通信原理时分复用共39页
通信原理 (完整)精选全文

数字通信的主要优点:
(a) 失真的数字信号
(b) 恢复的数字信号
数字信号波形的失真和恢复
数字通信的主要缺点:
➢ 占用带宽大 ➢ 设备复杂 ➢ 同步要求高
宽带通信、压缩编码 VLSI、SOC、ASIC 信号处理技术
应用实例:
➢ 数字传输技术:电话、电视、计算机数据等 信号的远距离传输。
➢ 模拟传输技术:有线电话环路、无线电广 播、电视广播等。
狭义信道
有线信道 无线信道
中长波地波 短波电离层反射 超短波、微波视距传输 超短波、微波对流层散射 卫星中继
编码信道 调制信道
信 源
加 密 器
编 码 器
调 制 器
发 转 换 器
信 道
收 转 换 器
解 调 器
解解 码密 器器
信 宿
发送设备
噪 声
接收设备
广义信道
广义信道
调制信道:
调制器输出端到解调器输入端的所有设备和媒介。 研究调制和解调时,常用调制信道。 连续信道/模拟信道。
eo(t)
e0t htei t nt e0t kt ei t nt
n(t)
n(t): 加性干扰 k(t): 乘性干扰
k t 依赖于网络的特性,k t 反映网络特性对 ei t 的作用。
干扰
加性干扰:本地噪声
始终存在
乘性干扰:非理理想信道 与信号共存
sR t sT tht nt
乘性 加性
增量调制DM
军用、 民用电话
Hale Waihona Puke 差分脉码调制DPCM电视电话、 图像编码
其 他 语 言 编 码 方 式 中低速数字电话 ADPCM、 APC、 LPC
按信号复用方式分类
时分复用原理

时分复用原理时分复用原理是一种在通信领域广泛应用的技术,它能够有效地提高通信信道的利用率,实现多个用户之间的数据传输。
时分复用原理的核心思想是将时间分割成若干个时隙,不同用户在不同的时隙中进行数据传输,从而实现多用户共享同一个信道的通信。
本文将详细介绍时分复用原理的基本概念、工作原理和应用场景。
时分复用原理的基本概念。
时分复用原理是一种多路复用技术,它将通信信道分割成若干个时隙,每个时隙用于不同用户的数据传输。
在时分复用系统中,不同用户之间通过时分复用器按照预定的时隙顺序进行数据传输,从而实现多用户共享同一个信道的通信。
时分复用原理可以分为同步时分复用和异步时分复用两种方式,它们分别适用于不同的通信场景和要求。
时分复用原理的工作原理。
时分复用原理的工作原理主要包括时分复用器、时分复用信号和时分复用解复用器三个部分。
时分复用器负责将不同用户的数据按照预定的时隙顺序组合成时分复用信号,然后通过通信信道进行传输。
时分复用解复用器则负责接收时分复用信号,并将其中的不同用户数据按照时隙顺序解复用出来,交付给相应的用户设备。
通过时分复用原理,不同用户之间可以在同一通信信道上进行数据传输,从而提高了通信信道的利用率。
时分复用原理的应用场景。
时分复用原理在通信领域有着广泛的应用场景,其中最典型的应用就是在移动通信系统中。
在移动通信系统中,由于用户数量庞大且通信需求多样化,时分复用原理能够有效地提高通信信道的利用率,实现多用户之间的数据传输。
此外,时分复用原理还可以应用于有线通信系统、卫星通信系统等多种通信场景中,为不同用户提供高效可靠的通信服务。
总结。
时分复用原理作为一种重要的多路复用技术,在通信领域有着广泛的应用前景。
通过将通信信道分割成若干个时隙,不同用户可以在不同的时隙中进行数据传输,从而实现多用户共享同一个信道的通信。
时分复用原理不仅能够提高通信信道的利用率,还能够满足不同用户的通信需求,为通信系统的发展和应用提供了重要的技术支持。
通信原理课件第八章 时分复用(一)

基带信号 m1(t)
m2(t)
信道
低通滤波器 1 低通滤波器 2
m1 ′(t ) m2′(t )
mn -1 (t ) mn(t)
发送端
接收端
低通滤波器 n-1 低通滤波器 n
mn -1 ′(t ) mn ′(t )
图 6-4 时分复用系统示意图
wujing
现代通信原理——第八章 时分复用
8
1路 2路 3路 4路
同步时分复用原理
4 32 1
D CB A d cb a
cC3 bB2 aA1
帧3
帧2
帧1
2
1
B
A
b
a
异步时分复用原理
2b B a A 1
帧6 帧5 帧4 帧3 帧2 帧1
wujing
现代通信原理——第八章 时分复用
12
TDM方式的优点(相对与FDM)
❖ 1、多路信号的汇合和分路都是数字电路,比 FDM的模拟滤波器分路简单、可靠。
❖ 把基群数据流采用同步(SDH)或准同步数字复接 技术汇合成更高速的数据(称为高次群),高次群 的复接结构称为高次群的复接帧。
❖ 对帧的研究是时分复用系统研究的重点,相当于 对频分复用系统中频道的研究。
wujing
现代通信原理——第八章 时分复用
17
E1帧结构源于语音通信:
❖ 抽样频率:
fs=8000Hz
❖ 空分复用方式(SDM,space division multiplex ) 无线通信中(包括卫星通信)的位置复用 有线通信中的同缆多芯复用。
❖ 码分复用方式(CDM,code division multiplex ) 编码发射、相关接收技术。
通信原理实验报告实验四-时分复用数字基带通信系统

实验四时分复用数字基带通信系统电子二班 044 陈增贤一、实验目的1.掌握时分复用数字基带通信系统的基本原理及数字信号传输过程。
2.掌握位同步信号抖动、帧同步信号错位对数字信号传输的影响。
3.掌握位同步信号、帧同步信号在数字分接中的作用。
二、实验内容1.用数字信源模块、数字终端模块、位同步模块及帧同步模块连成一个理想信道时分复用数字基带通信系统,使系统正常工作。
2.观察位同步信号抖动对数字信号传输的影响。
3.观察帧同步信号错位对数字信号传输的影响。
4.用示波器观察分接后的数据信号、用于数据分接的帧同步信号、位同步信号。
三、基本原理本实验要使用数字终端模块。
1. 数字终端模块工作原理:原理框图如图4-1所示,电原理图如图4-2所示(见附录)。
它输入单极性非归零信号、位同步信号和帧同步信号,把两路数据信号从时分复用信号中分离出来,输出两路串行数据信号和两个8位的并行数据信号。
两个并行信号驱动16个发光二极管,左边8个发光二极管显示第一路数据,右边8个发光二极管显示第二路数据,二极管亮状态表示“1”,熄灭状态表示“0”。
两个串行数据信号码速率为数字源输出信号码速率的1/3。
延迟1延迟2整形延迟3FS-INBS-INS-INFD FD-7FD-15FD-8FD-16BD显示串/并变换串/并变换F2÷3并/串变换并/串变换D2B1F1D1SD-DBD显示B2图4-1 数字终端原理方框图延迟1、延迟2、延迟3、整形及÷3等5个单元可使串/并变换器和并/串变换器的输入信号SD 、位同步信号及帧同步信号满足正确的相位关系,如图4-3所示。
移位寄存器40174把FD 延迟7、8、15、16个码元周期,得到FD-7、FD-15、FD-8(即F1)和FD-16(即F2)等4个帧同步信号。
在FD-7及BD 的作用下,U65(4094)将第一路串行信号变成第一路8位并行信号,在FD-15和BD 作用下,U70(4094)将第二路串行信号变成第二路8位并行信号。
频分复用、时分复用和码分复用

频分复⽤、时分复⽤和码分复⽤频分复⽤(FDM):按频率划分的不同信道,⽤户分到⼀定的频带后,在通信过程中⾃始⾄终都占⽤这个频带,可见频分复⽤的所有⽤户在同样的时间占⽤不同的带宽资源(带宽指频率带)时分复⽤(TDM):按时间划分成不同的信道,每⼀个时分复⽤的⽤户在每⼀个TDM帧中占⽤固定序列号的间隙,可见时分复⽤的所有⽤户是在不同时间占⽤同样的频带宽度码分复⽤(CMD):更常⽤的是码分多址(CMDA),每⼀个⽤户可以在同样的时间使⽤同样的频带进⾏通信,由于各⽤户使⽤经过特殊挑选的不同码型,因此各⽤户之间不会造成⼲扰。
码分复⽤最初⽤于军事通信,因为这种系统发送的信号有很强的抗⼲扰能⼒,其频谱类似于⽩噪声,不易被敌⼈发现,后来才⼴泛的使⽤在民⽤的移动通信中,它的优越性在于可以提⾼通信的话⾳质量和数据传输的可靠性,减少⼲扰对通信的影响,增⼤通信系统的容量,,降低⼿机的平均发射功率等,其⼯作原理如下:在CDMA中,每⼀个⽐特时间在划分为m个短的间隔,称为码⽚(chip),通常m的值为64或128,为了⽅便说明,取m为81. 使⽤CDMA的每⼀个站被指派⼀个唯⼀的m bit码⽚序列,⼀个站如果要发送⽐特1,则发送它⾃⼰的m bit码⽚序列,如果要发送0,则发送该码⽚序列的⼆进制反码,按照惯例将码⽚中的0写成-1,将1写成+12. CDMA给每⼀个站分配的码⽚序列不仅必须各不相同,并且还必须互相正交,⽤数学公式表⽰,令向量S表⽰站S的码⽚向量,再令T表⽰其他任何站的码⽚向量。
两个不同站的码⽚序列正交,就是向量S和T的规格化内积都是S * T = 03. 任何⼀个码⽚向量和该码⽚向量⾃⼰的规格化内积都是S * S = 14. 任何⼀个码⽚向量和该码⽚的反码的向量的规格化内积都是-1所有其他站的信号都被过滤,⽽只剩下S站发送的信号。
当S站发送⽐特1时,在X站计算内积结果为+1;当S站发送⽐特0时,内积结果为-1;当S站不发送时,内积结果为0,S与X正交。
简述频分复用与时分复用的工作原理、特点和应用场景

简述频分复用与时分复用的工作原理、特点和应用场景频分复用和时分复用是传输技术中常用的两种方式,它们的工作原理、特点和应用场景都有所不同。
本文将从这三个方面详细介绍这两种技术。
一、频分复用的工作原理、特点和应用场景1. 工作原理频分复用是一种将多个信号通过不同的频率进行分离传输的技术。
它的原理是将多路信号分别调制到不同的载波频率上,然后再将这些频率合并成为一个宽带信号进行传输。
在接收端,再将这个宽带信号分离成多个不同频率的信号,最后进行解调还原原始信号。
2. 特点频分复用的特点是可以在同一条传输线路上传输多路信号,从而提高了传输效率和带宽利用率。
此外,频分复用还可以实现不同传输速率和协议的兼容性,使得不同类型的数据可以在同一条线路上传输。
3. 应用场景频分复用在通信领域有着广泛的应用,例如:(1)电视信号的传输:在有线电视网络中,频分复用技术可以将多个电视信号合并在一起,从而提高了电视信号的传输效率。
(2)移动通信:在移动通信网络中,频分复用技术可以将多个用户的信号合并在一起,从而提高了网络的容量和覆盖范围。
(3)卫星通信:在卫星通信中,频分复用技术可以将多个用户的信号合并在一起,从而提高了卫星的传输效率和带宽利用率。
二、时分复用的工作原理、特点和应用场景1. 工作原理时分复用是一种将多个信号通过不同的时间片进行分离传输的技术。
它的原理是将多个信号在时间上分割成为若干个时隙,然后将这些时隙组成一个宽带信号进行传输。
在接收端,再将这个宽带信号分离成多个不同时间片的信号,最后进行解调还原原始信号。
2. 特点时分复用的特点是可以在同一条传输线路上传输多路信号,从而提高了传输效率和带宽利用率。
此外,时分复用还可以实现不同传输速率和协议的兼容性,使得不同类型的数据可以在同一条线路上传输。
3. 应用场景时分复用在通信领域也有着广泛的应用,例如:(1)电话网络:在电话网络中,时分复用技术可以将多个电话信号合并在一起,从而提高了电话网络的容量和效率。
时分复用的基本原理

时分复用的基本原理
时分复用(Time Division Multiplexing,简称TDM)是一种通信技术,通过在
时间上将多个信号交错传输,实现多个信号在同一传输介质上进行并行传输的方法。
它是一种常用的数字信号传输技术,被广泛应用于电话、数字广播、电视等领域。
时分复用的基本原理是将单位时间分割成若干个时间片,每个时间片被分配给
不同的信号进行传输。
在发送端,各个源信号按照预定的顺序依次占用时间片,并通过调制技术将其转换为数字信号。
在接收端,通过解调技术将接收到的数字信号转换为原始的模拟信号,分别提取出各个源信号。
时分复用的关键是对时间的合理分配和控制。
通信系统中的时钟起着至关重要
的作用,所有发送端和接收端的时钟都必须保持同步。
在时分复用系统中,发送端和接收端的时钟必须具有高精度和稳定性,以确保各个信号在时间上的精确对应关系。
时分复用的优点之一是能够提高传输效率。
通过将多个信号交错传输,可以充
分利用带宽资源,使传输介质得到高效利用。
此外,时分复用还具有良好的抗干扰性能,因为各个信号在时间上的分离,不会相互干扰。
然而,时分复用也存在一些限制。
首先,传输系统的时钟同步要求较高,一旦
时钟发生偏差,会导致信号解调出错。
其次,时分复用需要精确地确定时间片的长度,以适应不同信号的传输要求,这对系统的设计和实现提出了更高的要求。
总之,时分复用是一种重要的通信技术,通过合理分配时间片,实现多个信号
在同一传输介质上的并行传输。
它在提高传输效率和抗干扰性能方面具有优势,但同时也对时钟同步和时间片的确定提出了要求。
时分复用原理

时分复用原理时分复用原理(Time Division Multiplexing,TDM)是一种通信技术,它将多个数字信号以时间为基准进行交替传输,从而实现多路传输的目的。
TDM技术在现代通信系统中得到广泛应用,特别是在数字电信领域中,如电话系统、数据传输网络和计算机网络中。
时分复用原理的基本概念是将不同的数字信号按照一定的规律分时交替传输,每个数字信号在传输的时间内占据一定的时隙。
这种技术可以通过协调不同的时间时隙,将多个信号合并在一个共同的传输介质中,而不会相互干扰或丢失信息。
(1)多路复用技术:时分复用技术可以同时传输多路信号,这可以使通信线路得到更加充分的利用,从而提高通信效率。
(2)时隙分配均匀:时分复用技术有效地解决了在多路通信中时隙分配不均匀的问题,可以确保每个用户的信息在一定的时间内均能得到传输。
(3)信息传输可靠:时分复用技术使用周期性的时隙进行信息传输,传输过程中出现的错误可以通过校验和纠错机制进行及时检测和修正,从而提高传输的可靠性。
(4)适用于数字通信:时分复用技术适用于数字通信,因为数字通信信号的特点是数字数据只能在固定的时刻被发送和接收。
(1)将要传输的多个信号进行采样,将其数字化,并转换为二进制形式的数据,并按照规定的时隙长度进行划分。
(2)将得到的各时隙按照一定的规则组合成一个数据帧,然后在数据帧之间插入控制信号和同步信号,以便接收端能够正确地解析数据。
(3)通过物理媒介(如电话线、光纤、无线电等)将数据帧传输到接收端。
(4)在接收端,通过接收到的同步信号和控制信号解析出每个时隙中的数字信号,并将它们还原成原始信号。
时分复用技术可以和其他多路复用技术相结合,如频分复用技术、码分复用技术等,从而形成更加复杂的多路复用系统。
频分复用技术是指将多个数字信号分别调制到不同频段上进行传输;码分复用技术是指将不同的数字信号加上不同的序列编码,然后再将它们整合在一起进行传输。
这些技术的组合在数字通信领域中得到广泛应用,目的是为了提高通信带宽、提高网络效率和传输可靠性。
现代通信原理

1.简述时分复用(TDM )和频分复用(FDM )原理。
解:所谓频分复用是指多路信号在频率位置上分开,但同时在一个信道内传输的技术。
因 此频分复用信号在频谱上不会重叠,但在时间上是重叠的。
在发送端各路信号首先通过低通滤波器,用来限制最高频率m f 。
为简单起见,假设各路信号的m f 都相等,对应有相同的频谱密度函数。
然后各路信号对各路副载波)进行调制,调制方式可以是调幅、调频或调相,但常用的是单边带调制方式,因为它最节省频带。
为保证各路信号频谱不重叠,相邻的副载波之间应保持一定的频率间隔,同时为了防止相邻信号互相干扰引起串扰,相邻的副载波之间还应考虑一定的保护间隔g f 。
在接收端,利用中心频率不同的带通滤波器来区分各路信号,并进行相应的解调以恢复各路的调制信号。
时分复用(TDM )的主要特点是利用不同时隙来传送各路信号,其理论基础是抽样定理。
抽样定理告诉我们,模拟信号可用时间上离散出现的抽样脉冲值来代替,这样在抽样脉冲之间就留出了时间空隙。
利用这种空隙就可以传输其它信号的抽样值,因此在一个信道上可以同时传输多路信号。
这种复用信号到了接收端只要在时间上恰当地进行分离,就能恢复各路信号。
2.已知二元离散信源只有‘0’、‘1’两种符号,若‘0’出现的概率为1/3,求出现‘1’所含的信息量。
解题思路:考查信息量的基本概念,用公式1log ()a I P =。
底数a 一般采用2,这时信息量单位为bit解:由题知,‘1’出现的概率为2/3,bit P I 58.0667.0log log 2121≈-=-= 3.已知英文字母中e 出现概率为0.105, z 出现的概率为0.001,求英文字母e 和z 的 解题思路:考查信息量的基本概念,用公式1log ()a I P=。
底数a 一般采用2,这时信息量单位为bit解:bit P I e e 25.3105.0log log 22≈-=-=, bit P I z z 97.9001.0log log 22≈-=-=4.某气象员用明码报告气象状态,有四种可能的消息:晴、云、雨、雾。
教学部—通信原理—第七章

时分复用
多 路 复 用 频分复用 时分复用 码分复用
与频分复用相比,时分复用具有以下的主要优点: 与频分复用相比,时分复用具有以下的主要优点: (1)TDM多路信号的合路和分路都是数字电路, 比FDM的模拟滤波器分路简单、可靠。 (2)信道的非线性会在FDM系统中产生交调失真 和多次谐波,引起路间干扰,因此FDM对信道的 FDM 非线性失真要求很高。而TDM系统的非线性失真 要求可降低。
时分复用
多 路 复 用 频分复用 时分复用 码分复用
上述概念可以推广到n路信号进行时分复 路信号进行时分复 用。多路复用信号可以直接送入信道进行基 带传输,也可以加至调制器后再送入信道进 行频带传输。 在接收端,合成的时分复用信号由旋转开 关(分路开关,又称选通门)依次送入各路 相应的低通滤波器,重建或恢复出原来的模 拟信号。需要指明的是,TDM中发送端的抽 样开关和接收端的分路开关必须保持同步。
频分复用
多 路 复 用 频分复用 时分复用 码分复用
频分复用信号原则上可以直接在信道中传 输。 但在某些应用中, 但在某些应用中,还需要对合并后的 复用信号再进行一次调制。 复用信号再进行一次调制。第一次对多路信 号调制所用的载波称为副载波, 号调制所用的载波称为副载波,第二次调制 所用的载波称为主载波。 所用的载波称为主载波。 原则上, 原则上,两次调制可以是任意 方式的调制方式。 方式的调制方式。如果第一次调制采用单边 带调制,第二次调制采用调频方式,一般记 带调制,第二次调制采用调频方式, 为SSB/FM。 。
频分复用
多 路 复 用 频分复用 时分复用 码分复用
解:信道中频分复用信号的总频带宽度为: 信道中频分复用信号的总频带宽度为
Bn = nf H + ( n − 1) f g = ( n − 1) f s + f H = 11400(Hz)
时分多路复用

摘要数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往会超过传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信号,这就是所谓的多路复用技术(Multiplexing)。
采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大大节省电缆的安装和维护费用。
频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Division Multiplexing)是两种最常用的多路复用技术。
时分多路复用(TDM)是按传输信号的时间进行分割,它使不同的信号在不同的时间内传送,将整个传输时间分为许多时间间隔(Slot time,TS,又称为时隙),每个时间片被一路信号占用,适用于媒体数据速率容量超过要传输的几路数字信号总速率的情况。
此次课程设计利用MATLAB/Simulink仿真软件实现对时分多路复用系统的模拟仿真,达到对输入信号实现复用和解复用的效果。
关键词:多路复用;解复用;系统仿真目录前言 (1)一、基本原理 (2)1.1多路复用技术 (2)1.2时分多路复用技术概述 (2)1.3TDM系统组成及工作原理 (3)1.4时分复用中的同步技术原理 (3)1.2.1位同步原理 (4)1.2.2帧同步原理 (4)1.2.3 载波同步原理 (4)1.2.4网同步原理 (4)二、模块简介 (6)2.1设计思路 (6)2.2 MATLAB概述 (6)2.3 Simulink简介 (6)2.4时分多路复用系统的基本原理 (7)三、时分复用系统仿真模型 (10)3.1 Simulink仿真框图搭建 (10)3.2 Subsystem/Subsystem1结构框图 (10)3.3参数设置 (11)3.4仿真结果及分析 (13)总结 (17)致谢 (18)参考文献 (19)前言在实际的通信系统中,经常需要在两地之间同时传送多路信号。
时分复用

3.3.1时分多路复用概述
3.3.1时分多路复用概述
转换开关一般是电子开关,它们相当于合、 分路器。
图中K1和K2分别为发信和收信抽样转换开关,
要注意的是:为了在接收时能够正确地还原
各路信号,保证各路信号的正确分离 ,收、 发端旋转开关必须同步,它有两方面含义:
一方面:保持双方旋转速度要完全相同,
数字复接技术
4、数字复接的实现 数字复接的实现主要有三种方法:
按位复接 按字复接 按帧复接
数字复接技术
按位复接又叫比特复接,即复接时每支路依次复
接一个比特。图(a)所示是4个PCM30/32系统 时隙 (CH1话路) 的码字情况。 图(b)是按位复接后的二次群中各支路数字码排列 情况。按位复接方法简单易行,设备也简单,存 储器容量小,其缺点是对信号交换不利。 图 (c)是按字复接,对PCM30/32系统来说,一个 码字有8位码,它是将8位码先储存起来,在规 定 时间四个支路轮流复接,这种方法有利于数字电 话交换,但要求有较大的存储容量。 按帧复接是每次复接一个支路的一个帧(一帧含有 256个比特),这种方法的优点是复接时不破坏 原 来的帧结构,有利于交换,但要求更大的存储容 量。
例如需要传送120路电话时,可将120路话
音信号分别用8kHz抽样频率抽样,然后对 每个 抽样值编8位码,其数码率为 8000×8×120=7680kbit/s。由于每帧时间 为125微秒,每个路 时隙的时间只有1微秒 左右,这样每个抽样值编8位码的时间只有1 微秒时间,其编码速度非 常高 ,对编码电 路及元器件的速度和精度要求很高,实现起 来非常困难。 但这种方法从原理上讲 是可行的,这种对 120路话音信号直接编码复用的方法称PCM 复用。
时分复用实现原理

时分复用实现原理
时分复用(Time Division Multiplexing,TDM)是一种常见的数据传
输技术,可以将多个信号在同一条通信线路上实现传输,从而提高通
信效率。
时分复用实现原理如下:
1. 时分复用的基本原理是将时间分为多个间隔,每个时间间隔都分配
给不同的信号传输。
2. 在时分复用过程中,每个传输信号都按照指定的时间顺序进行传输,每个信号占用的时间长度相同,这样就可以在同一时间段内传输多个
信号。
3. 时分复用的实现通常使用时分复用器(Time Division Multiplexer,TDM),通过这个器件将多个信号整合成一个流,然后
在传输时再将其分离。
4. 在数字通信中,时分复用还可以通过时分统计复用(Time
Division Statistical Multiplexing,TDSM)实现。
TDSM会对传输信道的数量进行动态调整,根据传输信道的负载情况,对每个信道分配
不同的时间片。
5. 时分复用的实现过程中,需要对信号进行采样和量化处理,将模拟
信号转换成数字信号,采样的精度越高,信号的传输质量就越好,但
是带来的数据量也会增加,需要更高的传输带宽。
时分复用技术的优势在于可以提高通信线路的利用率,节省传输成本,
适用于传输数据量较少的情况下。
同时,时分复用还可与其他信号处理技术(如频分复用)配合使用,实现更高效、高速的数据传输。
通信原理的讲义第十一章复用

故,在乘积之后,信号的带宽便拓宽了, 这就是扩频。
可见,扩频后信号的功
率在原信号带宽的功率
原信号频谱
内低于原信号。
扩频后信号频谱 这对于军事上的应用非
常重要,即使得我方的
通信信号不易被敌方检
W频率
测到。
扩频的另外一个特点是抗干扰:
窄带噪声
扩频后信号
W频率 经过解扩之后
原信号
窄带噪声带宽展
W频率
i 为第i 路信号及特征波形的时延参数, i 为第i 路信
号的相位参数, wc 为载波频率。 现考虑用 ck (t ) 特征波形对第k 路信号实现解扩,可
认为此时在第k 路上,接收端已实现同步。即此时可认 为, k 0 , k 0
用2ck (t ) cos( wct ) 去乘s(t ) 得
第十一章 复用
复用又称多址或多路。
通信中复用的本质是:在同一信道上允 许多路信号同时传输。
目前复用技术主要包括:FDM/FDMA频 分复用/多址(波分复用)、TDM/TDMA 时分复用/多址、CDM/CDMA码分复用/ 多址。
11.1 频分复用/波分复用
所谓频分复用,就是用不同的频率传送 各路消息,以实现通信。
滤 去 2wc 信 号
r1 ( t )
dk
(
t
)
c
2 k
(
t
)
N
d i ( t i ) c i ( t i ) c k ( t ) cos( i )
i1,i k
将 r1(t) 在(0,T)上做积分,得 T 时刻接收机输 出为
T
D (T ) t 0 r1 (t )dt
数字通信原理(语音信号压缩编码、时分多路复用、PCM3032系统、图像信号数字化、GPS定位方法)教程

第1章概述一、模拟信号与数字信号的特点模拟信号——幅度取值是连续的连续信号离散信号数字信号——幅度取值是离散的二进码多进码连续信号离散信号●数字信号与模拟信号的区别是根据幅度取值上是否离散而定的。
●离散信号与连续信号的区别是根据时间取值上是否离散而定的。
二、模拟通信与数字通信●根据传输信道上传输信号的形式不同,通信可分为模拟通信——以模拟信号的形式传递消息(采用频分复用实现多路通信)。
数字通信——以数字信号的形式传递消息(采用时分复用实现多路通信)。
●数字通信传输的主要对象是模拟话音信号等,而信道上传输的一般是二进制的数字信号。
所要解决的首要问题模拟信号的数字化,即模/数变换(A/D变换)三、数字通信的构成●话音信号的基带传输系统模型四、数字通信的特点1、抗干扰能力强,无噪声积累对于数字通信,由于数字信号的幅值为有限的离散值(通常取二个幅值),在传输过程中受到噪声干扰,当信噪比还没有恶化到一定程度时,即在适当的距离,采用再生的方法,再生成已消除噪声干扰的原发送信号。
由于无噪声积累,可实现长距离、高质量的传输。
2、便于加密处理3、采用时分复用实现多路通信4、设备便于集成化、小型化5、占用频带较宽五、数字通信系统的主要性能指标● 有效性指标 P7·信息传输速率——定义、公式l n f f s B ⋅⋅=、物理意义 ·符号传输速率——定义、公式(BB t N 1=)、关系:M N R B b 2log = ·频带利用率——是真正用来衡量数字通信系统传输效率的指标(有效性)频带宽度符号传输速率=η Hz Bd /频带宽度信息传输速率=η Hz s bit //● 可靠性指标 P8·误码率——定义 ·信号抖动例1、设信号码元时间长度为s 7106-⨯,当(1)采用4电平传输时,求信息传输速率和符号传输速率。
(2)若系统的带宽为2000kHz ,求频带利用率为多少Hz s bit //。
时分复用实验报告

一、实验目的1. 理解时分复用的基本概念和原理。
2. 掌握时分复用和解复用的实验操作方法。
3. 通过实验,加深对时分复用在实际通信系统中的应用理解。
二、实验原理时分复用(Time Division Multiplexing,TDM)是一种将多个信号源的信息按照一定的时间顺序复用到同一传输线路上,并在接收端进行解复用的技术。
时分复用通过将传输线路的时间分割成若干个等长的时间片,并将每个时间片分配给一个信号源,从而实现多路信号在同一传输线路上传输。
时分复用的基本原理如下:1. 将传输线路的时间分割成若干个等长的时间片。
2. 将每个时间片分配给一个信号源,每个信号源在一个时间片内发送自己的信息。
3. 在接收端,根据每个信号源分配的时间片顺序,将复用后的信号解复用,恢复出各个原始信号。
三、实验仪器1. 实验箱:包含时分复用和解复用模块。
2. 信号发生器:产生不同频率和幅度的信号。
3. 示波器:观察信号波形。
4. 电缆线:连接实验箱和仪器。
四、实验步骤1. 连接实验箱、信号发生器和示波器。
2. 设置信号发生器,产生两个不同频率和幅度的信号。
3. 将信号发生器产生的信号输入到时分复用模块的输入端。
4. 打开实验箱电源,观察示波器上复用信号的波形。
5. 将复用信号输入到解复用模块的输入端。
6. 观察解复用模块的输出端,分析解复用后的信号是否恢复出原始信号。
五、实验过程1. 将信号发生器产生的两个信号分别输入到时分复用模块的A、B输入端。
2. 打开实验箱电源,观察示波器上A、B信号的波形,确认信号输入正常。
3. 观察示波器上复用信号的波形,确认复用过程正常。
4. 将复用信号输入到解复用模块的输入端。
5. 观察解复用模块的输出端,分析解复用后的信号是否恢复出原始信号。
六、实验结论1. 通过实验,成功实现了时分复用和解复用过程。
2. 实验结果表明,时分复用技术能够有效地将多个信号源的信息复用到同一传输线路上,并在接收端恢复出原始信号。
时分复用原理

时分复用原理
时分复用原理是指在空间复用通信系统中,将不同用户的信息经过时分多址技术分时地传输,以实现频率资源的共享。
它的基本原理是利用时分复用技术,将时间分成若干个时隙,并将不同用户的信息分别放置在不同的时隙中,然后在接收端进行时隙的选取和信息的解调,从而实现多用户之间的同时通信。
时分复用原理有以下几个关键点:
1. 时间分配:通过时间分配,将系统的总时间分成若干个时隙,每个时隙用来传输不同用户的信息。
具体的时间分配方式可以根据系统需求和用户数量做出相应的调整。
2. 信息传输:在每个时隙中,分别传输不同用户的信息。
这些信息可以采用数字或模拟信号的形式,根据具体系统的要求和技术特点来确定。
3. 时隙选取:接收端根据时隙选取的算法,选择相应的时隙来接收和解调信息。
不同的时隙选取算法可以根据系统的需求和性能要求来选择。
4. 解调和处理:接收端对接收到的信号进行解调和处理,提取出用户信息并进行相应的处理。
解调和处理的方式可以和发送端的调制方式保持一致,也可以根据系统的需求来确定。
通过时分复用原理,不同用户可以共享频率资源,从而实现多用户之间的同时通信。
这种技术在现代通信系统中得到广泛的
应用,例如移动通信系统和卫星通信系统等。
该原理的优点包括成本低、频率资源利用率高、抗干扰能力强等,但也面临着时延增加和系统容量限制等挑战,因此在设计和实施时需要综合考虑各种因素,以满足系统和用户的需求。
通信原理时分复用

1 80 k Hz 108kHz 4 8 kHz (c) Sup er Gro up 1(LSB )
1 48 k Hz
5
4
3
2
1
超群 (上下边带)
Sup er Gro up 2(USB ) 1 2 3 4 5
12 1 12 3 12 k Hz
1 12
1 12
1 12
1 5 52 k Hz (d )
1 12 1 6 0 kHz
1548
(a ) 2788-60=2728KHz Mastergro up U6 00
1060 1308 1556 1804 2100 564 812
主群(上边频600)
2596 2588 2844 2836 3084
1052
1300
1548
1796
2044
(b ) 3084-564=2520KHz
╳
SBF1 fc1 SBF2
BPF1 BPF2
╳
LPF1 fc1 LPF2 fc2
S1(t) S2(t)
╳
信道
╳
fc2
Sn(t) LPF
╳
SBFn fcn
BPF2
╳
LPFn fcn
Sn(t)
图8-1 频分复用电话系统框图
复用信号共有n路,每路信号首先通过低通滤波器LPF,以便限 制各路信号的最高频率fm , 然后,各路信号通过各自的调制器,调 制方式可以任意选择,常用是单边带调制,因为它节约频带,因此, 图中的调制器由相乘器和边带滤波器构成。选择载频fci 时,应考虑 频谱的宽度,同时为防止各相邻信号间的互相干扰,还应有一定的 防护频带fg ,即 f f ( f f ) , i 1,2,...n - 1