOB +S △ABC ,其中S △AOB =12×6×4=12, 设直线AB 解析式为y 1=k 1x +b 1,将点A(2,4),B(6,0)代入,易得,y 1=-x +6,过C 作直线l ⊥x 轴交AB 于点D ,∴C(x ,-12x 2+3x),D(x ,-x +6), ∴S △ABC =S △ADC +S △BDC =12·CD·(x -2)+12·CD·(6-x)=12·CD·4=2CD , 其中CD =-12x 2+3x -(-x +6)=-12x 2+4x -6, ∴S △ABC =2CD =-x 2+8x -12,∴S =S △ABC +S △AOB =-x 2+8x -12+12=-x 2+8x =-(x -4)2+16(2<x<6), 即S 关于x 的函数表达式为S =-x 2+8x(2<x<6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.图②解法二:∵点C 在抛物线y =-12x 2+3x 上, ∴点C(x ,-12x 2+3x), 如解图③,过点A 作AD ⊥x 轴,垂足为点D ,过点C 作CE ⊥x 轴,垂足为点E ,则 点D 的坐标为(2,0),点E 的坐标为(x ,0),∴S =S △OAD +S 梯形ADEC +S △CEB =12×2×4+12(4-12x 2+3x)(x -2)+12(6-x)(-12x 2+3x)=-x 2+8x ,∵S =-x 2+8x =-(x -4)2+16(2<x<6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.图③。

2020年中考数学压轴题每日一练(含答案)

2020年中考数学压轴题每日一练(含答案)

2020年中考数学压轴题每日一练(4.17)一、选择题1.如图所示,在平面直角坐标系xOy中,点A、B、C为反比例函数y=(k>0)上不同的三点,连接OA、OB、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC与BE相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1、S2、S3,则()A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S32第1题第2题2.如图,矩形ABCD中,E是AB的中点,F是AD边上的一个动点,已知AB=4,AD=2,△GEF与△AEF关于直线EF成轴对称.当点F沿AD边从点A运动到点D时,点G的运动路径长为()A.2B.4πC.2πD.二、填空题3.如图,ABCDE是边长为1的正五边形,则它的内切圆与外接圆所围圆环的面积为.第3题第4题4.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360°),得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为.三、解答题5.已知△ACB和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,以CE、BC为边作平行四边形CEFB,连CD、CF.(1)如图1,当E、D分别在AC和AB上时,求证:CD=CF;(2)如图2,△ADE绕点A旋转一定角度,判断(1)中CD与CF的数量关系是否依然成立,并加以证明;(3)如图3,AE=,AB=,将△ADE绕A点旋转一周,当四边形CEFB为菱形时,直接写出CF的长.6.如图,在平面直角坐标系中,O是原点,点A在x轴的负半轴上,点B在y轴的正半轴上,tan∠BAO=,且线段OB的长是方程x2﹣2x﹣8=0的根.(1)求直线AB的函数表达式.(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE =16.点F是直线CE上一点,分别过点E,F作x轴和y轴的平行线交于点G,将△EFG 沿EF折叠,使点G的对应点落在坐标轴上,求点F的坐标.(3)在(2)的条件下,点M是DO的中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请画出示意图并直接写出点P的坐标;若不存在,请说明理由.【答案与解析】一、选择题1.【分析】根据反比例函数系数k的几何意义得到S3=S2,即可得到结论.【解答】解:∵点A、B、C为反比例函数y=(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,∴S1=k,S△BOE=S△COF=k,∵S△BOE﹣S OME=S△CDF﹣S△OME,∴S3=S2,故选:B.2.【分析】由轴对称性质可知,GE=AE=2是定长,故点G的运动路径为以E为圆心、AE 长为半径的圆弧上,圆弧的最大角度即点F到达中点D时,∠AEG的度数.利用AD、AE的长可求tan∠AED的值,求得∠AED并进而求得∠AEG为特殊角.再代入弧长公式即求出点G的运动路径长.【解答】解:∵矩形ABCD中,AB=4,E是AB的中点∴AE=AB=2∵△GEF与△AEF关于直线EF成轴对称∴GE=AE=2,∠GEF=∠AEF∴G在以E为圆心,AE长为半径的圆弧上运动如图,当点F与点D重合时,AD=∴tan∠AED=∴∠AED=60°∴∠AEG=2∠AED=120°∴G运动路径长为:2π×2×=故选:D.二、填空题3.【分析】直接利用圆环面积求法进而得出答案.【解答】解:正五边形的内切圆与外接圆所围圆环的面积为:π(OA2﹣OH2)=π×AH2=.故答案为:.4.【分析】由轴对称的性质可知AM=AD,故此点M在以A圆心,以AD为半径的圆上,故此当点A、M、C在一条直线上时,CM有最小值.【解答】解:如图所示:连接AM.∵四边形ABCD为正方形,∴AC===.∵点D与点M关于AE对称,∴AM=AD=1.∴点M在以A为圆心,以AD长为半径的圆上.如图所示,当点A、M、C在一条直线上时,CM有最小值.∴CM的最小值=AC﹣AM′=﹣1,故答案为:﹣1.三、解答题5.【分析】(1)连接FD.证明△ADC≌△EDF(SAS)推出△DFC为等腰直角三角形即可解决问题.(2)成立.连接FD,证明△ADC≌△EDF(SAS)推出△DFC为等腰直角三角形即可解决问题.(3)分两种情形分别画出图形,利用(2)中结论求出CD即可解决问题.【解答】(1)证明:连接FD,∵AD=ED,∠ADE=90°,∴∠DAC=∠AED=45°,∵四边形BCEF是平行四边形,∠BCE=90°,∴四边形BCEF是矩形,∴∠CEF=∠AEF=90°,BC=EF=AC,∴∠DEF=45°,∴∠A=∠DEF,∴△ADC≌△EDF(SAS),∴DC=DF,∠DCA=∠DFE,∴∠FDC=∠FEC=90°,从而△DFC为等腰直角三角形,∴CD=CF.(2)解:成立.理由:连接FD,∵AD⊥DE,EF⊥AC,∴∠DAC=∠DEF,又AD=ED,AC=EF,∴△ADC≌△EDF(SAS),∴DC=DF,∠ADC=∠EDF,即∠ADE+∠EDC=∠FDC+∠EDC,∴∠FDC=∠ADE=90°∴△DFC为等腰直角三角形,∴CD=CF.(3)解:如图3﹣1中,设AE与CD的交点为M,∵CE=CA,DE=DA,∴CD垂直平分AE,∴=,DM=,∴CD=DM+CM=3,∵CF=CD∴CF=6.如图3﹣2中,设AE与CD的交点为M,同法可得CD=CM﹣DM=﹣=2,∴CF=CD=4,综上所述,满足条件的CF的值为6或4.6.【分析】(1)解方程求出OB,解直角三角形求出OA,可得A(﹣8,0),B(0,4),再利用待定系数法即可解决问题.(2)如图1中,设G的对应点为H,过点H作y轴的平行线IR,分别过E,F作x轴平行线与IR交于点I,R.可证△FHI∽△HER,推出===2,设ER=m,则IH=2m,可得F(m﹣16,2m),再利用待定系数法即可解决问题.(3)分三种种情形分别求解:①如图3﹣1,当四边形MNPQ是矩形时.②如图3﹣2,当四边形MNPQ是矩形时,点N与原点重合.③如图3﹣3,当四边形MNPQ是矩形时.【解答】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的根,∴OB=4,又tan∠BAO==,∴OA=8,∴A(﹣8,0).B(0,4),设直线AB的解析式为y=kx+b,则有,解得∴直线AB:y=x+4.(2)如图1中,设G的对应点为H,过点H作y轴的平行线IR,分别过E,F作x轴平行线与IR交于点I,R.∵直线EC⊥AB,S△DOE=16,∴OD=4,OE=8,可得直线DE:y=﹣2x﹣8,∵∠GFE=∠DEO,∴GE:GF=EH:HF=1:2∵∠FHE=∠I=∠R=90°,可证△FHI∽△HER,∴===2,设ER=m,则IH=2m,∴F(m﹣16,2m),把点F坐标代入y=﹣2x﹣8,得到:2m=﹣2(m﹣16)﹣8,∴m=6,∴F(﹣10,12).(3)如图3﹣1,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=,∴P(﹣1,3).如图3﹣2,当四边形MNPQ是矩形时,点N与原点重合,易证△DMQ是等腰直角三角形,OP=MQ=DM=2,∴P(0,2).如图3﹣3,当四边形MNPQ是矩形时,设PM交BD于R,则R(﹣1,3),∴P(0,6).如图3﹣4中,当QN是对角线时,P(2,6).。

2020年中考数学选择填空压轴题汇编反比例函数图像综合含解析

2020年中考数学选择填空压轴题汇编反比例函数图像综合含解析

2020年中考数学选择填空压轴题汇编:反比例函数图像综合1.(2020湖北孝感)如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y和y(k<0)上,,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为.【解答】解:作AM⊥x轴于M,DN⊥x轴于N,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOM+∠DON=∠ODN+DON=90°,∴∠AOM=∠ODN,∵∠AMO=∠OND=90°,∴△AOM∽△ODN,∴()2,∵A点在双曲线y,,∴S△AOM4=2,,∴()2,∴S△ODN,∵D点在双曲线y(k<0)上,∴|k|,∴k=﹣9,∵平行于x轴的直线与两双曲线分别交于点E,F,∴S△OEF,故答案为.2.(2020湖南郴州)在平面直角坐标系中,点A是双曲线y1(x>0)上任意一点,连接AO,过点O作AO的垂线与双曲线y2(x<0)交于点B,连接AB,已知2,则()A.4 B.﹣4 C.2 D.﹣2【解答】解:作AD⊥x轴于D,BE⊥x轴于E,∵点A是双曲线y1(x>0)上的点,点B是双曲线y2(x<0)上的点,∴S△AOD|k1|k1,S△BOE|k2|k2,∵∠AOB=90°,∴∠BOE+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOE=∠OAD,∠BEO=∠OAD=90°,∴△BOE∽△OAD,∴()2,∴22,∴4,故选:B.3.(2020江苏常州)如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD,∠ADB=135°,S△ABD=2.若反比例函数y(x>0)的图象经过A、D两点,则k的值是()A.2B.4 C.3D.6【解答】解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA∥BC,OA=BC,∴∠AOM=∠CNM,∵BD∥y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD,∵S△ABD2,BD,∴AE=2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2,∴D的纵坐标为3,设A(m,),则D(m﹣2,3),∵反比例函数y(x>0)的图象经过A、D两点,∴k m=(m﹣2)×3,解得m=3,∴k m=6.故选:D.4.(2020江苏淮安)如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y(x<0)的图象于点D,动点P从点D 出发,沿射线CD方向运动3个单位长度,到达反比例函数y(x>0)图象上一点,则k2= 1 .【解答】解:把A(﹣1,﹣4)代入y中得,k1=4,∴反比例函数y为,∵A(﹣1,﹣4)、B(﹣4,﹣1),∴AB的垂直平分线为y=x,联立方程驵,解得,或,∵AC=BC,CD⊥AB,∴CD是AB的垂直平分线,∵CD与反比例函数y(x<0)的图象于点D,∴D(﹣2,﹣2),∵动点P从点D出发,沿射线CD方向运动3个单位长度,到达反比例函数y(x>0)图象上一点,∴设移动后的点P的坐标为(m,m)(m>﹣2),则,∴x=1,∴P(1,1),把P(1,1)代入y(x>0)中,得k2=1,故答案为:1.5.(2020江苏苏州)如图,平行四边形OABC的顶点A在x轴的正半轴上,点D(3,2)在对角线OB上,反比例函数y(k>0,x>0)的图象经过C、D两点.已知平行四边形OABC的面积是,则点B的坐标为()A.(4,)B.(,3)C.(5,)D.(,)【解答】解:∵反比例函数y(k>0,x>0)的图象经过点D(3,2),∴2,∴k=6,∴反比例函数y,设OB的解析式为y=mx+b,∵OB经过点O(0,0)、D(3,2),∴,解得:,∴OB的解析式为y x,∵反比例函数y经过点C,∴设C(a,),且a>0,∵四边形OABC是平行四边形,∴BC∥OA,S平行四边形OABC=2S△OBC,∴点B的纵坐标为,∵OB的解析式为y x,∴B(,),∴BC a,∴S△OBC(a),∴2(a),解得:a=2,∴B(,3),故选:B.6.(2020江苏徐州)如图,在平面直角坐标系中,函数y(x>0)与y=x﹣1的图象交于点P(a,b),则代数式的值为()A.B.C.D.【解答】解:法一:由题意得,,解得,或(舍去),∴点P(,),即:a,b,∴;法二:由题意得,函数y(x>0)与y=x﹣1的图象交于点P(a,b),∴ab=4,b=a﹣1,∴;故选:C.7.(2020江苏盐城)如图,已知点A(5,2)、B(5,4)、C(8,1).直线l⊥x轴,垂足为点M(m,0).其中m,若△A′B′C′与△ABC关于直线l对称,且△A′B′C′有两个顶点在函数y(k≠0)的图象上,则k的值为﹣6或﹣4 .【解答】解:∵点A(5,2)、B(5,4)、C(8,1),直线l⊥x轴,垂足为点M(m,0).其中m,△A′B′C′与△ABC关于直线l对称,∴A′(2m﹣5,2),B′(2m﹣5,4),C′(2m﹣8,1),∵A′、B′的横坐标相同,∴在函数y(k≠0)的图象上的两点为,A′、C′或B′、C′,当A′、C′在函数y(k≠0)的图象上时,则k=2(2m﹣5)=2m﹣8,解得m=1,∴k=﹣6;当B′、C′在函数y(k≠0)的图象上时,则k=4(2m﹣5)=2m﹣8,解得m=2,∴k=﹣4,综上,k的值为﹣6或﹣4,故答案为﹣6或﹣4.8.(2020辽宁辽阳)如图,在△ABC中,AB=AC,点A在反比例函数y(k>0,x>0)的图象上,点B,C在x轴上,OC OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于1,则k的值为 3 .【解答】解:作AE⊥BC于E,连接OA,∵AB=AC,∴CE=BE,∵OC OB,∴OC CE,∵AE∥OD,∴△COD∽△CEA,∴()2=4,∵△BCD的面积等于1,OC OB,∴S△COD S△BCD,∴S△CEA=41,∵OC CE,∴S△AOC S△CEA,∴S△AOE1,∵S△AOE k(k>0),∴k=3,故答案为3.9.(2020辽宁营口)如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中∠OAB=90°,AO=AB,点C为斜边OB的中点,反比例函数y(k>0,x>0)的图象过点C且交线段AB于点D,连接CD,OD,若S△OCD,则k的值为()A.3 B.C.2 D.1 【解答】解:根据题意设B(m,m),则A(m,0),∵点C为斜边OB的中点,∴C(,),∵反比例函数y(k>0,x>0)的图象过点C,∴k•,∵∠OAB=90°,∴D的横坐标为m,∵反比例函数y(k>0,x>0)的图象过点D,∴D的纵坐标为,作CE⊥x轴于E,∵S△COD=S△COE+S梯形ADCE﹣S△AOD=S梯形ADCE,S△OCD,∴(AD+CE)•AE,即()•(m m),∴1,∴k2,故选:C.10.(2020四川乐山)如图,在平面直角坐标系中,直线y=﹣x与双曲线y交于A、B两点,P是以点C (2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k 的值为()A.B.C.﹣2 D.【解答】解:点O是AB的中点,则OQ是△ABP的中位线,当B、C、P三点共线时,PB最大,则OQ BP最大,而OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,设点B(m,﹣m),则(m﹣2)2+(﹣m﹣2)2=32,解得:m2,∴k=m(﹣m),故选:A.11.(2020四川凉山州)如图,矩形OABC的面积为,对角线OB与双曲线y(k>0,x>0)相交于点D,且OB:OD=5:3,则k的值为12 .【解答】解:设D的坐标是(3m,3n),则B的坐标是(5m,5n).∵矩形OABC的面积为,∴5m•5n,∴mn.把D的坐标代入函数解析式得:3n,∴k=9mn=912.故答案为12.12.(2020浙江湖州)如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若△ACD的面积是2,则k的值是.【解答】解:连接OD,过C作CE∥AB,交x轴于E,∵∠ABO=90°,反比例函数y(x>0)的图象经过OA的中点C,∴S△COE=S△BOD,S△ACD=S△OCD=2,∵CE∥AB,∴△OCE∽△OAB,∴,∴4S△OCE=S△OAB,∴4k=2+2k,∴k,故答案为:.13.(2020浙江宁波)如图,经过原点O的直线与反比例函数y(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE 的面积为56,四边形ABCD的面积为32,则a﹣b的值为24 ,的值为.【解答】解:如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.由题意A,D关于原点对称,∴A,D的纵坐标的绝对值相等,∵AE∥CD,∴E,C的纵坐标的绝对值相等,∵E,C在反比例函数y的图象上,∴E,C关于原点对称,∴E,O,C共线,∵OE=OC,OA=OD,∴四边形ACDE是平行四边形,∴S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,∴S△AOE=S△DEO=12,∴a b=12,∴a﹣b=24,∵S△AOC=S△AOB=12,∴BC∥AD,∴,∵S△ACB=32﹣24=8,∴S△ADC:S△ABC=24:8=1:3,∴BC:AD=1:3,∴TB:TA=1:3,设BT=a,则AT=3a,AK=TK=1.5k,BK=0.5k,∴AK:BK=3:1,∴,∴.故答案为24,.14.(2020重庆A卷)如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()A.6 B.12 C.18 D.24【解答】解:如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.∵AN∥FM,AF=FE,∴MN=ME,∴FM AN,∵A,F在反比例函数的图象上,∴S△AON=S△FOM,∴•ON•AN•OM•FM,∴ON OM,∴ON=MN=EM,∴ME OE,∴S△FME S△FOE,∵AD平分∠OAE,∴∠OAD=∠EAD,∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA=∠DAE,∴AE∥BD,∴S△ABE=S△AOE,∴S△AOE=18,∵AF=EF,∴S△EOF S△AOE=9,∴S△FME S△EOF=3,∴S△FOM=S△FOE﹣S△FME=9﹣3=6,∴k=12.故选:B.15.(2020重庆B卷)如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y(k>0,x>0)的图象经过点B,则k的值为()A.B.8 C.10 D.【解答】解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,∴∠BHC=90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCG+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠PAO=∠BAF+∠PAO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴,∴,∴BF,∴B(4,),∴k,故选:D.。

2020年中考数学1.几何综合选择填空压轴题(含解析)

2020年中考数学1.几何综合选择填空压轴题(含解析)

几何综合-填空选择压轴题11、如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则AGGF的值是()A.43B.54C.65D.762、在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=√3x+2√3上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.√3D.√23、如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为.4、如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC =2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()A.1个B.2个C.3个D.4个5、如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD= .6、如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A 在△ECD的斜边DE上,若AE=√2,AD=√6,则两个三角形重叠部分的面积为()A.√2 B.3−√2 C.√3−1 D.3−√37、如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O 点,则AB= .8、如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP 于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=√5 B.EF=√22 C.cos∠CEP=√55D.HF2=EF•CF9、如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD=1,BD=2,BC=4,则EF= .10、已知△ABC的三边a,b,c,满足a+b2+|c﹣6|+28=4√a−1+10b,则△ABC 的外接圆半径= .11、如图,直线y=﹣x+1与两坐标轴分别交于A,B两点,将线段OA分成n等份,分点分别为P1,P2,P3,…,Pn﹣1,过每个分点作x轴的垂线分别交直线AB于点T 1,T 2,T 3,…,T n ﹣1,用S 1,S 2,S 3,…,S n ﹣1分别表示Rt △T 1OP 1,Rt △T 2P 1P 2,…,Rt △T n ﹣1P n ﹣2P n ﹣1的面积,则S 1+S 2+S 3+…+S n ﹣1= .12、已知如图,在正方形ABCD 中,AD=4,E ,F 分别是CD ,BC 上的一点,且∠EAF=45°,EC=1,将△ADE 绕点A 沿顺时针方向旋转90°后与△ABG 重合,连接EF ,过点B 作BM ∥AG ,交AF 于点M ,则以下结论:①DE+BF=EF ,②BF=47,③AF=307,④S △MBF =32175中正确的是( )A .①②③B .②③④C .①③④D .①②④13、在△ABC 中,若O 为BC 边的中点,则必有:AB 2+AC 2=2AO 2+2BO 2成立.依据以上结论,解决如下问题:如图,在矩形DEFG 中,已知DE=4,EF=3,点P 在以DE 为直径的半圆上运动,则PF 2+PG 2的最小值为( )A.√10 B.192C.34 D.1014、如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G,若EFAE =34,则CGGB= .15、如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=95;③当A、F、C三点共线时,AE=13−2√133;④当A、F、C三点共线时,△CEF≌△AEF.16、如图,在边长为a正方形ABCD中,把边BC绕点B逆时针旋转60°,得到线段BM,连接AM并延长交CD于N,连接MC,则△MNC的面积为()A.√3−12a2 B.√2−12a2 C.√3−14a2 D.√2−14a217、如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是形,点P、E、F分别为线段AB、AD、DB的任意点,则PE+PF 的最小值是.18、如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是()A.AB B.DE C.BD D.AF19、如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.20、如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上,(I)∠ACB的大小为(度);(Ⅱ)在如图所示的网格中,P是BC边上任意一点,以A为中心,取旋转角等于∠BAC,把点P逆时针旋转,点P的对应点为P′,当CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要求证明).21、如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()B.1 C.√2 D.2A.1222、在△ABC中,AB=√34,AC=5,若BC边上的高等于3,则BC边的长为.23、如图直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A.1 B.2 C.3 D.不能确定24、如图,已知点P是矩形ABCD内一点(不含边界),设∠PAD=θ1,∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则()A.(θ1+θ4)﹣(θ2+θ3)=30°B.(θ2+θ4)﹣(θ1+θ3)=40°C.(θ1+θ2)﹣(θ3+θ4)=70°D.(θ1+θ2)+(θ3+θ4)=180°25、如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S226、折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= .27、如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()。

2020年中考数学4.几何综合选择填空压轴题(含解析)

2020年中考数学4.几何综合选择填空压轴题(含解析)

几何综合-填空选择压轴题41、如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.2、如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.√6cm C.2.5cm D.√5cm3、定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△An﹣1Bn﹣1Cn﹣1经γ(n,180°)变换后得△AnBnCn,则点A1的坐标是,点A2018的坐标是.4、我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C.994D.5325、如图,直线y=﹣√33x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D 是AB上一点,四边形OEDC是菱形,则△OAE的面积为.6、小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为49√3cm2,则该圆的半径为cm.27、如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是.8、如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.√15 B.2√5 C.2√15 D.89、如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE 的值是()A.√24 B.14C.13D.√2310、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.32B.43C.53D.8511、如图,在正方形ABCD中,AD=2√3,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.12、如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.9+25√34 B.9+25√32C.18+25√3 D.18+25√3213、如图,点O 是▱ABCD 的对称中心,AD >AB ,E 、F 是AB 边上的点,且EF=12AB ;G 、H 是BC 边上的点,且GH=13BC ,若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是 .14、如图,已知∠POQ=30°,点A 、B 在射线OQ 上(点A 在点O 、B 之间),半径长为2的⊙A 与直线OP 相切,半径长为3的⊙B 与⊙A 相交,那么OB 的取值范围是( )A .5<OB <9 B .4<OB <9C .3<OB <7D .2<OB <715、如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE=2,CE=3,则矩形的对角线AC 的长为 .16、如图,在菱形ABCD中,tanA=43,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,BNCN的值为.17、如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.32B.2 C.52D.318、如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF=14AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,则S△ADGS△BGH的值为()A.12B.23C.34D.119、如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2√3).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为.20、如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为.21、如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r 1:r2= .22、对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O 折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为()A.7 B.6 C.5 D.423、如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达.(结果保留根号)24、如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=√3x于点B 1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则A2019B2018̂的长是.25、如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP 的长为.26、如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.27、如图,在△ABC中,已知AC=3,BC=4,点D为边AB的中点,连结CD,过点A作AE⊥CD于点E,将△ACE沿直线AC翻折到△ACE′的位置.若CE′∥AB,则CE′=.。

2020年中考数学专题训练:压轴题

2020年中考数学专题训练:压轴题

2020年中考数学专题训练:压轴题一、选择题1.如图,一次函数与反比例函数的图象交于A(1,8)和B(4,2)两点,点P是线段AB 上一动点(不与点A和B重合),过P点分别作x轴,y轴的垂线PC,PD交反比例函数图象于点E,F,则四边形OEPF面积的最大值是()A.3 B.4 C.D.6第1题第2题2.如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P 是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF的中点为G,则当点P从点C 运动到点D时,点G移动的路径长为()A.1 B.2 C.3 D.63.如图,过原点的直线与反比例函数y=(k>0)的图象交于点A,B两点,在x轴有一点C(3,0),AC⊥BC,连结AC交反比例函数图象于点D,若AD=CD,则k的值为()A.B.2 C.2D.44.七巧板是我国祖先的一项卓越创造,如图正方形ABCD可以制作一副七巧板,现将这副七巧板拼成如图2的“风车”造型(内部有一块空心),连结最外围的风车顶点M、N、P、Q得到一个四边形MNPQ,则正方形ABCD与四边形MNPQ的面积之比为()A.5:8 B.3:5 C.8:13 D.25:495.如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线y=(x>0)上,若图中S△OBP=4,则k的值为()A.B.﹣C.﹣4 D.46.有一个著名的希波克拉蒂月牙问题:如图1,以直角三角形的各边为直径分别向上作半圆,则直角三角形的面积可表示成两个月牙形的面积之和,现将三个半圆纸片沿直角三角形的各边向下翻折得到图2,把较小的两张半圆纸片的重叠部分面积记为S1,大半圆纸片未被覆盖部分的面积记为S2,则直角三角形的面积可表示成()A.S1+S2B.S2﹣S1C.S2﹣2S1D.S1•S2二、填空题1.如图,四边形ABCD,四边形EBFG,四边形HMPN均是正方形,点E、F、P、N分别在边AB、BC、CD、AD上,点H、G、M在AC上,阴影部分的面积依次记为S1,S2,则S1:S2等于.第3题第4题2.如图,点A在反比例函数y=(x<0,k1<0)的图象上,点B,C在反比例函数y=(x>0,k2>0)的图象上,AB∥x轴,CD⊥x轴于点D,交AB于点E.若△ABC与△DBC的面积之差为3,=,则k1的值为.3.如图,矩形ABCD中,将△BCD绕点B逆时针旋转得△BEF,其中点C的对应点E恰好落在BD上.BF,EF分别交边AD于点G,H.若GH=4HD,则cos∠DBC的值为.第3题第4题4.如图,在矩形ABCD中,AB=3,BC=4,P是对角线BD上的动点,以BP为直径作圆,当圆与矩形ABCD的边相切时,BP的长为.5.如图,在平面直角坐标系中,菱形OABC的边长为2,∠AOC=60°,点D为AB边上的一点,经过O,A,D三点的抛物线与x轴的正半轴交于点E,连结AE交BC于点F,当DF⊥AB时,CE的长为.第5题第6题6.如图,已知AC=6,BC=8,AB=10,以点C为圆心,4为半径作圆.点D是⊙C上的一个动点,连接AD、BD,则AD+BD的最小值为.三、解答题1.如图1,Rt△ABC中,点D,E分别为直角边AC,BC上的点,若满足AD2+BE2=DE2,则称DE为Rt△ABC的“完美分割线”.显然,当DE为△ABC的中位线时,DE是△ABC 的一条完美分割线.(1)如图1,AB=10,cos A=,AD=3,若DE为完美分割线,则BE的长是.(2)如图2,对AC边上的点D,在Rt△ABC中的斜边AB上取点P,使得DP=DA,过点P画PE⊥PD交BC于点E,连结DE,求证:DE是直角△ABC的完美分割线.(3)如图3,在Rt△ABC中,AC=10,BC=5,DE是其完美分割线,点P是斜边AB 的中点,连结PD、PE,求cos∠PDE的值.2.抛物线y=ax2﹣2ax﹣3a图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,顶点M的纵坐标为4,直线MD⊥x轴于点D.(1)求抛物线的解析式;(2)如图1,N为线段MD上一个动点,以N为等腰三角形顶角顶点,NA为腰构造等腰△NAG,且G点落在直线CM上.若在直线CM上满足条件的G点有且只有一个时,请直接写出点N的坐标.(3)如图,点P为第一象限内抛物线上的一点,点Q为第四象限内抛物线上一点,点Q 的横坐标比点P的横坐标大1,连接PC、AQ.当PC=AQ时,求S△PCQ的值.3.定义:有一组对边与一条对角线均相等的四边形为对等四边形,这条对角线又称对等线.(1)如图1,在四边形ABCD中,∠C=∠BDC,E为AB的中点,DE⊥AB.求证:四边形ABCD是对等四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的对等四边形ABCD,使BD是对等线,C,D在格点上.(3)如图3,在图(1)的条件下,过点E作AD的平行线交BD,BC于点F,G,连结DG,若DG⊥EG,DG=2,AB=5,求对等线BD的长.4.如图,AB为⊙O的直径,点C为下方的一动点,连结OC,过点O作OD⊥OC交BC 于点D,过点C作AB的垂线,垂足为F,交DO的延长线于点E.(1)求证:EC=ED.(2)当OE=OD,AB=4时,求OE的长.(3)设=x,tan B=y.①求y关于x的函数表达式;②若△COD的面积是△BOD的面积的3倍,求y的值.5.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点P为直线BD上方抛物线上一点,若S△PBD=3,请求出点P的坐标.(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.6.如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.参考答案一、选择题1.【分析】利用A和B两个点求出解析式,将面积转化为二次函数的形式,利用二次函数的性质求最大值;【解答】解:设一次函数解析式为y=kx+b,反比例函数解析式为y=,∵A(1,8)和B(4,2)是两个函数图象的交点,∴y=,∴,∴,∴y=﹣2x+10,∵S△ODF=S△ECO=4,设点P的坐标(x,﹣2x+10),∴四边形OEPF面积=xy﹣8=x(﹣2x+10)﹣8=﹣2x2+10x﹣8=﹣2(x﹣)2+,∴当x=时,面积最大为;故选:C.2.【分析】设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,判断出G的运行轨迹为△CSD的中位线,从而求出点G移动的路径长.【解答】解:设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,∴G为PS的中点,即在点P运动过程中,G始终为PS的中点,∴G的运行轨迹为△CSD的中位线,∵CD=AB﹣AC﹣BD=6﹣1﹣1=4,∴点G移动的路径长为×4=2.故选:B.3.【分析】设A(t,),利用线段的中点坐标公式得到D点坐标为(,),则•=k,解得t=1,所以A(1,k),再证明OC为Rt△ACB斜边上的中线,则OA=OC=3,然后利用勾股定理得到12+k2=32,最后解方程即可.【解答】解:设A(t,),∵C(3,0),AD=CD,∴D点坐标为(,),∵点D在反比例函数y=(k>0)的图象上,∴•=k,解得t=1,∴A(1,k),∵AC⊥BC,∴∠ACB=90°,∵过原点的直线与反比例函数y=(k>0)的图象交于点A,B两点,∴点A与点B关于原点对称,即OA=OB,∴OC=OA=OB=3,∴12+k2=32,解得k=2.故选:C.4.【分析】设AC=4a,解直角三角形求出AB、MQ,再求出两正方形的面积,即可得出答案.【解答】解:设AC=a+a+a+a=4a,则AB=BC=AC×sin45°=2 a,所以正方形ABCD的面积是(2 a)2=8a2;图2中ME=3a,EQ=2a,由勾股定理得:MQ==a,所以正方形MNPQ的面积为(a)2=13a2,所以图中正方形ABCD,MNPQ的面积比为,故选:C.5.【分析】先根据△AOB和△ACD均为正三角形可知∠AOB=∠CAD=60°,故可得出AD ∥OB,所以S△ABP=S△AOP,故S△AOB=S△OBP=4,过点B作BE⊥OA于点E,由反比例函数系数k的几何意义即可得出结论.【解答】解:如图:∵△AOB和△ACD均为正三角形,∴∠AOB=∠CAD=60°,∴AD∥OB,∴S△ABP=S△AOP,∴S△AOB=S△OBP=4,过点B作BE⊥OA于点E,则S△OBE=S△ABE=S△AOB=2,∵点B在反比例函数y=的图象上,∴S△OBE=k,∴k=4故选:D.6.【分析】设以Rt△ABC的斜边为直径的半圆为大半圆,以AC为直径的半圆为中半圆,以BC为直径的半圆为小半圆,根据圆的面积公式得到S小半圆=π×=BC2,S=AC2,S大半圆=AB2,根据勾股定理于是得到S△ABC=S2﹣S1.中半圆【解答】解:设以Rt△ABC的斜边为直径的半圆为大半圆,以AC为直径的半圆为中半圆,以BC为直径的半圆为小半圆,∵S小半圆=π×=BC2,S中半圆=AC2,S大半圆=AB2,∴S大半圆﹣S中半圆﹣S小半圆=(AB2﹣BC2﹣AC2)=0,∵S△ABC+S大半圆﹣S中半圆﹣S小半圆+S1=S2,∴S△ABC+S1=S2,∴S△ABC=S2﹣S1,∴直角三角形的面积可表示成S2﹣S1,故选:B.二、填空题1.【分析】设DP=DN=m,则PN=m,PC=2m,AD=CD=3m,AC=3m,CG=AG=m,求出两个阴影部分的面积即可解决问题.【解答】解:设DP=DN=m,则PN=m,PC=2m,AD=CD=3m,AC=3m,CG=AG=m,∴S1=m2,S2=••CG2=m2,∴==,故答案为4:9.2.【分析】设CE=2t,则DE=3t,利用反比例函数图象上点的坐标特征得到C(,5t),B(,3t),A(,3t),再根据三角形面积公式得到×(﹣)×2t﹣×5t (﹣)=3,然后化简后可得到的值.【解答】解:设CE=2t,则DE=3t,∵点B,C在反比例函数y=(x>0,k2>0)的图象上,AB∥x轴,CD⊥x轴,∴C(,5t),B(,3t),∴A(,3t),∵△ABC与△DBC的面积之差为3,∴×(﹣)×2t﹣×5t(﹣)=3,∴k1=﹣9.故答案为﹣9.3.【分析】由旋转的性质可得∠FBE=∠DBC,BF=BD,BE=BC,∠BEF=∠C=90°,再由矩形的性质得出∠EDH=∠DBC,设HD=x,GH=4x,设BE=BC=y,分别用x和y表示出BC、BD、DE、DH,根据cos∠DBC=cos∠EDH,列出比例式,化简得=,即cos∠DBC=.【解答】解:∵将△BCD绕点B逆时针旋转得△BEF,其中点C的对应点E恰好落在BD上.∴∠FBE=∠DBC,BF=BD,BE=BC,∠BEF=∠C=90°,∵矩形ABCD中,AD∥BC,∴∠EDH=∠DBC,∴∠FBE=∠DBC=∠EDH,∴BG=DG,∵GH=4HD,∴设HD=x,GH=4x,设BE=BC=y,则BG=DG=5x,∵∠DHE+∠EDH=90°,∠F+∠FBE=90°,∠FBE=∠EDH,∴∠F=∠DHE,∵∠FHG=∠DHE,∴∠F=∠FHG,∴GF=GH=4x,∴BF=BD=9x,DE=9x﹣y,∵cos∠DBC=cos∠EDH,∴=,∴=,∴xy=81x2﹣9xy,∴10xy=81x2,∴10y=81x,∴=,即cos∠DBC=.故答案为:.4.【分析】BP为直径的圆的圆心为O,作OE⊥AD于E,OF⊥CD于F,如图,设⊙O的半径为r,先利用勾股定理计算出BD=5,根据切线的判定方法,当OE=OB时,⊙O与AD相切,根据平行线分线段成比例定理得=,求出r得到BP的长;当OF=OB时利用同样方法求出BP的长.【解答】解:BP为直径的圆的圆心为O,作OE⊥AD于E,OF⊥CD于F,如图,设⊙O的半径为r,在矩形ABCD中,AB=3,BC=4,∴BD==5,当OE=OB时,⊙O与AD相切,∵OE∥AB,∴=,即=,解得r=,此时BP=2r=;当OF=OB时,⊙O与DC相切,∵OF∥BC,∴=,即=,解得r=,此时BP=2r=;综上所述,BP的长为或.故答案为或.5.【分析】先求出A(1,),B(3,),设BF=x,则CF=2﹣x,再由菱形的性质求出D(3﹣x,),由于抛物线经过O,A,D、E,根据抛物线的对称性可知点A与点D的中点横坐标与点O与点E的中点横坐标相同,可求E(4﹣x,0),由平行线分线段成比例可得=,从而建立等量关系=,求出x即可求CE.【解答】解:∵菱形OABC的边长为2,∠AOC=60°,∴OA=2,∴A(1,),∵菱形OABC,∴AB=OC=2,AB∥OC,∴B(3,),设BF=x,则CF=2﹣x,在菱形OABC中,∠B=∠AOC=60°,∵DF⊥AB,∴D(3﹣x,),∴点A与点D的中点为(2﹣x,),∵抛物线经过O,A,D、E,∴点O与点E的中点为(2﹣x,0),∴E(4﹣x,0),∴CE=4﹣x﹣2=2﹣x,∵AB∥CE,∴=,∴=,∴x=4+2(舍)或x=4﹣2,∴CE=,故答案为.6.【分析】在CB上找一点E,连接ED,使ED=BD,然后根据两间之间线段最短原量即可解决问题.【解答】解:如图,在CB上取一点E,使CE=2,连接CD、DE、AE.∵AC=6,BC=8,AB=10,所以AC2+BC2=AB2,∴∠ACB=90°,∵CD=4,∴==,∴△CED∼△CDB,∴==,∴ED=BD,∴AD+BD=AD+ED≥AE,当且仅当E、D、A三点共线时,AD+BD取得最小值AE==2.三、解答题1.【分析】(1)由勾股定理求出BC=6,设BE=x,则CE=6﹣x,则AD2+BE2=DE2,可得出32+x2=52+(6﹣x)2,解得:x=,则答案可求出;(2)证得AD2+BE2=DP2+EP2=DE2,则结论得证;(3)延长DP至F,使PF=PD,连接BF,EF,证明△APD≌△BPF(SAS),得出AD =BF,∠A=∠FBP,则∠EPD=90°,过点P作PM⊥AC,PN⊥BC,则∠MPD=∠NPE =90°﹣∠MPE,证明△MPD∽△NPE,得出PE=2PD,设PD=a,则PE=2a,则DE =a,则可求出答案.【解答】解:(1)∵AB=10,cos A=,∴cos A=,∴AC=8,CD=5,∴==6,设BE=x,则CE=6﹣x,在Rt△CDE中,DE2=CD2+CE2=52+(6﹣x)2,∵DE为完美分割线,∴AD2+BE2=DE2,∴32+x2=52+(6﹣x)2,解得:x=.∴BE=.故答案为:.(2)证明:如图2,∵DA=DP,∴∠DAP=∠DP A,∵PE⊥PD,∴∠DP A+∠EPB=90°,又∠A=∠B,∴∠EPB=∠B,∴EP=EB,∴AD2+BE2=DP2+EP2=DE2,∴DE是直角△ABC的完美分割线.(3)解:延长DP至F,使PF=PD,连接BF,EF,∵AP=BP,∠APD=∠BPF,∴△APD≌△BPF(SAS),∴AD=BF,∠A=∠FBP,∴∠EBF=∠CBA+∠FBP=∠CBA+∠A=90°,∵DE是完美分割线,∴DE2=AD2+BE2=BF2+BE2=EF2,即ED=EF.又PD=PF,∴∠EPD=90°,过点P作PM⊥AC,PN⊥BC,则∠MPD=∠NPE=90°﹣∠MPE,∴△MPD∽△NPE,∴,设PD=a,则PE=2a,则DE==a,∴cos∠PDE==.2.【分析】(1)求出对称轴得到顶点坐标,代入解析式求出a值即可.(2)当直线CM上满足条件的G点有且只有一个时,可分两种情况讨论:①NG⊥CM,且NG=NA,如图2,作CH⊥MD于H,如图2.设N(1,n),易得NG=MN=(4﹣n),NA2=22+n2=4+n2,由题可得NG=NA,由此即可得到关于n的方程,解这个方程就可解决问题;②A、N、G共线,且AN=GN,如图3,过点GT⊥x轴于T,则有AD=DT=2,运用待定系数法求出直线CM的解析式,从而得出点G的坐标,然后运用三角形的中位线定理就可解决问题.(3)根据点P在第一象限,点Q在第二象限,且横坐标相差1,进而设出点P(3﹣m,﹣m2+4m)(0<m<1);得出点Q(4﹣m,﹣m2+6m﹣5),得出CP2,AQ2,最后建立方程求解即可.【解答】解:(1)将顶点M坐标(1,4)代入解析式,可得a=﹣1,抛物线解析式为y =﹣x2+2x+3(2)当直线CM上满足条件的G点有且只有一个时,①NG⊥CM,且NG=NA,如图1,作CH⊥MD于H,则有∠MGN=∠MHC=90°.设N(1,n),当x=0时,y=3,点C(0,3).∵M(1,4),∴CH=MH=1,∴∠CMH=∠MCH=45°,∴NG=MN=(4﹣n).在Rt△NAD中,∵AD=DB=2,DN=n,∴NA2=22+n2=4+n2.则(4﹣n)2=4+n2整理得:n2+8n﹣8=0,解得:n1=﹣4+2,n2=﹣4﹣2(舍负),∴N(1,﹣4+2).②A、N、G共线,且AN=GN,如图2.过点GT⊥x轴于T,则有DN∥GT,根据平行线分线段成比例可得AD=DT=2,∴OT=3.设过点C(0,3)、M(1,4)的解析式为y=px+q,则,解得,∴直线CM的解析式为y=x+3.当x=3时,y=6,∴G(3,6),GT=6.∵AN=NG,AD=DT,∴ND=GT=3,∴点N的坐标为(1,3).综上所述:点N的坐标为(1,﹣4+2 )或(1,3).(3)如图3,过点P作PD⊥x轴交CQ于D,设P(3﹣m,﹣m2+4m)(0<m<1);∵C(0,3),∴PC2=(3﹣m)2+(﹣m2+4m﹣3)2=(m﹣3)2[(m﹣1)2+1],∵点Q的横坐标比点P的横坐标大1,∴Q(4﹣m,﹣m2+6m﹣5),∵A(﹣1,0).∴AQ2=(4﹣m+1)2+(﹣m2+6m﹣5)2=(m﹣5)2[(m﹣1)2+1]∵PC=AQ,∴81PC2=25AQ2,∴81(m﹣3)2[(m﹣1)2+1]=25(m﹣5)2[(m﹣1)2+1],∵0<m<1,∴[(m﹣1)2+1]≠0,∴81(m﹣3)2=25(m﹣5)2,∴9(m﹣3)=±5(m﹣5),∴m=或m=(舍),∴P(,),Q(,﹣),∵C(0,3),∴直线CQ的解析式为y=﹣x+3,∵P(,),∴D(,﹣),∴PD=+=∴S△PCQ=S△PCD+S△PQD=PD×x P+PD×(x Q﹣x P)=PD×x Q==.3.【分析】(1)由∠C=∠BDC,得出BC=BD,由等腰三角形的性质得出BD=AD,即可得出结论;(2)有两种画法:①作AB的垂直平分线与方格纸上的格点的交点即为点D,再以点B为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AD=BC=BD;②以点B为圆心、以AB长为半径画圆,圆与方格纸上的格点的交点即为点D,再以点D为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AB=CD=BD;(3)过点E作EH⊥AD于H,易证四边形DGEH是矩形,得出EH=DG=2,求出AE =BE=AB=,S△ADE=S△BDE,设DE=x,AD=BD=y,S△ADE=EH•AD=y,S△BDE =BE•DE=x,由勾股定理得出BD2=BE2+DE2,即y2=()2+x2,则,解方程组即可得出结果.【解答】(1)证明:∵∠C=∠BDC,∴BC=BD,∵E为AB的中点,DE⊥AB,∴BD=AD,∴BC=AD=BD,∴四边形ABCD是对等四边形;(2)解:有两种画法:①作AB的垂直平分线与方格纸上的格点的交点即为点D,再以点B为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AD=BC=BD,如图2﹣1所示;②以点B为圆心、以AB长为半径画圆,圆与方格纸上的格点的交点即为点D,再以点D为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AB=CD=BD,如图2﹣2所示;(3)解:过点E作EH⊥AD于H,如图3所示:则∠EHD=90°,∵EG∥AD,DG⊥EG,∴∠EGD=∠HDG=90°,∴四边形DGEH是矩形,∴EH=DG=2,∵E为AB的中点,AB=5,∴AE=BE=AB=,S△ADE=S△BDE,设DE=x,AD=BD=y,则S△ADE=EH•AD=×2×y=y,S△BDE=BE•DE=××x=x,∵在Rt△BDE中,∠BED=90°,∴BD2=BE2+DE2,即y2=()2+x2,∴,解得:,∴BD=.4.【分析】(1)欲证明EC=ED,只要证明∠ECD=∠EDC.(2)证明△ECD是等边三角形,推出∠E=60°即可解决问题.(3)①连接AC.首先证明x==,再证明∠ACF=∠B,推出tan∠B=tan∠ACF ==y,令OC=k,则OF=kx,CF===k•,推出AF=OA﹣OF=k﹣kx=k(1﹣x),根据y=计算即可.②作OH⊥BC于H.设BD=m,利用相似三角形的性质求出OH,BH(用m表示)即可解决问题.【解答】(1)证明:∵OD⊥OC,∴∠COD=90°,∴∠OCD+∠ODC=90°,∵EC⊥AB,∴∠CEB=90°,∴∠B+∠ECB=90°,∵OC=OB,∴∠B=∠OCD,∴∠ODC=∠ECB,∴EC=EB.(2)解:∵OE=OD,OC⊥ED,∴CE=CE,∵EC=ED,∴EC=ED=CD,∴△ECD是等边三角形,∵∠E=60°,在Rt△EOC中,∵∠EOC=90°,OC=AB=2,∴OE==.(3)解:①连接AC.∵EC=ED,∠EOC=90°∴==sin∠ECO,∵∠OFC=90°,∴sin∠ECO=,∴x==,∵AB是直径,∴∠ACB=90°,∵CE⊥AB,∴∠AFC=90°,∴∠ACF+∠A=90°,∠B+∠A=90°,∴∠ACF=∠B,∴tan∠B=tan∠ACF==y,令OC=k,则OF=kx,CF===k•,∴AF=OA﹣OF=k﹣kx=k(1﹣x),∴y===(0<x<1).②作OH⊥BC于H.设BD=m,∵△COD的面积是△BOD的面积的3倍,∴CD=3BD=3m,CB=4m,∵OH⊥BC,∴CH=BH=2m,∴HD=m,∵∠OCH+∠COH=90°,∠COH+∠DOH=90°,∴∠OCH=∠DOH,∵∠OHC=∠OHD=90°,∴△OHC∽△DHO,∴=,∴OH2=2m2,∴OH=m,∴y=tan B===.5.【分析】(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B的坐标代入求出a的值即可得出答案;(2)过点P作PQ∥y轴交DB于点Q,求出直线BD的解析式,设P(m,﹣m2+2m+3),则Q(m,﹣m+3),可得出S△PBD=﹣m,解方程可求出m的值,则答案可求出;(3)设M(a,0),证明△AMN∽△ABD,可得,再由△DNM∽△BMD,可得,得出关于a的方程,解方程即可得出答案.【解答】解:(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B(3,0)代入得,(3﹣1)2×a+4=0.解得:a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3.(2)过点P作PQ∥y轴交DB于点Q,∵抛物线的解析式为y=﹣x2+2x+3∴D(0,3).设直线BD的解析式为y=kx+n,∴,解得:,∴直线BD的解析式为y=﹣x+3.设P(m,﹣m2+2m+3),则Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.∵S△PBD=S△PQD+S△PQB,∴S△PBD=×PQ×(3﹣m)=PQ=﹣m,∵S△PBD=3,∴﹣m=3.解得:m1=1,m2=2.∴点P的坐标为(1,4)或(2,3).(3)∵B(3,0),D(0,3),∴BD==3,设M(a,0),∵MN∥BD,∴△AMN∽△ABD,∴,即.∴MN=(1+a),DM==,∵△DNM∽△BMD,∴,∴DM2=BD•MN.∴9+a2=3(1+a).解得:a=或a=3(舍去).∴点M的坐标为(,0).6.【分析】(1)①利用勾股定理求出AC,由△PCB′∽△ACB,推出=,即可解决问题.②分三种情形分别求解即可:如图2﹣1中,当∠PCB′=90°时.如图2﹣2中,当∠PCB′=90°时.如图2﹣3中,当∠CPB′=90°时.(2)如图3﹣2中,首先证明四边形ABCD是正方形,如图3﹣2中,利用全等三角形的性质,翻折不变性即可解决问题.【解答】解:(1)①如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC==,∵∠PCB′=∠ACB,∠PB′C=∠ABC=90°,∴△PCB′∽△ACB,∴=,∴=,∴PB′=2﹣4.∴t=PB=2﹣4.②如图2﹣1中,当∠PCB′=90°时,∵四边形ABCD是矩形,∴∠D=90°,AB=CD=2,AD=BC=3,∴DB′==,∴CB′=CD﹣DB′=,在Rt△PCB′中,∵B′P2=PC2+B′C2,∴t2=()2+(3﹣t)2,∴t=2.如图2﹣2中,当∠PCB′=90°时,在Rt△ADB′中,DB′==,∴CB′=3在Rt△PCB′中则有:,解得t=6.如图2﹣3中,当∠CPB′=90°时,易证四边形ABP′为正方形,易知t=2.综上所述,满足条件的t的值为2s或6s或2s.(2)如图3﹣1中,∵∠P AM=45°∴∠2+∠3=45°,∠1+∠4=45°又∵翻折,∴∠1=∠2,∠3=∠4,又∵∠ADM=∠AB′M,AM=AM,∴△AMD≌△AMB′(AAS),∴AD=AB′=AB,即四边形ABCD是正方形,如图,设∠APB=x.∴∠P AB=90°﹣x,∴∠DAP=x,易证△MDA≌△B′AM(HL),∴∠BAM=∠DAM,∵翻折,∴∠P AB=∠P AB′=90°﹣x,∴∠DAB′=∠P AB′﹣∠DAP=90°﹣2x,∴∠DAM=∠DAB′=45°﹣x,∴∠MAP=∠DAM+∠P AD=45°.。

2020年中考数学选择填空压轴题汇编8份(付,132)

2020年中考数学选择填空压轴题汇编8份(付,132)

2020年中考数学选择填空压轴题汇编:动点产生的函数图像1.(2020•安徽)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x 变化的函数图象大致为()A.B.C.D.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH =√32EJ =√32x ,∴y =12EJ •GH =√34x 2. 当x =2时,y =√3,且抛物线的开口向上. 如图2所示:2<x ≤4时,过点G 作GH ⊥BF 于H .y =12FJ •GH =√34(4﹣x )2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A .2.(2020•北京)有一个装有水的容器,如图所示,容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系【解答】解:设容器内的水面高度为h ,注水时间为t ,根据题意得:h =0.2t +10,∴容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系. 故选:B .3.(2020•金昌)如图①,正方形ABCD 中,AC ,BD 相交于点O ,E 是OD 的中点.动点P 从点E 出发,沿着E →O →B →A 的路径以每秒1个单位长度的速度运动到点A ,在此过程中线段AP 的长度y 随着运动时间x 的函数关系如图②所示,则AB 的长为( )A.4√2B.4 C.3√3D.2√2【解答】解:如图,连接AE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OD=OB,由题意DE=OE,设DE=OE=x,则OA=OD=2x,∵AE=2√5,∴x2+(2x)2=(2√5)2,解得x=2或﹣2(不合题意舍弃),∴OA=OD=4,∴AB=AD=4√2,故选:A.4.(2020•黄冈)2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y (吨)与时间t(天)之间函数关系的大致图象是()A.B.C.D.【解答】解:根据题意:时间t与库存量y之间函数关系的图象为先平,再逐渐减小,最后为0.故选:D.5.(2020•衡阳)如图1,在平面直角坐标系中,▱ABCD在第一象限,且BC∥x轴.直线y=x从原点O出发沿x轴正方向平移,在平移过程中,直线被▱ABCD截得的线段长度n与直线在x轴上平移的距离m的函数图象如图2所示.那么▱ABCD的面积为()A.3 B.3√2C.6 D.6√2【解答】解:过B作BM⊥AD于点M,分别过B,D作直线y=x的平行线,交AD于E,如图1所示,由图象和题意可得,AE=6﹣4=2,DE=7﹣6=1,BE=2,∴AB=2+1=3,∵直线BE平行直线y=x,∴BM=EM=√2,∴平行四边形ABCD的面积是:AD•BM=3×√2=3√2.故选:B.6.(2020•连云港)快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程y(km)与它们的行驶时间x(h)之间的函数关系.小欣同学结合图象得出如下结论:①快车途中停留了0.5h;②快车速度比慢车速度多20km/h;③图中a=340;④快车先到达目的地.其中正确的是()A.①③B.②③C.②④D.①④【解答】解:根据题意可知,两车的速度和为:360÷2=180(km/h),相遇后慢车停留了0.5h,快车停留了1.6h,此时两车距离为88km,故①结论错误;慢车的速度为:88÷(3.6﹣2.5)=80(km/h),则快车的速度为100km/h,所以快车速度比慢车速度多20km/h;故②结论正确;88+180×(5﹣3.6)=340(km),所以图中a=340,故③结论正确;(360﹣2×80)÷80=2.5(h),5﹣2.5=2.5(h),所以慢车先到达目的地,故④结论错误.所以正确的是②③.故选:B.7.(2020•辽阳)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2√2,CD⊥AB于点D.点P从点A出发,沿A→D→C的路径运动,运动到点C停止,过点P作PE⊥AC于点E,作PF⊥BC于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=BC=2√2,∴AB=4,∠A=45°,∵CD⊥AB于点D,∴AD=BD=2,∵PE⊥AC,PF⊥BC,∴四边形CEPF是矩形,∴CE=PF,PE=CF,∵点P运动的路程为x,∴AP=x,则AE=PE=x•sin45°=√22x,∴CE=AC﹣AE=2√2−√22x,∵四边形CEPF的面积为y,∴当点P从点A出发,沿A→D路径运动时,即0<x<2时,y=PE•CE=√22x(2√2−√22x)=−12x 2+2x =−12(x ﹣2)2+2,∴当0<x <2时,抛物线开口向下; 当点P 沿D →C 路径运动时, 即2≤x <4时, ∵CD 是∠ACB 的平分线, ∴PE =PF ,∴四边形CEPF 是正方形, ∵AD =2,PD =x ﹣2, ∴CP =4﹣x ,y =12(4﹣x )2=12(x ﹣4)2.∴当2≤x <4时,抛物线开口向上,综上所述:能反映y 与x 之间函数关系的图象是:A . 故选:A .8.(2020•通辽)如图①,在△ABC 中,AB =AC ,∠BAC =120°,点E 是边AB 的中点,点P 是边BC 上一动点,设PC =x ,PA +PE =y .图②是y 关于x 的函数图象,其中H 是图象上的最低点.那么a +b 的值为 7 .【解答】解:如图,将△ABC 沿BC 折叠得到△A ′BC ,则四边形ABA ′C 为菱形,菱形的对角线交于点O ,由图②知,当点P 与点B 重合时,y=PA+PE=AB+BE=AB+12AB=3√3,解得:AB=2√3,即:菱形的边长为2√3,则该菱形的高为√32AB=3,点A关于BC的对称点为点A′,连接A′E交BC于点P,此时y最小,∵AB=AC,∠BAC=120°,则∠BAA′=60°,故AA′B为等边三角形,∵E是AB的中点,故A′E⊥AB,而AB∥A′C,故∠PA′C为直角,A′C=AB=2√3,则PC=A′AAAA∠AAA′=√3√32=4,此时b=PC,a=A′E=3(菱形的高),则a+b=3+4=7.故答案为7.9.(2020•青海)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的()A.B.C.D.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.10.(2020•攀枝花)甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是(A.两人出发1小时后相遇B.赵明阳跑步的速度为8km/hC.王浩月到达目的地时两人相距10kmD.王浩月比赵明阳提前1.5h到目的地【解答】解:由图象可知,两人出发1小时后相遇,故选项A正确;赵明阳跑步的速度为24÷3=8(km/h),故选项B正确;王皓月的速度为:24÷1﹣8=16(km/h),王皓月从开始到到达目的地用的时间为:24÷16=1.5(h),故王浩月到达目的地时两人相距8×1.5=12(km),故选项C错误;王浩月比赵明阳提前3﹣1.5=1.5h到目的地,故选项D正确;故选:C.2020年中考数学选择填空压轴题汇编:二次函数图像与系数1.(2020福建)已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2【解答】解:∵抛物线y=ax2﹣2ax=a(x﹣1)2﹣a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1﹣1|>|x2﹣1|,则y1>y2,故选项B错误;当a<0时,若|x1﹣1|>|x2﹣1|,则y1<y2,故选项A错误;若|x1﹣1|=|x2﹣1|,则y1=y2,故选项C正确;若y1=y2,则|x1﹣1|=|x2﹣1|,故选项D错误;故选:C.2.(2020广东)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;=1,可得b=﹣2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−A2A由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.3.(2020贵州黔西南)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=5,连接AC,2AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADD.OC•OD=16C.a=−16【解答】解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=5,AB∥x轴,2∴B(5,4).故A无误;如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=5,2∴D(﹣3,0)∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),,∴a=−16故C无误;∵OC=8,OD=3,∴OC•OD=24,故D错误.综上,错误的只有D.故选:D.4.(2020贵州遵义)抛物线y=ax2+bx+c的对称轴是直线x=﹣2.抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,下列结论中正确的个数有()①4a﹣b=0;②c≤3a;③关于x的方程ax2+bx+c=2有两个不相等实数根;④b2+2b>4ac.A.1个B.2个C.3个D.4个=−2,【解答】解:∵抛物线的对称轴为直线x=−A2A∴4a﹣b=0,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间, ∴x =﹣1时y >0,且b =4a , 即a ﹣b +c =a ﹣4a +c =﹣3a +c >0, ∴c >3a ,所以②错误;∵抛物线与x 轴有两个交点,且顶点为(﹣2,3), ∴抛物线与直线y =2有两个交点,∴关于x 的方程ax 2+bx +c =2有两个不相等实数根,所以③正确; ∵抛物线的顶点坐标为(﹣2,3), ∴4AA −A 24A=3,∴b 2+12a =4ac , ∵4a ﹣b =0, ∴b =4a , ∴b 2+3b =4ac , ∵a <0, ∴b =4a <0,∴b 2+2b >4ac ,所以④正确; 故选:C .5.(2020黑龙江大兴安岭)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点(4,0),其对称轴为直线x =1,结合图象给出下列结论: ①ac <0; ②4a ﹣2b +c >0;③当x >2时,y 随x 的增大而增大;④关于x 的一元二次方程ax 2+bx +c =0有两个不相等的实数根. 其中正确的结论有( )A.1个B.2个C.3个D.4个【解答】解:抛物线开口向上,因此a>0,与y轴交于负半轴,因此c<0,故ac<0,所以①正确;抛物线对称轴为x=1,与x轴的一个交点为(4,0),则另一个交点为(﹣2,0),于是有4a﹣2b+c=0,所以②不正确;x>1时,y随x的增大而增大,所以③正确;抛物线与x轴有两个不同交点,因此关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根,所以④正确;综上所述,正确的结论有:①③④,故选:C.6.(2020黑龙江牡丹江)如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B(4,0),则下列结论中,正确的个数是()①abc>0;②4a+b>0;③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;④若抛物线的对称轴是直线x=3,m为任意实数,则a(m﹣3)(m+3)≤b(3﹣m);⑤若AB≥3,则4b+3c>0.A.5 B.4 C.3 D.2【解答】解:如图,抛物线开口向下,与y轴交于负半轴,对称轴在y轴右侧,∴a<0,c<0,−A2A>0,∴b>0,∴abc>0,故①正确;如图,∵抛物线过点B(4,0),点A在x轴正半轴,∴对称轴在直线x=2右侧,即−A2A>2,∴2+A2A =4A+A2A<0,又a<0,∴4a+b>0,故②正确;∵M(x1,y1)与N(x2,y2)是抛物线上两点,0<x1<x2,可得:抛物线y=ax2+bx+c在0<A<−A2A上,y随x的增大而增大,在A>−A2A上,y随x的增大而减小,∴y1>y2不一定成立,故③错误;若抛物线对称轴为直线x=3,则−A2A=3,即b=﹣6a,则a(m﹣3)(m+3)﹣b(3﹣m)=a(m﹣3)2≤0,∴a(m﹣3)(m+3)≤b(3﹣m),故④正确;∵AB≥3,则点A的横坐标大于0或小于等于1,当x=1时,代入,y=a+b+c≥0,当x=4时,16a+4b+c=0,∴a=4A+A−16,则4A+A−16+A+A≥0,整理得:4b+5c≥0,则4b+3c≥﹣2c,又c<0,﹣2c>0,∴4b+3c>0,故⑤正确,故正确的有4个.故选:B.7.(2020黑龙江齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:①ac<0;②4a﹣2b+c>0;③当x>2时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:抛物线开口向上,因此a>0,与y轴交于负半轴,因此c<0,故ac<0,所以①正确;抛物线对称轴为x=1,与x轴的一个交点为(4,0),则另一个交点为(﹣2,0),于是有4a﹣2b+c=0,所以②不正确;x>1时,y随x的增大而增大,所以③正确;抛物线与x轴有两个不同交点,因此关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根,所以④正确;综上所述,正确的结论有:①③④,故选:C.8.(2020湖北荆门)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,顶点为C,对称轴为直线x=1,给出下列结论:①abc<0;②若点C的坐标为(1,2),则△ABC的面积可以等于2;③M(x1,y1),N(x2,y2)是抛物线上两点(x1<x2),若x1+x2>2,则y1<y2;④若抛物线经过点(3,﹣1),则方程ax2+bx+c+1=0的两根为﹣l,3.其中正确结论的序号为①④.【解答】解:①抛物线的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,正确,符合题意;②△ABC 的面积=12AB •y C =12×AB ×2=2,解得:AB =2,则点A (0,0),即c =0与图象不符,故②错误,不符合题意;③函数的对称轴为x =1,若x 1+x 2>2,则12(x 1+x 2)>1,则点N 离函数对称轴远,故y 1>y 2,故②错误,不符合题意;④抛物线经过点(3,﹣1),则y ′=ax 2+bx +c +1过点(3,0),根据函数的对称轴该抛物线也过点(﹣1,0),故方程ax 2+bx +c +1=0的两根为﹣l ,3,故④正确,符合题意; 故答案为:①④.9.(2020湖北随州)如图所示,已知二次函数y =ax 2+bx +c 的图象与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴的正半轴交于点C ,顶点为D ,则下列结论:①2a +b =0; ②2c <3b ;③当△ABC 是等腰三角形时,a 的值有2个; ④当△BCD 是直角三角形时,a =−√22. 其中正确的有( )A .1个B .2个C .3个D .4个【解答】解:∵二次函数y =ax 2+bx +c 的图象与x 轴交于A (﹣1,0),B (3,0)两点, ∴对称轴为直线x =−A2A=1,∴b =﹣2a ,∴2a +b =0,故①正确, 当x =1时,0=a ﹣b +c , ∴a +2a +c =0,∴c=﹣3a,∴2c=3b,故②错误;∵二次函数y=ax2﹣2ax﹣3a,(a<0)∴点C(0,﹣3a),当BC=AB时,4=√9+9A2,,∴a=−√73当AC=BC时,4=√+2,∴a=−√15,3∴当△ABC是等腰三角形时,a的值有2个,故③正确;∵二次函数y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴顶点D(1,4a),∴BD2=4+16a2,BC2=9+9a2,CD2=a2+1,若∠BDC=90°,可得BC2=BD2+CD2,∴9+9a2=4+16a2+a2+1,∴a=−√2,2若∠DCB=90°,可得BD2=CD2+BC2,∴4+16a2=9+9a2+a2+1,∴a=﹣1,,故④错误.∴当△BCD是直角三角形时,a=﹣1或−√22故选:B.10.(2020湖南湘西州)已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是( )A .①③B .②⑤C .③④D .④⑤【解答】解:①由图象可知:a <0,b >0,c >0,abc <0,故此选项错误; ②由于a <0,所以﹣2a >0. 又b >0, 所以b ﹣2a >0, 故此选项错误;③当x =﹣1时,y =a ﹣b +c <0,故此选项错误; ④当x =1时,y 的值最大.此时,y =a +b +c , 而当x =n 时,y =an 2+bn +c , 所以a +b +c >an 2+bn +c ,故a +b >an 2+bn ,即a +b >n (an +b ),故此选项正确;⑤当x =3时函数值小于0,y =9a +3b +c <0,且该抛物线对称轴是直线x =−A2A =1,即a =−A 2,代入得9(−A2)+3b +c <0,得2c <3b ,故此选项正确;故④⑤正确. 故选:D .11.(2020江苏南京)下列关于二次函数y =﹣(x ﹣m )2+m 2+1(m 为常数)的结论:①该函数的图象与函数y =﹣x 2的图象形状相同;②该函数的图象一定经过点(0,1);③当x >0时,y 随x 的增大而减小;④该函数的图象的顶点在函数y =x 2+1的图象上.其中所有正确结论的序号是 ①②④ .【解答】解:①∵二次函数y =﹣(x ﹣m )2+m +1(m 为常数)与函数y =﹣x 2的二次项系数相同,∴该函数的图象与函数y=﹣x2的图象形状相同,故结论①正确;②∵在函数y=﹣(x﹣m)2+m2+1中,令x=0,则y=﹣m2+m2+1=1,∴该函数的图象一定经过点(0,1),故结论②正确;③∵y=﹣(x﹣m)2+m2+1,∴抛物线开口向下,对称轴为直线x=m,当x>m时,y随x的增大而减小,故结论③错误;④∵抛物线开口向下,当x=m时,函数y有最大值m2+1,∴该函数的图象的顶点在函数y=x2+1的图象上.故结论④正确,故答案为①②④.12.(2020山东青岛)已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=A的Ax﹣b的图象可能是()图象如图所示,则一次函数y=AAA.B.C.D.【解答】解:∵二次函数开口向下,∴a<0;∵二次函数的对称轴在y轴右侧,左同右异,∴b符号与a相异,b>0;∵反比例函数图象经过一三象限,∴c>0,∴AA<0,﹣b<0,∴一次函数y=AAx﹣b的图象经过二三四象限.故选:B.13.(2020四川南充)关于二次函数y=ax2﹣4ax﹣5(a≠0)的三个结论:①对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则−43<a≤﹣1或1≤a<43;③若抛物线与x轴交于不同两点A,B,且AB≤6,则a<−54或a≥1.其中正确的结论是()A.①②B.①③C.②③D.①②③【解答】解:∵二次函数y=ax2﹣4ax﹣5的对称轴为直线x=−4A2A=2,∴x1=2+m与x2=2﹣m关于直线x=2对称,∴对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;故①正确;当x=3时,y=﹣3a﹣5,当x=4时,y=﹣5,若a>0时,当3≤x≤4时,﹣3a﹣5<y≤﹣5,∵当3≤x ≤4时,对应的y 的整数值有4个, ∴1≤a <43,若a <0时,当3≤x ≤4时,﹣5≤y <﹣3a ﹣5, ∵当3≤x ≤4时,对应的y 的整数值有4个, ∴−43<a ≤﹣1, 故②正确;若a >0,抛物线与x 轴交于不同两点A ,B ,且AB ≤6, ∴△>0,25a ﹣20a ﹣5≥0,∴{16A 2+20A>05A −5≥0, ∴a ≥1,若a <0,抛物线与x 轴交于不同两点A ,B ,且AB ≤6, ∴△>0,25a ﹣20a ﹣5≤0, ∴{16A 2+20A>05A −5≤0, ∴a <−54,综上所述:当a <−54或a ≥1时,抛物线与x 轴交于不同两点A ,B ,且AB ≤6. 故选:D .14.(2020•宜宾)函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点(2,0),顶点坐标为(﹣1,n ),其中n >0.以下结论正确的是( ) ①abc >0;②函数y =ax 2+bx +c (a ≠0)在x =1和x =﹣2处的函数值相等;③函数y =kx +1的图象与y =ax 2+bx +c (a ≠0)的函数图象总有两个不同交点; ④函数y =ax 2+bx +c (a ≠0)在﹣3≤x ≤3内既有最大值又有最小值. A .①③B .①②③C .①④D .②③④【解答】解:依照题意,画出图形如下:∵函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点(2,0),顶点坐标为(﹣1,n ),其中n >0.∴a <0,c >0,对称轴为x =−A2A =−1, ∴b =2a <0, ∴abc >0,故①正确, ∵对称轴为x =﹣1,∴x =1与x =﹣3的函数值是相等的,故②错误; ∵顶点为(﹣1,n ),∴抛物线解析式为;y =a (x +1)2+n =ax 2+2ax +a +n , 联立方程组可得:{A =AA +1A =AA 2+2AA +A +A,可得ax 2+(2a ﹣k )x +a +n ﹣1=0,∴△=(2a ﹣k )2﹣4a (a +n ﹣1)=k 2﹣4ak +4a ﹣4an , ∵无法判断△是否大于0,∴无法判断函数y =kx +1的图象与y =ax 2+bx +c (a ≠0)的函数图象的交点个数,故③错误;当﹣3≤x ≤3时,当x =﹣1时,y 有最大值为n ,当x =3时,y 有最小值为16a +n ,故④正确, 故选:C .2020年中考数学选择填空压轴题汇编:反比例函数图像综合1.(2020湖北孝感)如图,已知菱形ABCD 的对角线相交于坐标原点O ,四个顶点分别在双曲线y =4A 和y =AA (k <0)上,AAAA =23,平行于x 轴的直线与两双曲线分别交于点E ,F ,连接OE ,OF ,则△OEF 的面积为132.【解答】解:作AM ⊥x 轴于M ,DN ⊥x 轴于N , ∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴∠AOM +∠DON =∠ODN +DON =90°, ∴∠AOM =∠ODN , ∵∠AMO =∠OND =90°, ∴△AOM ∽△ODN , ∴A △AAA A △AAA=(AAAA )2,∵A 点在双曲线y =4A ,AA AA =23, ∴S △AOM =12×4=2,AA AA=23,∴2A△AAA=(23)2,∴S △ODN =92,∵D 点在双曲线y =A A(k <0)上, ∴12|k |=92, ∴k =﹣9,∵平行于x 轴的直线与两双曲线分别交于点E ,F , ∴S △OEF =12×4+12×9=132, 故答案为132.2.(2020湖南郴州)在平面直角坐标系中,点A 是双曲线y 1=A 1A(x >0)上任意一点,连接AO ,过点O 作AO 的垂线与双曲线y 2=A 2A(x <0)交于点B ,连接AB ,已知AAAA =2,则A 1A 2=( )A .4B .﹣4C .2D .﹣2【解答】解:作AD ⊥x 轴于D ,BE ⊥x 轴于E , ∵点A 是双曲线y 1=A 1A(x >0)上的点,点B 是双曲线y 2=A 2A(x <0)上的点, ∴S △AOD =12|k 1|=12k 1,S △BOE =12|k 2|=−12k 2, ∵∠AOB =90°, ∴∠BOE +∠AOD =90°, ∵∠AOD +∠OAD =90°, ∴∠BOE =∠OAD , ∠BEO =∠OAD =90°, ∴△BOE ∽△OAD , ∴A 1A 2=(AAAA )2,∴12A 1−12A 2=22,∴A1A 2=−4,故选:B .3.(2020江苏常州)如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=√2,(x>0)的图象经过A、D两点,则k的值∠ADB=135°,S△ABD=2.若反比例函数y=AA是()A.2√2B.4 C.3√2D.6【解答】解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA∥BC,OA=BC,∴∠AOM=∠CNM,∵BD∥y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=√2,AA⋅AA=2,BD=√2,∵S△ABD=12∴AE=2√2,∵∠ADB =135°, ∴∠ADE =45°,∴△ADE 是等腰直角三角形, ∴DE =AE =2√2, ∴D 的纵坐标为3√2,设A (m ,√2),则D (m ﹣2√2,3√2),∵反比例函数y =AA (x >0)的图象经过A 、D 两点, ∴k =√2m =(m ﹣2√2)×3√2, 解得m =3√2, ∴k =√2m =6. 故选:D .4.(2020江苏淮安)如图,等腰△ABC 的两个顶点A (﹣1,﹣4)、B (﹣4,﹣1)在反比例函数y =A 1A(x <0)的图象上,AC =BC .过点C 作边AB 的垂线交反比例函数y =A 1A(x <0)的图象于点D ,动点P 从点D 出发,沿射线CD 方向运动3√2个单位长度,到达反比例函数y =A 2A(x >0)图象上一点,则k 2= 1 .【解答】解:把A (﹣1,﹣4)代入y =A 1A中得,k 1=4, ∴反比例函数y =A 1A为A =4A ,∵A (﹣1,﹣4)、B (﹣4,﹣1), ∴AB 的垂直平分线为y =x ,联立方程驵{A =4A A =A,解得{A =−2A =−2,或{A =2A =2, ∵AC =BC ,CD ⊥AB , ∴CD 是AB 的垂直平分线, ∵CD 与反比例函数y =A 1A(x <0)的图象于点D ,∴D (﹣2,﹣2),∵动点P 从点D 出发,沿射线CD 方向运动3√2个单位长度,到达反比例函数y =A 2A(x >0)图象上一点,∴设移动后的点P 的坐标为(m ,m )(m >﹣2),则 (A +2)2+(A +2)2=(3√2)2, ∴x =1, ∴P (1,1), 把P (1,1)代入y =A 2A(x >0)中,得k 2=1,故答案为:1.5.(2020江苏苏州)如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点D (3,2)在对角线OB 上,反比例函数y =AA (k >0,x >0)的图象经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为( )A .(4,83)B .(92,3)C .(5,103)D .(245,165)【解答】解:∵反比例函数y =AA (k >0,x >0)的图象经过点D (3,2), ∴2=A3, ∴k =6,∴反比例函数y =6A , 设OB 的解析式为y =mx +b , ∵OB 经过点O (0,0)、D (3,2), ∴{0=A2=3A +A,解得:{A =23A =0,∴OB 的解析式为y =23x , ∵反比例函数y =6A 经过点C , ∴设C (a ,6A ),且a >0, ∵四边形OABC 是平行四边形, ∴BC ∥OA ,S 平行四边形OABC =2S △OBC , ∴点B 的纵坐标为6A , ∵OB 的解析式为y =23x , ∴B (9A ,6A ), ∴BC =9A −a ,∴S △OBC =12×6A ×(9A −a ), ∴2×12×6A ×(9A −a )=152, 解得:a =2, ∴B (92,3), 故选:B .6.(2020江苏徐州)如图,在平面直角坐标系中,函数y =4A (x >0)与y =x ﹣1的图象交于点P (a ,b ),则代数式1A −1A 的值为( )A .−12 B .12C .−14D .14【解答】解: 法一:由题意得, {A =4AA =A −1,解得,{A =1+√172A =√17−12或{A =1−√172A =−1−√172(舍去), ∴点P (1+√172,√17−12), 即:a =1+√172,b =√17−12, ∴1A −1A =1+√17−√17−1=−14;法二:由题意得,函数y =4A (x >0)与y =x ﹣1的图象交于点P (a ,b ), ∴ab =4,b =a ﹣1, ∴1A−1A =A −A AA=−14;故选:C .7.(2020江苏盐城)如图,已知点A (5,2)、B (5,4)、C (8,1).直线l ⊥x 轴,垂足为点M (m ,0).其中m <52,若△A ′B ′C ′与△ABC 关于直线l 对称,且△A ′B ′C ′有两个顶点在函数y =AA(k ≠0)的图象上,则k 的值为 ﹣6或﹣4 .【解答】解:∵点A(5,2)、B(5,4)、C(8,1),直线l⊥x轴,垂足为点M(m,0).其,△A′B′C′与△ABC关于直线l对称,中m<52∴A′(2m﹣5,2),B′(2m﹣5,4),C′(2m﹣8,1),∵A′、B′的横坐标相同,(k≠0)的图象上的两点为,A′、C′或B′、C′,∴在函数y=AA(k≠0)的图象上时,则k=2(2m﹣5)=2m﹣8,解得m=1,当A′、C′在函数y=AA∴k=﹣6;(k≠0)的图象上时,则k=4(2m﹣5)=2m﹣8,解得m=2,当B′、C′在函数y=AA∴k=﹣4,综上,k的值为﹣6或﹣4,故答案为﹣6或﹣4.(k>0,x>0)8.(2020辽宁辽阳)如图,在△ABC中,AB=AC,点A在反比例函数y=AAOB,延长AC交y轴于点D,连接BD,若△BCD的面的图象上,点B,C在x轴上,OC=15积等于1,则k的值为 3 .【解答】解:作AE⊥BC于E,连接OA,∵AB=AC,∴CE=BE,∵OC=15OB,∴OC=12CE,∵AE∥OD,∴△COD∽△CEA,∴A△AAAA△AAA =(AAAA)2=4,∵△BCD的面积等于1,OC=15OB,∴S△COD=14S△BCD=14,∴S△CEA=4×14=1,∵OC=12CE,∴S△AOC=12S△CEA=12,∴S△AOE=12+1=32,∵S△AOE=12k(k>0),∴k=3,故答案为3.9.(2020辽宁营口)如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中∠OAB=90°,AO=AB,点C为斜边OB的中点,反比例函数y=AA(k>0,x>0)的图象过点C且交线段AB于点D,连接CD,OD,若S△OCD=32,则k的值为()A .3B .52C .2D .1【解答】解:根据题意设B (m ,m ),则A (m ,0), ∵点C 为斜边OB 的中点, ∴C (A2,A 2),∵反比例函数y =AA (k >0,x >0)的图象过点C , ∴k =A 2•A2=A 24, ∵∠OAB =90°, ∴D 的横坐标为m ,∵反比例函数y =A A(k >0,x >0)的图象过点D , ∴D 的纵坐标为A 4, 作CE ⊥x 轴于E ,∵S △COD =S △COE +S 梯形ADCE ﹣S △AOD =S 梯形ADCE ,S △OCD =32, ∴12(AD +CE )•AE =32,即12(A4+A2)•(m −12m )=32, ∴A 28=1,∴k =A 24=2,故选:C .10.(2020四川乐山)如图,在平面直角坐标系中,直线y =﹣x 与双曲线y =AA 交于A 、B 两点,P 是以点C (2,2)为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .−12B .−32C .﹣2D .−14【解答】解:点O 是AB 的中点,则OQ 是△ABP 的中位线, 当B 、C 、P 三点共线时,PB 最大,则OQ =12BP 最大, 而OQ 的最大值为2,故BP 的最大值为4, 则BC =BP ﹣PC =4﹣1=3,设点B (m ,﹣m ),则(m ﹣2)2+(﹣m ﹣2)2=32, 解得:m 2=12, ∴k =m (﹣m )=−12, 故选:A .11.(2020四川凉山州)如图,矩形OABC 的面积为1003,对角线OB 与双曲线y =AA (k >0,x>0)相交于点D ,且OB :OD =5:3,则k 的值为 12 .【解答】解:设D 的坐标是(3m ,3n ),则B 的坐标是(5m ,5n ). ∵矩形OABC 的面积为1003, ∴5m •5n =1003, ∴mn =43.把D 的坐标代入函数解析式得:3n =A3A, ∴k =9mn =9×43=12. 故答案为12.12.(2020浙江湖州)如图,已知在平面直角坐标系xOy 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点A 在第一象限,反比例函数y =AA (x >0)的图象经过OA 的中点C .交AB 于点D ,连结CD .若△ACD 的面积是2,则k 的值是 83 .【解答】解:连接OD ,过C 作CE ∥AB ,交x 轴于E ,∵∠ABO =90°,反比例函数y =AA (x >0)的图象经过OA 的中点C , ∴S △COE =S △BOD =12A ,S △ACD =S △OCD =2, ∵CE ∥AB , ∴△OCE ∽△OAB , ∴A △AAA A △AAA=14,∴4S △OCE =S △OAB , ∴4×12k =2+2+12k , ∴k =83, 故答案为:83.13.(2020浙江宁波)如图,经过原点O 的直线与反比例函数y =AA (a >0)的图象交于A ,D 两点(点A 在第一象限),点B ,C ,E 在反比例函数y =AA (b <0)的图象上,AB ∥y 轴,AE ∥CD ∥x 轴,五边形ABCDE 的面积为56,四边形ABCD 的面积为32,则a ﹣b 的值为24 ,AA 的值为 −13 .【解答】解:如图,连接AC ,OE ,OC ,OB ,延长AB 交DC 的延长线于T ,设AB 交x 轴于K .由题意A ,D 关于原点对称, ∴A ,D 的纵坐标的绝对值相等, ∵AE ∥CD ,∴E ,C 的纵坐标的绝对值相等, ∵E ,C 在反比例函数y =A A的图象上, ∴E ,C 关于原点对称, ∴E ,O ,C 共线,∵OE =OC ,OA =OD ,∴四边形ACDE 是平行四边形, ∴S △ADE =S △ADC =S 五边形ABCDE ﹣S 四边形ABCD =56﹣32=24, ∴S △AOE =S △DEO =12, ∴12a −12b =12, ∴a ﹣b =24, ∵S △AOC =S △AOB =12,∴AAAA =AAAA,∵S△ACB=32﹣24=8,∴S△ADC:S△ABC=24:8=1:3,∴BC:AD=1:3,∴TB:TA=1:3,设BT=a,则AT=3a,AK=TK=1.5k,BK=0.5k,∴AK:BK=3:1,∴A△AAAA△AAA =12A−12A=13,∴AA =−13.故答案为24,−13.14.(2020重庆A卷)如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=AA(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()A.6 B.12 C.18 D.24【解答】解:如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.∵AN∥FM,AF=FE,∴FM =12AN ,∵A ,F 在反比例函数的图象上, ∴S △AON =S △FOM =A 2, ∴12•ON •AN =12•OM •FM , ∴ON =12OM , ∴ON =MN =EM , ∴ME =13OE , ∴S △FME =13S △FOE , ∵AD 平分∠OAE , ∴∠OAD =∠EAD , ∵四边形ABCD 是矩形, ∴OA =OD ,∴∠OAD =∠ODA =∠DAE , ∴AE ∥BD , ∴S △ABE =S △AOE , ∴S △AOE =18, ∵AF =EF , ∴S △EOF =12S △AOE =9, ∴S △FME =13S △EOF =3,∴S △FOM =S △FOE ﹣S △FME =9﹣3=6=A2, ∴k =12. 故选:B .15.(2020重庆B 卷)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,C 分别在x 轴,y 轴的正半轴上,点D (﹣2,3),AD =5,若反比例函数y =AA (k >0,x >0)的图象经过点B ,则k 的值为( )A.163B.8 C.10 D.323【解答】解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,∴∠BHC=90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE=√AA2−AA2=4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCG+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠PAO=∠BAF+∠PAO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴AA AA=AAAA, ∴12×32=2AA, ∴BF =83, ∴B (4,83), ∴k =323, 故选:D .2020年中考数学选择填空压轴题汇编:规律探索1.(2020甘肃天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S ,用含S 的式子表示这组数据的和是( ) A .2S 2﹣SB .2S 2+SC .2S 2﹣2SD .2S 2﹣2S ﹣2【解答】解:∵2100=S , ∴2100+2101+2102+…+2199+2200=S +2S +22S +…+299S +2100S =S (1+2+22+…+299+2100) =S (1+2100﹣2+2100) =S (2S ﹣1) =2S 2﹣S . 故选:A .2.(2020贵州铜仁)观察下列等式: 2+22=23﹣2; 2+22+23=24﹣2;2+22+23+24=25﹣2;2+22+23+24+25=26﹣2;…已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m,则220+221+222+223+224+…+238+239+240=m(2m﹣1)(结果用含m的代数式表示).【解答】解:∵220=m,∴220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+221﹣2)=m(2m﹣1).故答案为:m(2m﹣1).3.(2020黑龙江鹤岗)如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1).过点B作EO1⊥MA交MA于点E,交x 轴于点O1,过点O1作x轴的垂线交MA于点A1,以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA 于点A2.以O2A2为边作正方形O2A2B2C2.….则点B2020的坐标2×32020﹣1,32020.【解答】解:∵点B坐标为(1,1),∴OA=AB=BC=CO=CO1=1,∵A1(2,3),∴A1O1=A1B1=B1C1=C1O2=3,∴B1(5,3),∴A2(8,9),∴A2O2=A2B2=B2C2=C2O3=9,∴B2(17,9),同理可得B4(53,27),B5(161,81),…由上可知,Bn(2×3n﹣1,3n),∴当n=2020时,Bn(2×32020﹣1,32020).故答案为:(2×32020﹣1,32020).4.(2020黑龙江齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4√2),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12√2,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是22020.【解答】解:∵点A1(0,2),×2×2=2,∴第1个等腰直角三角形的面积=12∵A2(6,0),=2√2,∴第2个等腰直角三角形的边长为√2×2√2×2√2=4=22,∴第2个等腰直角三角形的面积=12∵A4(10,4√2),∴第3个等腰直角三角形的边长为10﹣6=4,×4×4=8=23,∴第3个等腰直角三角形的面积=12…则第2020个等腰直角三角形的面积是22020;故答案为:22020(形式可以不同,正确即得分).5.(2020黑龙江绥化)如图各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,…,按此规律,第10个图中黑点的个数是119 .【解答】解:∵图1中黑点的个数2×1×(1+1)÷2+(1﹣1)=2,图2中黑点的个数2×2×(1+2)÷2+(2﹣1)=7,图3中黑点的个数2×3×(1+3)÷2+(3﹣1)=14,……∴第n个图形中黑点的个数为2n(n+1)÷2+(n﹣1)=n2+2n﹣1,∴第10个图形中黑点的个数为102+2×10﹣1=119.故答案为:119.(x>0)的图象上,点B1,6.(2020•湖北鄂州)如图,点A1,A2,A3…在反比例函数y=1AB2,B3,…B n在y轴上,且∠B1OA1=∠B2B1A2=∠B3B2A3=…,直线y=x与双曲线y=1交A 于点A1,B1A1⊥OA1,B2A2⊥B1A2,B3A3⊥B2A3…,则B n(n为正整数)的坐标是()A.(2√A,0)B.(0,√2A+1)C.(0,√2A(A−1))D.(0,2√A)【解答】解:由题意,△OA1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,∵A1(1,1),∴OB1=2,设A2(m,2+m),则有m(2+m)=1,解得m=√2−1,∴OB2=2√2,设A3(a,2√2+n),则有n=a(2√2+a)=1,解得a=√3−√2,∴OB3=2√3,同法可得,OB4=2√4,∴OB n=2√A,∴B n(0,2√A).故选:D.7.(2020湖北恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B 的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).x和点P(1,0),过点P作8.(2020湖北仙桃)如图,已知直线a:y=x,直线b:y=−12y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为21010.。

2020年中考数学选择填空压轴题汇编最值问题含解析

2020年中考数学选择填空压轴题汇编最值问题含解析

2020年中考数学选择填空压轴题汇编:最值问题1.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2 2 .【解答】解:如图,连接BE,BD.由题意BD2,∵∠MBN=90°,MN=4,EM=NE,∴BE MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为22.故答案为22.2.(2020•玉林)把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A.﹣4 B.0 C.2 D.6【解答】解:∵把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y =﹣a(x﹣1)2+4a,∴原二次函数的顶点为(1,﹣4a),∴原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,∴b=﹣2a,c=﹣3a,∵(m﹣1)a+b+c≤0,∴(m﹣1)a﹣2a﹣3a≤0,∵a>0,∴m﹣1﹣2﹣3≤0,即m≤6,∴m的最大值为6,故选:D.3.(2020•河南)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.【解答】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′2,的长l,∴阴影部分周长的最小值为2.故答案为:.4.(2020•鄂州)如图,已知直线y x+4与x、y轴交于A、B两点,⊙O的半径为1,P为AB上一动点,PQ切⊙O于Q点.当线段PQ长取最小值时,直线PQ交y轴于M点,a为过点M的一条直线,则点P到直线a的距离的最大值为2.【解答】解:如图,在直线y x+4上,x=0时,y=4,当y=0时,x,∴OB=4,OA,∴tan∠OBA,∴∠OBA=30°,由PQ切⊙O于Q点可知:OQ⊥PQ,∴PQ,由于OQ=1,因此当OP最小时PQ长取最小值,此时OP⊥AB,∴OP OB=2,此时PQ,BP2,∴OQ OP,即∠OPQ=30°,若使点P到直线a的距离最大,则最大值为PM,且M位于x轴下方,过点P作PE⊥y轴于点E,∴EP BP,∴BE3,∴OE=4﹣3=1,∵OE OP,∴∠OPE=30°,∴∠EPM=30°+30°=60°,即∠EMP=30°,∴PM=2EP=2.故答案为:2.5.(2020•荆门)在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动,A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为()A.2B.2C.6D.3【解答】解:设C(m,0),∵CD=2,∴D(m+2,0),∵A(0,2),B(0,4),∴AC+BD,∴要求AC+BD的最小值,相当于在x轴上找一点P(m,0),使得点P到M(0,2)和N(﹣2,4)的距离和最小,(PM+PN),如图1中,作点M关于原点O的对称点Q,连接NQ交x轴于P′,连接MP′,此时P′M+P′N的值最小,∵N(﹣2,4),Q(0,﹣2)P′M+P′N的最小值=P′N+P′M=P′N+P′Q=NQ2,∴AC+BD的最小值为2.故选:B.6.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为2 .【解答】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD=4,OE=3,∴DE5,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴,∴,∴MN,当点C与C′重合时,△C′DE的面积最小,最小值5×(1)=2,故答案为2.7.(2020•徐州)在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为99 .【解答】解:作△ABC的外接圆⊙O,过C作CM⊥AB于M,∵弦AB已确定,∴要使△ABC的面积最大,只要CM取最大值即可,如图所示,当CM过圆心O时,CM最大,∵CM⊥AB,CM过O,∴AM=BM(垂径定理),∴AC=BC,∵∠AOB=2∠ACB=2×45°=90°,∴OM=AM AB3,∴OA3,∴CM=OC+OM=33,∴S△ABC AB•CM6×(33)=99.故答案为:99.8.(2020•扬州)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为9.【解答】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4,∵四边形ECGF是平行四边形,∴EF∥CG,∴△EOD∽△GOC,∴,∵DF DE,∴,∴,∴,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4,∴GO=5,∴EG的最小值是,故答案为:9.9.(2020•聊城)如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为4+2.【解答】解:∵点A(1,1),点C的纵坐标为1,∴AC∥x轴,∴∠BAC=45°,∵CA=CB,∴∠ABC=∠BAC=45°,∴∠C=90°,∵B(3,3)∴C(3,1),∴AC=BC=2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,则EF=BC=2,AF=6﹣2=4,∴AE2,∴最小周长的值=AC+BC+AE=4+2,故答案为:4+2.10.(2020•泰安)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A. 1 B.C.2 1 D.2【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,∵OB=OD=2,∠BOD=90°,∴BD=2,∴CD=21,∴OM CD,即OM的最大值为;故选:B.11.(2020•乐山)如图,在平面直角坐标系中,直线y=﹣x与双曲线y交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.B.C.﹣2 D.【解答】解:点O是AB的中点,则OQ是△ABP的中位线,当B、C、P三点共线时,PB最大,则OQ BP最大,而OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,设点B(m,﹣m),则(m﹣2)2+(﹣m﹣2)2=32,解得:m2,∴k=m(﹣m),故选:A.12.(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为15 .【解答】解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB10,∵A′H⊥AB,∴AH=HB=5,∴A′H AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.13.(2020•新疆)如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为 6 .【解答】解:如图所示,作点A关于BC的对称点A',连接AA',A'D,过D作DE⊥AC于E,∵△ABC中,∠BAC=90°,∠B=60°,AB=2,∴BH=1,AH,AA'=2,∠C=30°,∴Rt△CDE中,DE CD,即2DE=CD,∵A与A'关于BC对称,∴AD=A'D,∴AD+DE=A'D+DE,∴当A',D,E在同一直线上时,AD+DE的最小值等于A'E的长,此时,Rt△AA'E中,A'E=sin60°×AA'23,∴AD+DE的最小值为3,即2AD+CD的最小值为6,故答案为:6.。

2020年江苏省九年级中考数学压轴题选择、填空、解答题精选精练(含解析)

2020年江苏省九年级中考数学压轴题选择、填空、解答题精选精练(含解析)

2020年中考数学压轴题考前冲刺练习6一、选择题1.如图,是半径为1的圆弧,△AOC为等边三角形,D是上的一动点,则四边形AODC 的面积s的取值范围是()A.≤s≤B.<s≤C.≤s≤D.<s<2.如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和等边△ACE,F 为AB的中点,DE,AB相交于点G,若∠BAC=30,下列结论:①EF⊥AC;②AD=AE;③AD=4AG;④记△ABC的面积为S1,四边形FBCE的面积为S2,则S1:S2=2:3.其中正确的结论的序号是()A.①③B.②④C.①③④D.①②③④3.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第9个图案中共有()和黑子.A.37 B.42 C.73 D.1214.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A.B.C.D.5.若整数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣3有正整数解,则满足条件的a的值之积为()A.28 B.﹣4 C.4 D.﹣26.如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.4二、填空题1.如图,⊙O是△ABC的外接圆,其中AB是⊙O的直径,将△ABC沿AB翻折后得到△ABD,点E在AD延长线上,BE与⊙O相切于点B,分别延长线段AE、CB相交于点F,若BD=3,AE=10,则线段EF的长为.2.已知关于x的方程x2﹣4x+t﹣2=0(t为实数)两非负实数根a,b,则(a2﹣1)(b2﹣1)的最小值是.3.如图,长方形纸片ABCD中,AB=4,将纸片折叠,折痕的一个端点F在边AD上,另一个端点G在边BC上,若顶点B的对应点E落在长方形内部,E到AD的距离为1,BG=5,则AF的长为.第3题第4题4.如图,射线OP过Rt△ABC的边AC、AB的中点M、N,AC=4cm,BC=4cm,OM =3cm.射线OP上有一动点Q从点O出发,沿射线OP以每秒1cm的速度向右移动,以Q为圆心,QM为半径的圆,经过t秒与BC、AB中的一边所在的直线相切,请写出t 的所有可能值(单位:秒)5.如图,点P是⊙O的直径AB的延长线上一点,过点P作直线交⊙O于C、D两点.若AB=6,BP=2,则tan∠P AC•tan∠P AD=.第5题第6题6.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E,F分别在AC,BC边上运动(点E不与点A,C重合),且保持ED⊥FD,连接DE,DF,EF,在此运动变化的过程中,有下列结论:①AE=CF;②EF最大值为2;③四边形CEDF的面积不随点E位置的改变而发生变化;④点C到线段EF的最大距离为.其中结论正确的有(把所有正确答案的序号都填写在横线上)三、解答题1.如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.2.如图,在平面直角坐标系xOy中,抛物线y=ax2+x+c与x轴交于A,B两点(点A 在点B的左侧),交y轴于点C,经过B,C两点的直线为y=.(1)求抛物线的函数表达式;(2)点P为抛物线上的动点,过点P作x轴的垂线,交直线BC于点M,连接PC,若△PCM为直角三角形,求点P的坐标;(3)当P满足(2)的条件,且点P在直线BC上方的抛物线上时,如图2,将抛物线沿射线BC方向平移,平移后B,P两点的对应点分别为B′,P′,取AB的中点E,连接EB′,EP′,试探究EB'+EP'是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.3.△ABC内接⊙O,AD⊥BC与D,连接OA.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,作BE⊥AC交CA延长线于E交⊙O于F,延长AD交⊙O于G,连接AF,求证:AD+AF=DG;(3)在第(2)问的条件下,如图3,OA交BC于点T,CA=CT,AD=2AF,AB=4,求DT长.4.如图1,在平面直角坐标系xOy中,三角形ABC如图放置,点C(0,4),点A,B 在x轴上,且OB=4OA,tan∠CBO=.(1)求过点A、C直线解析式;(2)如图2,点M为线段BC上任意一点,点D在OC上,且CD=DM,设M的横坐标为t,△CDM的面积为S,求S与t之间的函数关系式,直接写出t的取值范围;(3)在(2)的条件下,如图3,在OB上取点N,过N作NF⊥DM,垂足为点F,连接CF,AF,∠DCF+∠AFN=60°,NF=BO时,求点D的坐标.5.阅读下列材料,解答下列问题材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”,如:65362,362﹣65=297=11×27,称65362是“网红数”.材料二:对任的自然数p均可分解为P=100x+10y+z(x≥0,0≤y≤9,0≤z≤9且x、y,z均为整数)如:5278=52×100+10×7+8,规定:G(P)=.(1)求证:任两个“网红数”之和一定能被11整除;(2)已知:S=300+10b+a,t=1000b+100a+1142(1≤a≤7,0≤b≤5,其a、b均为整数),当s+t为“网红数”时,求G(t)的最大值.6.如图已知:直线y=﹣x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(﹣1,0),在直线y=﹣x+3上有一点P,使△ABO与△ADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使△ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.【答案与解析】一、选择题1.【分析】根据题意,得四边形AODC的最小面积即是三角形AOC的面积,最大面积即是当OD⊥OC时四边形的面积.要求三角形AOC的面积,作CD⊥AO于D.根据等边三角形的性质以及直角三角形的性质,求得CD=,得其面积是;要求最大面积,只需再进一步求得三角形DOC的面积,即是,则最大面积是.【解答】解:根据题意,得四边形AODC的面积最小即是三角形AOC的面积,最大面积即是当OD⊥OC时四边形的面积.作CH⊥AO于H,∵△AOC为等边三角形∴CH=∴S△AOC=;当OD⊥OC时面积最大,∴S△OCD=,则最大面积是+=∴四边形AODC的面积s的取值范围是<s≤.故选:B.2.【分析】根据直角三角形的性质和线段垂直平分线的性质,可得①正确;根据等边三角形的性质和直角三角形的斜边与直角边不相等,可得②不正确;根据等边三角形的性质、全等三角形的判定和性质、平行四边形的判定和性质,可得③正确;根据直角三角形的性质、三角形面积、梯形面积公式,可得④正确.【解答】证明:如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD 和等边△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30,下列结论:①EF⊥AC;②AD=AE;③AD=4AG;④记△ABC的面积为S1,四边形FBCE的面积为S2,则S1:S2=2:3.其中正确的结论的序号是(①③④)①连接CF,∵F是Rt△ABC的斜边AB的中点,∴AF=CF=AB,又∵△ACE是等边三角形,∴AE=CE∴EF是线段AC的垂直平分线,∴EF⊥AC故①正确;②∵△ABD和△ACE是等边三角形,∴AD=AB,AC=AE,在Rt△ABC中,AB≠AC,∴AD≠AE,故②不正确;③∵△ABD是等边三角形,F是AB中点,∴DF⊥AB,又∵∠BAC=30,△ACE是等边三角形,∴∠EAC=60,∴∠BAE=90,∴BA⊥AE,∴DF∥AE,又∠DBA=∠ABC=60,∠BFD=∠BCA=90,BD=AB,∴△FBD≌△CBA,∴DF=AE,∴四边形DFEA是平行四边形,∴AG=GF=AF,又AF=AB,AG=AB,又AB=AD,∴AD=4AG.故③正确;④在Rt△ABC中,AC=BC,CH=AC,∴EH=CH=•CB=CB,FH=BC,∴FE=FH+HE=2BC,∵BC⊥AC,EF⊥AC,∴EF∥BC,又FB与CE不平行,∴四边形FBCE是梯形,∴S2=(BC+FE)•CH=BC•CH,S1=BC•AC=BC•CH,∴S1:S2=2:3.∴故④正确,故选:C.3.【分析】观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,…,据此规律可得.【解答】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个,第9、10图案中黑子有1+2×6+4×6+6×6+8×6=121个,故选:D.4.【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.5.【分析】表示出不等式组的解集,由不等式组无解确定出a的范围,分式方程去分母转化为整式方程,表示出分式方程的解,由分式方程有正整数解确定出a的值,即可求出所求.【解答】解:不等式组整理得:,由不等式组无解,得到3a﹣2≤a+2,解得:a≤2,分式方程去分母得:ax+5=﹣3x+15,即(a+3)x=10,由分式方程有正整数解,得到x=,即a+3=1,2,10,解得:a=﹣2,2,7,综上,满足条件a的为﹣2,2,之积为﹣4,故选:B.6.【分析】连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用S△BOD=S△COE得到四边形ODBE的面积=S△ABC=,则可对③进行判断;作OH⊥DE,如图,则DH=EH,计算出S△ODE=OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【解答】解:连接OB、OC,如图,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O是△ABC的中心,∴OB=OC,OB、OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE,在△BOD和△COE中,∴△BOD≌△COE,∴BD=CE,OD=OE,所以①正确;∴S△BOD=S△COE,∴四边形ODBE的面积=S△OBC=S△ABC=××42=,所以③正确;作OH⊥DE,如图,则DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°,∴OH=OE,HE=OH=OE,∴DE=OE,∴S△ODE=•OE•OE=OE2,即S△ODE随OE的变化而变化,而四边形ODBE的面积为定值,∴S△ODE≠S△BDE;所以②错误;∵BD=CE,∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,∴△BDE周长的最小值=4+2=6,所以④正确.故选:C.二、填空题1.【分析】证明△ABD∽△BED,得出=,求出AD=9,DE=1,由勾股定理得出BE==,AB==3,再证△FBE∽△F AB得出比例式,得出BF=3EF,在Rt△ACF中根据AF2=AC2+CF2可得关于EF的一元二次方程,解之可得.【解答】解:∵AB为⊙O的直径,∴∠C=90°,∵将△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,AC=AD,BC=BD=3,∵BE与⊙O相切于点B,∴∠ABE=90°,∠DBE=∠BAD,∴△ABD∽△BED,∴=,∴AD×DE=BD2=9,∴AD(AE﹣AD)=9,∴AD(10﹣AD)=9,解得:AD=9或AD=1(舍去),∴AD=9,DE=1,∴BE==,AB==3,∵四边形ACBD内接于⊙O,∴∠FBD=∠F AC,即∠FBE+∠DBE=∠BAE+∠BAC,又∵∠DBE+∠ABD=∠BAE+∠ABD=90°,∴∠DBE=∠BAE,∴∠FBE=∠BAC,又∠BAC=∠BAD,∴∠FBE=∠BAD,∴△FBE∽△F AB,∴===,∴BF=3EF,在Rt△ACF中,∵AF2=AC2+CF2,∴(10+EF)2=92+(3+3EF)2,整理得:4EF2﹣EF﹣5=0,解得:EF=,或EF=﹣1(舍),∴EF=;故答案为:.2.【分析】a,b是关于x的一元二次方程x2﹣4x+t﹣2=0的两个非负实根,根据根与系数的关系,化简(a2﹣1)(b2﹣1)即可求解.【解答】解:∵a,b是关于x的一元二次方程x2﹣4x+t﹣2=0的两个非负实根,∴可得a+b=4,ab=t﹣2≥0,△=16﹣4(t﹣2)≥0.解得:2≤t≤6(a2﹣1)(b2﹣1)=(ab)2﹣(a2+b2)+1=(ab)2﹣(a+b)2+2ab+1,∴(a2﹣1)(b2﹣1),=(t﹣2)2﹣16+2(t﹣2)+1,=(t﹣1)2﹣16,∵2≤t≤6,∴当t=2时,(t﹣1)2取最小值,最小值为1,∴代数式(a2﹣1)(b2﹣1)的最小值是1﹣16=﹣15,故答案为:﹣15.3.【分析】设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,然后求出EM、EN,在Rt△ENG中,利用勾股定理列式求出GN,再根据△GEN和△EKM相似,利用相似三角形对应边成比例列式求出EK、KM,再求出KH,然后根据△FKH和△EKM 相似,利用相似三角形对应边成比例列式求解即可.【解答】解:设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,∵E到AD的距离为1,∴EM=1,EN=4﹣1=3,在Rt△ENG中,GN===4,∵∠GEN+∠KEM=180°﹣∠GEH=180°﹣90°=90°,∠GEN+∠NGE=180°﹣90°=90°,∴∠KEM=∠NGE,又∵∠ENG=∠KME=90°,∴△GEN∽△EKM,∴==,即==,解得EK=,KM=,∴KH=EH﹣EK=4﹣=,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴=,即=,解得FH=,∴AF=FH=.故答案为.4.【分析】如图,作OG⊥AB于G,由题意OG=ON=>3,所以⊙Q在AC的左边不可能与AB相切.接下来分三种情形讨论求解即可.【解答】解:如图,作OG⊥AB于G,由题意OG=ON=>3,所以⊙Q在AC 的左边不可能与AB相切.相切有三种可能:当⊙Q与BC相切时,MQ=2,∴|t﹣3|=2,∴t=1或5.当⊙Q与AB相切时,设切点为H,连接QH.易知QN=2QH,∴2﹣(t﹣3)=2(t﹣3),解得t=,综上所述,t=1s或5s或()s时,⊙Q与BC/AB相切.故答案为1s或5s或()s5.【分析】连接BC、BD.因为AB是直径,推出∠ACB=∠ADB=90°,可得tan∠P AC•tan ∠P AD=•=•,利用相似三角形的性质转化即可解决问题;【解答】解:连接BC、BD.∵AB是直径,∴∠ACB=∠ADB=90°,∴tan∠P AC•tan∠P AD=•=•,∵△PCB∽△P AD,∴=,∵△PBD∽△PCA,∴=,∴tan∠P AC•tan∠P AD=•==,故答案为.6.【分析】①作常规辅助线连接CD,由SAS定理可证△CDF和△ADE全等,即可证得AE =CF;②根据AE=CF,设CE=x,用含x的式子表示出CF的长,根据勾股定理,即可表示出EF的长,根据二次函数的增减性,表示出EF的最小值;③由割补法可知四边形CEDF的面积保持不变;④由①可知,DE=EF,可得△DEF是等腰直角三角形,当DF与BC垂直,即DF最小时,FE取最小值2,此时点C到线段EF的最大距离.【解答】解:如图,连接CD.∵在△ABC中,AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵D是AB的中点,∴CD=AD=BD,∠ADC=90°,∠ACD=∠BCD=45°,∴∠1+∠2=90°,∵ED⊥FD,∴∠2+∠3=90°,∴∠1=∠3,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF;故①正确;(2)设CE=x,则CF=AE=4﹣x,在Rt△CEF中,,∵2(x﹣2)2+8有最小值,最小值为8,∴EF有最小值,最小值为.故②错误;③由①知,△ADE≌△CDF,∴S四边形EDFC=S△EDC+S△FDC=S△EDC+S△ADE=S△ADC,∴四边形CEDF的面积不随点E位置的改变而发生变化.故③正确;④由①可知,△ADE≌△CDF,∴DE=DF,∴△DEF是等腰直角三角形,∴,当EF∥AB时,∵AE=CF,∴E,F分别是AC,BC的中点,故EF是△ABC的中位线,∴EF取最小值=,∵CE=CF=2,∴此时点C到线段EF的最大距离为.故④正确.故答案为:①③④.三、解答题1.【分析】(1)先求出∠APE=∠ABC=90°,∠P AE=∠PEA=∠ABC=45°,即可得出结论;(2)由(1)知,△APE∽△ABC,得出,再判断出∠P AB=∠EAC,进而判断出△P AB∽△EAC,即可得出结论;(3)先画出图形,利用勾股定理求出CP',再分两种情况,求出CE和CE',借助(2)的结论,即可得出结论.【解答】解:(1)∵AC是正方形ABCD的对角线,∴∠ABC=90°,∠BAC=∠BCA=45°,由旋转知,P A=PE,∠APE=90°=∠ABC,∴∠P AE=∠PEA=45°=∠BAC,∴△APE∽△ABC;(2)在Rt△ABC中,AB=CB,∴AC=AB,由(1)知,△APE∽△ABC,∴,∵∠BAC=∠P AE=45°,∴∠P AB=∠EAC,∴△P AB∽△EAC,∴==,∵△P AB∽△EAC,∴∠ABP=∠ACE,∴∠BCE+∠CBM=∠BCE+∠ABP+∠ABC=∠BCE+∠ACE+∠ABC=∠ACB+∠ABC=45°+90°=135°,∴∠BMC=180°﹣(∠BCE+∠CBM)=45°;(3)如图,在Rt△ABC中,AB=BC=3,∴AC=3,∵点P,C,E在同一条线上,且∠APE=90°,∴CP==,∴CE=CP﹣PE=﹣1或CE'=CP'+P'E=+1,由(2)知,=,∴BP=CE=(﹣1)=或BP'=CE'=;即:BP的长为或.2.【分析】(1)y=,过点B,C,则点B、C的坐标分别为:(3,0)、(0,),则c=,将点B的坐标代入抛物线表达式,即可求解;(2)分∠PCM=90°、∠CPM=90°两种情况,分别求解即可;(3)作点E关于P′B′的对称点E′,将点E′沿P′B′方向平移2个单位得到点E″,连接E、E″交P′B′所在的直线于点B′,点B′沿P′B′方向平移2个单位得到点P′,则点P′、B′为所求,即可求解.【解答】解:(1)y=,过点B,C,则点B、C的坐标分别为:(3,0)、(0,),则c=,将点B的坐标代入抛物线表达式并解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+;(2)①当∠PCM=90°时,由点A、B、C的坐标知,△ABC为直角三角形,故AC⊥BC,当△PCM为直角三角形时,点P与点A重合,∴点P(﹣1,0);②当∠CPM=90°时,则点C、P关于函数对称轴对称,此时点P(2,),故点P的坐标为(﹣1,0)或(2,);(3)存在,理由:点P(2,),设图象沿BC方向向左平移3m个单位,则向上平移m个单位,则平移后点B′、P′的坐标分别为:(3﹣3m,m)、(2﹣3m,m+),点E(1,0),分别过点A、E作直线BC的平行线n、m,过点B′作直线m的对称点B″,则EB′=EB″,当B″、E、P′三点共线时,EB'+EP'=EB″+EP′=B″P′最小;点E是AB的中点,则直线m与直线n、直线m与直线AC等距离,则点B″在直线n 上,直线BC的倾斜角为30°,则直线B′B″的倾斜角为60°,则设直线B′B″的表达式为:y=x+b,将点B′的坐标代入上式并解得:直线B′B″表达式为:y=x+(4m﹣3)…①,设过点A的直线n的表达式为:y=﹣x+b′,将点A的坐标代入上式并解得:直线n的表达式为:y=﹣(x+1)…②,联立①②并解得:x=2﹣3m,故点B″(2﹣3m,m﹣),而P′(2﹣3m,m+),故EB'+EP'的最小值B″P′=2.3.△ABC内接⊙O,AD⊥BC与D,连接OA.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,作BE⊥AC交CA延长线于E交⊙O于F,延长AD交⊙O于G,连接AF,求证:AD+AF=DG;(3)在第(2)问的条件下,如图3,OA交BC于点T,CA=CT,AD=2AF,AB=4,求DT长.【分析】(1)延长AO交圆于点M,连结BM,由∠M+∠BAM=90°,∠C+∠CAD=90°,结论可得证;(2)分别延长DA、BE交于点H,连结BG,可证得△AFM和△BGM是等腰三角形,由等腰三角形的性质可证出结论;(3)连GO并延长GO交AB于点N,连BG,由CA=CT可得∠TAC=∠ATC,证得AG =BG,得出AN长,证出△BAD∽△GAN,由比例线段可求出AD长,BD长,再证明△ADT∽△BDA,得AD2=DT•BD,则DT长可求.【解答】(1)证明:如图1,延长AO交圆于点M,连结BM,∵AM是圆的直径,∴∠ABM=90°,∴∠M+∠BAM=90°,∵AD⊥BC,∴∠C+∠CAD=90°,∵∠M=∠C,∴∠BAO=∠CAD;(2)证明:如图2,分别延长DA、BE交于点H,连结BG,∵AE⊥BE,AD⊥DC,∴∠EAH+∠H=90°,∠DAC+∠C=90°,∵∠DAC=∠EAH,∴∠H=∠C,∵四边形AFBC是圆内接四边形,∴∠EF A=∠C,∴∠EF A=∠H,∴AF=AH,又∵∠C=∠BGH,∴∠H=∠BGH,∵BD⊥GH,∴DG=DM=AD+AH=AD+AF;(3)解:如图3,连GO并延长GO交AB于点N,连BG,∵CT=AC,∴∠TAC=∠ATC,∵∠TAC=∠TAD+∠DAC,∠ATC=∠TBA+∠BAT,∠DAC=∠BAT,∴∠TAD=∠TBA,又∵∠GBC=∠DAC=∠BAO,∴AG=BG,由轴对称性质可知NG⊥AB,∴∠GNA=∠BDA=90°,AN=BN=2,∵∠NAG=∠BAD∴△BAD∽△GAN,∴,∵AD+AF=DG,AD=2AF,∴,∴,设AD=x,则AG=,∴,解得:x=4,即AD=4,∴==8,在△ADT和△BDA中,∠TAD=∠DBA,∠TDA=∠BDA=90°,∴△ADT∽△BDA,∴,∴,∴DT=2.4.【分析】(1)由锐角三角函数可求点A坐标,由待定系数法可求解析式;(2)过点M作MH⊥OC于H,由锐角三角函数可求∴∠BCO=30°,由直角三角形的性质可求CD的长,由三角形面积公式可求解;(3)作FE⊥OB于E,CP⊥EF于P,FK⊥OC于K.则四边形CPEO是矩形,设PC=OE=m.只要证明△PCF∽△EF A,可得,由此构建方程求出m即可解决问题.【解答】解:(1)∵点C(0,4),∴OC=4,∵tan∠CBO==,∴OB=4,∵OB=4OA,∴OA=1,∴点A(﹣1,0)设过点A、C直线解析式为:y=kx+4,∴0=﹣k+4,∴k=4,∴过点A、C直线解析式为:y=4x+4;(2)如图2,过点M作MH⊥OC于H,∵M的横坐标为t,∴MH=t,∵tan∠BCO===,∴∠BCO=30°,∵CD=DM,∴∠DCM=∠CMD=30°,∴∠MDH=60°,且MH⊥OC,∴DH=t,DM=2DH=t=CD,∴△CDM的面积为S=×t×t=t2,(0<t≤4)(3)作FE⊥OB于E,CP⊥EF于P,FK⊥OC于K.则四边形CPEO是矩形,∴CP=OE,CO=PE=4,设PC=OE=m.∵∠DON+∠DFN+∠ODF+∠ONF=360°,∴∠FNO=120°,∴∠FNE=60°,且EF⊥BO,FN=OB=4,∴EF=2,∴PF=2∵∠DCF+∠AFN=60°,∠DCF+∠DFC=60°,∴∠DFC=∠AFN,∴∠CF A=∠DFN=90°,∴∠FCP+∠PFC=90°,∠PFC+∠AFE=90°,∴∠PCF=∠AFE,且∠P=∠AEF=90°,∴△PCF∽△EF A,∴,∴∴m=3或﹣4(舍弃),∴F(3,2),在Rt△DEK中,∵∠DFK=30°,FK=3,∴DK=,∴OD=3,∴D(0,3).5.【分析】(1)设两个“网红数”为,,(n、b表示末三位表示的数,m、a表示末三位之前的数字),则n﹣m=11k,b﹣a=11h,所以+=1001m+1001a+11(k+h)=11(91m+91n+h+k),即可证明;(2)s=3×100+10b+a,t=1000(b+1)+100(a+1)+4×10+2,所以s+t=1000(b+1)+100(a+4)+10(b+4)+a+2;①当1≤a≤5时,s+t=,则﹣(b+1)能被11整除,即101a+9b+441=11×9a+2a+11b﹣2b+40×11+1能被11整除,由已知可得﹣7≤2a﹣2b+1≤11,求出a=5,b=0;②当6≤a≤7时,s+t=,则﹣(b+2)能被11整除,所以101a+9b﹣560=11×9a+2a+11b﹣2b﹣51×11+1能被11整除,可得3≤2a﹣2b+1≤15,求出a=6,b=1或a=7,b=2,分别求出相应的G(t)值即可.【解答】解:(1)设两个“网红数”为,,(n、b表示末三位表示的数,m、a表示末三位之前的数字),∴n﹣m=11k,b﹣a=11h,∵+=1001m+1001a+11(k+h)=11(91m+91n+h+k),∴m、a、k、h都是整数,∴91m+91n+h+k为整数,∴任两个“网红数”之和一定能被11整除;(2)s=3×100+10b+a,t=1000(b+1)+100(a+1)+4×10+2,∴s+t=1000(b+1)+100(a+4)+10(b+4)+a+2,①当1≤a≤5时,s+t=,则﹣(b+1)能被11整除,∴101a+9b+441=11×9a+2a+11b﹣2b+40×11+1能被11整除,∴2a﹣2b+1能被11整除,∵1≤a≤5,0≤b≤5,∴﹣7≤2a﹣2b+1≤11,∴2a﹣2b+1=0或11,∴a=5,b=0,∴t=1642,G(1642)=17.25;②当6≤a≤7时,s+t=,则﹣(b+2)能被11整除,∴101a+9b﹣560=11×9a+2a+11b﹣2b﹣51×11+1能被11整除,∴2a﹣2b+1能被11整除,∵6≤a≤7,0≤b≤5,∴3≤2a﹣2b+1≤15,∴2a﹣2b+1=11,∴a=6,b=1或a=7,b=2,∴t=2742或3842,∴G(2742)=28或G(3842)=39,∴G(t)的最大值39.6.【分析】(1)首先确定A、B、C三点的坐标,然后利用待定系数法求抛物线的解析式;(2)△ABO为等腰直角三角形,若△ADP与之相似,则有两种情形,如答图1所示.利用相似三角形的性质分别求解,避免遗漏;(3)如答图2所示,分别计算△ADE的面积与四边形APCE的面积,得到面积的表达式.利用面积的相等关系得到一元二次方程,将点E是否存在的问题转化为一元二次方程是否有实数根的问题,从而解决问题.需要注意根据(2)中P点的不同位置分别进行计算,在这两种情况下,一元二次方程的判别式均小于0,即所求的E点均不存在.【解答】解:(1)由题意得,A(3,0),B(0,3)∵抛物线经过A、B、C三点,∴把A(3,0),B(0,3),C(1,0)三点分别代入y=ax2+bx+c,得方程组解得:∴抛物线的解析式为y=x2﹣4x+3(2)由题意可得:△ABO为等腰三角形,如答图1所示,若△ABO∽△AP1D,则∴DP1=AD=4,∴P1(﹣1,4)若△ABO∽△ADP2 ,过点P2作P2 M⊥x轴于M,AD=4,∵△ABO为等腰三角形,∴△ADP2是等腰三角形,由三线合一可得:DM=AM=2=P2M,即点M与点C重合,∴P2(1,2)综上所述,点P的坐标为P1(﹣1,4),P2(1,2);(3)不存在.理由:如答图2,设点E(x,y),则S△ADE=①当P1(﹣1,4)时,S四边形AP1CE=S△ACP1+S△ACE==4+|y|∴2|y|=4+|y|,∴|y|=4∵点E在x轴下方,∴y=﹣4,代入得:x2﹣4x+3=﹣4,即x2﹣4x+7=0,∵△=(﹣4)2﹣4×7=﹣12<0∴此方程无解②当P2(1,2)时,S四边形AP2CE=S△ACP2+S△ACE==2+|y|,∴2|y|=2+|y|,∴|y|=2∵点E在x轴下方,∴y=﹣2,代入得:x2﹣4x+3=﹣2,即x2﹣4x+5=0,∵△=(﹣4)2﹣4×5=﹣4<0∴此方程无解综上所述,在x轴下方的抛物线上不存在这样的点E.。

2020年中考数学选择填空压轴题汇编规律探索含解析

2020年中考数学选择填空压轴题汇编规律探索含解析

2020年中考数学选择填空压轴题汇编:规律探索1.(2020甘肃天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【解答】解:∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.故选:A.2.(2020贵州铜仁)观察下列等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;2+22+23+24+25=26﹣2;…已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m,则220+221+222+223+224+…+238+239+240=m(2m﹣1)(结果用含m的代数式表示).【解答】解:∵220=m,∴220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+221﹣2)=m(2m﹣1).故答案为:m(2m﹣1).3.(2020黑龙江鹤岗)如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1).过点B作EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x轴的垂线交MA于点A1,以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2.….则点B2020的坐标2×32020﹣1,32020.【解答】解:∵点B坐标为(1,1),∴OA=AB=BC=CO=CO1=1,∵A1(2,3),∴A1O1=A1B1=B1C1=C1O2=3,∴B1(5,3),∴A2(8,9),∴A2O2=A2B2=B2C2=C2O3=9,∴B2(17,9),同理可得B4(53,27),B5(161,81),…由上可知,Bn(2×3n﹣1,3n),∴当n=2020时,Bn(2×32020﹣1,32020).故答案为:(2×32020﹣1,32020).4.(2020黑龙江齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是22020.【解答】解:∵点A1(0,2),∴第1个等腰直角三角形的面积2,∵A2(6,0),∴第2个等腰直角三角形的边长为2,∴第2个等腰直角三角形的面积4=22,∵A4(10,4),∴第3个等腰直角三角形的边长为10﹣6=4,∴第3个等腰直角三角形的面积8=23,…则第2020个等腰直角三角形的面积是22020;故答案为:22020(形式可以不同,正确即得分).5.(2020黑龙江绥化)如图各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,…,按此规律,第10个图中黑点的个数是119 .【解答】解:∵图1中黑点的个数2×1×(1+1)÷2+(1﹣1)=2,图2中黑点的个数2×2×(1+2)÷2+(2﹣1)=7,图3中黑点的个数2×3×(1+3)÷2+(3﹣1)=14,……∴第n个图形中黑点的个数为2n(n+1)÷2+(n﹣1)=n2+2n﹣1,∴第10个图形中黑点的个数为102+2×10﹣1=119.故答案为:119.6.(2020•湖北鄂州)如图,点A1,A2,A3…在反比例函数y(x>0)的图象上,点B1,B2,B3,…B n在y轴上,且∠B1OA1=∠B2B1A2=∠B3B2A3=…,直线y=x与双曲线y交于点A1,B1A1⊥OA1,B2A2⊥B1A2,B3A3⊥B2A3…,则B n(n为正整数)的坐标是()A.(2,0)B.(0,)C.(0,)D.(0,2)【解答】解:由题意,△OA1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,∵A1(1,1),∴OB1=2,设A2(m,2+m),则有m(2+m)=1,解得m1,∴OB2=2,设A3(a,2n),则有n=a(2a)=1,解得a,∴OB3=2,同法可得,OB4=2,∴OB n=2,∴B n(0,2).故选:D.7.(2020湖北恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C (1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C 的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).8.(2020湖北仙桃)如图,已知直线a:y=x,直线b:y x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为21010.【解答】解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y x上,∴1x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=2,∴P2020的横坐标为221010,故答案为:21010.9.(2020湖南常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F【解答】解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k k(k+1),应停在第k(k+1)﹣7p格,这时P是整数,且使0k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,k(k+1)﹣7p=7m t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.10.(2020湖南衡阳)如图,在平面直角坐标系中,点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OP n(n为正整数),则点P2020的坐标是(0,﹣22019).【解答】解:∵点P1的坐标为(,),将线段OP1绕点O按逆时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;∴OP1=1,OP2=2,∴OP3=4,如此下去,得到线段OP4=23,OP5=24…,∴OP n=2n﹣1,由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,∴点P2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).11.(2020湖南怀化)如图,△OB1A1,△A1B2A2,△A2B3A3,…,△A n﹣1B n A n,都是一边在x轴上的等边三角形,点B1,B2,B3,…,B n都在反比例函数y(x>0)的图象上,点A1,A2,A3,…,A n,都在x轴上,则A n的坐标为(2,0).【解答】解:如图,过点B1作B1C⊥x轴于点C,过点B2作B2D⊥x轴于点D,过点B3作B3E⊥x轴于点E,∵△OA1B1为等边三角形,∴∠B1OC=60°,OC=A1C,∴B1C OC,设OC的长度为t,则B1的坐标为(t,t),把B1(t,t)代入y得t•t,解得t=1或t=﹣1(舍去),∴OA1=2OC=2,∴A1(2,0),设A1D的长度为m,同理得到B2D m,则B2的坐标表示为(2+m,m),把B2(2+m,m)代入y得(2+m)m,解得m1或m1(舍去),∴A1D,A1A2,OA2,∴A2(,0)设A2E的长度为n,同理,B3E为n,B3的坐标表示为(2n,n),把B3(2n,n)代入y得(2n)•n,∴A2E,A2A3,OA3,∴A3(,0),综上可得:A n(,0),故答案为:.12.(2020湖南湘西州)观察下列结论:(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也会有类似的结论,你的结论是A1N=A n M,∠NOA n.【解答】解:∵(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也有类似的结论是A1N=A n M,∠NOA n.故答案为:A1N=A n M,∠NOA n.13.(2020山东德州)如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148 B.152 C.174 D.202【解答】解:根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.14.(2020山东菏泽)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,…按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.B.C.D.【解答】解:由题意知,第100个图形中,正方体一共有1+2+3+……+99+100=5050(个),其中写有“心”字的正方体有100个,∴抽到带“心”字正方体的概率是,故选:D.15.(2020山东威海)如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A型)地砖记作(1,1),第二块(B型)地砖记作(2,1)…若(m,n)位置恰好为A型地砖,则正整数m,n须满足的条件是m、n 同为奇数或m、n同为偶数.【解答】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n同为偶数.故答案为m、n同为奇数或m、n同为偶数.16.(2020山东潍坊)如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;,…的圆心依次按点A,B,C,D循环.若正方形ABCD的边长为1,则的长是4039π.【解答】解:由图可知,曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD=AA1=1,BA1=BB1=2,……,AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,故的半径为BA2020=BB2020=4(2020﹣1)+2=8078,的弧长.故答案为:4039π.17.(2020四川达州)已知k为正整数,无论k取何值,直线11:y=kx+k+1与直线12:y=(k+1)x+k+2都交于一个固定的点,这个点的坐标是(﹣1,1);记直线11和12与x轴围成的三角形面积为S k,则S1=,S1+S2+S3+…+S100的值为.【解答】解:∵直线11:y=kx+k+1=k(x+1)+1,∴直线12:y=(k+1)x+k+2经过点(﹣1,1);∵直线12:y=(k+1)x+k+2=k(x+1)+(x+1)+1=(k+1)(x+1)+1,∴直线12:y=(k+1)x+k+2经过点(﹣1,1).∴无论k取何值,直线l1与l2的交点均为定点(﹣1,1).∵直线11:y=kx+k+1与x轴的交点为(,0),直线12:y=(k+1)x+k+2与x轴的交点为(,0),∴S K||×1,∴S1;∴S1+S2+S3+…+S100[][(1)+()+…+()](1).故答案为(﹣1,1);;.18.(2020四川遂宁)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a1,第2幅图中“▱”的个数为a2,第3幅图中“▱”的个数为a3,…,以此类推,若.(n为正整数),则n的值为4039 .【解答】解:由图形知a1=1×2,a2=2×3,a3=3×4,∴a n=n(n+1),∵,∴,∴2×(1),∴2×(1),1,解得n=4039,经检验:n=4039是分式方程的解,故答案为:4039.19.(2020四川自贡)如图,直线y x+b与y轴交于点A,与双曲线y在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=4,前25个等边三角形的周长之和为60 .【解答】解:设直线y x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.∵y x+b,∴当y=0时,x b,即点D的坐标为(b,0),当x=0时,y=b,即A点坐标为(0,b),∴OA=﹣b,OD b.∵在Rt△AOD中,tan∠ADO,∴∠ADO=60°.∵直线y x+b与双曲线y在第三象限交于B、C两点,∴x+b,整理得,x2+bx﹣k=0,由韦达定理得:x1x2k,即EB•FC k,∵cos60°,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC k=16,解得:k=4.由题意可以假设D1(m,m),∴m2•4,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,n),∵(4+n)•n=4,解得n=22,∴E1E2=44,即第二个三角形的周长为1212,设D3(4a,a),由题意(4a)•a=4,解得a=22,即第三个三角形的周长为1212,…,晨鸟教育∴第四个三角形的周长为1212,∴前25个等边三角形的周长之和12+1212+1212121212121260,故答案为4,60.Earlybird。

2020年中考数学压轴题(含答案解析)

2020年中考数学压轴题(含答案解析)

2020年中考数学压轴题一、选择题1.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)2.如图,在等腰直角三角形ABC中,∠ACB=90°,BC=2,D是BC边上一动点,将AD绕点A逆时针旋转45°得AE,连接CE,则线段CE长的最小值为()A.B.C.﹣1 D.2﹣二、填空题3.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.第3题第4题4.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC =PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O 到△MNG三个顶点的距离和的最小值是.三、解答题5.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.6.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接PA,点P在运动过程中,PA﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.【答案与解析】一、选择题1.【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:A.2.【分析】在AB上截取AF=AC=2,由旋转的性质可得AD=AE,由勾股定理可求AB=2,可得BF =2﹣2,由“SAS”可证△ACE≌△AFD,可得CE=DF,则当DF⊥BC时,DF值最小,即CE的值最小,由直角三角形的性质可求线段CE长的最小值.【解答】解:如图,在AB上截取AF=AC=2,∵旋转∴AD=AE∵AC=BC=2,∠ACB=90°∴AB=2,∠B=∠BAC=45°,∴BF=2﹣2∵∠DAE=45°=∠BAC∴∠DAF=∠CAE,且AD=AE,AC=AF∴△ACE≌△AFD(SAS)∴CE=DF,当DF⊥BC时,DF值最小,即CE的值最小,∴DF最小值为=2﹣故选:D.二、填空题3.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD =5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.4.【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则PA+PC=GP+PC=GC=PE,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO 的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴PA+PC=GP+PC=GC=PE∴PA+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,三、解答题5.【分析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.【解答】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC==4cm,当点A′落在边BC上时,由题意得,四边形APA′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4﹣5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴,即=,解得:x=,∴当点A′落在边BC上时,x=;(2)当A′B=BC时,(5﹣8x)2+(3x)2=32,解得:.∵x≤,∴;当A′B=A′C时,x=.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=PA'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=,∴A′B′=QE﹣PD=x=;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5﹣7x,∴cos B=,∴x=,∴A′B′=B′D﹣A′D=;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=,∴A′B′=PA′sin A=;当A′B′⊥AB时,x=,A′B′=;当A′B′⊥BC时,x=,A′B′=;当A′B′⊥AC时,x=,A′B′=.6.【分析】(1)①由∠ABO=90°和DB⊥PB可得∠DBA=∠PBO,结合边长关系由两边对应成比例及其夹角相等的三角形相似即可证明结论.②过D点作DH⊥BO交OB延长线于H点,由AD∥OB平行可得∠DAB=90°,而△ADB∽△OPB可知∠POB=90°,由已知可求出AD.由Rt△DHO即可计算OD的长,③由△ADB∽△OPB可知,可求AD=,由此可知D在以A为圆心AD为半径的圆上运动,所以OD的最大值为OD过A点时最大.求出OA即可得到答案.(2)在OC上取点B′,使OB′=OP=,构造△BOP~△POB′,可得=PA﹣PB′≤AB',求出AB’即可求出最大值.【解答】解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP~△POB′,∴,∴=PA﹣PB′≤AB',∴∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,PA﹣有最大值为,2020年中考数学压轴题一、选择题1.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.90°B.100°C.110°D.120°2.如图,P是半圆O上一点,Q是半径OA延长线上一点,AQ=OA=1,以PQ为斜边作等腰直角三角形PQR,连接OR.则线段OR的最大值为()A.B.3 C.D.1二、填空题3.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为.第3题第4题4.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题5.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.6.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【答案与解析】一、选择题1.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.作EA延长线AH,∵∠BAE=120°,∴∠HAA′=60°,∴∠A′+∠A″=∠HAA′=60°,∵∠A′=∠MAA′,∠NAE=∠A″,且∠A′+∠MAA′=∠AMN,∠NAE+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAE+∠A″=2(∠A′+∠A″)=2×60°=120°,故选:D.2.【分析】将△RQO绕点R顺时针旋转90°,可得△RPE,可得ER=RO,∠ERO=90°,PE=OQ=2,由直角三角形的性质可得EO=RO,由三角形三边关系可得EO≤PO+EP=3,即可求解.【解答】解:将△RQO绕点R顺时针旋转90°,可得△RPE,∴ER=RO,∠ERO=90°,PE=OQ=2∴EO=RO,∵EO≤PO+EP=3∴RO≤3∴OR的最大值=故选:A.二、填空题3.【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.4.【分析】以AC为直径作圆O′,连接BO′、BC.在点P移动的过程中,点D在以AC为直径的圆上运动,当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D,利用勾股定理求出BO′即可解决问题.【解答】解:如图,以AC为直径作圆O′,连接BO′、BC,O'D,∵CD⊥AP,∴∠ADC=90°,∴在点P移动的过程中,点D在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AB=8,∠CAB=60°,∴BC=AB•sin60°=4,AC=AB•cos60°=4,∴AO'=CO'=2,∴BO'===2,∵O′D+BD≥O′B,∴当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D=2﹣2,故答案为2﹣2.三、解答题5.【分析】(1)根据角平分线的定义得到∠EDF=∠ADF,根据圆内接四边形的性质和圆周角定理结论得到结论;(2)根据圆周角定理得到AD⊥BF,推出△ACB是等边三角形,得到∠ADB=∠ACB=60°,根据等腰三角形的性质得到结论;(3)设CD=k,BC=2k,根据勾股定理得到BD==k=10,求得=2,BC=AC=4,根据相似三角形的性质即可得到结论【解答】(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.6.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG构建方程求出x 即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.2020年中考数学压轴题一、选择题1.已知函数y =ax 2+bx +c 的图象的一部分如图所示,则a +b +c 取值范围是( )A .﹣2<a +b +c <0B .﹣2<a +b +c <2C .0<a +b +c <2D .a +b +c <22.如图所示,矩形OABC 中,OA =2OC ,D 是对角线OB 上的一点,OD =OB ,E 是边AB 上的一点.AE =AB ,反比例函数y =(x >0)的图象经过D ,E 两点,交BC 于点F ,AC 与OB 交于点M .EF与OB 交于点G ,且四边形BFDE 的面积为.下列结论:①EF ∥AC ;②k =2;③矩形OABC 的面积为;④点F 的坐标为(,)正确结论的个数为( )A .1个B .2个C .3个D .4个 二、填空题 3.如图,二次函数y =(x +2)2+m 的图象与y 轴交于点C ,与x 轴的一个交点为A (﹣1,0),点B 在抛物线上,且与点C 关于抛物线的对称轴对称.已知一次函数y =kx +b 的图象经过A ,B 两点,根据图象,则满足不等式(x +2)2+m ≤kx +b 的x 的取值范围是 .4.如图,AE=4,以AE 为直径作⊙O ,点B 是直径AE 上的一动点,以AB 为边在AE 的上方作正方形ABCD ,取CD 的中点M ,将△ADM 沿直线AM 对折,当点D 的对应点D ´落在⊙O 上时,BE 的长为 .三、解答题5.在平面直角坐标系xOy 中,有不重合的两个点Q (x 1,y 1)与P (x 2,y 2).若Q ,P 为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与x 轴或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q 与点P 之间的“折距”,记做D PQ .特别地,当PQ 与某条坐标轴平EA OB D CM D´行(或重合)时,线段PQ的长即点Q与点P之间的“折距”.例如,在图1中,点P(1,﹣1),点Q(3,﹣2),此时点Q与点P之间的“折距”D PQ=3.(1)①已知O为坐标原点,点A(3,﹣2),B(﹣1,0),则D AO=,D BO=.②点C在直线y=﹣x+4上,请你求出D CO的最小值.(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线y=3x+6上以动点.请你直接写出点E与点F之间“折距”D EF的最小值.6.如图1,在矩形ABCD中,AB=4,BC=5,点E在AD上,ED=3.动点P从点B出发沿BC方向以每秒3个单位的速度向点C运动,过点P作PF∥CE,与边BA交于点F,过点F作FG∥BC,与CE交于点G,当点F与点A重合时,点P停止运动,设点P运动的时间为t秒.(1)用含t的代数式分别表示线段BF和PF的长度,则有BF=,PF=.(2)如图2,作点D关于CE的对称点D′,当FG恰好过点D′时,求t的值.(3)如图3,作△FGP的外接圆⊙O,当点P在运动过程中.①当外接圆⊙O与四边形ABCE的边BC或CE相切时,请求出符合要求的t的值;②当外接圆⊙O的圆心O落在△FGP的内部(不包括边上)时,直接写出t的取值范围.【答案与解析】一、选择题1.【分析】函数y=ax2+bx+c的图象开口向下可知a小于0,由于抛物线顶点在第一象限即抛物线对称轴在y轴右侧,当x=1时,抛物线的值必大于0由此可求出a的取值范围,将a+b+c用a表示出即可得出答案.【解答】解:由图象可知:a<0,图象过点(0,1),所以c=1,图象过点(﹣1,0),则a﹣b+1=0,当x=1时,应有y>0,则a+b+1>0,将a﹣b+1=0代入,可得a+(a+1)+1>0,解得a>﹣1,所以,实数a的取值范围为﹣1<a<0.又a+b+c=2a+2,∴0<a+b+c<2.故选:C.2.【分析】设E(a,b),F(m,n),则a=OA=BC,b=AE,CF=m,n=CO=AB,证明=即可判断①;表示出D和E的坐标,根据系数k的几何意义求得k的值即可判断②;求得B的坐标,求得矩形OABC的面积即可判断③;求得F的坐标即可判断④.【解答】解:设E(a,b),F(m,n),则a=OA=BC,b=AE,CF=m,n=CO=AB,∴B(a,n),∵E,F在反比例函数y=上,∴ab=mn,∴BC•AE=CF•AB,∴=,∴EF∥AC,故①正确;∵OD=OB,AE=AB,∴D(a,n),E(a,n),∵OA=2OC,∴a=2n,∴B(2n,n),D(n,n),E(2n,n),∵反比例函数y=经过点F,E,∴k=mn=2n•n,∴m=n,∴F(n,n),∴BF=2n﹣n=n,BE=n,∵四边形BFDE的面积=S△BDF+S△BDE=,∴×n×(n﹣n)+×n×(2n﹣n)=,解得n=,∴E(3,),F(,)∴k=3×=2,故②④正确;∵B(3,),∴矩形OABC的面积为,故③正确;故选:A.二、填空题3.【分析】将点A代入抛物线中可求m=﹣1,则可求抛物线的解析式为y=x2+4x+3,对称轴为x=﹣2,则满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1.【解答】解:抛物线y=(x+2)2+m经过点A(﹣1,0),∴m=﹣1,∴抛物线解析式为y=x2+4x+3,∴点C坐标(0,3),∴对称轴为x=﹣2,∵B与C关于对称轴对称,点B坐标(﹣4,3),∴满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1,故答案为﹣4≤x≤﹣1.4.三、解答题5.【分析】(1)①D AO=|3﹣0|+|﹣2﹣0|=5,即可求解;②设点C(m,4﹣m),则D CO=|m|+|m﹣4|,当0≤m≤4时,D CO最小,即可求解;(2)EF1是“折距”D EF的最小值,即求EF1的最小值即可,当点E在y轴左侧于平行于直线y=﹣x+4的直线相切时,EF1最小,即可求解.【解答】解:(1)①D AO=|3﹣0|+|﹣2﹣0|=5,同理D BO=1,故答案为:5,1;②设点C(m,4﹣m),则D CO=|m|+|m﹣4|,当0≤m≤4时,D CO最小,最小值为4;(2)如图2,过点E分别作x、y轴的平行线交直线y=﹣x+4于F1、F2,则EF1是“折距”D EF的最小值,即求EF1的最小值即可,当点E在y轴左侧于平行于直线y=﹣x+4的直线相切时,EF1最小,如图3,将直线y=﹣x+4向右平移与圆相切于点E,平移后的直线与x轴交于点G,连接OE,设原直线与x、y轴交于点M、N,则点M、N的坐标分别为(﹣2,0)、点N(0,6),则MN=2,则△MON∽△GEO,则,即,则GO=,EF1=MG=2﹣=.6.【分析】(1)由△PFB∽△ECD,得==,由此即可解决问题.(2)如图2中,由△D′MG∽△CDE,得=,求出MG,根据PF=CG=CM﹣MG,列出方程即可解决问题.(3)①存在.如图4中,当⊙O与BC相切时,连接OP延长PO交FG于M,连接OF、OG,由PB=MF=MG=FG=PC,得到3t=(5﹣3t),即可解决问题.如图5中,当⊙O与BC相切时,连接GO,延长GO交PF于M,连接OF、OP,由△FGM∽△PFB,得=,列出方程即可解决问题.②求出两种特殊位置t的值即可判断.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AB=CD=4,BC=AD=5,∠B=∠D=90°,AD∥BC,在Rt△ECD中,∵∠D=90°,ED=3.CD=4,∴EC==5,∵PF∥CE,FG∥BC,∴四边形PFGC是平行四边形,∴∠FPB=∠ECB=∠DEC,∴△PFB∽△ECD,∴==,∴==,∴BF=4t,PF=5t,故答案为4t,5t.(2)如图2中,∴D、D′关于CE对称,∴DD′⊥CE,DM=MD′,∵•DE•DC=•EC•DM,∴DM=D′M=,CM==,由△D′MG∽△CDE,得=,∴=,∴MG=,∴PF=CG=CM﹣MG,∴5t=﹣,∴t=.∴t=时,D′落在FG上.(3)存在.①如图4中,当⊙O与BC相切时,连接OP延长PO交FG于M,连接OF、OG.∵OP⊥BC,BC∥FG,∴PO⊥FG,∴FM=MG由PB=MF=MG=FG=PC,得到3t=(5﹣3t),解得t=.如图5中,当⊙O与EC相切时,连接GO,延长GO交PF于M,连接OF、OP.∵OG⊥EC,BF∥EC,∴GO⊥PF,∴MF=MP=t,∵△FGM∽△PFB,∴=,∴=,解得t=.综上所述t=或时,⊙O与四边形ABCE的一边(AE边除外)相切.②如图6中,当∠FPG=90°时,由cos∠PCG=cos∠CED,∴=,∴t=,如图7中,当∠FGP=90°时,∴=,∴t=,观察图象可知:当<t<时,外接圆⊙O的圆心O落在△FGP的内部.2020年中考数学压轴题一、选择题1.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣82.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值二、填空题3.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF 最大时,S△ADE=.第3题第4题4.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.三、解答题5.如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D 运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.6.已知,如图,二次函数y=ax2+2ax﹣3a(a>0)图象的顶点为C与x轴交于A、B两点(点A在点B 左侧),点C、B关于过点A的直线l:y=kx﹣对称.(1)求A、B两点坐标及直线l的解析式;(2)求二次函数解析式;(3)如图2,过点B作直线BD∥AC交直线l于D点,M、N分别为直线AC和直线l上的两动点,连接CN,NM、MD,求D的坐标并直接写出CN+NM+MD的最小值.【答案与解析】一、选择题1.【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示出点D的纵坐标和点E的横坐标,由三角形相似和对称,可求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∴AF:EG=BD:BE,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.2.【分析】A、根据等边三角形ABC的内心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF =∠EOG,可证明△DOF≌△GOF≌△GOE,△OAD≌△OCG,△OAF≌△OCE,可得AD=CG,AF=CE,从而得△ADF≌△CGE;B、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC﹣S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,可作判断.【解答】解:A、连接OA、OC,∵点O是等边三角形ABC的内心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+S△ADF=S四边形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC﹣S△OFG,过O作OH⊥AC于H,∴S△OFG=•FG•OH,由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确;故选:D.二、填空题3.【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH ≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.4.【分析】过点O作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可.【解答】解:过点O作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB•OE+BD•OF=CD•AC,即5×OE+2×OE=2×3,解得OE=,∴⊙O的半径是.故答案为:.三、解答题5.【分析】(1)根据两边成比例夹角相等即可证明两三角形相似;(2)如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.首先证明△GFN≌△FHM,想办法求出点H的坐标,构建方程即可解决问题;(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.推出点H在直线y=x+上运动,根据垂线段最短即可解决问题;【解答】(1)证明:如图1中,∵△ABE,△BGF都是等腰直角三角形,∴==,∵∠ABE=∠GBF=45°,∴∠ABG=∠EBF,∴△ABG∽△EBF.(2)解:如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.∵△GFH是等腰直角三角形,∴FG=FH,∠GNF=∠GFH=∠HMF=90°,∴∠GFN+∠HFM=90°,∠HFM+∠FHM=90°,∴∠GFN=∠FHM,∴△GFN≌△FHM,∴GN=FM,FN=HM,∵△ABG∽△EBF,∴==,∠AGB=∠EFB,∵∠AKG=∠BKF,∴∠GAN=∠KBF=45°,∵EF=t,∴AG=t,∴AN=GN=FM=t,∴AM=2+t,HM=FN=2+t,∴H(2+t,4+t),当点H在直线CD上时,2+t=10,解得t=.(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.∴点H在直线y=x+上运动,如图,作CH垂直直线y=x+垂足为H.根据垂线段最短可知,此时CH的长最小,易知直线CH的解析式为y=﹣3x+30,由,解得,∴H(8,6),∵C(10,0),∴CH==2,∴HC最小值是2.6.【分析】(1)令二次函数解析式y=0,解方程即求得点A、B坐标;把点A坐标代入直线l解析式即求得直线l.(2)把二次函数解析式配方得顶点C(﹣1,﹣4a),由B、C关于直线l对称可知AB=AC,用a表示AC的长即能列得关于的方程.求得a有两个互为相反数的解,由二次函数图象开口向上可知a>0,舍去负值.(3)①用待定系数法求直线AC解析式,由BD∥AC可知直线BD解析式的k与AC的k相同,再代入点B坐标即求得直线BD解析式.把直线l与直线BD解析式联立方程组,求得的解即为点D坐标.②由点B、C关于直线l对称,连接BN即有B、N、M在同一直线上时,CN+MN=BN+MN=BM最小;作点D关于直线AC的对称点Q,连接DQ交直线AC于点E,可证B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ最小,CN+NM+MD最小值=BM+MD最小值=BQ.由直线AC垂直平分DQ且AC∥BD可得BD⊥DQ,即∠BDQ=90°.由B、D坐标易求BD的长;由B、C关于直线l 对称可得l平分∠BAC,作DF⊥x轴于F则有DF=DE,所以DQ=2DE=2DF=4;利用勾股定理即求得BQ的长.【解答】解:(1)当y=0时,ax2+2ax﹣3a=0解得:x1=﹣3,x2=1∴点A坐标为(﹣3,0),点B坐标为(1,0)∵直线l:y=kx﹣经过点A∴﹣3k﹣=0 解得:k=﹣∴直线l的解析式为y=﹣x﹣(2)∵y=ax2+2ax﹣3a=a(x+1)2﹣4a∴点C坐标为(﹣1,﹣4a)∵C、B关于直线l对称,A在直线l上∴AC=AB,即AC2=AB2∴(﹣1+3)2+(﹣4a)2=(1+3)2解得:a=±(舍去负值),即a=∴二次函数解析式为:y=x2+x﹣(3)∵A(﹣3,0),C(﹣1,﹣2),设直线AC解析式为y=kx+b∴解得:∴直线AC解析式为y=﹣x﹣3∵BD∥AC∴设直线BD解析式为y=﹣x+c把点B(1,0)代入得:﹣+c=0 解得:c=∴直线BD解析式为y=﹣x+∵解得:∴点D坐标为(3,﹣2)如图,连接BN,过点D作DF⊥x轴于点F,作D关于直线AC的对称点点Q,连接DQ交AC于点E,连接BQ,MQ.∵点B、C关于直线l对称,点N在直线l上∴BN=CN∴当B、N、M在同一直线上时,CN+MN=BN+MN=BM,即CN+MN的最小值为BM∵点D、Q关于直线AC对称,点M在直线AC上∴MQ=MD,DQ⊥AC,DE=QE∴当B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ,即BM+MD的最小值为BQ∴此时,CN+NM+MD=BM+MD=BQ,即CN+NM+MD的最小值为BQ∵点B、C关于直线l对称∴AD平分∠BAC∵DF⊥AB,DE⊥AC∴DE=DF=|y D|=2∴DQ=2DE=4∵B(1,0),D(3,﹣2)∴BD2=(3﹣1)2+(﹣2)2=16∵BD∥AC∴∠BDQ=∠AEQ=90°∴BQ=∴CN+NM+MD的最小值为8.2020年中考数学压轴题一、选择题1.如图,在等腰△ABC中,AB=AC,把△ABC沿EF折叠,点C的对应点为O,连接AO,使AO平分∠BAC,若∠BAC=∠CFE=50°,则点O是()A.△ABC的内心B.△ABC的外心C.△ABF的内心D.△ABF的外心2.已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.B.C.D.二、填空题3.如图,现将四根木条钉成的矩形框ABCD变形为平行四边形木框A'BCD′,且A′D′与CD相交于CD边的中点E,若AB=4,则△ECD′的面积是.4.如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是.三、解答题5.如图,把矩形ABCD沿AC折叠,使点D与点E重合,AE交BC于点F,过点E作EG∥CD交AC于点G,交CF于点H,连接DG.(1)求证:四边形ECDG是菱形;(2)若DG=6,AG=,求EH的值.6.如图,已知△BAC为圆O内接三角形,AB=AC,D为⊙O上一点,连接CD、BD,BD与AC交于点E,且BC2=AC•CE①求证:∠CDB=∠CBD;②若∠D=30°,且⊙O的半径为3+,I为△BCD内心,求OI的长.【答案与解析】一、选择题1.【分析】连接OB、OC,根据AB=AC,AO平分∠BAC,∠BAC=50°,可得AO是BC的垂直平分线,∠BAO=∠CAO=25°,得OB=OC,根据折叠可证明∠OAC=∠OCA=25°,得OA=OC,进而OA=OB=OC,可得点O是三角形ABC的外心.【解答】解:如图,连接OB、OC,∵AB=AC,AO平分∠BAC,∴AO是BC的垂直平分线,∴OB=OC,∵∠BAC=50°,AO平分∠BAC,∴∠BAO=∠CAO=25°,根据折叠可知:CF=OF,∠OFE=∠CFE=50°,∴∠OFC=100°,∴∠FCO=(180°﹣100°)=40°,∵AB=AC,∠BAC=50°,∴∠ACB=(180°﹣50°)=65°,∴∠OCA=∠ACB﹣∠FCO=65°﹣40°=25°,∴∠OAC=∠OCA=25°,∴OA=OC,∴OA=OB=OC,∴O是△ABC的外心.故选:B.2.【分析】过F作FN⊥BC,交BC延长线于N点,连接AC,构造直角△EFN,利用三角形相似的判定,得出Rt△FNE∽Rt△ECD,根据相似三角形的对应边成比例,求得NE=CD=,运用正方形性质,可得出△CNF是等腰直角三角形,从而求出CE.【解答】解:如图,过F作FN⊥BC,交BC延长线于N点,连接AC.∵DE的中点为G,EG绕E顺时针旋转90°得EF,∴DE:EF=2:1.∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN,∴Rt△FNE∽Rt△ECD,∴CE:FN=DE:EF=DC:NE=2:1,∴CE=2NF,NE=CD=.∵∠ACB=45°,∴当∠NCF=45°时,A、C、F在一条直线上.则△CNF是等腰直角三角形,∴CN=NF,∴CE=NE=×=,∴CE=时,A、C、F在一条直线上.故选:D.二、填空题3.【分析】作A'F⊥BC于F,则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,A'F=AB=2,得出∠D'=∠A'BC=30°,得出BF=A'F=2,由矩形和平行四边形的性质得出BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,得出CD⊥A'D',得出A'F∥CD,证出四边形A'ECF 是矩形,得出CE=A'F=2,A'E=CF,证出DE=BF=2,即可得出答案.【解答】解:作A'F⊥BC于F,如图所示:则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,∴A'F=AB=2,∴∠D'=∠A'BC=30°,∴BF=A'F=2,∵四边形ABCD是矩形,四边形A′BCD′是平行四边形,∴BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,∴CD⊥A'D',∴A'F∥CD,∴四边形A'ECF是矩形,∴CE=A'F=2,A'E=CF,∴DE=BF=2,∴△ECD的面积=DE×CE=×2×2=2;4.【分析】首先,需要证明线段B1B2就是点B运动的路径(或轨迹),如图1所示.利用相似三角形可以证明;其次,证明△APN∽△AB1B2,列比例式可得B1B2的长.【解答】解:如图1所示,当点P运动至ON上的任一点时,设其对应的点B为B i,连接AP,AB i,BB i,∵AO⊥AB1,AP⊥AB i,∴∠OAP=∠B1AB i,又∵AB1=AO•tan30°,AB i=AP•tan30°,∴AB1:AO=AB i:AP,∴△AB1B i∽△AOP,∴∠B1B i=∠AOP.同理得△AB1B2∽△AON,∴∠AB1B2=∠AOP,∴∠AB1B i=∠AB1B2,∴点B i在线段B1B2上,即线段B1B2就是点B运动的路径(或轨迹).由图形2可知:Rt△APB1中,∠APB1=30°,∴,Rt△AB2N中,∠ANB2=30°,∴=,∴,∵∠PAB1=∠NAB2=90°,∴∠PAN=∠B1AB2,∴△APN∽△AB1B2,∴==,∵ON:y=﹣x,∴△OMN是等腰直角三角形,∴OM=MN=,∴PN=,∴B1B2=,综上所述,点B运动的路径(或轨迹)是线段B1B2,其长度为.故答案为:.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学压轴题解题技巧(中考高分必备)数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。

函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。

求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。

几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。

一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。

求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。

找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。

求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。

而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。

解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

关键是掌握几种常用的数学思想方法。

一是运用函数与方程思想。

以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。

二是运用分类讨论的思想。

对问题的条件或结论的多变性进行考察和探究。

三是运用转化的数学的思想。

由已知向未知,由复杂向简单的转换。

中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。

因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。

解中考压轴题技能技巧:一是对自身数学学习状况做一个完整的全面的认识。

根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。

所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。

二是解数学压轴题做一问是一问。

第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。

过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。

三是解数学压轴题一般可以分为三个步骤。

认真审题,理解题意、探究解题思路、正确解答。

审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。

解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。

认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。

中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。

所以,解数学压轴题,一要树立必胜的信心,要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。

示例:(以2009年河南中考数学压轴题)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.解:(1)点A的坐标为(4,8)…………………1分将A(4,8)、C(8,0)两点坐标分别代入y=ax2+bx得 8=16a+4b,b=40=64a+8b 解得a=-12∴抛物线的解析式为:y=-1x2+4x …………………3分2(2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE=PE AP =BC AB,即PE AP =48 ∴PE=12AP=12t .PB=8-t . ∴点E的坐标为(4+12t ,8-t ).∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. (5)分∴EG=-18t 2+8-(8-t) =-18t 2+t.∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分中考数学《三类押轴题》专题训练第一类:选择题押轴题1. (2012湖北襄阳3分)如果关于x 的一元二次方程2kx 10-+=有两个不相等的实数根,那么k 的取值范围是【 】A .k <12 B .k <12且k≠0 C .﹣12≤k <12 D .﹣12≤k <12且k≠0【题型】方程类代数计算。

【考点】 ; 【方法】 。

2. (2008武汉市3分)下列命题:①若0++=,则240a b c-≥;b ac②若b a c>+,则一元二次方程20++=有两个不相等的实数根;ax bx c③若23=+,则一元二次方程20b a c++=有两个不相等的实数根;ax bx c④若240->,则二次函数的图像与坐标轴的公共点的个数是2或3.b ac其中正确的是().A.只有①②③ B.只有①③④ C.只有①④ D.只有②③④.【题型】方程、等式、不等式类代数变形或计算。

【考点】;【方法】。

3. (2012湖北宜昌3分)已知抛物线y=ax2﹣2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是【】A.第四象限B.第三象限C.第二象限D.第一象限【题型】代数类函数计算。

【考点】;【方法】。

4. (2012湖北天门、仙桃、潜江、江汉油田3分)已知二次函数y=ax2+bx+c 的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有【】A.3个B.2个C.1个D.0个【题型】函数类代数间接多选题。

【考点】;【方法】。

O A F C E B5. (2012山东济南3分)如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为( )A .21B .5C .1455D .52 【题型】几何类动态问题计算。

【考点】 ; 【方法】 。

6. (2012年福建3分)如图,点O 是△ABC 的内心,过点O 作EF ∥AB ,与AC 、BC 分别交于点E 、F ,则( ) A . EF>AE+BF B. EF<AE+BF C.EF=AE+BF D.EF ≤AE+BF【题型】几何类证明。

【考点】 ; 【方法】 。

7. (2012湖北武汉3分)在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB =5,BC =6,则CE +CF 的值为【 】A .11+1132 B .11-1132C .11+1132或11-1132D .11-1132或1+32【题型】几何类分类问题计算。

【考点】;【方法】。

8. (2012湖北恩施3分)如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是【】A.3B.2 C.3 D.2【题型】几何类面积问题计算。

【考点】;【方法】。

9. (2012湖北咸宁3分)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为【】.A.B.C.D.【题型】几何类识图问题判断。

【考点】;【方法】。

10. (2012湖北黄冈3分)如图,在Rt△ABC中,∠C=90°,AC=BC=6cm ,点P 从点A 出发,沿AB 2的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC沿BC 翻折,点P 的对应点为点P′.设Q 点运动的时间t 秒,若四边形QPCP′为菱形,则t 的值为【 】222【题型】几何类动态问题计算。

【考点】 ; 【方法】 。

11. (2012湖北十堰3分)如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O′的距离为4;③∠AOB=150°;④AOBO S =6+33四形边AOC AOB 93S S +=.其中正确的结论是【 】A .①②③⑤ B.①②③④ C.①②③④⑤ D.①②③ 【题型】几何类间接多选题。

【考点】 ;【方法】 。

12. (2012湖北孝感3分)如图,在菱形ABCD 中,∠A=60o ,E 、F 分别是AB 、AD 的中点,DE 、BF 相交于点G ,连接BD 、CG .给出以下结论,其中正确的有【 】①∠BGD=120o ;②BG+DG =CG ;③△BDF≌△CGB;④2ADE 3S =AB 4∆. A .1个 B .2个 C .3个 D .4个【题型】几何类间接多选题。

【【考点】 ; 【方法】 。

13. (2012湖南岳阳3分)如图,AB 为半圆O 的直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,AD 与CD 相交于D ,BC 与CD 相交于C ,连接OD 、OC ,对于下列结论:①OD 2=DE ?CD ;②AD+BC=CD;③OD=OC ;④S梯形ABCD =CD ?OA ;⑤∠DOC=90°,其中正确的是( )【题型】几何类间接多选题。

相关文档
最新文档