冷却水塔之节水策略
炼化企业循环冷却水系统节水技术

炼化企业循环冷却水系统节水技术随着全球水资源日益紧张,节水已成为大多数工业企业的重要课题。
炼化企业作为大型水耗企业之一,其循环冷却水系统的节水技术显得尤为重要。
循环冷却水系统是炼化企业生产中不可或缺的环节,同时也是用水最为密集的环节之一。
如何在保证生产正常运行的前提下,减少冷却水的使用量,成为了炼化企业亟待解决的问题。
本文将从技术和管理两方面来探讨炼化企业循环冷却水系统的节水技术。
一、技术创新1. 高效冷却塔传统的冷却塔通常存在着冷却效率低、水量大的问题。
而采用高效冷却塔技术可以有效提高冷却效率,降低水的使用量。
高效冷却塔利用先进的膜材料和流体力学设计,可以将冷却水的温度降低至更低的水平,从而减少水的使用量。
高效冷却塔还能够降低能耗,提高设备的稳定性和可靠性。
2. 智能化控制系统传统的冷却水系统多采用人工控制,存在着控制精度低、能耗高的问题。
而引入智能化控制系统可以实现对冷却水系统的全面监控和精细调控,从而实现节水的目的。
智能化控制系统可以通过传感器实时监测水温、水压等参数,并根据实时数据对设备进行智能控制。
这样不仅可以提高冷却效率,降低水的使用量,还可以降低能耗,延长设备寿命,改善生产环境。
3. 循环水系统循环水系统是一种将废水进行处理后再利用的技术,可以有效减少水的浪费。
炼化企业可以将生产过程中的冷却水进行处理,将其中的杂质和有害物质去除后再进行循环利用。
这样既可以减少对地下水和自来水的需求,还可以减少对环境的污染。
循环水系统的建设需要配备相应的处理设备和管网,但长期来看,循环水系统的节水效果和经济效益是非常显著的。
二、管理创新1. 完善的节水管理制度作为水耗大户的炼化企业,应当制定完善的节水管理制度,建立明确的节水目标和责任制。
各个部门和岗位要明确自己在节水工作中的职责和义务,做到人人有责、时时有责。
应当配备专门的节水管理人员,负责节水工作的组织和协调工作。
2. 提高员工节水意识企业应当通过开展节水宣传教育活动,提高员工的节水意识。
冷却水塔之节水与节能的关连性

冷却水塔之节水与节能的关连性
冷却水塔运作过程的冷却循环水损失主要包括:蒸发损失(Evaporation)、排放损失(Bleed-off)及飞散损失(Drift)。
而损失的水量必须马上补入冷却水塔中,这种水被称为补充水(Make-up Water),以确保系统设备可以安全稳定地运转操作。
补充水量(M)等于蒸发(E)、排放(B)及飞散损失(D)的总和。
其关系式为:
M= E + B +D。
若要力行珍惜水资源,减少冷却水塔之耗水量,就必须减少补充水量(M)的消耗。
然而每座冷却水塔的蒸发(E)及飞散损失(D)皆有一定之消耗量,此消耗量并无法改变,唯一可以改变的,就只有减少排放损失量(B),因此排放损失(B)越少,补充水量(M)就越少。
水体在散热蒸发的过程中,水中的溶解性固体(TDS)并没有伴随水分子(H 2O)的蒸发而一起被蒸发,虽然有持续注入补充水,但系统中溶解性固体(TDS)的浓度却持续的增高,因此若冷却水塔无任何排放损失(B),当循环水质之LSI(蓝氏饱和指数)>1 时,TDS将被析出呈现固态,并在冷却水塔的系统内附着,即是所谓的结垢(scaling),这将造成整个系统热传效率的降低并引发耗能。
例如:一般水冷离心式冷凝器的主机未发生结垢时,主机满载耗能率为0. 69 kw/RT;随着结垢系数上升(scaling factor),热交换效率降低, 1 年内主机耗能率将递增为0. 89 kw/RT。
冷却水塔因结垢引发额外消耗能源说明
中斜线之区域即为 1 年额外消耗之能源
所以冷却水塔的排放损失(B),不能完全零排放,但如何将排放量降至最低,且不引发结垢耗能,达到节水与节能兼顾的双赢局面,这都必须依赖适切的节水技术予以因应。
冷却水塔之节水策略

冷却水塔之节水策略冷却水塔的节水策略一直是工业企业和厂房运营者关注的重点之一、使用节水策略可以减少水资源的浪费,降低运营成本,并对环境产生积极影响。
在本文中,我们将介绍几种常见的冷却水塔节水策略。
1.增加冷却水塔的循环率:冷却水塔的循环率是指循环水量与进水量的比例。
增加循环率可以减少冷却水的消耗量。
在实际操作中,可以通过调整水泵流量和阀门开度来实现。
增加循环率时需要注意控制冷却水的温度,以保证冷却效果不受影响。
2.定期清洗水塔和设备:冷却水塔的水石化是导致水塔效果下降的主要原因之一、定期清洗水塔和设备可以防止水石化的发生,并保持水塔的长期运行效果。
清洗过程中可以使用环保清洗剂,避免对环境造成污染。
3.优化水质处理系统:水质处理系统对冷却水塔的运行稳定性和节水效果有着重要影响。
优化水质处理系统可以提高水质的稳定性,减少化学药剂的使用量。
例如,可以安装过滤器和隔膜等设备来去除水中的悬浮物和杂质。
4.使用高效节水设备:冷却水塔的运行中有许多设备可以替代以提高节水效果。
例如,使用高效节水冷却塔填料和风机可以有效降低冷却水的消耗量。
同时,使用节水型冷却水泵和节水型冷却水处理设备也能够有效减少水的消耗。
5.监测和调整运行参数:冷却水塔的运行参数对其节水效果有着直接的影响。
运营者可以通过监测水塔的流量、温度和压力等参数来及时调整运行参数,并保持水塔的高效稳定运行。
6.进行定期检查和维护:对冷却水塔进行定期检查和维护可以发现问题并及时解决,确保设备的正常运行。
检查过程中可以注意观察水塔周围是否有漏水现象,并检查设备是否存在损坏或堵塞等情况。
7.多级冷却系统:多级冷却系统可以有效减少冷却水的消耗。
在多级冷却系统中,冷却水可以进行隔热和预冷却处理,提高热能的回收利用效率。
总之,冷却水塔的节水策略是一个综合性的工作,需要从各个角度进行考虑和实施。
通过采取上述策略,可以减少水资源的浪费,提高水的利用效率,并为实现可持续发展目标做出贡献。
供应火力发电厂冷却塔节能节水节煤技术(三篇)

供应火力发电厂冷却塔节能节水节煤技术火力发电厂冷却塔是利用水蒸气冷凝将热量散发到大气中,并将蒸汽转化为液体水的设备。
火力发电中,冷却塔的运行对电厂的发电效率、节能和环境保护非常重要。
因此,研究和应用冷却塔的节能、节水和节煤技术,不仅可以提高电厂的运行效率,还能减少资源消耗和环境污染。
一、冷却塔的节能技术1. 优化冷却水循环系统:通过优化冷却水的循环系统,可以减少冷却水的流量和泄漏,从而减少冷却水的能耗。
常用的优化措施包括安装冷却塔侧泄漏控制装置、增加管道绝热材料、改善冷却水管道布置等。
2. 采用低温排气系统:火力发电厂的冷却塔通常会有一个排气系统,将出口的水蒸气冷凝为水。
采用低温排气系统可以减少冷却塔的排气热量损失,提高系统的热利用效率。
3. 使用高效传热设备:冷却塔中的传热设备包括冷却器、冷凝器和换热器等。
选择和使用高效传热设备可以提高传热效率,减少能源消耗。
4. 优化冷却水质量:冷却塔的运行中会产生一些污垢和沉淀物,降低传热效率。
经常清理和维护冷却塔设备,保持冷却水的清洁和水质稳定,对于节能非常重要。
二、冷却塔的节水技术1. 循环冷却水系统:火力发电厂冷却塔通常采用循环冷却水系统,可以将用过的冷却水回收再利用,减少了用水量的消耗。
2. 喷淋系统的优化:冷却塔的喷淋系统是冷却塔用水的主要部分。
通过优化喷淋系统的设计和控制,可以减少用水量的消耗。
例如,使用高效喷嘴和自动控制系统,根据实际需要调节喷淋水量等。
3. 使用节水设备:在冷却塔的运行中,可以采用一些节水设备,如安装节水阀、回收冷却水等,减少用水量的消耗。
4. 减少漏水和泄漏:冷却塔系统中的漏水和泄漏会导致用水量的浪费。
定期检查和维护冷却塔设备,修复漏水和泄漏问题,对于节水非常重要。
三、冷却塔的节煤技术1. 提高锅炉热效率:火力发电厂的冷却塔与锅炉系统息息相关。
提高锅炉热效率可以降低燃煤量的消耗。
常用的提高锅炉热效率的方法包括增加汽水分离器面积、优化燃烧系统、采用余热回收装置等。
冷却用水节水措施

冷却用水节水措施功能:工业生产中,为吸收或转移生产设备及制品多余热量,维持正常温度下工作所用之水循环操作概述:冷却用水在与目标物完成热交换平衡后,进入冷却水塔中,藉由水的蒸发逸散,达到降温之目的冷却水塔补水量= 蒸散量+ 排水量+ 飞散损失蒸散量计算(经验式)蒸散量= 0.0014 ×循环用水量×温度差(o C) 或蒸散量= 0.0085 ×循环用水量* 蒸散量与循环用水量单位相同冷却用水节水策略●使用洁净替代水源制程后段清洗用水、RO浓缩水以及贮留雨水等●提升冷却用水循环次数增加浓缩倍数●冷却水塔排放水再生循环再利用冷却水塔管理问题冷却用水因蒸发及飞散,导致水中盐类持续被浓缩,当达一定值即会产生结垢、腐蚀等现象,或因持续暴露于空气中,而有微生物生长、藻类孳生情形,影响冷却水塔运作效能●冷却用水水质指标结垢:钙、镁离子、二氧化硅等盐垢物质腐蚀:硫酸盐、氯离子等盐类物质●浓缩倍数排放水比导电度/进流水比导电度,合理范围3~6蓝氏饱和指数(Langelier Saturation Index,LSI)稳定指数(Ryznar Stability Index,RSI)LSI =pH-pHs =pH-(9.3+A+B-C-D)RSI=2pHs-pHpHs:水中饱和时pH值A:总溶解固体物(mg/L)B:水温(oC)C:钙离子浓度(mg/L as CaCO3)D:碱度(mg/L as CaCO3)LSI<0、RSI>7,腐蚀倾向,LSI<-2,严重腐蚀LSI>0、RSI<7,结垢倾向,LSI>2,严重结垢LSI=0、RSI=7,水质稳定,-0.5<LSI<0.5,理想●状态微生物孳生:有机物、优养化物质、微生物。
浅析某大厦冷却水系统节水、补水措施

浅析某大厦冷却水系统节水、补水措施发布时间:2021-07-08T14:16:15.073Z 来源:《建筑实践》2021年第7期(上)作者:谢雪雪[导读] 在水资源日益短缺,环保意识不断增强的背景下,建筑节水越来越被重视。
谢雪雪广东省建筑设计研究院有限公司广东广州 510010在水资源日益短缺,环保意识不断增强的背景下,建筑节水越来越被重视。
冷却塔补水作为建筑总用水量的大户,占建筑总用水量的30%以上,对节水方案的制定影响很大。
冷却塔补水量由飘逸损失、蒸发损失、排污损失及泄露损失四部分组成,本次仅从泄露损失部分着手分析。
根据本项目的工程实际情况,对冷却水系统管路进行分析优化,制定冷却水系统的节水措施。
1 工程概况本项目位于深圳市南山区留仙洞总部基地与西丽大学城创新区之间,为一类高层公共建筑,由一栋超高层产业研发用房、裙房产业配套用房、公交站、110kV变电站组成的综合性建筑,项目绿建星级为深标银级。
总建筑面积197372平米,地下三层,地上1栋56层塔楼,建筑高度247.4米。
项目冷源采用冰蓄冷,包括3台双工况水冷离心冷水机组、2台基载水冷螺杆冷水机组,冷却塔与主机对应组合设置,共设置有6台冷却水量为400m3/h+2台冷却水量为350m3/h的横流式不锈钢塔,冷源系统如下图:图1中央系统原理图2 问题分析根据空调设计日100%负荷的分配策略,从夜里23:00到次日早上6:00,为系统的蓄冰时间,此时双工况主机全部开启满负荷运行,对应6台400m3/h水量的冷却塔满荷载运行;白天从早上7:00~22:00,大厦冷源由基载主机、双工况主机及系统融冰结合提供,即非蓄冰时段系统的设备都是在部分负荷运行,整个系统会根据自控系统的检测与计算进行停开机。
在部分负荷时,冷却塔会出现部分溢水,部分补水的现象,本文先从末端两台塔并联的情况开始分析,从而推断出整个系统多台塔并联会出现的问题。
2.1单塔运行时的溢水、补水现象如图2中所示,H0为水盘设计水位高度,H0为设计水位到溢流孔的高度。
冷却水塔怎样节水的原理

冷却水塔怎样节水的原理
冷却水塔节水的主要原理是通过循环利用和减少水的流失来实现节水的目的。
具体原理如下:
1. 循环利用:冷却水塔通过循环水系统将冷却水循环使用,将热水循环回冷却塔,经过冷却后再次用于冷却设备,实现水的循环利用。
这种方式可以减少水的消耗,节约用水。
2. 冷却效率的提高:冷却塔在进行冷却过程中,会通过风机将热水暴露在大面积的空气中,利用蒸发散热原理将热量带走。
这种蒸发带走的热量不需要水源,相比传统冷却方式,可以有效降低水的需求量。
3. 水的回收利用:冷却塔在冷却过程中,会产生一部分水蒸气和冷凝水。
这些水蒸气和冷凝水可以通过收集和回收利用,用于其他用水环节,如冷却塔的补水、工艺用水等,从而达到节约用水的目的。
4. 优化设计:冷却水塔可以通过系统优化和设备改进等措施,来减少水的损失。
例如,可以通过提高冷却器内部填料的密度和表面积,优化空气流通,提高蒸发散热效果,减少水的流失。
综上所述,冷却水塔通过循环利用、提高冷却效率、回收利用和优化设计等手段来实现节水的目的。
这些措施可以减少水的流失,达到节约用水的效果。
闭式冷却塔节水原理

闭式冷却塔节水原理
闭式冷却塔是利用空气对循环冷却水进行热交换,实现冷却的设备。
其节水原理如下:
1. 循环冷却水通过散热器(冷却塔)流动,将热交给空气。
在这个过程中,冷却水会发生部分蒸发,将水中的热量带走。
2. 通过排气系统排除冷却水中蒸发的水蒸气,以保持稳定的水位。
3. 冷却塔内的空气流动会带走一部分水蒸气,减少了与外界的直接热交换。
这样可以降低外部环境对冷却系统的热污染,减少了冷却系统对外部水源的依赖。
4. 在闭式冷却系统中,通过适当的水处理和循环水过滤系统,可以降低腐蚀和沉积物的产生,延长循环水的使用寿命。
5. 在一些闭式冷却系统中,可以采用再生式冷却水处理技术,对循环水进行净化,去除溶解物和微生物,从而实现循环水的再利用,进一步节约水资源。
总之,闭式冷却塔通过利用空气对循环冷却水进行热交换和水蒸气排放,减少了对外部水源的需求,实现了对水资源的节约。
供应火力发电厂冷却塔节能节水节煤技术范文(二篇)

供应火力发电厂冷却塔节能节水节煤技术范文火力发电厂冷却塔在电力行业起着至关重要的作用,它负责将发电机组产生的热量通过冷却水的循环进行散热,从而保证发电机组的稳定运行。
然而,冷却塔的运行过程中存在着能源浪费和水资源的消耗问题,为了解决这些问题,我们需要采取一系列的节能节水措施,以减少能源消耗,提高资源利用率,达到可持续发展的目标。
首先,可以通过优化冷却塔的设计来实现节能节水。
在冷却塔的设计中,应考虑到适当的冷却效果和循环水的流量。
合理设计的冷却塔能够充分利用冷却水的循环,减少能源的消耗。
另外,在冷却塔的材料选择上,应优先选择具有良好导热性能和耐腐蚀性能的材料,以降低冷却系统的能耗和维护成本。
其次,可以通过改进冷却塔的控制系统来实现节能节水。
现代化的冷却塔控制系统能够准确地监测和调节冷却水的流量和温度,从而达到最佳的冷却效果。
通过安装温度传感器和流量计等设备,可以实时监测冷却水的温度和流量,并根据实际热负荷的变化进行调节,以减少无效循环和能源的浪费。
另外,在供水系统中,可以采用自动化控制技术,根据供需变化实时调节供水量,从而降低水资源的消耗。
此外,还可以通过改进冷却塔的散热方式来实现节能节水。
传统的冷却塔主要采用水循环散热的方式,但这种方式存在着大量的水资源浪费。
因此,可以考虑采用干式冷却技术来替代传统的水循环散热方式。
干式冷却塔利用空气对散热器的冷却作用,将发电机组产生的热量通过空气传导和对流散发,从而减少了对水资源的消耗。
虽然干式冷却塔的散热效果略低于水循环散热方式,但在节约水资源方面具有明显的优势。
最后,还可以通过加强冷却塔的维护和管理来实现节能节水。
定期维护和清洗冷却塔,保持冷却水的清洁和流畅,可以提高冷却效果,减少水资源的浪费。
另外,进行冷却塔的热效益评估和能源消耗监测,及时发现问题并采取措施,以提高能源的利用效率和节能效果。
综上所述,火力发电厂冷却塔的节能节水工作是实现可持续发展的重要内容。
冷却塔节水改造工程方案

冷却塔节水改造工程方案一、节水改造目标冷却塔节水改造的主要目标是降低水资源消耗,提高冷却效率,减少对环境的影响。
具体的改造目标包括:1. 减少冷却塔的补水量,降低系统的水消耗。
2. 提高冷却效率,减少能耗和排放。
3. 减少水处理剂的使用量,降低化学品对环境的影响。
4. 提高设备的可靠性和稳定性,延长设备的使用寿命。
二、改造工程方案1. 水处理系统改造水处理系统是冷却塔的重要组成部分,对冷却水进行处理可以减少水质的波动,提高冷却效率。
因此,首先要对水处理系统进行改造。
具体措施包括:(1)增加自动控制装置,实现自动调节水质和水位,提高系统的稳定性和控制精度。
(2)优化水处理工艺,采用高效的除垢和除锈设备,降低水质的波动和水处理剂的用量。
(3)加强水质监测和管理,建立完善的水质监测体系,及时发现问题并进行处理。
2. 冷却塔结构改造冷却塔的结构设计直接影响着其冷却效率和水资源的消耗。
因此,对冷却塔的结构进行改造也是节水改造的重要内容。
具体措施包括:(1)提高冷却塔的传热效率,采用高效的填料和喷淋装置,减少冷却水的消耗。
(2)优化冷却塔的风道设计,调整风速和风压,降低风能损失。
(3)增加冷却塔的防腐蚀措施,延长设备的使用寿命,减少漏水和损坏。
3. 系统运行优化冷却塔的运行优化是节水改造的关键,通过合理的运行管理和优化控制,可以有效地降低水资源消耗。
具体措施包括:(1)优化循环水系统,采用闭路循环系统,减少系统的补水量。
(2)合理安排设备的运行周期,根据实际需求进行设备开启和关闭,降低不必要的能耗和水消耗。
(3)加强系统的自动监控和远程管理,实现远程监控和智能控制,提高系统的运行效率和稳定性。
三、改造效果评估改造工程完成后,需要对改造效果进行评估,验证改造措施的有效性,确保改造工程达到预期的节水效果。
具体评估内容包括:1. 冷却水消耗量的监测和统计,比较改造前后的水消耗情况,评估改造效果。
2. 冷却效果的评估,通过测定冷却水的温度和冷却效率,验证改造的效果。
冷却水塔之节水策略

低冷卻水塔的使用效能,所以在除了入風口網所擁有
阻文件水滴濺出之功能外,也必須考慮空氣所流過之
波浪間隙大小,風扇馬達之馬力等之調配。
冷卻水塔入風口網圖示
結論與建議
排放量減少之方法
砂濾設備之反沖洗水,改用系統之排放水取代原水。 排放水進行廢水再利用,節省用水降低廢水量。
工程、清潔、消防之公用站及非人身用水,改由排放之冷 卻水供應,達到廢水回收再利用。 冷卻水濃縮倍數由5倍提升至7倍,以降低排放量。
冷卻水塔的流程
• 冷卻水塔冷卻後之低溫(32℃)冷卻水→冷卻水泵浦 →配管至各制程系統行顯熱之熱交換→(高溫冷卻
水)回流至冷卻水塔之分配管/噴嘴形成小水滴→流
經散熱材與風扇所吸入之冷空氣進行顯熱及潛熱之 熱交換→(低溫冷卻水) 冷卻水水池→冷卻水泵浦
再泵送至各制程系統形成一迴圈回路。
冷卻水塔種類
為控制,故只能任由外氣蒸發其散失量。
注:(蒸發潛熱597.3卡/克 )
飛濺損失 (drift loss)
尚未經過冷卻,溫度較高的迴圈水,由PUMP加壓送至水塔頂端
灑水器後,被灑落至填充材上進行冷卻。由灑水器落至填充材這段
過程中,部份體積較細小水滴,可能會被塔內向上流過空氣攜帶出 塔,形成飛散損失。根據統計,一般慣用之冷卻水塔因採用灑水結 構方式,其損失量約為總用水量之0.2%~0.3% 。
建議
由於高科技廠冷卻水塔之補水水源部份為純水系統之中膜處理設備
之濃縮水,因此補水的導電度值約為30~50us/cm,在blow down 導 電度控制1000us/cm的情況下,濃縮倍數就已經高達20倍,雖已達
成節水控制之4~5倍要求,但實紀上仍有往上提升空間。
根據國內各高科技廠94年度調查, blow down大部份皆控制在 1000~1600us/cm甚至有些廠未做控制。 一般建議 blow down 導電度可控制在1800~2400us/cm左右。 除了控制濃縮倍數外,仍應考慮控制blow down適當之節水操作標
火力发电厂冷却塔节能节水技术

火力发电厂冷却塔节能节水技术高效雾化降温降低蒸发损耗装置一、技术背景冷却塔是能源动力及化工等领域的重要传热传质设备,其作用是将排出生产工艺流程的废热,通过使循环冷却水在塔内进行传热传质过程,将循环冷却水的温度降低。
循环水在冷却塔中以传热和蒸发两种方式与空气进行热交换,传热即直接将循环水的热量传递给空气使其的温度升高;而蒸发是通过循环水向空气中的蒸发使空气湿度增大,称为潜热传递方式。
由于空气在冷却塔中的温度升高,且蒸发饱和压力随其温度增高而增大,而冷却塔出口即为饱和湿空气,因此潜热占总热量传递的份额相当大,对火电厂的大型自然循环冷却塔而言冬天潜热占50%左右,而夏天潜热则占70%以上。
这种换热方式导致了大量的蒸发水量损失。
然而淡水资源短缺是当前世界面临的重要问题。
火电企业是耗水大户,目前普遍采用的常规湿冷系统的冷却塔在冷却循环水的同时通过蒸发向环境排出大量的水分,以300MW机组为例,每年通过冷却塔消耗的淡水量在500万吨左右。
二、冷却塔的工作原理冷却塔是指在塔内将热水喷洒到淋水填料上形成水滴或水膜,自上而下地与从下向上流动的具有吸热能力的冷空气进行对流传热,并利用水的蒸发扩散作用带走水中热量的冷却设备。
这种冷却设备主要为湿式冷却塔。
湿式冷却塔又以抽风式逆流冷却塔型式为主。
在设计冷却塔时,为了减少水量损失,一般设有节水装置收水器。
它是由一排或多排倾斜的板条或弧形叶板组成,布置在整个塔断面上,作用是阻拦热水与填料碰撞形成散溅的小水滴。
小水滴夹杂在上升的湿热空气中,因突然改变方向,被截留下来。
这种节水装置对湿热空气中的水蒸汽基本不起作用。
冷却塔的设计是根据水的蒸发原理进行的,是以蒸发扩散带出热量为前提。
蒸发损失是为完成水的冷却而必须蒸发的水量。
因此,根据冷却塔理论,为达到一定的冷却效果,应尽可能增大蒸发量。
三、冷却塔蒸发水损耗由于冷却塔的这种工作原理致使大量的水被蒸发,损失相当大。
按照冷却塔理论设计的蒸发损失率占总循环水量的百分数计算,三天时间即可将循环量蒸发掉。
冷却塔节水措施(一)

冷却塔节水措施(一)冷却塔节水措施引言随着能源和水资源的短缺,冷却塔节水已经成为提高能源利用效率的重要举措之一。
本文将详细介绍一些可以采取的冷却塔节水措施。
节水措施一:优化冷却塔设计•选择高效节能的冷却塔设备,如交叉流型和逆流型冷却塔,在相同冷却效果的情况下,能够减少水的消耗。
•设计合理的冷却塔大小,根据需要进行定制,避免过度设计浪费水资源。
节水措施二:优化冷却塔操作•定期检查和清洗冷却塔,确保其正常运行,减少堵塞和阻力,提高传热效率,以减少额外的水流动。
•设置合理的冷却水循环周期,根据不同的使用需求和环境条件,合理调整循环周期,以减少不必要的水排放。
节水措施三:采用节水装置•安装节水冷却喷淋系统,通过喷淋嘴的优化设计和微粒化技术,可以降低水的消耗量,同时保证冷却效果。
•安装冷却水回收系统,将排放的冷却水进行回收再利用,达到节约水资源的目的。
节水措施四:使用水处理技术•使用水质监测和控制系统,实时监测冷却水的水质,并根据需要进行适当处理,以延长水的使用寿命,减少水的浪费。
•采用水回收和再生利用技术,对冷却水进行处理和净化,可以减少新水的投入,降低水资源消耗。
节水措施五:加强管理与培训•定期开展冷却塔设备管理培训,提高操作人员的技能和意识,确保冷却塔设备的正确运行和维护。
•建立完善的冷却塔节水管理制度和监测系统,通过数据分析和评估,及时发现和解决问题,进一步降低冷却塔的水消耗。
结论通过上述多种节水措施的综合应用,冷却塔的水使用量可以大幅减少,达到节约水资源的目的。
同时,还有助于提高能源利用效率,减少环境污染,保护生态环境的可持续发展。
创造节水型冷却塔是我们每个人的责任和使命,为了人类的未来,让我们共同努力。
节水措施一:优化冷却塔设计•选择高效节能冷却塔设备,如交叉流型和逆流型冷却塔。
•设计合理的冷却塔大小,避免过度设计浪费水资源。
节水措施二:优化冷却塔操作•定期检查和清洗冷却塔,提高传热效率,减少额外的水流动。
冷却水塔之节水策略

冷却水塔之节水策略节水是一项重要的环保任务,对于冷却水塔来说也是如此。
冷却水塔的主要作用是降低工业生产中设备的温度,保持生产过程的稳定性。
而冷却水的大量使用也造成了许多的水资源浪费。
为了解决冷却水塔的节水问题,采取以下策略可以有效减少水的使用量。
首先,可以进行循环利用冷却水。
在冷却水塔的循环过程中,一部分水会蒸发,另一部分通过排放方式进行更新。
这样不断地排放和重新补充冷却水会导致大量的水资源浪费。
因此,可以采用循环利用的方法,将排放的冷却水进行处理后再次回流到冷却水塔内。
通过使用适当的过滤、净化系统来去除冷却水中的杂质和污染物,可以有效地减少冷却水的消耗。
其次,可以采用节水型设备和技术。
冷却水塔的节水策略还可以通过使用节水型设备和技术来实现。
例如,可以安装高效节能的冷却水泵,降低能耗的同时也减少了对冷却水的需求。
此外,在冷却水循环系统中可以采用一些先进的控制技术,如自动化控制系统,实时监测和调控水温、水流等参数,以达到更加合理的水资源利用效果。
第三,可以进行冷却水系统的优化。
冷却水系统的优化可以通过多个方面的措施来实现。
首先,可以进行冷却水的循环处理,将之前的冷却水过滤和净化后再次利用。
其次,可以进行水泵和管道系统的检修和维护,确保其运行状态良好,减少漏水和损耗。
最后,可以对冷却水系统的工艺流程进行优化,降低对冷却水的需求量。
另外,冷却水系统的节水策略还可以通过员工的教育和意识提高来实施。
员工的意识和行为对于节水的效果起着重要的作用。
通过对员工进行节水知识的普及和培训,增强他们对节水的认识和重视,提高他们的节水意识和行为习惯。
此外,在工厂中可以设立节水奖励机制,激励员工积极参与节水活动。
总之,冷却水塔的节水策略主要包括循环利用冷却水、采用节水型设备和技术、进行冷却水系统的优化以及员工教育和意识提高。
这些策略的实施可以显著减少冷却水的使用量,达到节约资源和保护环境的目的。
在未来的工业生产中,我们应当将节水作为重要的环保任务来推广和实施,以实现可持续发展的目标。
冷却塔的节水技术

冷却塔的节水技术本文简要介绍了空调设备系统的节水冷却技术,介绍了冷却技术涉及的三方面问题和解决方案:冷却水的水处理、喷淋和集水管路(含平衡管)设计、水的消耗控制。
标签:冷却塔技术;空调;处理节水冷却技术涉及到三个方面的问题:1 冷却水的水处理冷却塔的水处理必须采用适当的水处理方式。
在许多情况下,采用简单的适量放空或定时放空排放装置就足以控制结垢和腐蚀现象。
采用生物杀灭剂(消毒杀菌剂)即可控制生物性的污染物。
旁流自动反冲洗砂滤器主要用于去除水中的悬浮物,这种物理方法不会对设备产生腐蚀。
不论采用何种水处理方式,循环水的PH值和处理方法必须与冷却塔的制造材质兼容。
对于采取镀锌钢结构的冷却塔,不推荐采用将药物整批注入的方式,慎用自动加药设备。
2 喷淋和集水管路(含平衡管)设计合理的产品和设计能避免运行时不平衡满溢和停泵泄水(启泵补水);运行时水位不平衡满溢主要是冷却塔进出水阀门开度、水压不等造成,加大集水盘、设置平衡管或平衡水箱的方式都是有效的。
平衡管主要通过塔间水位差压的作用补充塔间进出水量的不平衡;通常,平衡管的设计主要依靠经验偏安全选取管径。
设计平衡管时考虑冷却塔及平衡水箱储水量的同时还要考虑集水深度、出水方式(底出水或水平出水)及配置那种防漩涡装置,平衡管的工作压差受限于集水深度和允许的水位下限。
减少冷却塔模块单元数量、避免多列远距布置能缩短集水盘水平距离,能有效减少平衡管需平衡的水流量,降低塔间水位差避免运行时水位不平衡满溢。
尽量采用冷却水管并联系统,可方便日常运行时对部分停止运行的塔组进行维护清洗工作。
根据经验,合理布置管路时,冷却塔集水量在循环水量20-30S时能避免在水泵启动时抽空;横流塔内水回流需增加集水量约20%的回流存水量,逆流塔内水回流需增加约10%的回流存水量;塔外高位管路水回流和运行时集水盘水位存在高差等因素需考虑更多的适当余量;最大设计存水量(至满溢水位)达≥循环水量50S时是合理也足够的。
供应火力发电厂冷却塔节能节水节煤技术(二篇)

供应火力发电厂冷却塔节能节水节煤技术21世纪是人类社会空前发展的时代,也是全球水资源供求矛盾空前尖锐的时代。
因此,缺水将是本世纪经济可持续发展的重要制约条件。
火力发电厂作为工业耗水大户,对水的消费是可观的。
发电厂需要大量的冷却水,其供水系统主要有直流供水和循环供水两大类。
但随着用水的紧缺和节约用水政策的实施,循环供水已经成为大部分火力发电厂的供水方式,循环水的冷却方式可分为冷却塔冷却和冷池冷却,对于采用循环冷却的火电厂来说,循环冷却水的消耗量占电厂总消耗水量的比例很大,约为电厂总耗水量的70%,对电厂的节水起着决定的作用。
通常状况下,火力发电厂冷却塔的循环水因蒸发原因损耗总水量的1.2%-1.6%,风吹损耗小于0.5%,排污损耗为1%左右。
也就是说,因蒸发原因所消耗的水量占电厂总消耗水量的30%-55%。
火力发电厂循环水冷却节水的主要措施是选用高效率的冷却塔以降低水温,应用先进的水质稳定处理技术保证水质和采用科学的管理方法以提高设备效率。
但是,循环冷却水由于蒸发、风吹、排污等原因损耗很大,是火力发电厂水耗居高不下的主要原因。
降低上述损耗的难度较大。
目前的火力发电厂的节水都是针对风吹损耗和排污损耗做的工作。
对于风吹损耗,一般采用加装高效收水器等措施来减少风吹损耗的;对于排污损耗,一般通过提高循环冷却水的浓缩倍率来减少排污损耗。
尽管在国家政策的鼓励下,各种节水方案不断出现,但对于火力发电厂循环冷却水处理,仍然局限在风吹和排污的研究开发,尤其是在提高循环冷却水浓缩倍率方面。
而对于蒸发水耗,由于技术方面和认识方面的原因,从来没有引起人民的重视,尚未找到解决的方法,从而导致火力发电厂的蒸发水白白地损耗掉。
据国家电力部门的用水报告,全国火力发电厂由于蒸发原因损耗水量约为20亿m3。
可见蒸发水损耗的浪费是惊人的。
我公司引进开发的发电厂冷却塔节能节水动力涡流技术。
已在很多电厂应用,经济效益非常显著,在世界各国进行广泛推广,并引起了许多西方国家能源专家的关注。
冷却塔之节水策略

逆流型(counter flow type)
各型式分类示意图
RANGE AND APPROACH
冷却水塔, 理论上可将循环水冷却到接近入塔空气的湿球温度,但它
也是为循环水能够被冷却的温度最低下限,所以水塔的APPROACH越小代 表冷确能力越高,初制成本也提升。
冷却水塔是利用蒸发一部分的水,将冷却用水温度降低 ,以便循环再利用,所以使用冷却水塔必然会消耗一定量的 水。然而水塔的实际耗水量,往往大于维持散热所需,当水 塔數多而且量大时,这些额外的耗水量累积起來就可能成为
一项重要的水资源开销,并且建立有效的排放管理制度及 排放的时程可以于长时间的运转之下发挥最大的省水效应。
2.水面槽距缘高度集水巣周长
3.水落在水面位置是否接近巣缘 4.入风口网形状
为了满足影响溅洒损失因素可于冷却水塔之空气入口处
加装入风口网,其本意在防止落夜灰尘,垃圾等杂物进入塔内 影响冷却水循环,同时也可减少水滴溅洒出塔外,但在常 其缺乏维修,保养之下会大大降低冷却水塔的使用效能 ,所以在除了入风口网所拥有阻文件水滴溅出之功能外,也 必须考虑空气所流过之波浪间隙大小,风扇马达之马力等 之调配。
冷却水塔的流程
• 冷却水塔冷却后之低温(32℃)冷却水→冷却水泵浦→配管 至各制程系统行显热之热交换→(高温冷却水)回流至冷 却水塔之分配管/喷嘴形成小水滴→流经散热材与风扇所 吸入之冷空气进行显热及潜热之热交换→(低温冷却 水) 冷却水水池→冷却水泵浦再泵送至各制程系统形成一循
环回路。
冷却水塔种類
(inertia)或冲击,将空气流中之水滴抓下來。加装5折式档水板做液气分离, 除了防
尘之外,水飞溅损 可由0.2%~0.3%降至0.001%~0.009%(视喷洒压力) 。较传统水塔 减少90% 。冷却水塔风车转速变慢,亦可减少飞溅损失。
冷却塔消雾节水改造方案

1#135MW汽轮发电机组冷却塔消雾改造方案一、冷却塔消雾改造的重要性在机械通风冷却塔内冷空气冷却循环水的过程中,冷空气经过冷却塔内部和水热交换后变成了饱和的湿热空气。
在北方寒冷地区,机械通风冷却塔在冬季运行时,饱和的湿热空气排出塔外与冷空气混合,由于冷却和凝缩形成含有许多微小液粒群的雾团。
由于目前环保要求的提高,对冷却塔的相关要求也相应的提高。
因机械通风冷却塔高度较低,雾团飘散影响了周边居民区及交通道路的可见度,破坏了城市的环境,造成下风地区的湿度上升,羽雾落在地面造成冷却塔周围路面湿滑或结冰,影响了工厂的安全生产,对冷却塔周边生产设备安全运行造成影响,并且给周围交通带来了很大的安全隐患。
由于国家对环境要求日益严格,对开式冷却塔的羽雾减排提出了明确要求,随着人们对环境保护的日益重视,冷却塔消除羽雾也显得越来越重要。
二、冷却塔设计参数1#135MW发电系统有4台钢混结构逆流式冷却塔,单塔设计水量为5000m3/h,蒸发散热导致产生大量水资源浪费,冬季又产生大量的可视雾团,对企业经济和社会环境造成很大影响,主要技术参数如下表:三、冷却塔消雾改造技术方案(一)方案一:1、冷却塔消雾原理简介--空冷湿冷联合式节水消雾湿空气的饱和含湿量与湿空气的温度及压力有关,随着温度的降低,空气的饱和含湿量减小,湿空气中的水蒸气发生凝结。
在冷却塔内冷空气冷却循环水的过程中,冷空气经过冷却塔内部填料等区域,和水进行热交换后变成了饱和的湿热空气。
湿热空气从冷却塔中排出与大气混合,此过程的空气状态可用湿空气含湿图来表示,如下图所示(图中 B 为出填料的饱和湿热空气,A 点为大气状态)。
出冷却塔风筒出口的饱和湿热空气经过与环境空气混合,其状态渐渐接近于环境空气状态,即:出填料的饱和湿热空气状态 B 点和环境空气状态 A点为一直线,即得状态线。
在塔排气和大气的混合状态中,BA 线在等焓线上方,属于过饱和状态,故风筒出口外产生大量的羽雾。
火电厂干湿混合式冷却塔节能节水技术

火电厂干湿混合式冷却塔节能、节水技术火电厂干湿混合式冷却塔节能、节水技术节水在火电厂有着越来越重要的地位。
热力发电厂的排汽采用干湿混合是符合可持续发展战略的有前途的发电技术,在我国这项技术尚未得到人们的关注。
对电厂排汽采用干、湿混合进行了深入的研究,以便使干、湿混合其显著的节水性、科学的节能性及环保性能够在我国干旱缺水的北方地区得到应用。
使排汽冷却系统的配置更趋完善化、合理化。
水是人类社会生存和发展不可替代的资源,是经济社会可持续发展的基础。
当代人类生活水准同能量和淡水的消耗是息息相关的。
全球人口的剧增使能源和淡水消耗量难以估算。
我国将进入严重缺水期,水资源的严重短缺,将严重制约着经济发展。
为保证国民经济的可持续发展,合理使用淡水资源和有效节约淡水、保护现存珍贵的淡水资源,就是保护我们人类生存的必要条件。
为推动循环经济发展,建设资源节约型社会,火力发电厂高耗能、高耗水、粗放型经营越来越不适合经济发展的需要,做为用水大户之一的火力发电厂,其节水工作更应在科技力量的推进下走在社会的前列。
火力发电厂汽轮机组排汽冷却系统采用干湿混合冷却系统可推动节能降耗、节水工作的开展。
一、目前我国火电厂冷却系统工作现状分析节能、节水与环保将是我国火电发展的主题,源于水资源的紧迫性,缺水地区火电厂空冷技术已得到应用。
空冷以其显著的节水效果被人们所关注,空冷机组冷却系统本身可节水97%以上,全厂性节水约65%。
一般1m3/s的水可建设100万千瓦湿冷机组,而建设100万千瓦空冷机组只需0.35m3/s的水。
因此相同数量的水可建设的空冷机组规模比湿冷机组可建设的规模大三倍,这充分显示了空冷技术节水的优越性。
目前我国用于发电厂的冷却系统有二种:一种为空冷系统;另一种为湿冷系统。
空冷系统有三种形式:直接空冷系统、带表面式凝汽器的间接空冷系统(海勒式)和带喷射式(混合式)凝汽器的间接空冷系统(哈蒙式)。
直接空冷、(海勒式与哈蒙式间接空冷系统)虽然节水效果较好,但由于其高背压和现有冷却水塔冷却面积所限,夏季会造成出力的限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言
在高科技電子產業包括晶圓代工, IC半導體產業, TFTLCD…等產業廠中用水量大小除了取決於制程產量及產能利用 率之外,在公用空調系統中占全廠用水量的5%~20%,主要耗水 點則在SCRUBBER及COOLING TOWER水損失補水上,因此空調用 水為電子廠業之主要節水潛力。
低冷卻水塔的使用效能,所以在除了入風口網所擁有
阻文件水滴濺出之功能外,也必須考慮空氣所流過之
波浪間隙大小,風扇馬達之馬力等之調配。
冷卻水塔入風口網圖示
結論與建議
排放量減少之方法
砂濾設備之反沖洗水,改用系統之排放水取代原水。 排放水進行廢水再利用,節省用水降低廢水量。
工程、清潔、消防之公用站及非人身用水,改由排放之冷 卻水供應,達到廢水回收再利用。 冷卻水濃縮倍數由5倍提升至7倍,以降低排放量。
冷卻水塔在應用上約有以下幾種型式分類:
1.依通風方式可分: 自然通風式(natural draft type) 強制通風式(mechanical draft type) 2.依風扇位置可分: 吹入式(forced draft type) 吸入式(induced draft type) 3.依空氣與水流相對方向流可分: 交錯流(cross flow type) 逆流型(counter flow type)
建議
由於高科技廠冷卻水塔之補水水源部份為純水系統之中膜處理設備
之濃縮水,因此補水的導電度值約為30~50us/cm,在blow down 導 電度控制1000us/cm的情況下,濃縮倍數就已經高達20倍,雖已達
成節水控制之4~5倍要求,但實紀上仍有往上提升空間。
根據國內各高科技廠94年度調查, blow down大部份皆控制在 1000~1600us/cm甚至有些廠未做控制。 一般建議 blow down 導電度可控制在1800~2400us/cm左右。 除了控制濃縮倍數外,仍應考慮控制blow down適當之節水操作標
冷卻水塔的流程
• 冷卻水塔冷卻後之低溫(32℃)冷卻水→冷卻水泵浦 →配管至各制程系統行顯熱之熱交換→(高溫冷卻
水)回流至冷卻水塔之分配管/噴嘴形成小水滴→流
經散熱材與風扇所吸入之冷空氣進行顯熱及潛熱之 熱交換→(低溫冷卻水) 冷卻水水池→冷卻水泵浦
再泵送至各制程系統形成一迴圈回路。
冷卻水塔種類
部份的損失。制式的擋水器包括一組有角度的葉片(a set of blades angled),利用重力(inertia)或衝擊,將空氣流中之水滴抓下來。加裝5
折式檔水板做液氣分離, 除了防塵之外,水飛濺損 可由0.2%~0.3%降至
0.001%~0.009%(視噴灑壓力) 。較傳統水塔減少90% 。冷卻水塔風車轉 速變慢,亦可減少飛濺損失。
蒸發損失 (evaporation loss)
冷卻水塔的冷卻過程中,大部份的水蒸發至大氣當中,
同時也以汽化潛熱方式,達到冷卻效果降低水溫,此即為蒸
發損失。水的蒸發,對於水塔水損而言,是在所難免的,因 為水的顯熱 (Sensible Heat)遠小於潛熱 (Latent Heat)。 也是能將熱量排除的主因。然而,蒸發損失的多寡完全取決 於水塔四周的空氣含水量的重要因素,但外氣因素無法由人
各型式分類示意圖
RANGE AND APPROACH
冷卻水塔, 理論上可將迴圈水冷卻到接近入塔空氣的濕球
溫度,但它也是為迴圈水能夠被冷卻的溫度最低下限,所以
水塔的APPROACH越小代表冷確能力越高,初製成本也提升。
選擇冷卻水塔大小之考慮因素
水塔耗水分析
冷卻水塔耗水途徑
冷卻水塔在運轉過程中耗水可以分四個部份,分別 為蒸發損失(evaporation loss)、飛散損失(drift loss)、濺灑損失(splash loss)、排放損失(blowdown loss) 。
簡介
1.冷卻水塔簡介探討
2.水塔耗水分析 3.冷卻水塔節水方法 4.實際案例比較 5.結論與建議
AUO Proprietary & Confidential
冷卻水塔簡介探討
冷卻水塔原理
• 冷卻水塔是將系統所熱交換後回流之高溫冷卻水,經由 分配管噴嘴灑在鰭片(FIN)表面上,同時與風扇(FAN)所 產生的強制對流冷空氣相互接觸,此時,熱水與冷空氣 之間即產生顯熱熱交換作用。少部份的熱水被蒸發成氣 態水蒸氣,而吸收蒸發潛熱再度降低冷卻水之溫度而形 成低溫之冷卻水回流至系統。然而,大部分冷卻塔中, 皆有一或多個螺旋槳或離心式風扇使空氣鉛直或水準地 通過冷卻塔,而以噴嘴噴水或使水沿冷卻塔由一阻板向 下灑到另一阻板,即造成很大的水面積。
準。
結論
冷卻水塔是利用蒸發一部分的水,將冷卻用水溫 度降低,以便迴圈再利用,所以使用冷卻水塔必然會
消耗一定量的水。然而水塔的實際耗水量,往往大於
維持散熱所需,當水塔數多而且量大時,這些額外的
耗水量累積起來就可能成為一項重要的水資源開銷,
並且建立有效的排放管理制度及排放的時程可以於長 時間的運轉之下發揮最大的省水效應。
冷卻水塔節水方法
各項水損比較
本文針對開放式冷卻水塔,歸納出其耗水途徑分別為蒸 發、飛散、濺灑與排放,發現耗水量之大小依序為蒸發、
排放、濺灑與飛散。而從最少的投資花費之觀點來看,由
排放方面著手是最快的。
飛散損失量減少之方法
冷卻水塔中,還有另外一種重要單元叫做擋水器。當空氣流入塔內
時,部份小水滴會隨著空氣被帶出塔外,而擋水器的目的,乃是減少這
為控制,故只能任由外氣蒸發其散失量。
注:(蒸發潛熱597.3卡/克 )
飛濺損失 (drift loss)
尚未經過冷卻,溫度較高的迴圈水,由PUMP加壓送至水塔頂端
灑水器後,被灑落至填充材上進行冷卻。由灑水器落至填充材這段
過程中,部份體積較細小水滴,可能會被塔內向上流過空氣攜帶出 塔,形成飛散損失。根據統計,一般慣用之冷卻水塔因採用灑水結 構方式,其損失量約為總用水量之0.2%~0.3% 。
濺灑減少的方法
影響濺灑損失多寡因素如下:
1.填充材底部至水面高度差 2.水面槽距緣高度集水巣周長 3.水落在水面位置是否接近巣緣 4.入風口網形狀
為了滿足影響濺灑損失因素可於冷卻水塔之空氣
入口處加裝入風口網,其本意在防止落夜灰塵,垃圾
等雜物進入塔內影響冷卻水迴圈,同時也可減少水滴
濺灑出塔外,但在常其缺乏維修,保養之下會大大降
排放損失 (blow-down loss)
冷卻水塔的冷卻在送水管路及水塔之間重複著吸
收廢熱釋放廢熱的動作,過程中由於水塔為開放結構,
難免會有雜質溶入,影響水質,往往維持散熱所需,
也必需以蒸發其冷卻水,所以導至水中溶鹽濃度上升, 亦導致微生物及藻類滋生,故冷卻水須做一定的排放, 有時並須清洗水塔及管路,補充乾淨的水而被排放掉 的廢水稱排放損失。