超声基础知识总结

合集下载

超声科知识点总结

超声科知识点总结

超声科知识点总结超声科学是一门研究超声波的产生、传播、接收和应用的学科。

它主要应用于医学、工业、农业、海洋、石油等领域。

在医学领域,超声科学主要应用于医学影像学、心脏超声、血管超声、超声介入、超声治疗等方面。

本文将主要介绍医学超声科学的知识点。

一、超声波的产生超声波是指频率超过20kHz的机械波。

在医学超声领域,通常使用的超声波频率为1-20MHz。

超声波的产生主要依靠压电效应和热效应。

压电效应是指某些晶体在外加电场作用下会发生形变,反过来也会产生电荷。

这种效应被应用在超声探头中,在超声探头中发生了声波振动。

另外,热效应也能产生超声波,这种方法已经不常使用。

二、超声波的传播超声波在介质中传播时,会发生折射、反射、散射等现象。

折射是指超声波传播过程中,由于不同介质的声速不同,所以在两种介质交界处产生折射。

反射是指超声波遇到边界时,一部分能量会被反射回去。

散射是指超声波遇到介质中的不均匀结构而发生的波的方向改变。

三、超声波的接收超声波在接收机构中被转化为电信号。

在医学超声中,超声波探头中的压电陶瓷会将接收到的超声波转化为电信号,然后经过放大和滤波等处理,最终在显示器上形成影像。

四、超声波的应用在医学超声领域,超声波主要应用于医学影像学、心脏超声、血管超声、超声介入、超声治疗等方面。

1.医学影像学医学影像学是医学中的一个重要技术,其中超声影像学是其中的一个分支。

超声影像学是指利用超声波来成像人体器官和组织的技术。

超声波在人体组织中的传播速度与组织的密度和声阻抗有关,因此超声波可以成像不同密度和声阻抗的组织。

2.心脏超声心脏超声是指利用超声波来诊断心脏病变的技术。

心脏超声可以用于检测心脏的结构、功能和血流情况,对心脏病变的诊断和治疗起着重要的作用。

3.血管超声血管超声是指利用超声波来诊断血管病变的技术。

血管超声可以用于检测血管的结构、血流速度和血栓情况,对血管疾病的诊断和治疗起着重要的作用。

4.超声介入超声介入是指利用超声波来引导手术或治疗的技术。

B超基础知识总结

B超基础知识总结

超声基础(操作手法、体位、标准切面、测量位置等)一.操作手法1.体位(1)平卧位:最常用。

(2)左侧卧位:是一个必要的补充体位。

(3)右侧卧位:显示左外叶特别有用。

(4)坐位或半卧位。

2.探头部位可分为右肋下、剑突下、左肋下、右肋间四处二.肝脏右叶最大斜径1.测量标准切面:以肝右静脉和肝中静脉汇入下腔静脉的右肋缘下肝脏斜切面为标准测量切面。

2.测量位置:测量点分别置于肝右叶前、后缘之肝包膜处,测量其最大垂直距离。

3.正常参考值(cm):正常成年人 12-14cm。

三.肝脏右叶前后径1.测量标准切面:第五或第六肋间肝脏右叶的最大切面为标准测量切面。

2.测量位置:测量点分别置于肝右叶前、后缘之肝包膜处,测量其最大垂直距离。

3.正常参考值(cm):正常成年人 8-10cm。

四.肝脏左叶厚度和长度经线1.测量标准切面:以通过腹主动脉的肝左叶矢状纵切面为标准测量切面,向上尽可能显示隔肌。

2.测量位置:左叶厚度测量点分别置于肝左叶前后缘最宽处的肝包膜(包括尾状叶),测量其最大前后距离,左时长度测量点分别置于肝左叶的上下缘包膜处与人体中线平行。

3.正常参考值(cm):肝左叶厚径不超过6cm,肝左叶长径不超过9cm。

五.门静脉及胆总管的宽度1.测量标准切面:以右助缘下第一肝门纵断面为标准测量切面,胆总管要求尽量显示其全长至胰头后方。

2.测量位置:门静脉测量要求在距第一肝门1-2c m处测量其宽径,胆总管测量要求在其全长之最宽处测量。

3,正常参考值(cm):门静脉主干宽度(内径)~,胆总管宽度(内径)~。

六.脾脏厚度1.测量标准切面:左肋间脾脏斜切面,要求显示脾静脉出脾门部图像。

2.测量位置:测量点选在脾门边缘至脾对侧缘之垂直距离测量。

3.正常参考值(cm):正常成年人不超过4cm。

七.脾脏长度1.测量标准切面:左助间脾脏斜切面。

尽量显示脾的全长,同时显示脾静脉出脾门部图像。

2.测量位置:测量点选在脾上下极的包膜处。

超声基础知识

超声基础知识

超声基础知识超声基础知识超声波是一种具有高频率和高能量的声波,其频率超过人耳能够听到的范围。

由于超声波具有穿透力强、不易被吸收、无电离辐射等特点,因此被广泛应用于医学、工业、科学研究等领域。

超声波的频率通常从20kHz到1GHz,超过1GHz的频率称为超高频。

超声波的传播速度一般为340米/秒,与传播介质的密度和弹性有关。

在空气中,超声波的传播速度稍微较低,约为331.45米/秒。

超声波的产生和接收主要依靠超声发射和接收装置。

超声发射装置通常由压电材料制成,通过施加电场可以使其产生机械振动,从而产生超声波。

超声接收装置与发射装置类似,能够将接收到的超声波转换为电信号,并传输给相关设备进行处理和分析。

超声波在医学领域中有着广泛的应用。

超声波可以穿过人体组织,不会对人体产生有害的影响,因此常被用于医学成像和诊断。

超声波成像是利用超声波在组织中传播时的衰减和反射来获取组织的信息。

常见的超声成像技术有B超、彩色多普勒、超声心动图等,可以用于检查器官、肌肉、血管等。

除了医学领域,超声波还在工业领域中有着重要的应用。

超声波可以用于检测材料的缺陷和厚度测量、清洗和焊接等。

在材料检测方面,超声波可以通过检测物体表面反射的超声波来检测材料中的缺陷,如裂纹、气孔等。

在清洗方面,超声波的高能量和高频率可以产生微小气泡,从而产生强烈的冲击和剪切力,可以将污垢和污染物从物体表面清洗干净。

在焊接方面,超声波可以通过将两个材料振动在一起的方式将其焊接在一起。

除以上应用外,超声波在科学研究、海洋勘探、石油勘探等领域也有着重要的应用。

超声波可以用于材料和物质的物理性质研究以及波的传播机制研究。

在海洋勘探和石油勘探中,超声波可以通过穿透海水或地下岩石来探测海底和地下的结构和物质。

总之,超声波作为一种有着高频率和高能量的声波,在医学、工业、科学研究等领域中有着广泛的应用。

随着科技的发展,超声技术将不断创新和进步,为人类的生活和工作带来更多的便利和应用价值。

超声基础知识介绍

超声基础知识介绍

频谱多普勒
多普勒波包括以下含义(数据) -速度 -速度范围(宽度) -血血流量大大小小 -血血流方方向
一一个心心跳周期
宽的速度范围
快 迎向 基准线 逆流 快 最高高峰 时间 慢 背向
收缩 舒张 舒张结束
脉冲波多普勒和连续多普勒
脉冲波多普勒(PW) Pulse Wave
Ø 发射和接收是同一一个晶片片 Ø 卓越的距离分辨率 (Range Resolution) Ø 流速测量上限值受奈奎斯特频率限制 Ø 脉冲重复频率(PRF)决定流速的测量 范围,极限约 5 ~ 7m/s
无无法显示示图像。您的计算机可能因内存不足足而而无无法打开图 像,或图像已遭损坏。请重新启动计算机,然后再次打开 该文文件。如果仍然显示示红色色 x ,则可能需要删除此图像, 然后重新插入入该图像。
潜艇
5. 超声诊断的优点
• 安全、无无辐射。适用用于胎儿儿诊断。 • 设备可移动,成本低。 • 实时成像 • 通过扫描角角度变化,获得更佳的图像。 • 多普勒-检测血血流量信息。
彩色色多普勒
受角角度影响、受其他运动影响、易混迭
能量多普勒及与彩色色多普勒的区别
能量多普勒基本原理:
是取其红细胞的能量总积分,配以红色色成为血血流 信息的图像显示示。彩色色亮度表示示多普勒信号能量的大大小小。 血血流信号显示示与血血流方方向无无关
二二者的区别:
• 彩色色多普勒—速度信息,能量多普勒—能量信息。 • 显示示与血血流方方向的关系: 彩色色多普勒—有关(红迎蓝离),能量多ቤተ መጻሕፍቲ ባይዱ勒—无无关 显示示与角角度及混叠的关系 彩色色多普勒—有关, 能量多普勒—无无关
超声原理
超声波仪器的成像原理
• 探头发射声波 • 不同组织界面面反射声波 • • • 探头接收声波 信号处理(主机) 显示示图像(显示示器)

超声基础知识部分

超声基础知识部分

第一单元超声波检测的物理基础1、机械振动:有些物体在某一固定的位置(即平衡位置)附近作周期性的往复运动,这种运动形式被称为机械振动,简称振动。

2、自由振动:做振动的系统在外力的作用下物体离开平衡位置以后就能自行按其固有频率振动,而不再需要外力的作用,这种不在外力作用下的振动称为自由振动。

3、无阻尼自由振动:理想情况下的自由振动叫无阻尼自由振动。

自由振动时的周期叫固有周期,自由振动时的频率叫固有频率,它们由振动系统自身条件所决定,与振幅无关。

4、简谐振动:最简单最基本的直线无阻尼自由振动称为简谐振动,简称谐振。

5、在周期性外力的作用下产生的振动称为受迫振动,这个周期性的外力称为策动力。

6、机械波:机械振动在弹性介质中的传播过程,称为机械波。

机械波产生的条件:有机械振动振源和传播振动的弹性介质。

7、波长:在同一波线上两个相邻的振动相位相同的质点之间的距离,称为波长(即一个“波”的长度),用符号λ表示。

波长的常用单位是毫米(mm)或米(m)。

8、频率:单位时间内波动通过某一位置的完整波的数目,称为波动频率,也是质点在单位时间内的振动次数,用符号f表示。

频率的常用单位是赫兹(Hz),即(次)/秒。

波的频率是波源的振动频率,与介质无关。

9、周期:周期在数值上等于频率的倒数,它是波动前进一个波长的距离所需要的时间,用符号T表示。

周期的常用单位有秒(s)。

10、波速:在波动过程中,某一振动状态(即振动相位)在单位时间内所传播的距离叫做波速,用c表示,其常用单位为米/秒(m/s)。

波速的影响因素有:(1)介质的弹性模量和密度;(2)波的类型;(3)传播过程中的温度。

11、惠更斯原理:媒质中波动传到的各点,都可以看作是发射子波的波源,在其后的任一时刻,这些子波的包迹就决定新的波阵面。

惠更斯原理对任何波动过程都适用,不论是机械波或电磁波,不论这些波动经过的媒质是均匀的或非均匀的。

利用惠更斯原理可以确定波前的几何形状和波的传播方向。

超声基础知识.doc1

超声基础知识.doc1

超声基础知识.doc1第⼀章、超声诊断物理基础第⼀节超声波的概念⼀、超声波的基本概念1、声波的性质超声波是指频率超过⼈⽿听觉范围(20~20000HZ)的⾼频声波,即:频率>20000HZ的机械(振动)波。

超声波不能在真空中传播,超声波的振态在固体中有纵波、横波、表⾯波、瑞利波、板波等多种振态,⽽在液体和⽓体中只有纵波振态,在超声诊断中主要应⽤超声纵波。

2、诊断常⽤的超声频率范围2~10MHZ(1MHZ=106HZ)3、超声波属于声波范畴它具有声波的共同物理性质①⽅式------必须通过弹性介质进⾏传播在液体、⽓体和⼈体软组织中的传播⽅式为纵波(疏密波) 具有反射、折射、衍射、散射特性,以及在不同介质中(空⽓、⽔、软组织、⾻骼)分别具有不同的声速和不同的衰减等②声速------在不同介质中,声速有很⼤差别:空⽓(20℃)344m/s,⽔(37℃)1524m/s,肝1570m/s,脂肪1476m/s,颅⾻3360m/s⼈体软组织的声速平均为1540m/s,与⽔的声速相近。

⾻骼的声速最⾼相当于软组织平均声速的2倍以上⼆、基本物理量声学基本物理量波长、频率、声速及三者的关系λ=С/f 声速:不同介质的声速空⽓(20℃)344m/s、⽔(37℃)1524m/s、肝脏\⾎液1570m/s、脂肪组织1476m/s、颅⾻3360m/s。

⼈体软组织平均声速掌握1540m/s 三、声场(⼀)超声场概念超声场是指发射超声在介质中传播时其能量所达到的空间。

超声场简称声场,⼜可称为声束。

(⼆)声场特性1、①扫描声束的形状、⼤⼩(粗细)及声束本⾝的能量分布,随所⽤探头的形状、⼤⼩、阵元数及其排列、⼯作频率(超声波长)、有⽆聚焦以及聚焦的⽅式不同⽽有很⼤的不同②声束还受⼈体组织不同程度吸收衰减、反射、折射和散射等影响即超声与⼈体组之间相互作⽤的影响。

2、声束由⼀个⼤的主瓣和⼀些⼩的旁瓣组成超声成像主要依靠探头发射⾼度指向性的主瓣并接收回声;旁瓣的⽅向总有偏差,容易产⽣伪像。

超声诊断基础必学知识点

超声诊断基础必学知识点

超声诊断基础必学知识点
超声诊断是一种以超声波为媒介进行诊断的医学技术。

以下是超声诊断的基础必学知识点:
1. 超声波产生和传播原理:超声波是指频率超过人耳能听到的20kHz 的声音波。

超声波通过超声发射器产生,并经过介质传播,最后通过超声接收器接收。

2. 超声图像的形成原理:超声波在体内遇到不同组织的界面时,会发生反射、散射和传播,形成声波回波。

通过接收和处理回波信号,可以生成超声图像。

3. 超声图像解剖学:了解人体常见的超声图像解剖结构,包括器官、血管、淋巴结等。

4. 超声诊断设备:了解超声诊断设备的基本组成,包括超声发射器、超声接收器、显示器等。

5. 超声检查技术:掌握超声检查的基本操作技术,如探头的选择、扫描方式、探头的移动和操作等。

6. 超声图像评估:学习如何评估超声图像的特征,包括组织的形态、内部结构、血流情况等。

7. 超声诊断常见病变:了解超声图像上常见的病变表现,如肿块、囊肿、结石等。

8. 超声引导下穿刺和介入治疗:了解超声引导下进行穿刺和介入治疗
的技术和步骤。

9. 超声检查的安全性和注意事项:了解超声检查的安全性和注意事项,如探头选择、扫描时间和强度等。

以上是超声诊断的基础必学知识点,通过学习和实践,医生可以进行
基本的超声检查和超声诊断。

超声基础知识

超声基础知识

超声基础知识超声基础部分1.何谓超声波?诊断用超声波是如何产生的?人耳能感知的声波频率范围为20—20000Hz。

低于20Hz者称为雌声波,高于20000Hz者称为超声波。

医用诊断用超声波的范围多在1—15MHz。

超声波是机械波。

可由多种能量通过换能器转变而成。

医用超声波是由压电晶体(压电陶瓷等)产生。

压电晶体在交变电场的作用下发生厚度的交替改变,即机械振动。

其振动频率与交变电场的变化频率相同。

当电场交变电频率等于压电晶片的固有频率时其电能转换为声能(电—声)效率最高,即振幅最大。

压电晶体只有两种可逆的能量转变效应。

上述在交变电场的作用下,由电能转换为声能,称为逆压电效应。

相反,在声波机械压力交替变化的作用下,晶体变形而表面产生正负电位交替变化,称压电效应。

超声探头(换能器)中的压电晶片,在连接电极电压交替变化的作用下产生逆压电效应,称为超声发生器;而在超声波机械压力下产生压电效应,又成为超声波接收器。

这是超声波产生和接收的物理学原理。

2.超声波物理特性及其在介质中传播的主要物理量有哪些?它们之间有何关系?(1)频率(frequency):质点单位时间内振动的次数称为频率(f)。

(2)周期(cycle):波动传播一个波长的时间或一个整波长通过某一点的时间(T)。

(3)波长(wavelength):声波在同一传播方向上,两个相邻的相位相差2π的质点间的距离为波长(λ)。

(4)振幅(amplitude):振动质点离开平衡位置的最大位移称振幅,或波幅(A)。

(5)声速(velocity of sound,sound velocity):单位时间内,声波在介质中传播的距离称声速(C)。

介质不同,超声在介质中的声速度也不同,但是在同一介质中,诊断频段超声波的声速可认为相同。

声波在介质中的传播速度与介质的弹性系数(k)和介质密度(ρ)有关。

其声速与k 和ρ比值的平方根成正比,即式中C为声速,E为杨式模量。

根据物理学意义,c、f、T、λ之间有下列关系:f=1/T,c=λf=λ/ T,λ=c/ f超声在人体软组织(包括血液、体液)中的声速约为1540m/s;骨与软骨中的声速约为软组织中的2.5倍;而在气体中的声速仅为340m/s左右。

超声基础知识总结

超声基础知识总结

超声基础知识总结物理基础基本概念――人耳听觉范围:20-20000H Z超纵声波频率>20000H Z――纵波(疏密波):粒子运动平行于波传播轴;诊断最常用超声频率:2-10MH Z基本物理量:频率(f)、波长(λ)、声速(c);三者关系:λ=c/f人体软组织的声速平均为1540m/s,与水的声速相近;骨骼的声速最高,相当于软组织平均声速的2倍以上。

超声场:发射超声在介质中传播时其能量所达到的空间;简称声场,又称声束。

声束的影响因素:探头的形状、大小;阵元数及其排列;工作频率(超声的波长);有无聚焦及聚焦的方式;吸收衰减;反射、折射和散射等。

声束由一个大的主瓣和一些小的旁瓣组成。

超声的成像主要依靠探头发射高度指向性的主瓣并接收回声;旁瓣的反向总有偏差,容易产生伪像。

声场可分为近场和远场两部分(1)近场声束集中,呈圆柱状;直径――探头直径(较粗);(横断面声能分布不均匀)长度――超声频率和探头半径。

公式:L=(2r·f)/cL为近场长度, r为振动源半径, f为频率, c为声速(2)远场声束扩散,呈喇叭状;声束扩散角越小,指向性越好。

(横断面声能分布较均匀)声束两侧扩散的角度为扩散角(2θ);半扩散角(θ)。

超声波指向性优劣指标是近场长度和扩散角。

影像因素:增加超声频率;――近场变断、扩散角变小;增加探头孔径(直径)――但横向分辨率下降。

采用聚焦技术――方法:固定式声透镜聚焦;电子相控阵聚焦;声束聚焦:采用声束聚焦技术,可改善图像的横向和(或)侧向分辨力。

固定式声透镜聚焦――将声透镜贴附在探头表面。

常用于线阵探头、凸阵探头;可提高横向分辨力,但远场仍散焦。

电子相控阵聚焦――(1)利用延迟发射是声束偏转,实现发射聚焦或多点聚焦;可提高侧向分辨力;常用于线阵探头、凸阵探头;(2)动态聚焦:在长轴方向上全程接收聚焦。

(3)利用环阵探头进行环阵相控聚焦;可改善横向、侧向分辨力;(4)其他聚焦技术:如二维多阵元探头。

超声知识点总结大全

超声知识点总结大全

超声知识点总结大全
超声波的产生
超声波是一种机械波,它是由物体的振动产生的。

在医学超声中,超声波是通过超声波发
射器产生的。

超声波发射器通常是一种压电晶体,当施加电压时,晶体会产生振动,从而
产生超声波。

这些超声波会被传送到病人的身体内,然后被接收器接收并转换为图像。

超声波的传播
超声波在人体内的传播是通过反射和折射的方式进行的。

当超声波遇到不同密度的组织时,会发生反射和折射,形成一个三维图像。

超声波在软组织中传播速度较慢,在骨骼中传播
速度较快,因此可以根据超声波的传播速度来识别不同的组织结构。

超声波的应用
超声波在医学领域有许多应用,包括超声诊断和超声治疗。

超声诊断
超声诊断是使用超声波来观察人体内部结构的一种诊断方法。

它可以用于检测各种疾病和
病变,如肿瘤、囊肿、结石等。

超声诊断可以通过单晶片、微晶片、阵列探头等不同的探
头来实现,可以实现不同层面、不同分辨率的观察。

超声治疗
超声治疗是利用超声波的机械、热效应来治疗各种疾病。

超声波可以通过对组织产生热效应,促进血液循环,加速伤口愈合。

超声波还可以通过机械效应,破坏结石或肿瘤等病变
组织。

超声波的优势
超声波在医学领域有许多优势,包括无辐射、无损伤、无创、成本低等。

同时,超声波可
以通过多种探头实现不同层面和分辨率的观察,使得超声诊断具有很高的诊断价值。

在不断发展的医学技术领域,超声波的应用将会越来越广泛。

我们相信,随着超声技术的
不断发展,超声波将会在医学诊断和治疗中起到越来越大的作用。

超声基础知识入门超声基础知识总结

超声基础知识入门超声基础知识总结

超声基础知识入门超声基础知识总结
超声基础知识入门:
1. 超声波:超声波是一种频率高于人耳可听到的声音的声波。

在医学中,常用的超声
波频率范围是1~20兆赫(MHz)。

2. 超声传感器:超声传感器是将声波转化为电信号的装置。

它由发射器和接收器组成,发射器发出超声波,接收器接收到反射回来的超声波并转化为电信号。

3. 超声图像:超声波在人体组织内反射、折射和散射产生回波,这些回波可用来形成
超声图像。

超声图像显示了人体器官、血管、肿块等结构的形态和位置。

4. 超声成像模式:常见的超声成像模式包括B模式(二维图像)、M模式(时间-振幅图像)、Doppler模式(血流图像)等。

5. 超声引导下穿刺:超声引导下穿刺是一种常见的医疗技术,通过超声图像引导医生
准确定位并操作穿刺针,用于取样、注射药物等操作。

6. 超声检查:超声检查是一种无创、无辐射的影像学检查方法,广泛应用于临床诊断。

常见的超声检查包括腹部超声、妇科超声、心脏超声等。

7. 超声诊断:通过观察和分析超声图像,医生可以对疾病进行诊断。

超声诊断可以发
现各种器官的异常结构、肿块、囊肿、积液等。

8. 超声治疗:超声波的能量可以用于治疗某些疾病,如肌肉拉伤、骨折、肿瘤等。


声治疗可以促进组织修复,减轻疼痛和炎症。

以上是超声基础知识的简要总结,希望对您有帮助。

超声知识点总结大全

超声知识点总结大全

超声知识点总结大全
超声波技术涵盖了广泛的领域,以下是一些超声知识点的总结:
1. 超声波的基本原理:超声波是高频声波,频率超过人耳能听到的范围。

它是通过声波的反射来生成图像。

2. 超声波在医学中的应用:超声成像在医学上用于检测器官、组织和血流,如超声心动图、超声检查等。

它安全无害,无辐射,广泛应用于临床诊断。

3. 超声波在工业领域的应用:超声波技术被用于非破坏性检测、清洗、焊接、加工等工业应用,比如超声波清洗器、超声波焊接等。

4. 超声波传感器:用于测量距离、检测障碍物或流体水位的超声波传感器。

它们通过测量声波从发射器到接收器的时间来进行测量。

5. 超声波在生活中的应用:超声波还广泛应用于动物通信、水下导航、清洁等领域。

6. 超声波成像技术:包括B超、彩色多普勒超声、三维超声等成像技术,能够提供组织结构和血流速度的详细图像。

这些知识点涵盖了超声波技术在医学、工业和生活中的应用,它在不同领域具有重要的作用,并在不断地发展和创新。

超声波基础必学知识点

超声波基础必学知识点

超声波基础必学知识点1. 声音的特性:声音是一种机械波,是由物体振动产生的。

它可以传播在气体、液体和固体中,并需要介质作为传播媒介。

2. 声波的频率和波长:声音的频率是指每秒钟振动的次数,单位是赫兹(Hz)。

声波的波长是指声波在介质中传播一个完整周期所需的距离。

3. 超声波的频率:超声波是指频率超过人类听觉范围(20 Hz至20 kHz)的声波。

一般认为超声波的频率范围在20 kHz到1 GHz之间。

4. 超声波的产生和检测:超声波的产生可以通过电压信号施加在压电材料上,使其振动产生超声波。

超声波的检测可以使用超声波传感器来接收和转换超声波成电信号。

5. 超声波的传播速度:超声波在空气中的传播速度约为343米/秒。

在其他介质中,传播速度会有所不同。

6. 超声波在医学中的应用:超声波在医学中应用广泛,如超声检查用于诊断疾病、超声治疗用于物理疗法等。

7. 超声波在工业中的应用:超声波被广泛应用于工业领域,如无损检测、清洗、焊接、切割、涂层、粉末冶金等。

8. 超声波的反射和折射:超声波在界面上会发生反射和折射。

反射是指超声波与物体界面相交时,部分能量被物体反射回来。

折射是指超声波在不同介质之间传播时,发生速度和方向的变化。

9. 超声波的干扰和衰减:超声波在传播过程中会受到杂波的干扰,干扰会对超声波的检测和测量造成影响。

此外,超声波在传播过程中也会受到介质的衰减,衰减会导致超声波的能量逐渐降低。

10. 超声波的成像原理:超声波成像通过对物体内部超声波的反射进行接收和处理,生成图像来显示物体的内部结构。

成像原理包括回波时间测量、超声波在不同介质中的传播速度、超声波的强度等。

超声知识归纳总结

超声知识归纳总结

超声知识归纳总结超声技术是一种基于声波传播和反射原理的医学成像方法,它可用于诊断、评估以及监测疾病的发展。

本文将对超声知识进行归纳总结,包括超声原理、超声检查、超声诊断以及超声应用的领域等内容。

一、超声原理超声波是一种频率大于20kHz的声波,其传播速度和方向可以通过声速和入射角度来测量。

超声波经过物体后发生折射、反射、散射等现象,这些现象可用于形成超声图像,并提供有关被检查组织或器官的信息。

二、超声检查超声检查可以分为二维超声和三维超声。

二维超声是通过探头在患者体表上移动,获取不同角度的断层图像,并以此来观察和评估被检查部位的结构和功能情况。

三维超声则是通过使用探头进行快速扫描,获得更多角度的图像信息,从而生成真实三维图像。

在超声检查中,探头是承载超声波源和接收器的关键部件,其频率和形状的选择会根据被检查对象的不同而有所变化。

同时,患者和操作者的位置和姿势也会对超声图像的质量产生影响,因此操作者需要在检查过程中注意调整和优化。

三、超声诊断超声诊断是基于超声图像来分析和评估疾病情况的过程。

医生通过观察超声图像上的结构形态、血流情况、组织回声等特征来判断是否存在异常。

一般来说,正常组织通常呈现高回声,异常组织则可能呈现低回声、无回声或混合回声等。

超声诊断在很多领域中具有广泛的应用,如妇产科、心脏病学、消化系统、泌尿系统、肝胆胰脾等。

例如,超声在妇产科中可以用于孕妇孕期检查、胎儿发育评估、宫颈、子宫和卵巢病变的检查等。

四、超声应用领域1. 妇产科:超声在妇产科中被广泛应用,如孕妇常规检查、卵巢与宫颈病变检查等。

2. 心脏病学:超声心动图可以通过超声波图像来评估心脏结构和功能,用于检测心脏瓣膜疾病等。

3. 消化系统:超声可用于胆囊、肝胆胰脾等器官的检查和评估,例如胆囊结石、肝动脉瘤等。

4. 泌尿系统:超声在泌尿系统疾病的诊断和评估中有重要作用,如肾结石、前列腺增生等。

5. 乳腺病学:超声在乳腺疾病的检查中被广泛使用,如乳腺肿块的鉴别、乳腺纤维腺瘤的诊断等。

超声基础知识总结

超声基础知识总结

超声基础知识总结物理基础基本概念――人耳听觉范围:20—20000H Z超纵声波频率>20000H Z――纵波(疏密波):粒子运动平行于波传播轴;诊断最常用超声频率:2-10MH Z基本物理量:频率(f)、波长(λ)、声速(c);三者关系:λ=c/f人体软组织的声速平均为1540m/s,与水的声速相近;骨骼的声速最高,相当于软组织平均声速的2倍以上。

超声场:发射超声在介质中传播时其能量所达到的空间;简称声场,又称声束。

声束的影响因素:探头的形状、大小;阵元数及其排列;工作频率(超声的波长);有无聚焦及聚焦的方式;吸收衰减;反射、折射和散射等.声束由一个大的主瓣和一些小的旁瓣组成。

超声的成像主要依靠探头发射高度指向性的主瓣并接收回声;旁瓣的反向总有偏差,容易产生伪像。

声场可分为近场和远场两部分(1)近场声束集中,呈圆柱状;直径――探头直径(较粗);(横断面声能分布不均匀)长度――超声频率和探头半径。

公式:L=(2r·f)/cL为近场长度, r为振动源半径, f为频率, c为声速(2)远场声束扩散,呈喇叭状;声束扩散角越小,指向性越好。

(横断面声能分布较均匀)声束两侧扩散的角度为扩散角(2θ);半扩散角(θ)。

超声波指向性优劣指标是近场长度和扩散角。

影像因素:增加超声频率;――近场变断、扩散角变小;增加探头孔径(直径)――但横向分辨率下降.采用聚焦技术――方法:固定式声透镜聚焦;电子相控阵聚焦;声束聚焦:采用声束聚焦技术,可改善图像的横向和(或)侧向分辨力.固定式声透镜聚焦――将声透镜贴附在探头表面.常用于线阵探头、凸阵探头;可提高横向分辨力,但远场仍散焦。

电子相控阵聚焦――(1)利用延迟发射是声束偏转,实现发射聚焦或多点聚焦;可提高侧向分辨力;常用于线阵探头、凸阵探头;(2)动态聚焦:在长轴方向上全程接收聚焦。

(3)利用环阵探头进行环阵相控聚焦;可改善横向、侧向分辨力;(4)其他聚焦技术:如二维多阵元探头。

超声诊断基本知识

超声诊断基本知识

五、超声成像内容和诊断术语
边缘回声:指脏器的轮廓
内部回声:指组织内回声(光点、 光斑、光团、光带、光环)
无回声区:包括液性暗区:衰减暗 区;实性暗区。
六、伪像的识别和利用 近场干扰(多次反射)、声影(反射和吸收)
增强效应(透声良好、反射少) 七、超声图象的阅读
切面(纵切面、横切面、斜切面)
图象的方位
一、子宫位置的超声图象
健康妇女站立时,子宫呈前倾前屈
位,膀胱充盈时,子宫被压向后方甚至水
平位。
子宫变位:整个子宫沿纵轴后移及
子宫峡部水平向后弯曲,叫子宫后倾后
(后位子宫)
二、先天性生殖道发育异常超声诊断
(一)先天性无子宫:先天性副中肾管发 育或停止发育,常合并无阴道,可有正常 卵巢。
(二)始基子宫:双侧副中肾管刚发育即 停止,形成始基子宫,无宫腔、无内膜, 故无月经,可有卵巢。
超声诊断基本知识
一、超声波的基本概念
定义:其频率>20000赫兹,是人耳听 不到的声波
声波的物理量
波长、频率、速度
二、超声的传播
声波在均匀介质中不发生任何发射。只有两介 质声阻抗不同,声波通过其界面时发生发射。
声强随着距离增加而减弱,称声衰减。
是由于介质吸收声能(变热能)、反射和散射,声衰 减是吸收、散射和反射总和。
组织衰减系数和频率呈正比,频率高的声波穿透力差, 频率低的声波穿透力强。
三、超声成像的原理
两种不同介质声阻抗之差>1/1000 时,声波通过其界面就产生反射,声阻抗 越大反射越强,界面越多发射越密集。
四、超声的安全剂量
国际超声界规定对人体安全为阈值 10mw/vcm,目前我国所用超声仪对人体 无害。

超声基础知识

超声基础知识
CW、PW、CDFI 3、谐波成像 4、弹性成像
M型超声心动图
(三)人体不同组织和体液回声强度
1、回声强度:
强回声、高回声、中回声、低回声、弱回声、无回声
2、人体组织回声强度:
骨骼>肾窦>胰腺>肝、脾实质>肌肉>肾皮质>肾髓质(肾椎 体)>血液>胆汁和尿液
人体组织的回声强度:
回声强度
人体组织
强回声
骨骼、肺等含气组织
高回声
脏器包膜、囊肿壁、肾窦、肝血管瘤
等回声
肝、脾、甲状腺、乳腺、睾丸实质
低回声
肌肉、皮下脂肪、淋巴结
弱回声
缓慢流动的血液、液体内的组织碎屑
无回声
正常的胆汁、尿液、脑脊液、玻璃体
声像图方位识别: 首先要明确探头的体表位置,进而确认解剖切面。
超声基础知识
吉林省人民医院 超声科 潘莉莉
一、超声诊断的基本原理
(一)超声波的产生和接收 1、 超声波:超过20kHz的声波
人耳能感知声波频率20Hຫໍສະໝຸດ -20kHz2、传播特性:
声阻抗差>0.1%发生反射 反射、折射、散射
3、超声探头发射和接收超声波
(二)超声成像方式 1、脉冲回声式
B型 M型 2、多普勒技术

超声知识点总结归纳

超声知识点总结归纳

一、超声的原理1. 超声波的产生超声波是指频率超过20kHz以上的声波。

在超声检查中,超声波是由超声探头产生的,探头内装有压电晶体,当晶体受到外加电压时,会产生机械振动,从而产生超声波。

2. 超声波的传播超声波在人体内部传播时,会发生反射、散射、折射等现象。

不同组织和器官对超声波的反射程度不同,这就形成了超声图像上的对比度。

3. 超声图像的形成超声图像是通过记录超声波的发射和接收信号,然后通过计算机处理形成的。

超声图像可以显示组织和器官的形态、结构和血流情况,是超声检查的主要成果。

二、超声的应用1. 超声的临床诊断超声检查可以用于诊断各种器官和组织的病变,如心脏、肝脏、肾脏、乳腺、甲状腺等。

通过超声检查,可以观察器官的形态、大小、结构、血流情况等,从而帮助医生做出正确的诊断。

2. 超声在妇产科的应用超声在妇产科的应用非常广泛,可以用于检查怀孕、观察胎儿发育情况、诊断子宫肌瘤、卵巢囊肿等。

此外,超声还可以用于引导产前筛查和指导产科手术。

3. 超声在心脏病学的应用超声检查可以用于观察心脏的结构、功能和血流情况,对心脏瓣膜病、心肌病、心包疾病等疾病的诊断有很好的帮助。

4. 超声在肿瘤学的应用超声可以用于检测肿瘤的部位、大小、形态以及血流情况,对辅助诊断和术前评估具有重要意义。

5. 超声在其他领域的应用超声还可以用于检查血管、淋巴结、肌肉、关节等组织和器官,对各类疾病的诊断都有重要意义。

1. 安全性高超声检查不需要使用放射线,对人体无损害,适用于各个年龄段的患者,特别适用于孕妇和儿童的检查。

2. 易于操作超声检查仪器操作简单,探头直接接触患者身体部位即可进行检查,操作方便,适合用于门诊和急救情况。

3. 观察实时超声检查所得的图像是实时的,医生可以通过观察超声图像动态变化,帮助做出正确的诊断。

4. 无创性超声检查是一种非侵入性检查方法,不需要穿刺或开刀,对患者没有任何伤害。

四、超声的临床意义1. 早期诊断超声检查对一些隐性疾病的早期诊断非常重要,如肿瘤、结石等疾病,可以帮助医生及早发现病变,提高治疗成功率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超声基础知识总结物理基础基本概念――人耳听觉范围:20-20000H Z超纵声波频率>20000H Z――纵波(疏密波):粒子运动平行于波传播轴;诊断最常用超声频率:2-10MH Z基本物理量:频率(f)、波长(λ)、声速(c);三者关系:λ=c/f人体软组织的声速平均为1540m/s,与水的声速相近;骨骼的声速最高,相当于软组织平均声速的2倍以上。

超声场:发射超声在介质中传播时其能量所达到的空间;简称声场,又称声束。

声束的影响因素:探头的形状、大小;阵元数及其排列;工作频率(超声的波长);有无聚焦及聚焦的方式;吸收衰减;反射、折射和散射等。

声束由一个大的主瓣和一些小的旁瓣组成。

超声的成像主要依靠探头发射高度指向性的主瓣并接收回声;旁瓣的反向总有偏差,容易产生伪像。

声场可分为近场和远场两部分(1)近场声束集中,呈圆柱状; 直径――探头直径(较粗);(横断面声能分布不均匀) 长度――超声频率和探头半径。

公式:L=(2r·f)/cL为近场长度, r为振动源半径, f为频率, c为声速(2)远场声束扩散,呈喇叭状;声束扩散角越小,指向性越好。

(横断面声能分布较均匀)声束两侧扩散的角度为扩散角(2θ);半扩散角(θ)。

超声波指向性优劣指标是近场长度和扩散角。

影像因素:增加超声频率;――近场变断、扩散角变小;增加探头孔径(直径)――但横向分辨率下降。

采用聚焦技术――方法:固定式声透镜聚焦;电子相控阵聚焦;声束聚焦:采用声束聚焦技术,可改善图像的横向和(或)侧向分辨力。

固定式声透镜聚焦――将声透镜贴附在探头表面。

常用于线阵探头、凸阵探头;可提高横向分辨力,但远场仍散焦。

电子相控阵聚焦――(1)利用延迟发射是声束偏转,实现发射聚焦或多点聚焦;可提高侧向分辨力;常用于线阵探头、凸阵探头;(2)动态聚焦:在长轴方向上全程接收聚焦。

(3)利用环阵探头进行环阵相控聚焦;可改善横向、侧向分辨力;(4)其他聚焦技术:如二维多阵元探头。

超声物理特性:一、束射特性(方向性)――是诊断用超声首要的物理特性;(如反射、折射、聚焦、散焦)大界面:指长度大于声束波长的界面;大界面的回声反射有显著的角度依赖性。

入射声束垂直于大界面时,回声反射强;入射声束与大界面倾斜时,回声反射减弱甚至消失。

两种介质存在真声阻抗,是界面反射的必要条件。

声强反射系数(R1)=(Z2-Z1)2/(Z2+Z1)Z1,Z2代表两种介质的声阻抗;声阻抗=密度×声速界面回声反射的能量与界面形状密切相关:垂直于凹面――聚焦;垂直于凸面――散焦;垂直于不规则面――乱散射。

超声界面反射的特点:非常敏感。

人体许多器官如肝、脾、胆囊的包膜、腹壁各层肌肉筋膜以及皮肤层都是典型的大界面。

小界面:指小于声束波长的界面。

其后散射(背向散射)回声无角度依赖性。

后散射:超声遇到肝、脾等实质性器官或软组织内的细胞、包括成堆的红细胞(称散射体),会发生微弱的散射波。

散射波向四面八方分散能量,只有朝向探头的微弱散射信号――后散射(背向散射),才会被检测到。

现代超声诊断仪正是利用大界面反射原理,能够清楚显示体表和内部的表面和轮廓;还利用无数小界面后散射的原理,清楚显示人体表层,以至于内部器官、组织复杂而细微的结构。

二、衰减特性――衰减与超声传播距离和频率有关;衰减的原因主要有吸收、散射、声束扩散。

软组织平均衰减系数:1dB/cm·MHz;蛋白质成分是人体组织衰减的主要因素(占80%)。

衰减规律:骨>软骨>肌腱>肝、肾>血液>尿液、胆汁;超声的分辨力:显示器上能区分声束中两个细小目标的能力或最小距离。

影像因素:超声波得频率;脉冲宽度;声束宽度(聚焦);声场远近和能量分布;探头类型;仪器功能(二维图像中像素多少、灰阶的级数多少等)。

分类:空间分辨力(与声束特性有关)――轴向(纵向)分辨力:与超声频率(正)和超声宽度(负)有关;理论值:λ/2横向分辨力:与探头厚度方向上声束的宽度和曲面聚焦性能有关;――常采用透镜聚焦侧向分辨力:与探头长轴方向上声束的宽度有关;――常采用相控聚焦细微分辨力――宽频带和数字化声束处理;对比分辨力――与灰阶级数有关;时间分辨力――单位时间成像速度即帧频超声的生物学效应――声功率:单位时间内探头发出的功率。

单位:W或mW;声强:单位面积上声功率。

单位:W/cm2或mW/cm2;ISPTA:空间峰值时间平均声强(mW/cm2)ISPPA:空间峰值脉冲平均声强(W/cm2)分贝:两个声强的比值;超声系统可控制的最大能量与最小能量之比为动态范围。

生物学分类――热效应:诊断用超声一般不会造成明显的温度升高;(mW/cm2级)空化效应:可形成气体微泡;诊断用超声尚未得到证实;对细胞畸变、染色体、组织器官的影响;高强聚焦超声(HIFU):热凝固和杀灭肿瘤细胞作用;(KW/cm2级)强烈机械震荡――用于碎石治疗;在物理治疗学方面的作用(W级,一般0.5-3 W/cm2)超声辐射剂量是超声强度与辐射时间的乘积。

热指数(TI):1.0以下无致伤性,胎儿应调至0.4以下;眼球应0.2以下;机械指数(MI):指超声驰张期的负压峰值(MPa数)与探头中心频率(MHz)的平方的比值。

1.0以下无致伤性,胎儿应调至0.3以下;眼球应0.1以下;超声声学造影应采用低机械指数,可以防止微气泡破裂,提高造影效果。

多普勒超声技术的基础及应用多普勒效应的公式:fd=2Vcosθf0/c――V=fdc/2f0cosθ在超声医学诊断中,V为红细胞运动速度;fd为多普勒效应产生的红细胞散射回声的频移;c探头发射的超声在人体组织中的传播速度;f0为探头发射的超声频率;θ为探头发射的超声的传播方向与红细胞运动方向间的夹角。

分类――脉冲多普勒:选择性接收回声信号,所需检测位置的深度用延迟电路完成;连续多普勒:无选择检测深度的功能,但可测很高速的血流;高脉冲重复频率(HPRF)多普勒:增大检测血流的能力;可有多个取样容积。

多普勒超声所检测的不是一个红细胞,而是众多的红细胞,各个红细胞的运动速度及方向不可能完全相同,因此,出现多种不同颜色的频移信号,被接受后成为复杂的频谱分布(波形),对它用快速傅立叶转换技术(FFT)进行处理后,把复杂的频谱信号分解为若干个单频信号之和,以流速-时间曲线波形显示,以便于从中了解血流的方向、速度、时相、血流性质等问题。

脉冲多普勒技术的局限性:(1)最大频移即最大测量速度受脉冲重复频谱频率的限制(f d=PRF/2)(2)PRF与检测深度(d)的关系:d=c/2PRF,说明检测深度受PRF的影响;(3)检测深度(d)与速度(v)关系:vd=c2/8f0cosθ,为常数,v、d相互制约;(4)当被检测目标的运动速度超过PRF/2时,出现混迭现象。

增大脉冲波多普勒技术检测速度、检测深度的方法:降低发射频率;移动零位基线;减低检测深度;增大超声入射角(θ),但cosθ在分母位置,值越小计算出速度值误差越大,所以此法不可取。

用HPRF的频谱多普勒:f d=HPRF/2彩色多普勒――原理:以脉冲多普勒技术为基础,用运动目标显示器(MTI),自相关函数计算(自相关处理技术),数字扫描转换、彩色编码等技术,达到对血流的彩色现象。

三基色――红、蓝、绿三色;三基色混合时,可产生其他彩色,称为二次色;红色加绿色产生黄色(二次色),就以红-黄表示正向高速血流。

种类――速度型彩色多普勒:以红细胞运动速度为基础;能量型彩色多普勒:以红细胞散射能量(功率)的总积分进行编码;速度能量型彩色多普勒:显示方式――速度-方差显示:朝向探头―黄色;背向探头―青蓝色。

速度显示:朝向探头―红色;背向探头―蓝色;明暗表示快慢。

方差显示:高速血流显示时从单一彩色变为五彩镶嵌。

能量显示:适应于对低速血流的显示;明亮度表示多普勒振幅。

局限性――(1)受入射角的影响;(2)超过尼奎斯特频率极限(PRF/2)时,彩色信号发生混迭;(3)检测深度与成像帧频及可检测流速间的互相制约;(4)对二位图像质量的影响;(5)湍流显示的判断误差。

彩色多普勒技术的调节方法:1、彩色标尺(PRF)的选择:中、低速血流――速度显示方式;高速血流――速度-方差及方差显示方式;2、发射超声频率:检测较浅表的器官、组织及经腔道检测――高频超声;对高速血流的检测――低频超声;对低速血流的检测,达到被检测深度的情况下―高频超声;3、滤波器调节:低速血流――低通滤波;高速血流――高通滤波;4、速度标尺:腹部及外周血管――低速标尺;心血管系统――高速标尺;5、增益调节:检测开始时,用较高的增益调节,使血流易于显示;然后再降低增益使血流现象最清楚而又无噪音信号。

6、取样框调节:取样框应包括需检测区的血流,但不宜太大,使帧频及显像灵敏度下降;7、零位基线的调节:零位基线下移,可增大检测的速度范围;8、余辉调节:persistence调节钮可使帧频图像重叠,增大信/噪比,使低速度、低流量的血流更易于显示清楚;9、扫查范围与方向的调节:较小的扫查范围(角度)可增加帧频,彩色显像更清楚。

与血流方向相同的扫查方法,可使彩色显像更敏感,更清晰。

10、消除彩色信号的闪烁:可选用高速度标尺、高通滤波抗干扰,最佳方法是令病人屏住呼吸频谱多普勒血流流动学基础知识――一般规律:当雷诺数(Re)>2000时成为湍流能量守恒定律:ΔP=4V2max;估算跨瓣压、心腔及肺动脉压;质量守恒定律:ρAV=恒定(连续方程),计算瓣膜口面积;频谱多普勒技术的调节方法:1、多普勒种类的选择:中、低速血流――脉冲多普勒;高速血流――连续多普勒2、滤波条件:检测低速血流,用低通滤波;对高速血流,用高通滤波;3、速度标尺:选择与被检测血流相匹配的速度标尺;4、取样容积:对血管检测,取样容积应小于血管内径;5、零位基线:可增大频移测量范围;6、频谱信号上下翻转:便于测量及自动包络频谱波形;7、超声入射角:心血管系统检查θ≦20°;外周血管检测θ≦60°频谱宽度(频带宽度):表示在某一瞬间取样容积中红细胞运动速度分别范围的大小。

层流――窄频谱;湍流――宽频谱;取样容积小――窄频谱; 取样积大――宽频谱;大动脉――窄频谱;外周小动脉――宽频谱;超声诊断仪超声探头―核心部分:压电材料,如天然石英晶体、钛酸钡、锆钛酸铅、压电有机聚合物;吸声材料(压电晶片背面):产生短促的超声脉冲信号,提高纵向分辨率;匹配层(声能压电晶片前面):保护压电材料;使压电材料与人体皮肤之间的声阻抗相近;减少声能损失,提高探头灵敏度;种类――电子扫描探头:线阵探头:采用电子开关控制;阵子呈直线排列;凸阵探头:采用电子开关控制;阵子呈弧形排列;相控阵探头:扫描角度80-90,最大深度20cm;用于心脏检查机械扫描探头:扇形扫描探头;单晶片;电机驱动;环阵(相控)探头;电子相控聚焦;电机驱动;其他旋转式扫描探头等频率――单频探头:中心频率固定的探头(频带较窄);变频探头:可根据临床需要选择2-3种发射频率;宽频探头:采用宽频带复合电材料(发射频率范围:2-5MHz、5-10MHz、6-12MHz);接收时分三种情况:选频接收:选择某一特定的1-3个中心频率;动态接收:随深度变化选取不同的频率;宽频接收:接收宽频带内所有频率回声;高频探头:频率高达40-100MHz,如皮肤超声成像、超声生物显微镜等。

相关文档
最新文档