圆柱圆锥的表面积和体积

合集下载

圆柱、圆锥表面积体积公式

圆柱、圆锥表面积体积公式

圆柱体积:V=底面积×高或V=1/2侧面积×高圆锥体积:V=底面积×高÷3圆柱侧面积:S侧=底面周长×高圆柱表面积:S表=侧面积+2个底面积圆柱体积:V=sh圆锥体积:V=sh÷3圆柱侧面积:S=ch/2πrh/πdh圆柱表面积:s=ch+2πr²圆柱体侧面积=底面周长×高圆柱体的表面积=2个底面积+1个侧面积圆柱体的体积=底面积×高(Sh)圆柱体的底面积=圆的面积(πr×r)或(π(d÷2)×(d÷2))圆锥底面积=圆的面积(πr×r)或(π(d÷2)×(d÷2)(只有一个底面)体积=1/3×与它等底等高的圆柱体积=1/3×底面积×高=1/3sh(圆锥的体积等于与它等底等高的圆柱的体积的1/3)说明:“r”是圆的半径,“d”是圆的直径,在同圆或等圆中,r是d的1/2,d是r的2倍,“S”是面积,“h”是高.一个物体所有面的面积之和叫做它的表面积.一个物体所占空间的大小,叫做这个物体的体积.一个圆锥的体积等于与它等底等高的圆柱的体积的1/3,一个圆柱的体积等于一个与它等底等高的圆锥的体积的3倍. 圆的面积或底面积π×1×1=3.14π×2×2 =12.56π×3×3 =28.26π×4×4 =50.24π×5×5 =78.5π×6×6 =113.04π×7×7 =153.86π×8×8 =200.96π×9×9 =254.34π×10×10 =314。

几何体的表面积和体积

几何体的表面积和体积

几何体的表面积和体积一、几何体的定义和分类几何体是指由平面图形绕某一轴线旋转或拉伸而成的立体图形。

常见的几何体包括圆柱体、圆锥体、球体、长方体等。

二、几何体的表面积1. 圆柱体表面积圆柱体表面积等于上下底面积之和加上侧面积。

公式为:S=2πr²+2πrh。

其中,r为底面半径,h为高。

2. 圆锥体表面积圆锥体表面积等于底面积加上侧面积。

公式为:S=πr²+πrl。

其中,r为底面半径,l为斜高线长。

3. 球体表面积球体表面积等于4倍的球半径平方乘以π。

公式为:S=4πr²。

其中,r为球半径。

4. 长方体表面积长方体表面积等于所有侧面积之和。

公式为:S=2(lw+lh+wh)。

其中,l、w、h分别代表长方体的长度、宽度和高度。

三、几何体的体积1. 圆柱体的容积圆柱的容积等于其底部面积与高度的乘积。

公式为:V=πr²h。

其中,r为底面半径,h为高。

2. 圆锥体的容积圆锥体的容积等于其底部面积乘以高度再除以3。

公式为:V=1/3πr²h。

其中,r为底面半径,h为高。

3. 球体的容积球体的容积等于4/3倍的球半径立方乘以π。

公式为:V=4/3πr³。

其中,r为球半径。

4. 长方体的容积长方体的容积等于其长度、宽度和高度之间的乘积。

公式为:V=lwh。

其中,l、w、h分别代表长方体的长度、宽度和高度。

四、几何体表面积和体积计算实例1. 计算一个底面直径为10cm、高20cm的圆柱体表面积和容积。

解:圆柱体表面积S=2πr²+2πrh=2×π×5²+2×π×5×20≈628.32cm²;圆柱体容积V=πr²h=π×5²×20≈1570.8cm³。

2. 计算一个半径为6cm、斜高线长10cm的圆锥体表面积和容积。

解:圆锥体表面积S=πr²+πrl=π×6²+π×6×10≈282.74cm²;圆锥体容积V=1/3πr²h=1/3×π×6²×10≈376.99cm³。

求圆柱圆锥梯形的表面积和体积公式

求圆柱圆锥梯形的表面积和体积公式

求圆柱圆锥梯形的表面积和体积公式求圆柱、圆锥和梯形的表面积和体积公式一、圆柱的表面积和体积公式圆柱是由一个圆和与该圆平行的一个平面围成的立体,它具有以下特点:底面是一个圆,侧面是一个矩形,顶面也是一个圆。

1. 表面积公式:圆柱的表面积包括底面积和侧面积两部分。

底面积公式直接应用圆的面积公式即可,即底面积= π * r^2,其中 r 表示圆的半径。

侧面积公式可以看作是矩形的面积,即侧面积= 2π * r * h,其中 h 表示圆柱的高。

所以圆柱的表面积公式为:表面积 = 2π * r^2 + 2π * r * h。

2. 体积公式:圆柱的体积公式可以看作是底面积乘以高,即体积= 底面积* h,其中 h 表示圆柱的高。

所以圆柱的体积公式为:体积= π * r^2 * h。

二、圆锥的表面积和体积公式圆锥是由一个圆和一个顶点在圆所在平面之上的三角形围成的立体,它具有以下特点:底面是一个圆,侧面是一个扇形。

1. 表面积公式:圆锥的表面积包括底面积和侧面积两部分。

底面积公式同样直接应用圆的面积公式即可,即底面积= π * r^2,其中 r 表示圆的半径。

侧面积公式可以看作是扇形的面积,即侧面积= π * r * l,其中 l 表示圆锥的斜高。

所以圆锥的表面积公式为:表面积= π * r^2 + π * r * l。

2. 体积公式:圆锥的体积公式可以看作是底面积乘以高再除以3,即体积 = (底面积 * h) / 3,其中 h 表示圆锥的高。

所以圆锥的体积公式为:体积= (π * r^2 * h) / 3。

三、梯形的表面积和体积公式梯形是由两个平行的底边和连接两底边的侧边围成的四边形,它具有以下特点:两个底边平行,侧边不平行。

1. 表面积公式:梯形的表面积包括两个底面积和两个侧面积。

底面积公式可以看作是两个平行底边的平均长度乘以梯形的高,即底面积 = (a + b) * h / 2,其中 a 和 b 分别表示两个平行底边的长度,h 表示梯形的高。

六年级圆柱和圆锥的计算公式

六年级圆柱和圆锥的计算公式

圆柱和圆锥是初中数学的重要内容,下面为您详细介绍关于圆柱和圆锥的计算公式。

一、圆柱的计算公式:1.面积公式:圆柱的底面积公式为:S底=π×r²,其中r为底面半径。

圆柱的侧面积公式为:S侧=2π×r×h,其中r为底面半径,h为圆柱的高度。

圆柱的全面积公式为:S全=S底+S侧=π×r²+2π×r×h。

2.体积公式:圆柱的体积公式为:V=S底×h=π×r²×h,其中r为底面半径,h为圆柱的高度。

二、圆锥的计算公式:1.面积公式:圆锥的底面积公式为:S底=π×r²,其中r为底面半径。

圆锥的侧面积公式为:S侧=π×r×l,其中r为底面半径,l为斜高,即从锥顶到底面的距离。

圆锥的全面积公式为:S全=S底+S侧=π×r²+π×r×l。

2.体积公式:圆锥的体积公式为:V=(1/3)×S底×h=(1/3)×π×r²×h,其中r为底面半径,h为圆锥的高度。

三、圆柱和圆锥的应用举例:1. 比如一个圆柱的底面半径为2cm,高度为5cm,求其体积和表面积。

圆柱的底面积为:S底= π×r² = 3.14×2² ≈ 12.56 cm²圆柱的侧面积为:S侧= 2π×r×h = 2×3.14×2×5 ≈ 62.8 cm²圆柱的全面积为:S全 = S底 + S侧= 12.56 + 62.8 ≈ 75.36cm²圆柱的体积为:V = S底×h = 12.56×5 ≈ 62.8 cm³2. 再比如一个圆锥的底面半径为3cm,斜高为4cm,求其体积和表面积。

圆锥圆柱圆台球的表面积和体积公式

圆锥圆柱圆台球的表面积和体积公式

圆锥圆柱圆台球的表面积和体积公式圆锥、圆柱和圆台球是几何学中常见的三个立体图形,它们都具有特定的表面积和体积公式。

在本篇文章中,我将为您介绍这三个图形的定义、特点以及如何计算它们的表面积和体积。

一、圆锥圆锥是由一个圆和与圆上每一点相连的一条线段组成的立体图形。

圆锥有一个顶点和一个底面,底面是一个圆,而顶点则位于底面的正上方。

圆锥的表面积公式为:S = πr² + πrl其中,S表示圆锥的表面积,r表示底面圆的半径,l表示圆锥的斜高。

圆锥的体积公式为:V = (1/3)πr²h其中,V表示圆锥的体积,r表示底面圆的半径,h表示圆锥的高。

二、圆柱圆柱是由两个平行圆面和连接两个圆面的侧面组成的立体图形。

圆柱的底面是一个圆,而圆柱的高则是连接两个底面中心的线段。

圆柱的表面积公式为:S = 2πr² + 2πrh其中,S表示圆柱的表面积,r表示底面圆的半径,h表示圆柱的高。

圆柱的体积公式为:V = πr²h其中,V表示圆柱的体积,r表示底面圆的半径,h表示圆柱的高。

三、圆台球圆台球是由两个平行圆面和连接两个圆面的侧面组成的立体图形,其中一个圆面的半径较大,另一个圆面的半径较小。

圆台球的底面是一个圆,而圆台球的高则是连接两个底面中心的线段。

圆台球的表面积公式为:S = π(R+r)l + πR² + πr²其中,S表示圆台球的表面积,R表示底面较大圆的半径,r表示底面较小圆的半径,l表示圆台球的斜高。

圆台球的体积公式为:V = (1/3)πh(R²+r²+Rr)其中,V表示圆台球的体积,R表示底面较大圆的半径,r表示底面较小圆的半径,h表示圆台球的高。

通过以上公式,我们可以方便地计算出圆锥、圆柱和圆台球的表面积和体积。

这些公式的应用范围广泛,例如在建筑设计、工程测量以及日常生活中都有重要的应用。

在实际问题中,我们可以根据给定的数据,将公式中的参数代入,计算出具体的数值。

圆柱圆锥圆台球的表面积和体积

圆柱圆锥圆台球的表面积和体积

圆柱圆锥圆台球的表面积和体积圆柱、圆锥、圆台、球是我们数学中经常遇到的几何图形,它们的表面积和体积也是我们需要掌握的基本概念。

下面我们来分别介绍它们的表面积和体积。

一、圆柱圆柱是由一个圆形和一个平行于圆底的矩形组成的几何体。

它的表面积包括圆底面积、侧面积和顶面积三部分。

其中,圆底面积为πr²,侧面积为2πrh,顶面积同圆底面积为πr²。

因此,圆柱的表面积为2πr²+2πrh。

圆柱的体积为底面积乘以高,即V=πr²h。

二、圆锥圆锥是由一个圆锥形底面和一个顶点连通而成的几何体。

它的表面积包括锥底面积、侧面积和母线长度三部分。

其中,锥底面积为πr²,母线长度为l=√(h²+r²),侧面积为πrl。

因此,圆锥的表面积为πr²+πrl。

圆锥的体积为底面积乘以高再除以3,即V=πr²h/3。

三、圆台圆台是由一个圆形底面和一个上方与底面平行的圆环面连通而成的几何体。

它的表面积包括圆底面积、圆环侧面积和上底面积三部分。

其中,圆底面积为πr₁²,上底面积为πr₂²,圆环侧面积为π(r₁+r₂)l,其中l为斜高。

因此,圆台的表面积为πr₁²+πr₂²+π(r₁+r₂)l。

圆台的体积为底面积乘以高再除以3,即V=(πr₁²+πr₂²+πr₁r₂)h/3。

四、球球是由一个圆形转动一周形成的几何体,它的表面积和体积是所有几何体中最容易计算的。

球的表面积为4πr²,球的体积为4/3πr³。

圆柱、圆锥、圆台、球的表面积和体积都是由其底面积和高或半径计算得出的。

通过学习和掌握这些几何体的公式,我们可以更好地理解和运用它们在实际生活中的应用。

探究圆柱表面积圆锥体积,圆柱体积。计算公式的推导过程

探究圆柱表面积圆锥体积,圆柱体积。计算公式的推导过程

探究圆柱表面积圆锥体积,圆柱体积。

计算公式的推导过程
圆柱的表面积和体积以及圆锥的体积可以通过数学推导来得到。

下面是它们的计算公式和推导过程:
1、圆柱的表面积:
圆柱的表面积由两部分组成:底面的面积和侧面的面积。

假设圆柱的底面半径为r,高度为h。

底面的面积可以通过圆的面积公式得到:A₁ = πr²
侧面的面积可以看作是一个长方形的面积,长方形的长是圆柱的高度h,宽是圆柱的侧面长度,可以通过圆的周长公式得到:C = 2πr。

因此,侧面的面积为A₂ = Ch = 2πrh
圆柱的表面积等于底面的面积加上侧面的面积,即:A = A₁+ A₂= πr² + 2πrh
2、圆柱的体积:
圆柱的体积是指圆柱内部所能容纳的物体的空间大小。

圆柱的体积可以通过底面积乘以高度来计算。

圆柱的底面积为A₁= πr²,高度为h,因此圆柱的体积V = A₁h = πr²h
3、圆锥的体积:
圆锥的体积是指圆锥内部所能容纳的物体的空间大小。

假设圆锥的底面半径为r,高度为h。

圆锥的体积可以通过底面积乘以高度再除以3来计算。

圆锥的底面积为A₁= πr²,高度为h,因此圆锥的体积V = (A₁h)/3 = (πr²h)/3
这就是圆柱的表面积、圆柱的体积以及圆锥的体积的计算公式和推导过程。

圆柱体圆锥体面积体积公式

圆柱体圆锥体面积体积公式

圆柱体圆锥体面积体积公式圆柱体和圆锥体是几何体中比较常见的形状,它们的面积和体积是计算几何学中的基本知识点。

本文将详细介绍圆柱体和圆锥体的面积和体积公式,并通过数学推导和几何分析,解释这些公式的由来和应用。

首先,我们先来介绍圆柱体的面积和体积公式。

圆柱体是由一个圆面和一个平行于圆面的截面的曲面所围成的立体。

圆柱体的侧面是一个矩形,底面和顶面是两个相等的圆。

圆柱体的表面积由底面、顶面和侧面组成。

底面和顶面都是圆,因此它们的面积公式为:底面积=π*半径^2侧面是一个长方形,它的宽度等于圆的周长(2πr),长度等于圆柱的高(h)。

因此,侧面的面积公式为:侧面积=周长*高=2π*半径*高将底面积和侧面积相加即可得到圆柱体的表面积:圆柱体表面积=底面积+侧面积=π*半径^2+2π*半径*高接下来是圆柱体的体积公式。

圆柱体的体积就是底面积乘以高。

因此,圆柱体的体积公式为:圆柱体体积=底面积*高=π*半径^2*高圆柱体的面积和体积公式是几何学中的基本公式,通过这些公式我们可以方便地计算圆柱体的表面积和体积。

这些公式在实际生活中有着广泛的应用,比如计算柱形容器的容积、圆柱体的表面积等等。

除了圆柱体,我们还可以来看一下圆锥体的面积和体积公式。

圆锥体是由一个圆锥面和一个底面所围成的立体。

圆锥体的底面是一个圆,圆锥体的侧面是一个三角形。

圆锥体的表面积由底面和侧面组成。

底面面积公式同样为:底面积=π*半径^2侧面是一个三角形,它的底边等于圆的周长(2πr),高等于圆锥的斜高(s)。

通过勾股定理可以得到斜高s的值为:s=根号下(高^2+半径^2)因此侧面积=1/2*周长*斜高=1/2*2π*半径*s=π*半径*根号下(高^2+半径^2)将底面积和侧面积相加即可得到圆锥体的表面积:圆锥体表面积=底面积+侧面积=π*半径^2+π*半径*根号下(高^2+半径^2)接下来是圆锥体的体积公式。

圆锥体的体积就是底面积乘以高并除以3、因此,圆锥体的体积公式为:圆锥体体积=1/3*底面积*高=1/3*π*半径^2*高圆锥体的面积和体积公式同样是几何学中的基本公式,通过这些公式我们可以方便地计算圆锥体的表面积和体积。

圆柱和圆锥的公式

圆柱和圆锥的公式

圆柱和圆锥的公式圆柱圆柱体积:V=底面积×高或V=1/2侧面积×高圆柱侧面积:S侧=底面周长×高圆柱表面积:S表=侧面积+2个底面积圆锥底面积=圆的面积(π r×r)体积:V=底面积×高÷3侧面积=(1/2)(2πr)l=πrl公式中r为底面半径,l为圆锥母线,α为侧面展开图圆心角弧度。

拓展圆柱侧i面积(1) 原柱侧面积=底面周长×圆柱的高S侧=c×h因为c=2πr c=πd 所以圆柱侧面积还可以写出:s侧=2 π r h 或s侧= π d h(2) 底面周长=圆柱侧面积÷圆柱的高C=s侧÷h底面直径=圆柱侧面积÷圆柱的高÷圆周率d=s侧÷h÷ π底面半径=圆柱侧面积÷圆柱的高÷圆周率÷2 r=s侧÷h÷ π ÷2圆柱的表面积圆柱的表面积=底面周长×高+底面面积×2 S表=c×h+ π ×r×r×2圆柱的体积圆柱的体积=底面面积×高V柱=s底×h圆柱底面面积=圆柱体积÷圆柱的高S底=v÷h圆柱的高=圆柱的体积÷圆柱底面面积H= v÷S底圆锥的体积圆锥的体积=圆锥底面积×高V锥=s底×h÷3圆锥的底面积=圆锥的体积×3÷圆锥的高S底=v×3÷h 圆锥的高=圆锥的体积×3÷圆锥的底面积h=v×3÷S底。

圆柱和圆锥的体积和表面积的计算公式

圆柱和圆锥的体积和表面积的计算公式

圆柱和圆锥的体积和表面积的计算公式全文共四篇示例,供读者参考第一篇示例:圆柱和圆锥是常见的几何图形,在数学中经常用到。

它们的体积和表面积计算是数学中的一个基础知识点,掌握这些计算公式可以帮助我们更快地解决问题。

下面我将详细介绍圆柱和圆锥的体积和表面积计算公式。

首先我们来看圆柱的计算公式。

圆柱是一个有两个底面平行的圆柱体,底面和侧面都是圆的。

对于圆柱的体积计算,我们可以用以下公式:圆柱的体积公式为:V = πr^2hV表示圆柱的体积,r表示圆柱的底面半径,h表示圆柱的高。

这个公式的推导可以通过将圆柱分解为无限个薄片,并求和得到。

通过这个公式,我们可以方便地计算出圆柱的体积。

圆锥的表面积公式为:S = πr^2 + πr√(r^2 + h^2)第二篇示例:圆柱和圆锥是我们生活中常见的几何图形,它们的体积和表面积是我们在数学学习中经常需要计算的内容。

在本文中,我们将介绍圆柱和圆锥的体积和表面积的计算公式,并简要说明其推导过程。

让我们来看看圆柱的体积和表面积的计算公式。

圆柱是一个有两个平行且相等的底面的几何体,其侧面是由底面的圆周向上延伸形成的。

圆柱的体积表示的是圆柱内部可以容纳的空间大小,而表面积表示的是圆柱体外部所有表面的总和。

圆柱的体积的计算公式为:V = πr^2hV代表圆柱的体积,r代表圆柱的底面半径,h代表圆柱的高。

以上就是圆柱和圆锥的体积和表面积的计算公式。

这些公式是通过几何推导得到的,可以帮助我们更快更准确地计算圆柱和圆锥的体积和表面积。

希望这篇文章能对你有所帮助,谢谢阅读!第三篇示例:圆柱和圆锥是我们在日常生活中经常遇到的几何体形状,它们的体积和表面积是我们经常需要计算的数学问题之一。

在本文中,我们将介绍圆柱和圆锥的体积和表面积的计算公式,希望能够帮助读者更好地学习和理解这些重要的几何概念。

让我们来看看圆柱的体积和表面积的计算公式。

圆柱是一个有两个平行的底面的几何体,通过底面的半径和高度可以很容易地计算出它的体积和表面积。

圆柱和圆锥公式汇总

圆柱和圆锥公式汇总

圆柱和圆锥公式汇总一、圆柱公式:1.圆柱的体积公式:圆柱的体积(V)等于底面积(B)乘以高(h)。

V=B*h其中,底面积为圆的面积,可以用半径(r)或直径(d)表示。

B=π*r²或B=π*(d/2)²2.圆柱的侧面积公式:圆柱的侧面积(A)等于底面周长(C)乘以高(h)。

A=C*h底面周长可以用半径(r)或直径(d)表示。

C=2*π*r或C=π*d3.圆柱的表面积公式:圆柱的表面积(S)等于底面积(B)加上两倍的底面积和侧面积(A)之和。

S=2*B+A也可以用直径(d)和高(h)表示表面积。

S=π*d*(r+h)或S=π*(d+h)*r4.圆柱的弧长公式:圆柱的弧长(L)等于底面周长(C)乘以弧度(θ)。

L=C*θ二、圆锥公式:1.圆锥的体积公式:圆锥的体积(V)等于底面积(B)乘以高(h),再除以3V=(B*h)/3底面积为圆的面积,可以用半径(r)或直径(d)表示。

B=π*r²或B=π*(d/2)²2.圆锥的侧面积公式:圆锥的侧面积(A)等于底面周长(C)乘以斜高(l)的一半。

A=(C*l)/2底面周长可以用半径(r)或直径(d)表示。

C=2*π*r或C=π*d3.圆锥的表面积公式:圆锥的表面积(S)等于底面积(B)加上一半的底面周长(C)乘以斜高(l)。

S=B+(C*l)/2也可以用直径(d)和高(h)表示表面积。

S=π*r*(r+l)或S=π*(d/2)*(d/2+l)4.圆锥的母线公式:圆锥的母线(l)等于根号下(高的平方+底半径的平方)。

l=√(h²+r²)5.圆锥的弧长公式:圆锥的弧长(L)等于底面周长(C)乘以弧度(θ),再除以2L=(C*θ)/2上述公式是圆柱和圆锥常用的公式,可以帮助我们计算它们的体积、侧面积、表面积、弧长等重要参数。

在应用中,我们可以根据具体情况选择合适的公式进行计算。

同时,这些公式也有助于我们对圆柱和圆锥的性质和特点有一个更深入的理解。

圆锥与圆柱的体积与表面积的应用

圆锥与圆柱的体积与表面积的应用

圆锥与圆柱的体积与表面积的应用圆锥和圆柱是几何体中常见的形状,它们的体积和表面积的计算对于许多实际问题都有重要的应用。

本文将介绍圆锥和圆柱的体积和表面积的计算方法,并探讨它们在日常生活和工程设计中的应用。

一、圆柱的体积与表面积圆柱是由一个圆沿着其直径方向运动而生成的立体。

它的体积和表面积可以用以下公式计算:1. 圆柱的体积圆柱的体积可以用底面积乘以高来计算,即:V = πr^2h其中,V表示圆柱的体积,r表示底面圆的半径,h表示圆柱的高。

2. 圆柱的表面积圆柱的表面积由圆柱的侧面积和两个底面积之和组成。

侧面积可以用圆周长乘以高来计算,即:S侧= 2πrh底面积可以用圆的面积乘以2来计算,即:S底= 2πr^2所以,圆柱的表面积可以表示为:S = S侧 + S底= 2πrh + 2πr^2 = 2πr(h + r)二、圆锥的体积与表面积圆锥是由一个尖顶和一个圆锥面组成的立体,可以看作是一个圆柱在一个顶点上收束而成。

圆锥的体积和表面积可以用以下公式计算:1. 圆锥的体积圆锥的体积可以用底面积乘以高再除以3来计算,即:V = (1/3)πr^2h其中,V表示圆锥的体积,r表示底面圆的半径,h表示圆锥的高。

2. 圆锥的表面积圆锥的表面积由圆锥的侧面积和底面积之和组成。

侧面积可以用半周长乘以斜高来计算,即:S侧= πrl其中,l表示圆锥的斜高,可以通过勾股定理计算得到:l = √(r^2 + h^2)底面积可以直接用圆的面积计算,即:S底= πr^2所以,圆锥的表面积可以表示为:S = S侧 + S底= πrl + πr^2三、应用案例1. 建筑设计圆锥和圆柱经常在建筑设计中使用。

例如,在设计一个圆锥形的大厅或塔楼时,需要计算它们的体积来确定空间的容量。

同时,计算它们的表面积也可以确定外墙面的材料使用量,从而为材料采购提供参考。

2. 容器设计圆柱形容器常用于存储液体或粉状物质。

通过计算容器的体积,可以确定容器的最大容量,并为物质的储存和运输提供方便。

圆柱圆锥圆台球的表面积和体积公式

圆柱圆锥圆台球的表面积和体积公式

圆柱圆锥圆台球的表面积和体积公式
圆柱圆锥圆台球的表面积和体积如下:
球:全面积=4πR^2=πD^2;【R---球半径,D---球直径,π---圆周率(=3.14159....) 】
体积=(4/3)πR^3=(1/6)πD^3 【^2---平方符号,^3----立方符号】圆锥:侧面积=πRl全面积=πR(l+R);【全面积=侧面积+底面积】体积=(1/3)πR^2*H
式中,R---圆锥底面圆的半径,H----圆锥的高,l----圆锥母线的长度,l=√(R^2+H^2)。

圆台:侧面积=π(R1+R2)l ;全面积=πR1(l+R1)+πR2(l+R2);体积=(1/3)πH(R1^2+R2^2+R1*R2),式中,R1和R2分别是圆台的下底和上底的半径,l----圆台的母线长度,i=√[H^2+(R1-R2)^2],H----圆台的高。

体积的国际单位制是立方米。

一件固体物件的体积是一个数值用以形容该物件在三维空间所占有的空间。

一维空间物件(如线)及二维空间物件(如正方形)在三维空间中均是零体积的。

圆柱圆锥表面积体积计算题

圆柱圆锥表面积体积计算题

圆柱圆锥表面积体积计算题一、圆柱和圆锥的表面积和体积的公式圆柱的表面积公式为:S = 2πr(h + r),其中 r 是底面半径,h 是高。

圆柱的体积公式为:V = πr^2h。

圆锥的表面积公式为:S = πr^2 + πrl,其中 r 是底面半径,l 是斜边(母线)长度。

圆锥的体积公式为:V = 1/3πr^2h,其中 h 是高。

二、圆柱和圆锥的表面积和体积的题目题型一:已知圆柱的半径或直径和高,求表面积和体积1.已知圆柱的底面半径是2cm,高是5cm,求圆柱的表面积和体积。

2.已知圆柱的底面直径是6cm,高是4cm,求圆柱的表面积和体积。

题型二:已知圆柱的底面周长和高,求表面积和体积3.已知圆柱的底面周长是25.12cm,高是3cm,求圆柱的表面积和体积。

4.已知圆柱的底面周长是15.7cm,高是4cm,求圆柱的表面积和体积。

题型三:已知圆柱的侧面积和高,求表面积和体积5.已知圆柱的侧面积是50.24m²,高是8m,求表面积和体积。

6.已知圆柱的侧面积是219.8m²,高是10m,求表面积和体积。

题型四:已知圆柱的体积和半径或直径,求高和表面积7.已知圆柱的体积是157m³,半径是5m,求高和表面积。

8.已知圆柱的体积是3.14m³,半径是0.1m,求高表面积。

题型四:已知圆锥的半径或直径和高,求体积9.已知圆锥的底面半径是5cm,高是6cm,求圆锥的体积。

10.已知圆锥的底面直径是6cm,高是4cm,求圆锥的体积。

题型五:已知圆锥的底面周长和高,求体积11.已知圆锥的底面周长是18.84cm,高是3cm,求圆锥的体积。

12.已知圆锥的底面周长是9.42cm,高是9cm,求圆锥的体积。

题型六:已知圆锥的体积和半径或直径,求高13.已知圆锥的体积是78.5m³,半径是3m,求高。

14.已知圆锥的体积是1.884m³,直径是4m,求高。

圆柱、圆锥、圆台的体积和面积公式。

圆柱、圆锥、圆台的体积和面积公式。

圆柱、圆锥、圆台的体积和面积公式。

圆柱、圆锥、圆台的体积公式:
圆柱的体积:V= πr 2h 或 V=
Sh
(r 为圆柱的底面半径,h 为圆柱的高,S 为圆柱的底面积)
圆锥的体积:V=31πr 2h 或 V=3
1Sh
(r 为圆锥的底面半径,h 为圆锥的高,S 为圆锥的底面积)
圆台的体积:V=31πh (R 2+r 2+Rr)
(R 为圆台的底面半径,r 为圆台的顶面半径,h 为圆台的高) 圆柱、圆锥、圆台的面积公式:
圆柱的表面积公式: S=2πr 2+2πrh
圆柱的侧面积公式: S=2πrh
(r 为圆柱的底面半径,h 为圆柱的高)
圆锥的表面积公式: S=πr 2+πr l
圆锥的侧面积公式: S=πr l
(r 为圆锥的底面半径,h 为圆锥的高,l 圆锥的母线)
圆台的表面积公式: S=πr2+πR2 +πR l+πr l
=π(r2+R2 +R l+r l)
圆台的侧面积公式: S=πR l+πr l
(R为圆台的底面半径,r为圆台的顶面半径,h为圆台的高,l圆台的母线)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七讲圆柱、圆锥的表面积和体积
计算侧面积与表面积
【例1】一个圆柱,侧面展开后是一个边长9.42分米的正方形。

这个圆柱的底面直径是多少分米?
【例2】一个圆柱形的水池,底面直径20米,深2米。

(1)水池的占地面积是多少?
(2)在水池的侧面和底面抹上水泥,抹上水泥的部分的面积是多少?
【例3】有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的直孔,如图.圆孔的直径是4厘米,孔深5厘米.如果将这个零件接触空气部分涂上防锈漆,一共需涂多少平方厘米?
【例4】如图,用高都是米,底面半径分别为米、米和米的个圆柱组成一个物体.问这个物体的表面积是多少平方米?(取)
1
1
1
0.5
1
1.5
【例5】用铁皮做一个如图所示的工件(两端不封闭),需要铁皮多少平方厘米? ()
【例6】(2008年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大,则这个圆柱体木棒的侧面积是________.(取)
【例7】在一个底面积为300平方厘米的正方体铸铁中,以相对的两个面为底,挖出一个最大的圆柱,然后在剩下的铸铁的所有表面涂上油漆,求涂油漆的面积是多少?
切、拼圆柱
【例1】有一个底面直径6厘米,高5厘米的圆柱体,沿着上下底面的圆心的连线切开后,它的表面积增加了多少平方厘米?
【例2】把一个高是6分米的圆柱,沿着底面直径竖直切开,平均分成两半,表面积增加48平方分米。

原来这个圆柱的表面积是多少平方分米?
【例3】把一个长3分米的圆柱,平均分成两段圆柱,表面积增加6.28平方分米。

原来这个圆柱表面积是多少平方分米?
【例4】一段圆柱体木料,如果截成两段,其表面积增加6.28平方厘米,如果沿着直径劈成两个半圆柱体,其表面积增加40平方厘米。

求此圆柱体的表面积。

圆柱、圆锥体积计算
【例1】这里有一个圆柱和一个圆锥,它们的高和底面直径都标在图上,单位是厘米。

请回答:圆锥体积与圆柱体积的比是多少?
【例2】如图,ABCD是直角梯形(单位:厘米,),
(1)以AB为轴并将梯形绕这个轴旋转一周,得到一个旋转体,它的体积是多少?
(2)如果以CD为轴,并将梯形绕这个轴旋转一周,得到的旋转体体积是多少?
【例3】下图是一块长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积。

【例4】张大爷去年用长2米、宽1米的长方形苇席围成容积最大的圆柱形粮囤.今年改
用长3米宽2米的长方形苇席围成容积最大的圆柱形的粮囤.问:今年粮囤的容积是去年粮囤容积的多少倍?
【例5】一个正方体的纸盒中,恰好能放入一个体积6.28立方厘米圆柱体,纸盒的容积有多大?(圆周率=3.14)。

【例6】如右图所示,圆锥形容器内装的水正好是它容积的,水面高度是容器高度的几分之几?
【例7】一个容积为1064立方厘米的瓶子,瓶子中饮料高度h1为15厘米,图中h2为6厘米,求瓶中有多少立方厘米的饮料?
【例8】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,水深8厘米。

现将一个底面
积是16平方厘米的长方体铁块竖放在水中后,仍有一部分铁块露在外面。

现在水深多少厘米?
作业
1.下图是由19个边长都是2厘米的立方体堆积而成的,求这个
立体图形的表面积?
2.一个正方体木块,将它削成一个最大的圆柱体,这个圆柱体的侧面积是314平方厘米,那么原来正方体的表面积是多少平方厘米?
3.如图,有一种瓶深为24Cm的塑料瓶,瓶身呈圆柱形(不包括瓶
颈),现在瓶中装有一些水,正放时水高16cm,倒放时水高20cm,
若水的体积是32cm3,则瓶子的容积是: cm3。

4.一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米。

在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块。

这时水面高多少厘米?
5.如图,圆锥形容器中装有3升水,水面高度正好是圆锥高度的一半,这个容器还能装多少水?
6.如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下侧面的洞口是直径为4厘米的圆,求此立体图形的体积.。

相关文档
最新文档