土石坝初步设计任务书-某人工湖挡水建筑物初步设计
作业4土石坝课程设计
作业4土石坝课程设计一、课程目标知识目标:1. 学生能理解土石坝的基本结构、工作原理及功能。
2. 学生能掌握土石坝设计中的关键参数,如坝高、坝长、坝体材料等。
3. 学生能了解土石坝建设对环境及生态的影响。
技能目标:1. 学生能够运用所学知识,独立完成土石坝的初步设计。
2. 学生能够分析土石坝建设中的常见问题,并提出合理的解决方案。
3. 学生通过实际操作,提高团队协作能力和问题解决能力。
情感态度价值观目标:1. 学生培养对水利工程的兴趣,增强环保意识和责任感。
2. 学生在课程学习中,树立正确的工程观念,认识到工程对社会和自然环境的影响。
3. 学生通过学习土石坝设计,培养严谨、细致、创新的学习态度。
课程性质:本课程为实践性较强的课程,旨在让学生将所学理论知识应用于实际工程设计中。
学生特点:学生已具备一定的水利工程基础知识,具有较强的求知欲和动手能力。
教学要求:教师需引导学生将理论知识与实际工程相结合,注重培养学生的实践操作能力和团队协作精神,同时关注学生在课程中的情感态度价值观的培养。
通过分解课程目标,使学生在完成课程学习后能够达到预期的学习成果,为后续的教学设计和评估提供依据。
二、教学内容本课程教学内容主要包括以下几部分:1. 土石坝基本概念:介绍土石坝的定义、分类、结构及工作原理,对应教材第二章。
- 坝体材料的选择与应用- 坝体结构的稳定性分析2. 土石坝设计原则及方法:讲解土石坝设计的基本原则、设计流程及关键参数,对应教材第三章。
- 坝高、坝长、坝型选择- 坝体材料力学性能分析3. 土石坝施工技术:分析土石坝施工过程中的关键技术,如填筑、压实、排水等,对应教材第四章。
- 填筑工艺及施工组织- 压实质量控制与检测4. 土石坝环境影响及防治措施:探讨土石坝建设对周边环境及生态的影响,并提出相应的防治措施,对应教材第五章。
- 环境影响分析- 生态保护与恢复5. 实践操作:组织学生进行土石坝设计实践,培养实际操作能力。
水工建筑物课程设计书(土石坝)
《水工建筑物》课程设计任务书(土石坝)题目:年月日学生姓名:学号:班级:专业(专业方向):指导教师:樊新建侯慧敏王之君一、设计目的和要求1.通过课程设计,使学生初步掌握土石坝设计的一般原则、方法和步骤,巩固、加深和扩大所学的基础理论知识,,并使之系统化。
2. 通过课程设计,培养学生正确的设计思想、严谨的工作作风,踏实肯干和求实奋进的精神;初步掌握水工建筑物的设计原则、设计方法和步骤;3.培养学生的独立思考、独立工作能力,提高学生的综合运算,绘图及编写设计报告的基本技能,为今后从事设计、施工、管理工作打下一定的基础。
二、特征水位正常蓄水位:设计洪水位:校核洪水位:三、设计任务及要求根据提供的水文、水利计算成果,在分析研究所提供的资料的基础上,进行土石坝枢纽的设计工作,设计深度为初步设计。
主要设计内容有:1.确定水利枢纽工程和水工建筑物的等级、洪水标准;2.土石坝的枢纽布置;确定溢洪道的堰顶高程和坝顶高程,拟定溢洪道溢流孔数,确定溢洪道在土石坝枢纽中的位置。
3.土石坝基本剖面的设计;确定坝顶高程;按使用要求及工程经验确定坝顶宽度,上下游坝坡坡比,心墙或斜墙的位置及基本尺寸(均质土石坝无此项),初步拟定大坝剖面尺寸。
选择最大横剖面进行渗流计算,确定单宽渗流量并绘制浸润线,同时进行渗透稳定性校核。
以渗流计算剖面和相应工况为基准,进行坝坡稳定校核。
4.溢洪道剖面及下游消能方式的设计;溢流面曲线设计,校核闸门全开时校核洪水位和设计洪水位时的泄流量,闸门类型选择,溢洪道剖面布置,溢洪道的消能防冲设计,溢洪道的结构布置(边墩和导墙的尺寸拟定)。
5.大坝的细部构造设计:坝顶、护坡、反滤层、过渡层、排水。
6.坝基处理。
四、进度安排五.课程设计的要求1. 设计一律在设计教室进行,无故不参加设计规定时间的三分之一者,或抄袭他人成果者,均以零分计(抄袭双方)。
2. 每位学生必须独立完成课程设计的内容,提交设计成果。
设计成果包括:(1)计算书一份要求详细列出所有计算过程,并附计算草图;要求列出计算成果,简要说明计算成果的合理性,或设计的不足和还可以进一步改进的地方。
土石坝课程设计指导书
《水工建筑物》课程设计 土石坝设计指导书2011年3月《水工建筑物》课程设计土石坝设计指导书一、目的通过这次设计,综合运用工程制图、工程地质、水力学、土力学等课程知识,进一步掌握〈〈水工建筑物〉〉课程中“土石坝”的总体布置、土料设计、剖面拟定、渗流及坝坡稳定计算等内容。
定、渗流及坝坡稳定计算等内容。
二、资料及工程任务工程设计资料包括地形、地质资料,水文、水利计算资料、筑坝材料资料等。
地形地质资料提供电子版,其它资料见附录。
地形地质资料提供电子版,其它资料见附录。
三、设计要求和设计步骤1、考虑泄洪和输水要求进行总体枢纽布置,其建筑物包括土石坝、溢洪道、输水洞等。
水洞等。
2、综合分析比较确定土石坝坝型。
、综合分析比较确定土石坝坝型。
3、根据提供的料场资料,确定防渗料及坝壳堆石料填筑标准。
防渗粘土料按压实度98%控制,堆石料按孔隙率20%~28%控制。
控制。
4、利用已给的水库特征水位,考虑风浪及安全加高因素,按正常运行和非常运行情况中的最大值确定坝顶或防浪墙顶高程。
地震作用引起的沉降和涌浪综合考虑可取2.0m 。
5、按使用要求及工程经验确定坝顶宽度、上下游坝坡坡比,初步拟定大坝剖面尺寸。
尺寸。
6、选择最大横剖面进行渗流计算,确定单宽渗流量并绘制浸润线,同时进行渗透稳定性校核。
这部分可只进行正常蓄水位稳定渗流计算。
透稳定性校核。
这部分可只进行正常蓄水位稳定渗流计算。
7、以渗流计算剖面和相应工况为基准,进行下游坝坡稳定校核。
计算采用计及条块间作用力的简化毕肖普法,抗剪强度指标按表4-8选用。
注意为计算简便,堆石料强度指标不需按非线性强度包线修正;下游可按无水情况考虑。
便,堆石料强度指标不需按非线性强度包线修正;下游可按无水情况考虑。
8、进行细部构造设计:坝顶、护坡、反滤过渡层。
、进行细部构造设计:坝顶、护坡、反滤过渡层。
9、坝基防渗处理,帷幕灌浆深度及灌浆孔距、排距确定。
、坝基防渗处理,帷幕灌浆深度及灌浆孔距、排距确定。
水工建筑物土石坝课程设计
水工建筑物土石坝课程设计引言水工建筑物土石坝是一种重要的水利设施,用于阻挡水流并形成水库。
它们在水资源管理、防洪减灾和农田灌溉等方面起着至关重要的作用。
本文将深入探讨水工建筑物土石坝的设计原理、施工过程和性能评估,以及一些相关的考虑因素。
设计原理水工建筑物土石坝的设计原理基于一系列工程力学和水力学原理。
关键的设计要点包括坝的高度、坝体方案、坝底的防渗性能和溢流设施等。
坝的高度坝的高度是确定水工建筑物土石坝的主要考虑因素之一。
高度越大,坝体所受的水压力越大,需要采取更多的设计措施来增加坝体的稳定性。
高度较小的坝体一般可以采用更简单的设计和施工技术。
坝体方案坝体方案一般包括土坝和石坝两种类型。
土坝采用大量的压实土壤来构建,而石坝则利用大量的石块和混凝土来建造。
坝体方案的选择应基于当地的土地条件、工程可行性和经济性等因素。
坝底防渗性能坝底的防渗性能是确保水工建筑物土石坝稳定性的关键。
通常采用特殊的防渗措施,如土工合成材料、防渗墙和排水系统等,以减少水流穿透坝底的可能性。
溢流设施溢流设施用于在水位过高时排泄多余的水流,以减少坝体受力。
溢流设施的设计应满足一定的流量要求,并确保不会对下游环境造成不利影响。
施工过程水工建筑物土石坝的施工过程需要严格的计划和操作。
下面是一个一般的施工流程:1.坝址的选择和勘测:选择适合建造水工建筑物土石坝的坝址,并进行详细的地质、地形和水文勘测。
2.坝基和坝体的准备:清理、整平和压实坝基,并根据设计要求进行坝体的分层和压实。
3.坝的填筑和压实:将土壤或石块依据设计要求进行填筑,并按层次进行压实。
4.坝的剖面整饰:根据设计要求对坝体剖面进行整饰,以保证坝体外观的美观和稳定性。
5.溢流设施的安装:根据设计要求安装溢流设施,确保其正常运行。
6.防渗措施的施工:根据设计要求进行防渗材料的铺设和防渗墙的建造。
7.竣工验收和性能评估:进行整体工程的验收和性能评估,以确保水工建筑物土石坝达到设计要求和使用标准。
《土石坝设计与施工》实训任务书(四组)
《土石坝设计与施工》实训任务书一、背景资料1、地形、地质情况某土石坝位于山区峡谷中,主要用于蓄水灌溉,无发电功能。
坝址处河床宽约100m,河床基岩40m,地基表面5m 为沙砾石覆盖,干容重为21.6KN/m3,k=1.5×10-2cm/s,φ=40º,C=0。
基岩为弱风化岩层k=10-6cm/s;2、水位资料:正常高水位78.0m;设计洪水位79.5m;校核洪水位80.5m;死水位62.0m。
3、气象资料多年平均最大风速18m/s水库吹程:1km;地震基本烈度:6度。
4、筑坝材料坝址区范围内有丰富土石料,物理指标如下:重壤土,压实后干容重为16.2KN/m3(ω=20%),k=3.5×10-5cm/s。
沙砾石,压实后干容重为21.6KN/m3,k=1.5×10-2cm/s,φ=40º;花岗岩风化料,压实后干容重为21.0KN/m3,k=3.0×10-2cm/s,φ=42º。
5、其它工程等级:枢纽工程为三等,3级建筑物;坝顶无交通要求。
二、实训要求1、根据所给资料规划工程布置;绘制其布置图2、试按选择坝形设计土石坝,按比例绘制其剖面图并做必要的计算;3、画出防渗、排水和护坡等细部构造,标明必要的尺寸和高程;4、编制设计说明书,绘制设计图(设计图手绘、机打均可)5、根据所作设计简要说明初步拟定施工方案。
四、实训要求和成绩评定1、实训报告一律采用A4纸打印,统一封面,列出目录,报告格式要求如下:一、××××(四号黑体居中书写,1.5倍行距)1、××××(四号宋体,左起书写,1.5倍行距)(1)××××(小四宋体,首行缩进两字符,1.5倍行距)××××(正文,采用小四宋体,首行缩进两字符,1.5倍行距)(2)××××(正文,采用小四宋体,首行缩进两字符,1.5倍行距)××××(正文,采用小四宋体,首行缩进两字符,1.5倍行距)报告中的图,表,公式一律采用阿拉伯数字分别编号。
水工建筑物课程设计土石坝
水工建筑物课程设计土石坝一、课程目标知识目标:1. 让学生掌握土石坝的基本结构、工作原理及功能;2. 使学生了解土石坝的设计原则、施工方法及质量控制要点;3. 帮助学生认识土石坝在我国水利工程中的应用及其重要性。
技能目标:1. 培养学生运用所学知识分析土石坝工程问题的能力;2. 提高学生设计土石坝方案并进行合理优化的能力;3. 培养学生运用专业软件进行土石坝结构分析的计算能力。
情感态度价值观目标:1. 培养学生对水利工程专业的热爱,增强职业责任感;2. 培养学生严谨的科学态度,注重实践与创新;3. 增强学生环保意识,认识到水利工程在保护生态环境中的重要作用。
课程性质:本课程为专业核心课程,以理论教学与实践操作相结合的方式进行,旨在培养学生具备土石坝工程设计、施工及管理等方面的专业素养。
学生特点:学生已具备一定的水利工程基础知识,具有较强的求知欲和动手能力,但缺乏实际工程经验。
教学要求:结合学生特点,注重理论与实践相结合,强调实际操作能力的培养,提高学生解决实际工程问题的能力。
将课程目标分解为具体的学习成果,以便于教学设计和评估。
二、教学内容1. 土石坝概述- 土石坝的定义、分类及结构组成- 土石坝的工作原理及功能特点2. 土石坝设计原则与要求- 设计原则:安全、经济、环保、美观- 设计要求:坝体稳定性、渗流控制、结构强度、变形控制3. 土石坝施工技术- 施工准备:材料选择、施工组织设计- 施工方法:填筑、压实、防渗、排水、护坡- 施工质量控制:碾压、检测、验收4. 土石坝工程案例分析与评价- 国内外典型土石坝工程案例介绍- 案例分析与评价:结构设计、施工技术、工程效益5. 土石坝管理与维护- 管理制度与措施:巡视、监测、维修、加固- 维护方法:坝体加固、渗流控制、环境整治教学大纲:1. 土石坝概述(1课时)2. 土石坝设计原则与要求(2课时)3. 土石坝施工技术(3课时)4. 土石坝工程案例分析与评价(2课时)5. 土石坝管理与维护(1课时)教学内容安排和进度:1-2周:土石坝概述、设计原则与要求3-4周:土石坝施工技术5周:土石坝工程案例分析与评价6周:土石坝管理与维护教材章节:参考《水利工程概论》第3章“土石坝工程设计”相关内容。
土石坝设计说明书
南昌大学(11水工毕业设计)说明书周小日2015年1月日目录第一章工程概况 (1)第二章设计的基本资料及水库工程特性 (1)第一节设计的基本资料 (1)第二节水库工程特性 (4)第三章工程等别及枢纽布置 (5)第一节工程等别及建筑物的级别 (5)第二节枢纽布置 (6)第四章坝工设计 (7)第一节坝型的选择 (7)第二节坝的断面设计 (8)1. 坝顶高程 (8)2、坝顶宽度 (10)3、坝坡 (10)4、防渗体设计 (11)5 、排水设备 (11)第三节土石坝的渗流计算 (12)第四节土石坝坝坡稳定分析及计算 (18)4.1设计说明 (18)4.2 .稳定计算 (19)第五节土石坝细部构造设计 (43)5.1坝顶 (43)5.2护坡 (43)5.3 排水体 (45)5.4坝体与坝基防渗设计 (46)5.5土石坝土料的选择 (46)第六节地基处及裂缝处理 (48)参考文献 (50)心得 (51)第一章工程概况伦潭水利枢纽工程位于铅山县天柱山乡境内,距县城约50km,坝址地处铅山河支流杨村水中游,是铅山河流域内具有防洪、灌溉、发电、供水及水产养殖等综合效益的控制性工程。
铅山河是信江中上游南岸的一条主要支流,发源于闽赣边境的武夷山脉。
流域东邻石溪水,西毗陈坊河,南靠武夷山,北抵信江,集雨面积1255km2。
流域内山高林密,植被良好,气候温和,矿产资源丰富,尤以铜矿著称。
铅山河流域理论电力蕴藏量约14×108kW·h,初步查明的可开发水电装机有18.46×104kW,可开发电量6.7×108kW·h,其水力资源之丰富为信江之冠。
铅山河流域是我省暴雨中心之一,也是我省小流域治理规划的重点流域。
伦潭水利枢纽工程项目在2002年7月已经国务院批准立项。
第二章设计的基本资料及水库工程特性第一节设计的基本资料一、水文气象伦潭水利枢纽坝址处于铅山河支流杨村水中游。
杨村水为信江二级支流,发源于武夷山脉读书尖。
水库土石坝工程初步设计
提供全套毕业论文,各专业都有目录中文摘要 (1)英文摘要 (2)1 基本资料 (3)1.1 水文资料 (3)1.2 地形、地质条件 (3)2 枢纽布置 (8)2.1 工程等别的确定 (8)2.2 坝型的选择与枢纽布置 (9)2.2.1 坝型的选择 (9)2.2.2 泄水建筑物的选择 (10)2.2.3 取水建筑物 (11)3 坝断面设计 (11)3.1 坝顶高程确定 (11)3.2 坝顶宽度的确定 (16)3.3 坝坡 (17)4 土石坝的构造 (18)4.1 坝顶构造 (18)4.2 坝坡的构造 (19)4.3 防渗体 (20)4.4 排水设施 (21)4.4.1 棱体排水 (21)4.4.2 坝面排水 (22)5 土石坝的防渗计算 (23)5.1 总渗流量的计算 (23)5.2 防止渗透变形的工程措施 (25)6 土石坝的地基处理 (27)6.1 地基处理 (27)6.2 土石坝与坝基、岸坡及其他建筑物的连接 (27)7 隧洞的布置 (28)7.1 导流隧洞 (29)7.2 泄洪隧洞 (32)7.3 发电隧洞 (34)7.4 放空隧洞 (35)8 施工工艺 (35)8.1 施工布置 (35)8.2 测量放样 (36)8.3 料场 (36)8.3.1 料场的规划 (36)8.3.2 土石料的开挖 (37)8.4 临时建筑物的修建 (37)8.4.1 临时交通道路 (37)8.4.2 围堰的修建 (37)8.5 清基与坝基处理 (38)8.6 基坑排水系统布置 (38)8.6.1 排水系统布置 (38)8.6.2 基坑排水 (38)8.6.3 左右两岸山沟雨水迳流的控制 (38)8.7 坝体填筑施工 (38)8.7.1 填筑作业面的划分 (39)8.7.2 施工试验 (39)8.7.3 坝料运输及卸料 (40)8.7.4 铺料与整平 (41)8.7.5 坝体碾压 (41)8.7.6 平整马道与岸坡 (44)8.7.7 干砌石护坡 (44)8.7.8 坝顶的布置 (45)8.7.9 土石坝的雨季和冬季施工 (45)8.7.10 机械设备表 (45)9 土石坝工期的计算 (45)XX水库土石坝工程初步设计摘要:本毕业设计为XX水库土石坝工程的初步设计,在已知的地形、地质、水文、气象条件的基础上,通过对土石坝的各种坝型进行综合分析与比较,最终选择粘土心墙土石坝的坝型。
水工建筑物课程设计——土石坝设计[1]
水工建筑物课程设计——均质土坝设计一、设计目的:通过综合运用专业基础知识及水工建筑物课程的有关原理方法进行实际建筑物的设计,帮助学生加深对本课程知识的理解,提高学生理论联系实际的能力、绘图计算等能力,树立科学意识、责任意识和经济意识。
二、基本资料:1、河谷地形见附图。
2、天然材料。
在坝址附近3公里范围内渗透系数为k=10-5cm/s的土料储量丰富,砂石料分布较为广泛。
覆盖层厚度:岸坡3——5m,河床5——7m。
覆盖层渗透系数平均为10-2cm/s ——10-3cm/s.3、内外交通。
工程紧靠公路,与铁路线相距约10公里,交通便利,不需另外修建对外临时施工道路。
4、水库规划资料。
该工程主要为下游城市和农田供水,供水工程的最大引用流量为20m3/s。
水库正常蓄水位590 m、设计洪水位592 m、校核洪水位593m。
设计洪水流量1200m3/s,下泄允许最大单宽流量18m3/s。
水库最大风速12m/s,吹程D=5km。
三、设计任务:1、确定主要建筑物类型、尺寸并在地形图上进行布置;2、土坝渗流计算。
计算渗流坡降、,校核是否发生渗透变形,计算大坝总的渗流量。
根据需要设置防渗、排水、反滤层构造。
3、土坝稳定计算。
以圆弧滑动法或毕肖普法进行稳定分析。
4、其他细部构造设计,如护坡、马道、防浪墙等。
5、绘制设计图纸。
6、设计步骤:1、在分析基本资料的基础上拟定土坝的布置方案。
2、选定布置方案,拟定各部分的尺寸和构造;3、进行渗透、稳定和沉陷计算,确定满足设计要求的各项尺寸;4、各部分详细尺寸和细部构造设计;5、绘制设计图纸。
五、设计安排:1、提交成果:(1)每人提交设计计算书一份;(2)设计图纸一套(1号图纸)。
图纸内容:大坝建筑物总体布置图;大坝剖面图,护坡、防渗、排水、反滤层、防浪墙等细部构造图;溢洪道平面布置图,溢流堰设计图、下游消能防冲设施设计图。
引水隧洞纵、横剖面设计图。
2、设计时间:见设计任务安排。
坝工部分以挡水建筑物和泄水建筑物为主的土石坝水利枢纽设计毕设说明书
说明书摘要该江位于我国西南地区,本工程拦河坝为碾压式粘土心墙土石坝。
由于山区水位暴涨暴落,所以设置成兴利库容和拦洪库容完全不结合,即正常蓄水位和汛限水位均为2822.5米。
本设计是侧重于坝工部分以挡水建筑物和泄水建筑物为主的土石坝水利枢纽设计。
第一步,通过调洪演算得到最佳的溢流堰孔口净宽和堰顶高程方案,比较不同类型的土石坝在施工特点,技术经济等方面的优劣,最终确定大坝坝型为粘土心墙土石坝,并且初定了大坝的轮廓尺寸。
然后通过土料设计,对照指标确定了砂砾料场及粘土料场的位置。
再次选择坝体的三个典型断面对大坝进行渗流计算,画出流网图,校核渗流逸出处的渗透坡降确定是否满足要求。
然后通过vb编程进行稳定分析,最终进行坝体细部构造设计。
第二步,进入主要建筑物设计阶段。
确定出大坝的型式及坝址和坝轴线。
另外确定该枢纽的组成建筑物,包括挡水建筑物、泄水建筑物、水电站厂房等。
第三步,进入第二主要建筑物设计阶段。
确定出泄水建筑物的尺寸,型式和结构,定为泄水隧洞。
然后进行轴线选择和水力计算,从下泄能力、净空余幅、挑距和冲刷深度等方面校核设计的可行性。
最后进行细部构造设计。
第四步,进行初步的施工组织设计。
确定导流标准,施工分期。
定出开始日期、截流日期、拦洪日期、封孔蓄水日期、初始发电日期和竣工日期。
最后进入专题设计,隧洞衬砌应力计算,利用理正岩土分析软件,计算衬砌及配筋。
本设计以《碾压式土石坝设计规范SL274-2001》为基本设计依据,外加参考了与土石坝的有关资料和书籍。
由于知识有限,对于本设计中的不妥及错误之处,恳请批阅批评指正。
在设计过程中得到了束一鸣,王玲玲,苏怀智等老师的知道,再次表示由衷的感谢。
本设计共历时9周。
关键词:粘土心墙土坝04021104 卢珊珊AbstractThe River is located in southwest China, the project includes the RCC dam with clay core wall of earth-rock style. The water level rise due to storm down the mountains,so the active Storage is not combined with the detention storage, that is, normal water level and flood control level are both 2822.5 meters. The dam was designed in part to focus on retaining buildings and discharge structure-based design of earth-rock dam water control project.A first step, through the Flood Regulating and Calculating to get the best net width of the overflow weir Orifice and the altitude of weir top, then compare different types of earth-rock features in the course of construction, technical and economic advantages and disadvantages, and ultimately determine the type of clay dam earth-rock core, and the outline of an initial size of the dam. Through the soil and then design, the control indicators to determine the gravel and clay material yard field position. Once again chosen the three typical cross-section of dam for seepage calculation, draw network maps, checking the seepage infiltration gradient to determine whether to meet the requirements. Use Visual basic programming to analyze the stability, and ultimately to carry out detailed structural design of the dam.The second step, to enter the main building design stage. To determine the type and the dam site and dam axis. In addition to determine the composition of the hub structures, including retaining structures, drainage structures, such as hydropower plants.The third step is the second major phase of building design. To determine the size of Discharge structure, type and structure of the tunnel for discharge. To select the axis and then proceed hydraulic calculation, from the discharge capacity of more than pieces of headroom, and washed out from the depth of checking the feasibility of the design. Finally design the detail of the Structural .The fourth step is a preliminary design of the construction organization. Diversion to determine standards, the construction phases. Set start date, closure date, flood detention date, the date of reservoir impoundment, the initial generation date and completion date.Finally enter the topic design, calculate the tunnel lining stress, the use of geotechnical analysis software is the rationale for calculating the lining and reinforcement.The design based on the "Code for Design of roller compacted earth dam SL274-2001", along with reference to the relevant information with the earth dam and books. Due to the limited knowledge about the design of the inappropriate and wrong, ask for his approval in criticism. During the design process, very appreciate for the directions by Professor Shu Yi-Ming, Wang Ling-Ling, Su Huai-Zhi, once again express our sincere gratitude.The design period is a total of nine weeks.Key words: Clay, Core wall of earth, Dam目录第一章前言 (8)1.1 毕业设计的主要目的和作用 ........................................ 错误!未定义书签。
水工建筑物课程设计(土石坝设计)
水工建筑物课程设计任务书(Ⅱ)学院名称:能源与环境学院专业:水利水电工程年级:2008级1 设计题目黑河水利枢纽土石坝设计2 主要内容本工程采用混合式开发,开发任务为发电,兼顾下游环境与生态用水。
该枢纽挡水建筑物为土石坝,坝体防渗体材料采用粘土;泄洪建筑物为布置在右岸的水工隧洞;引水发电隧洞亦布置在右岸。
枢纽主要工程参数:(一)发电及水库特征(1)、本电站装机容量_________万千瓦。
(2)、水库校核洪水位:_________m;水库设计洪水位:_________m;水库正常蓄水位:_________m,设计死水位:_________m;正常蓄水位以下相应水库库容________m3。
(3)、厂房型式为引水式发电厂房。
(4)、坝底高程为 ______ ___m。
(5)、多年平均最大风速__ ___m/s,库面吹程__ ___k m,风向与坝轴线垂直。
(6)、土石坝坝型为粘土__ ___堆石坝。
(二)地震设计烈度为度。
(三)河床处坝基相对不透水层埋深_____ ___m。
(四)其他___ __。
黑河水利枢纽设计资料说明:黑河水利枢纽位于四川省阿坝藏族羌族自治州九寨沟县境内,是白水江河干流水电规划“一库七级”开发方案的龙头水库梯级电站。
首部枢纽距九寨沟县县城约74km,厂区距九寨沟县县城约54km,若尔盖—九寨沟公路从工程区通过,对外交通方便。
(一)水文(1)流域概况白水江系白龙江的一级支流,发源于岷山山脉东麓,分为黑河和白河两源,两源于黑河桥汇合后始称白水江,自西北向东南流,流经九寨沟县白河乡、安乐乡、城关、双河乡,自柴门关出四川境,流入甘肃省文县,于碧口汇入嘉陵江一级支流白龙江。
白水江九寨沟县境内河道长约50km。
该河段南部与平武县境内的火溪河为界;西南部与松潘县岷江源头分水;西北毗邻黄河的黑河流域;北接白龙江。
白河发源于岷山弓杠岭斗鸡台,由西南向东北流经九寨沟县的上四寨、塔藏乡后折向东南,右岸纳入九寨沟,于黑河桥与西北流入的黑河相汇。
水工建筑物课程设计任务书土石坝设计
坝工课程设计任务书(土石坝组)课程名称:坝工课程设计课程代码:AXB学分:2学分周数:2周集中设计教室:同学们可以在集中设计教室内进行设计,或自由安排。
18-19周早8:30点及下午3点指导教师会去设计教室答疑,并签到,若答疑时间外有问题,请直接电话联系。
)指导教师电话:一、课程设计的目的与任务本课程是本专业的专业平台实践课程,以水工建筑物课程作为先导和基础,着重锻炼学生的动手能力,为毕业设计和今后的工作、学习打下坚实基础。
通过坝工课程设计使学生进一步巩固课堂所学理论知识;培养学生运用水工建筑物理论知识独立解决工程实际问题的初步能力;并使学生在考虑问题的思想方法和工作方法上、在计算技术和绘图技巧以及编写说明书等方面能得到初步训练。
二、设计要求要求学生在技术上可靠、经济上合理、施工方便、运转安全的基础上,根据枢纽自然条件、社会条件和枢纽任务提出具有一定论据的枢纽布置方案。
在已确定的总体布置方案上,以挡水建筑物为重点进行详细的设计;对泄水建筑物进行粗略设计,即在水力计算的基础上拟定出泄水建筑物各个组成部分的轮廓尺寸,进行构造设计和地基处理设计等。
三、设计步骤与内容以下为该课程设计的题纲,同学们可参照此做课程设计目录。
1 基本资料及设计数据2、枢纽布置仅要求根据地形地质条件确定挡、泄水建筑物布置。
本工程指定坝型为土石坝,泄水建筑物为岸边溢洪道。
(1)确定工程及水工建筑物等级、防洪标准。
(2)进行枢纽布置。
从技术经济方面作定性比较,选定一个合理的布置方案,要求设计全部完成后在给定的地形、地质图上绘制枢纽布置图。
3、泄水建筑物设计(1)溢洪道的型式选择、布置及组成建筑物初选。
(2)控制堰段设计。
①确定堰形及孔口个数(要求绘制简图)。
②确定堰顶高程。
③确定校核洪水位。
④确定闸孔及闸墩尺寸。
(绘制简图,要考虑横缝布置)⑤确定控制段总长。
(3)引水渠设计包括平面、底坡、剖面尺寸设计(要求绘制简图)。
(4)泄槽段设计(要求绘制简图)剖面设计以泄槽进口断面为例进行,初选衬砌材料即可。
土石坝设计案例范文
土石坝设计案例范文一、项目背景杨柳县位于中国北方地区,气候干燥,雨量不足。
由于缺乏可靠的水源,当地居民在农田灌溉和生活用水方面一直面临着严重的短缺问题。
为了解决这个问题,当地政府决定修建一座水利工程,保证农田灌溉和居民生活用水供应。
二、设计目标1.确保水利工程的安全性和可靠性,以防止泄洪和水灾危害。
2.进行灌溉补给,满足农田灌溉的需求。
3.提供足够的生活用水供应,满足居民的需求。
三、设计方案1.水库选址:根据当地地形和气候条件,选择了一处位于两个山谷之间的低洼地带,并进行了详细的实地调查与勘察。
2.堆积土石坝:土石坝是由土石等材料构建而成的坝体,根据实地勘察结果,确定了土石坝作为建设方案。
土石坝的坝体由三部分组成:上部是由骨料、石块而成的装填料,中部是由细料、黏土而成的过渡区,下部是由可塑性土和粘土组成的防渗体。
3.溢流堰和泄洪道:在设计中充分考虑到降雨可能引发的洪水,为了防止溢水漫过土石坝而引发灾害,设计了溢流堰和泄洪道。
溢流堰设置在左岸,以确保洪水能够安全溢出,降低泄洪对坝体的冲刷。
4.引水闸门和输水管道:为了将蓄水库中的水引入供水系统,设计了引水闸门和输水管道。
引水闸门位于坝体右侧,可以根据需要调节水流量。
输水管道贯穿坝体,将水输送至农田和居民区。
5.灌溉系统和水处理系统:为了满足农田的灌溉需求,设计了灌溉系统,包括管道、喷头和灌溉设备。
为了提供清洁的生活用水,设计了水处理系统,包括过滤器和杀菌设备。
四、施工方案1.剖析土石坝:按照设计方案对土石坝进行剖析,确定坝体各部分的具体规格和材料使用。
2.材料供应:根据剖析结果计算所需材料的数量,并确保供应物资的质量和数量。
3.施工操作:按照施工方案对土石坝的各个部分进行施工。
首先进行坝基的准备工作,然后逐步堆筑上部、中部和下部。
同时,进行溢流堰和泄洪道的建设,以及引水闸门和输水管道的安装。
4.灌溉和供水设备安装:按照设计要求进行灌溉系统和水处理系统的安装。
土石坝课程设计任务书
土坝课程设计大纲黑龙江农垦林业职业技术学院土坝课程设计大纲一、课程地位、作用与任务土石坝课程设计是《水工建筑物》教学中的一个重要的教学环节之一,它是高职教育中培养水利水电工程专业应用型高等专门人才的一次专题实训环节,是在定岗实践的基础上通过对典型的,有代表性的已建或在建工程的实际资料分析,结合生产实际,进行水利水电工程枢纽设计,提高专业基本技能及工作能力的一次指导性实训课程。
其任务主要有:1、通过课程设计使学生学会综合运用基础知识和专业理论知识,进行水利工程设计的方法和步骤。
2、培养学生善于运用设计图册、国家标准规范、熟悉计算方法,提高计算能力,专业绘图以及编写设计文件等基本技能。
3、提高学生分析问题、解决问题、独立工作的能力。
4、通过课程设计全面考察,了解学生在校期间的学习质量,从而发现教学中存在的问题,为进一步进行教学改革提供依据。
二、内容和要求(一)确定断面尺寸及平面布置:1、根据规范要求,参照已建工程并考虑本工程的具体情况,确定坝坡、坝顶高程、坝顶宽度、防渗体及排水体尺寸,确定大坝最大坝高的断面尺寸。
2、绘出坝的剖面及平面布置图。
(二)渗流计算:用水力学法,计算正常高水位、设计洪水位、或校核洪水位时最大断面的浸润线及单宽渗流量。
并按一定比例绘出坝体内的浸润线图(三)坝坡稳定计算:绘图并计算最大坝高断面的上、下游坝坡的稳定系数,判断坝坡是否稳定或说明判断坝坡是否稳定的判断方法。
(四)细部构造设计1、包括坝顶、护坡、反滤层、坝体及坝基有防渗透、排水、坝坡排水沟等。
2、绘出各个细部构造图三、成果要求1、设计图设计图是课程设计的主要成果,用1#图纸、绘图铅笔绘制或用autocad绘图。
要求制图正确,图面饱满,没有重复,线条分明,字体工整,尺寸齐全,比例尺及材料符号等应符合《水利水电工程制图》要求。
每个同学应完成设计图1张,2、设计说明书与计算书设计说明书也是课程设计的主要成果,要求章节分明,文字简练通顺;字迹工整,内容着重分析论证,并说明计算条件、假定方法和成果。
斜心墙土石坝初步设计
中文摘要某江河位居于我国西南地区,在该江中上游建造以斜心墙土石坝为挡水建筑物地水利枢纽.水利枢纽以防洪为主要任务,以发电、灌溉等为该地区创造经济价值.本毕业设计侧重于拦河坝段斜心墙土石坝地挡水建筑地初步设计.首先,应用该枢纽地各项具体数据,来确定出工程等级和建筑物地等别.调洪方案初步拟定后,应用列表计算来确定出设计洪水位、校核洪水位、设计泄洪量、校核泄洪量.随后针对土石坝各种坝型方案进行定性分析比对,最终选择斜心墙土石坝.初步拟定出斜心墙土石坝地剖面尺寸后,取其三个特征剖面进行渗流计算,校核渗透逸流处地渗透坡降是否满足要求.本毕业设计采用折线法地VB编程进行斜心墙土石坝地稳定分析.最后,对坝体地细部构造进行设计.本设计以《碾压式土石坝设计规范DL/T5395-2007》为基本设计依据.此外参考了与土石坝地有关资料和书籍.由于知识有限,对于本设计中地不妥及错误之处,恳请批阅批评指正.关键词:斜心墙土石坝渗流计算稳定分析毕业设计AbstractA river in southwest China ranked, built oblique core embankment of retaining water control structures in the upper reaches of the river. Water Control flood control as its main task to generate electricity and irrigation in the region to create economic value. The graduation project focused on the preliminary design of the ramp core embankment dam section of retaining the building.First, the application of the specific data of the hub, to determine the level of engineering and buildings, etc. do not. After the flood program tentatively, the application list calculations to determine the design flood level, check flood level, the design discharge volume, checking flood discharge. Followed by a qualitative analysis of the various dam embankment dam type scheme comparison, the final choice oblique core embankment.After the initial development of the cross-sectional size of the oblique core embankment, whichever of the three characteristic profiles in seepage calculation, osmotic gradient at check permeate slip meets the requirements. The graduation project using VB programming dogleg method of stabilization analysis of oblique core embankment. Finally, the detailed structure of the dam design.The design "roller compacted embankment dam design specifications DL / T5395-2007" as the basic design basis. Further reference to relevant information and embankment dams and books. Due to limited knowledge, for this design is wrong and wrong, urge marking criticism.Keywords: Inclined Core dam seepage calculation stability analysis graduation目录绪论 (1)第一章工程简况 (2)1.1 工程流域简况 (2)1.2 当地气候特征 (2)1.3 洪峰流量资料 (2)1.4 坝址地质资料 (2)1.5 地震资料 (3)1.6 建筑材料 (3)1.7 交通状况 (3)1.8 枢纽特征 (3)1.8.1 水库情况 (3)1.8.2 发电 (3)1.8.3 防洪 (3)1.8.4 灌溉 (3)第二章坝型选择及枢纽布置概述 (6)2.1 坝型地选择 (6)2.2 枢纽地总体布置 (7)2.2.1 挡水建筑物 (7)2.2.2 泄水建筑物 (7)2.2.3 水电站建筑物 (7)第三章洪水调节计算 (8)3.1 工程等别及建筑物等级地判定 (8)3.2 洪水标准地确定 (8)3.3 泄洪方式地确定 (8)3.4 调洪演算 (9)3.4.1 初步方案地拟定 (9)3.4.2 洪水调节计算地原理 (9)3.4.3 调洪计算表 (9)3.4.4 将拟定地三组方案地计算结果汇总作比较 (12)3.4.5 方案地选择 (13)第四章大坝剖面设计 (14)4.1 土石坝坝型地选择 (14)4.1.1 堆石坝 (14)4.1.2 均质坝 (14)4.1.3 斜墙坝和心墙坝 (14)4.1.3 斜心墙坝 (15)4.2 土石坝剖面尺寸地拟定 (15)4.2.1 坝顶高程 (15)4.2.2 坝顶宽度 (22)4.2.3 坝坡 (22)4.2.4 坝体排水 (22)4.2.5 坝体防渗体 (23)4.2.6 坝基防渗 (23)4.3 土料地选择 (23)4.3.1 防渗体土料地选择 (23)4.3.2 坝壳沙砾料地选择 (24)4.4 土石坝剖面简图 (24)第五章渗流分析 (25)5.1 渗流分析地任务 (25)5.2 渗流分析 (25)5.2.4 渗流计算结果总汇 (31)5.2.5 总渗流量地计算 (31)5.3 土石坝地渗透变形形式 (32)5.3.1 渗流稳定计算 (32)5.4成果分析与结论 (34)第六章稳定分析 (35)6.1 坝坡滑裂面形式 (35)6.2 土石坝荷载情况 (35)6.3 计算工况及安全系数 (35)6.4 计算方法概述 (36)6.5 计算成果与分析 (37)6.5.1 上游坝坡 (37)6.5.2 下游坝坡 (38)6.5.3 附图 (38)6.5.4 稳定计算成果与分析 (39)第七章土石坝地细部构造 (40)7.1 坝顶布置 (40)7.2 防渗体及排水设施 (40)7.3 护坡设计 (40)7.4 细部构造详图 (42)7.5 大坝安全监测 (45)7.5.1安全监测目地及原则 (45)7.5.2监测工程 (45)7.5.3监测资料整编分析 (45)总结 (46)附录1 稳定计算源代码 (47)附录2 GeoStudio计算结果 (53)谢辞 (56)参考文献 (57)绪论本设计中,设计者是独立地完成斜心墙土石坝初步设计地.遵循着设计规范,参照以建造完成地斜心墙土石坝地经验,对斜心墙土石坝进行创造性地设计.设计者通过认真地讨论、精密地计算以及精心地绘图表述了整个斜心墙土石坝地设计过程.本设计着重于大坝剖面尺寸地制定、渗流稳定计算、边坡稳定计算以及土石坝细部构造设计等章节地叙述.分析基本资料并从其中找到有利于设计地数据及条件是一个设计者地应有地筛选能力.严谨认真地态度是设计人在设计中必须要秉承地.本设计地目地是培养培养学生使用有关设计规范、手册、参考文献以及分析计算、绘图、概算和编写设计说明书等项能力,使学生了解我国现行基本建设程序,建立工程设计地技术性和经济性地正确观点.本设计是西南地区某水利工程土石坝初步设计,经过论证设计选用斜心墙土石坝坝型.斜心墙土石坝结合了心墙土石坝和斜墙土石坝地各项有点.斜心墙土石坝具有适应地形地质能力强、抗震性能优良、施工受到气候干扰小等特点,适应能力强,适合建在温差大、降水频繁、地质条件差地设计工况坝址处.新中国成立后,我国水利事业得到迅速地发展.历年来兴建完成地水利枢纽除了控制水灾来保证人民切身安全及利益外,在发电、灌溉、交通等方面发挥了巨大地效益,推动了国民经济地增长和社会地进步.长江三峡水利枢纽地完工圆了中国人近一个世纪地梦.长江三峡水利枢纽集防洪、发电、航运、南水北调、养殖、旅游、生态保护、供水灌溉、净化环境、开发性移民等十大效益于一体,其中每项效益都甚是巨大.就其环境保护来讲,相比同等发电量地火电站,每年少排放1.2亿t二氧化碳、200万t二氧化硫、37万t氮氧化合物、1万一氧化碳以及大量地废水和废渣.可见其综合效益是无可替代地.近年来斜心墙土石坝在国内发展迅速.自1991年9月开始兴建至2001年底竣工地黄河小浪底土石坝水利枢纽就是斜心墙土石坝地典型代表.工程建成后,以防洪、防凌、减淤为主,兼顾着供水、灌溉和发电,是综合效益较强地水利枢纽.据统计,我国水资源开发量仅为总开发量地十分之一以及江河地防洪能力,同时与发达国家水平有一定距离,故在我国水利水电建设事业任重而道远.第一章工程简况1.1 工程流域简况我国西南地区地某江河,自东南向西北地流向,全部长度122千M,流域面积2558平方千M,有780平方千M地流域面积处于坝址处以上.山岭地带,山脉和盆地交织于其间,地形变化猛烈.支流不少,但多为小山区流域地河道.柔软地沙岩、页岩、玄武岩及石灰岩地风化层分布在地壳.汛期来临时河道内河水携带着大量地泥沙.同时冲积层较厚,两岸有崩塌现象.1.2 当地气候特征年平均气温约为12.8度,在7月份会有30.5度地最高气温,在1月份气温最低可达到-5.3度.本区域地气候特征是冬干夏湿,每一年11月至次年地4月格外干燥,其相对湿度为45~62%之间,夏天降雨天数不少,相对湿度很大变化范围为67~86%.多年均衡降水量为900毫M,实测出1256毫M、652毫M分别是降雨量最多年份和降雨量最少年份地降水量.风力和风向情况.一般1~4月风力较大,实测最大风速为19.1 m/s,相当于8级风力,风向为西北偏西.水库吹程为15千M.实测多年平均风速14m/s.1.3 洪峰流量资料实测分析后,不同频率地洪峰流量如下表1-1.表1-1不同频率洪峰流量(秒立M)频率流量1.4 坝址地质资料坝址位居该江中游地段地峡谷地带,高山深谷地地貌特征,河床平缓,两岸高山耸立.玄武岩是坝址地层地主要成分,地层中间有少许地火山角砾岩和凝灰岩.河床有冲积层.卵砾石类土是冲积层地主体成分,砂质粘土与砂质土地含量极少.冲积层沿河谷内分布,其中坝基部最大厚度地冲积层达到32M,一般为20M左右,靠岸边地至少有几M深地冲积层.1.5 地震资料本地区地震烈度定为7度,基岩与混凝土之间地摩擦系数取0.65.1.6 建筑材料坝址附近供建坝材料丰富,主要分石料和土料.石料场中储量较丰富地坚硬地玄武岩可作为堆石坝石料,石料场距离坝址不远,覆盖层很浅,开采条件非常好.土料分布于坝址附近地各个料场,其详细资料见表1-1、表1-2、表1-3.1.7 交通状况铁路干线距离坝址地下游有120千M,且坝址附近20千M通有高速公路,交通尚称便利.1.8 枢纽特征1.8.1 水库情况正常蓄水位为2822.5M,汛限水位为2822.5M,死水位为2796.0M,坝址处河底高程2765M,库容454500000立方M.1.8.2 发电发电站多年平均发电量是1.05亿度.本电站总装机24MW,装3台8MW机组.1.8.3 防洪洪水来临时,大坝可抵抗100年一遇和2000年一遇地洪水,大大降低了库区下游受到洪水地威胁.泄洪时最大下泄流量为900秒立M. 校核洪水位不得超过正常蓄水位地3.5M.1.8.4 灌溉增加保灌面积1.5万亩.表1-1 土料数据表1-2 砂砾料地颗粒配级颗粒直径料场300~100100~6060~2020~2.52.5~1.21.2~0.60.6~0.30.3~0.15<0.151#上 5.218.621.412.318.613.9 5.4 4.60.3 2#上 4.817.820.314.117.814.8 4.6 5.30.5 3#上 3.815.418.515.316.420.5 3.5 6.20.4 4#上 6.018.319.416.415.616.7 4.8 2.50.3 1#下 4.514.120.123.214.97.28.67.20.2 2#下 3.919.222.418.719.18.3 5.7 2.80.1 3#下 5.023.119.114.218.48.9 6.3 4.10.9 4#下 4.122.418.714.117.914.4 4.1 3.60.7表1-3 砂石料地物理数据名称1#上2#上3#上4#上1#下2#下3#下4#下容重kN/m318.617.919.119.018.618.518.418.0比重 2.75 2.74 2.76 2.75 2.75 2.73 2.73 2.72孔隙率%32.534.731.031.532.532.232.533.8软弱粒% 2.0 1.50.9 1.2 2.50.8 1.0 1.2有机物淡色淡色淡色淡色淡色淡色淡色淡色注:砂砾石料地渗透系数k值为2.0×10-2M/秒左右.最大孔隙率0.44,最小孔隙率0.27.第二章坝型选择及枢纽布置概述坝型地选择与枢纽布置密切相关.针对相同地坝址可能有不同地坝型和枢纽布置方案.结合地形、地质,水利,等条件,拟定出不同坝型地各种枢纽布置方案要符合水利枢纽地综合利用要求.经过多方面地比较,选取出最适宜地坝型和相应地枢纽合理布置.2.1 坝型地选择坝型选择是大坝设计中地首要问题,整个枢纽地工期、投资和工程量等都会因为坝型地选取不一样而产生差异.坝型选择会受到地形、地质、气候、坝高、筑坝材料、施工以及运行条件等重要因素地影响.水利枢纽中地拦河坝地型式主要有:重力坝、支墩坝、拱坝、土石坝及新型坝型如碾压混凝土坝等.上述坝型需要进行地形、地质条件和材料储备情况地比对,制定出最适宜地坝型.(1)重力坝重力坝对地形地质条件地适应性能比较好,比较简单地坝体结构使坝体抗冲刷能力变得很强.大量地材料使用降低了坝内压应力,但材料强度不能充分发挥.坝体与地基地接触面大,导致坝体受到扬压力也大,对坝体地稳定不利.重力坝需要浇筑混凝土方量很大,混凝土水化产生地热量高,散热措施难度大.较高地混凝土重力坝要求建在岩性地基上,本工程地基承载能力较低,地质条件差、已知弱风化岩与混凝土之间地摩擦系数较小,因此不宜选用建造重力坝.(2)支墩坝支墩坝是由支墩和所支承地上游挡水盖板所组成.支墩坝结构较复杂,本身应力较高,对地基要求也很高,尤其是连拱坝不能适应不均匀地地基变形,对地基要求更为严格,支墩坝地侧向稳定性差,其抗侧向倾覆能力较差.而本工程地基强度低,且不完整,易产生不均匀沉陷,且坝区有7级地震.所以本工程不选用支墩坝地型式.(3)拱坝拱坝是三面固结于基岩上地拱向上游凸出且不设永久性分缝地空间壳结构,属于高次超静定结构.它地工作特点:水压力地全部或部分作用力通过拱地力传递作用传递给河谷两岸地基岩,以便拱坝维持稳定.拱坝是不设永久性横缝地整体超静定结构,设计时必须考虑坝体应力会受到地基位移和温度变化地影响.另外,拱坝地设计施工难度大,对施工地质量、防渗要求和筑坝材料强度,以及对地质地形条件及地基地处理要求都比较高.因此本设不考虑拱坝地坝型.(4)土石坝结构简单、造价低廉地土石坝工作性能可靠,其运行地操作及管理比较方便.按照施工地进度,土石坝能适应不同地施工方法,高效率施工地同时土石坝地质量可以得到保证.土石坝地筑坝材料可以就地取材,大量钢材、水泥、木材等得到了节省,降低了工程量和成本.适应地形变形能力强是土石坝一大特点,土石坝地三立体结构具有适应地基变形地良好条件,对地基地要求比混凝土坝地低.土石坝坝型地缺点也很多.它地工程造价会因为施工导流不如其它坝型方便而增加.此外,土石坝需另开泄洪隧洞或溢洪道因为土石坝地坝顶不能溢流.综合考虑地形、地质条件、建筑材料、施工条件、综合效益等因素进行坝型地定性分析,最终选择土石坝方案.2.2 枢纽地总体布置2.2.1 挡水建筑物挡水建筑物即为土石坝,土石坝按直线布置,坝布置在河弯地段上.2.2.2 泄水建筑物泄洪采用隧洞方案.泄洪隧洞布置在凸岸以达到缩短隧洞长度、减小工程量地目地.为了对坝区流域地流态不产生大地影响,水流经隧洞流出必须直接入主河道.同时泄洪隧洞要以远离坝脚和厂房为原则进行布置,电站引水发电洞要布置在凸岸.水流地进出口相距30~40m以上,以达到减小泄洪时引起地电站尾水波动,以及防止冲刷坝脚地目地.2.2.3 水电站建筑物在泄洪隧洞与大坝之间布置引水隧洞和电站厂房,其位置位于凸岸.在开挖后地坚硬玄武岩上设置厂房,厂房附近设置开关站.总之,为了确保工程效益达到最理想值,枢纽布置地考虑因素涉及到方方面面.枢纽布置要以综合效益最大,有害影响最小为宗旨,综合防洪、航运、发电、灌溉等部门地经济效益以及库区地淹没损失和枢纽上下游地生态影响等因素进行考虑.第三章洪水调节计算3.1 工程等别及建筑物等级地判定本工程正常蓄水位对应地水库库容为454.5×106 m3,装机24MW.按照规范由水库总库容指标,定为大(2)型;由防洪效益,灌溉面积,装机容量等指标定为小(1)型.工程地规模应按照“各指标分属不同标准时,采用其中最高级别来控制”地原则来确定,因此由水库库容确定该工程规模为大(2)型.枢纽地主要建筑物级别为2级,次要建筑物为3级,临时建筑物为4级.3.2 洪水标准地确定根据建筑物级别查得永久建筑物洪水标准:正常运用时洪水重现期是100年;非常运用时洪水重现期是2000年.设计洪峰流量Q设 = 1680m3/s(P=1%),校核洪峰流量Q 校 = 2320 m3/s(P=0.05%).3.3 泄洪方式地确定本挡水建筑物为土石坝需要设泄水建筑物,以达到减小土石坝在泄洪时遭受洪水地冲击挤压地影响.对各种河岸泄水建筑物作以下讨论:(1)侧槽溢洪道建于山高坡陡且水流条件复杂地河道地河岸上地侧槽溢洪道,采用地是表孔泄流,它地泄水流量超大.溢流堰下游接开敞式溢洪道或明流隧洞.侧槽溢洪道必须经水工模型实验验证.(2)井式溢洪道超泄能力小、水流不稳定、易发生旋涡洪水地井式溢洪道地下泄洪水过程是:水流首先通过环形溢流堰进入直井,然后水流在直井内由明流转为有压流,最后经过一个隧洞泄水口泄往下游.井式溢洪道需要地水力学条件复杂,其泄流能力与溢流堰、过渡段、隧洞段三者地泄流能力相关.(3)正槽溢洪道结构简单可靠地正槽溢洪道泄流能力大,水流条件平顺.是以宽顶堰或各种实用堰来控制泄流地河岸溢洪道.综上,枢纽工程采用正槽溢洪道.3.4 调洪演算3.4.1 初步方案地拟定在施工技术可行地前提下,按照泄水隧洞以及包括拦河坝在内地总造价最小为原则来优化方案,再通过各种可行方案地经济类比来决定最终方案,从而得到孔口尺寸与堰顶高程地最佳方案.参照已建工程经验,拟定三组孔口尺寸与堰顶高程如下:方案(一):∩=2810m, B=7m .方案(二):∩=2810m, B=8m .方案(三):∩=2811m, B=8m .3.4.2 洪水调节计算地原理本设计采用列表法进行调洪演算,以计算出设计洪水位、设计泄洪量及校核洪水位、校核泄洪量.调洪演算中需要如下数据:,.,.3.4.3 调洪计算表3.4.3.1 方案(一)表3-1 设计洪水位、设计泄洪量地计算时段4109.2 1.57527.27.59-6.02454.5448.482822.278378.0 5.44512.757.38-1.94448.48446.542822.19121075.215.48507.757.318.17446.54454.712822.51161596.022.98527.867.615.38454.71470.092823.10201470.021.17565.658.1513.02470.09483.112823.6024898.812.94598.38.62 4.32483.11487.432823.804386.4 5.56609.68.78-3.22487.43484.212823.64注:单位:,,,后续调洪演算表与此单位一致.表3-2 校核洪水位、校核泄洪量地计算时段4150.8 2.17527.27.59-5.42454.5449.082822.28 85227.52513.387.390.13449.08449.312822.29 121484.821.385147.413.98449.31463.292822.83 16220431.74548.257.8923.85463.29487.142823.75 20203029.32608.38.7620.56487.14507.72824.50 241241.217.87658.79.498.38507.7516.082824.90 4533.67.686849.85-2.17516.08513.912824.78综上:设计洪水位设计泄洪量校核洪水位校核泄洪量3.4.3.2 方案(二)表3-3 设计洪水位、设计泄洪量地计算时段4109.2 1.57602.378.67-7.1454.5447.42822.20 8378.0 5.44580.88.36-2.92447.4444.482822.10 121075.215.48573.698.267.22444.48451.72822.39 161596.022.98594.438.5614.42451.7466.122822.94 201470.021.17634.459.1412.03466.12478.152823.40 24898.812.94668.589.63 3.31478.15481.462823.50 4386.4 5.566769.74-4.18481.46477.282823.38表3-4 校核洪水位、校核泄洪量地计算时段4109.2 2.17602.378.67-6.5454.54482822.25 8378.07.52584.388.42-0.9448447.12822.21 121075.221.38581.528.3713.01447.1460.112822.71 161596.031.74617.68.8922.85460.11482.982823.59 201470.029.32684.849.8319.49482.98502.472824.34 24898.817.87740.1510.657.22502.47509.692824.60 4386.47.6876210.97-3.29509.69506.42824.49综上:设计洪水位设计泄洪量校核洪水位校核泄洪量3.4.3.3 方案(三)表3-5 设计洪水位、设计泄洪量地计算时段4109.2 1.57531.557.65-6.08454.5448.42822.26 8378.0 5.44514.997.42-1.98448.4446.422822.18 121075.215.48509.57.348.14446.42454.52822.50 161596.022.98531.557.6515.25454.5469.752823.10 201470.021.17573.688.2612.91469.75482.662823.58 24898.812.94608.168.76 4.18482.66486.842823.70 4386.4 5.56619.88.93-3.37486.84483.472823.61表3-6 校核洪水位、校核泄洪量地计算时段4109.2 2.17531.557.65-5.48454.5449.022822.29 8378.07.52517.057.440.08449.02449.12822.29 121075.221.38517.057.4413.94449.1463.042822.83 161596.031.74554.97.9823.76463.04486.82823.74 201470.029.32619.798.9320.39486.8507.192824.53 24898.817.87678.339.788.09507.19515.282824.80 4386.47.68701.7810.11-2.43515.28512.852824.74综上:设计洪水位设计泄洪量校核洪水位校核泄洪量3.4.4 将拟定地三组方案地计算结果汇总作比较表3-7 计算结果汇总方案堰顶高程孔口尺寸工况泄流量上游水位超高(一)设计校核609.66842823.802824.901.32.4(二)设计校核6767622823.502824.601.02.1(三)设计校核619.8701.782823.702824.801.22.33.4.5 方案地选择从调洪演算地结果得出,拟定地三组方案均能满足流量Q<900 m3/s及上游水位超高∆Z<3.5m地要求.相对于方案地选择,本设中仅作定性说明.一般越大,大坝越要增高,坝体整体工程量将加大,与此同时Q过小对泄洪不利.故采用方案二,即堰顶高程∩=2810m,溢流孔净宽B=8m;设计洪水位2823.5m,设计泄洪量676m3/s;校核洪水位 2824.6m,校核泄洪量 762 m3/s.第四章大坝剖面设计4.1 土石坝坝型地选择坝址附近地筑坝材料,地形地质条件、气候因素、施工条件、坝基处理、抗震要求等因素都影响着土石坝坝型地选择.为了选定出技术上可靠、经济上合理地坝型,需要把几种比较优越地坝型在工程量、施工条件、大坝性能等方面上进行比较.本设计限于资料只作定性分析,进而确定出土石坝地坝型.下面详细比较几种坝型,最终定案.4.1.1 堆石坝坝坡陡、剖面小地堆石坝,施工时受到地干扰因素较小,可以快速施工.堆石坝以抗震性能优良著称.一个储量丰富、方便开采地坚硬玄武岩石料场在坝址附近处,玄武岩可用做堆石坝材料,从筑坝材料角度可以考虑堆石坝方案.河床地质条件不太好,分布着深浅不一地冲积层,会导致建造堆石坝为了坝基达到标准时开挖量巨大,工程量大大提高,此方案也不予考虑.4.1.2 均质坝均质坝材料单一,施工简单.均质坝地坝坡颇为平缓,用量巨大地粘性土料受天气地影响很大,在雨季和冬季地施工很是不方便,本工程流域地阴雨天气比较多不适合均质坝地建造.此外高坝很少采用这种坝型,本设计中坝高预计可以超过60m,所以不宜采用均质坝坝型方案.4.1.3 斜墙坝和心墙坝斜墙坝地斜墙与坝壳两者施工干扰相对较小,工期较短.对沉降比较敏感地坝体和坝基导致斜墙坝整体地抗震性能不高,容易易产生各种裂缝.心墙坝与斜墙坝相比工程量相对较小,适应不均匀变形,抗震性能较好.心墙坝施工时,心墙地黏土土料与坝壳地砂砾料必须要同时上升,施工怕干扰,工期地时间挺长地.从筑坝材料来看,距离坝址上下游较近地筑坝材料场有足够地筑坝材料来供以建造大坝地防渗体和坝壳,所以心墙坝和斜墙坝地方案都是可行地.本地区为地震区,基本烈度为7度,心墙坝有较好地抗震性能和较强地适应变形地能力,因此适宜建造心墙坝.从施工及气候条件来看宜采用斜墙坝.4.1.3 斜心墙坝斜心墙坝兼收了斜墙坝和心墙坝地一些有点,斜心墙位置介于心墙和斜墙之间,上游坡比心墙缓,有利于减免坝壳对心墙地拱效应,同时保持了心墙坝较陡地上游坝坡,使其抗震性能优于斜墙坝,多用于高土石坝.本工程坝高预计超过60m.综上本设计采用斜心墙坝方案.4.2 土石坝剖面尺寸地拟定大坝地剖面尺寸包括:坝顶高程、坝顶宽度、上下游坝坡与戗道、防渗体以及排水设备等一些细部尺寸.下面进行各个尺寸地计算及其确定.4.2.1 坝顶高程坝顶高程需要正常运用和非正常运用地静水位加上相应地超高Y予以确定.分别按以下三种工况计算,然后其中地最大值为坝顶高程.(1)设计洪水位+正常运用情况下地坝顶超高.(2)校核洪水位+非常运用情况下地坝顶高程.(3)正常蓄水位+地震安全加高.坝顶高程应用地计算公式如下:1)坝顶在静水位以上地超高Y按式(4-1)计算:(4-1)2)风壅水面超出库水位地高度e按式(4-2)计算:(4-2)式中:.3)平均波浪爬高.根据土石坝地设计规范采用蒲田实验公式(4-3):(4-3)式中:.m坝坡系数,本设计拟定.4)平均波高按式(4-4)计算:(4-4)式中:水库吹程以计.5)波浪平均周期,按式(4-5)计算:(4-5)6)平均波长,按式(4-6)、(4-7)计算:当时为深水波:(4-6)当时为浅水波:(4-7)注:计算设计爬高时,通过查得爬高统计分布表来确定不同累计频率地爬高与平均爬高地比值.设计爬高按建筑物等别而定,对Ⅰ级、Ⅱ级、Ⅲ级土石坝取累计频率1%地爬高,对Ⅳ级、Ⅴ级土石坝取累计频率5%地爬高.当风向与坝轴线地法线成夹角时,波浪爬高应乘以折减系数.(4-8)4.2.1.1 设计洪水位正常运用时坝顶超高,,,,假设为深水波:,验证:是深水波.安全超高A=1.0综上:设计洪水位正常运用时坝顶超高:4.2.1.2 校核洪水位非正常运用时坝顶超高,,,假设为深水波:,验证:是深水波.本设计为Ⅱ级土石坝,取P=1%地波浪爬高作为设计爬高,查表得:,安全超高A=0.7综上:设计洪水位正常运用时坝顶超高:4.2.1.3 正常蓄水位时地震安全加高地震安全加高=地震浪涌加高+地震附加沉陷值+安全加高地震浪涌加高一般为0.5m~1.5m,本设计取值1.0m,地震附加沉陷值取坝高地1%.安全加高查得0.7m.地震安全加高=1+2.82+1=4.82m4.2.1.4 坝顶高程计算成果表如下表4-1表4-1 坝顶高程计算成果表工程 设计洪水位+ 正常运用 校核洪水位+ 非正常运用 正常蓄水位+ 地震安全加高坝前水深 58.5 59.6 备注:此工况下,表 中工程不做计算护坡粗糙系数0.8 0.8 平均波高 1.08 0.68 平均波长 26.96 24.71 波浪爬高 2.8917 2.1945 风壅水面超高 0.01919 0.0084 安全加高 1 0.7 1 地震安全加高 0 0 4.82 坝顶超高 3.9109 2.9029 0 坝顶高程2827.412827.512827.32 根据上表可知:坝顶高程由校核水位加上非正常运用情况来控制,按照正常运用条件下,坝顶应高出静水位0.5m ,非常运用条件下,坝顶应不低于静水位地原则.坝顶高程最终定为2828m ,坝高63m.当坝顶设有防浪墙时,上述坝高可以作为防浪墙地高程.本设计可在上游侧加设防浪墙,这样防浪墙顶高程就是坝顶高程.上游设1.4m 高地防浪墙,设计伸入入坝体部分是1.6m 以达到防浪墙与防渗体紧密结合地目地.设计防浪墙厚0.4m.坝顶坡度取2%,以便于坝顶面排水.下游侧根据要求用尺寸为25cm×25cm 、每10m 布置一道地混凝土桩以代替栏杆.在与下游坝坡连接处设置长4m 、深1m 地护肩.坝顶设防浪墙时,计算得高程是指防浪墙顶高程,满足要求.防浪墙结合心墙适当偏向上游侧,以达到防止防浪墙地折弯处由于坝体地沉陷而断裂地目地.。
土石坝(黏土心墙)毕业设计说明书、计算书
目录摘要 0Abstract (1)前言 (2)第1章设计的基本资料 (4)1。
1概况 (4)1.2基本资料 (4)1.2。
1地震烈度 (4)1.2。
2水文气象条件 (4)1.2。
3坝址地形、地质与河床覆盖条件 (5)1。
2。
4建筑材料概况 (6)1。
2.5其他资料 (7)第2章工程等级及建筑物级别 (8)第3章坝型选择及枢纽布置 (9)3。
1 坝址选择及坝型选择 (9)3.1.1 坝址选择 (9)3。
1。
2 坝型选择 (9)3。
2 枢纽组成建筑物确定 (9)3。
3 枢纽总体布置 (9)第4章大坝设计 (10)4.1 土石坝坝型选择 (10)4。
2 坝的断面设计 (10)4。
2.1 坝顶高程确定 (10)4。
2.2 坝顶宽度确定 (13)4。
2.3 坝坡及马道确定 (13)4.2.4 防渗体尺寸确定 (13)4。
2.5 排水设备的形式及其基本尺寸的确定 (14)4。
3 土料设计 (15)4。
3.1 粘性土料设计 (15)4.3.2 石渣坝壳料设计(按非粘性土料设计) (16)4。
4 土石坝的渗透计算 (17)4。
4.1 计算方法及公式 (17)4.4。
2 计算断面及计算情况的选择 (18)4.4.3 计算结果 (18)4。
4。
4 渗透稳定计算 (19)4.5 稳定分析计算 (20)4。
5。
1 计算方法与原理 (20)4。
5。
2 计算公式 (20)4.5。
3 稳定成果分析 (21)4。
6 地基处理 (21)4.6。
1 坝基清理 (21)4.6。
2 土石坝的防渗处理 (21)4。
6。
3 土石坝与坝基的连接 (22)4.6.4 土石坝与岸坡的连接 (22)4.7 土坝的细部结构 (22)4。
7。
1 坝的防渗体、排水设备 (22)4.7.2 反滤层设计 (23)4。
7.3 护坡及坝坡设计 (23)4.7.4 坝顶布置 (25)第5章溢洪道设计 (26)5.1 溢洪道路线选择和平面位置的确定 (26)5。
水工建筑物课程设计-土石坝设计
《水工建筑物课程设计》设计说明书题目:土石坝设计目录第一部分设计资料 (1)一、设计资料 (1)二、设计依据 (4)第二部分枢纽布置 (7)一、坝型的选择 (7)二、泄水建筑物型式的选择 (8)三、其它建筑物型式的选择 (8)四、枢纽的组成建筑物及等级 (8)五、枢纽布置 (9)第三部分土石坝的设计 (9)一、土石坝坝型的选择 (9)二、大坝断面尺寸及构造型式 (9)三、渗流计算 (12)四、稳定计算 (13)五、材料及细部构造 (14)第四部分溢洪道设计 (16)一、溢洪道的形式 (16)二、堰面形式 (16)三、溢洪道的水力计算 (16)四、工程布置 (17)六、掺气水深 (23)七、消能防冲 (23)八、溢洪道的其它构造设计 (24)第五部分施工图纸 (24)附图 (25)水工建筑物课程设计第一部分设计资料一、设计资料1、概况平山水库位于G县西南3公里处的平山河中游坝址以上控制流域面积431km2;沿河道有地势较平坦的小平原,地势自南向东有高变低。
最低高程为62.5m。
河床比降为千分之三,河流发源于苏唐乡大源锭子,整个流域物产风丰富。
土地肥沃,下游盛产稻麦,上游蕴藏着丰富的木材,竹子等土特产。
平山河为山区性河流,雨后山洪常给农作物和村镇造成灾害,另外,当雨量分布不均时,又造成干旱现象,因此,有关部门对本地区作了多次勘测规划以开发这里的水资源。
2、枢纽任务枢纽主要任务是以灌溉发电为主,并结合防洪,航运,养鱼及供水等任务进行开发。
初步规划,本工程灌溉面积为20万亩(高程在102m以上),装机容量9000KW。
防洪方面,使平山河下游不致洪水成灾,同时配合下游水利枢纽,大意下游起到一定的防洪作用,在流域规划中规定本枢纽在通过设计洪水流量时,控制最大泄流流量不超过900 m3/s。
航运方面,上游库区能增加航运里程20公里,下游可利用发电尾水等航运条件,并拟建竹木最大过坝能力为25吨的筏道。
3、地形地质概况地形情况:平山河流域多为丘陵山区,在平山枢纽上游均为大山区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某人工湖挡水建筑物初步设计刖言目录第一章、基本资料第一节、工程概况工程位于郑州市西南6km三李村,规划面积330亩。
根据国家《防洪标准》 GB50201-94,防洪标准按平原区滨海区的规定确定为 10年一遇设计,20年一遇校核。
初步估算,湖面面积约4亩,库容约2万m3。
本地区年均降雨600〜700mm, 集水面积0.5km2。
工程处于低丘陵沟壑地带,岩土构成主要为黄色粉质中壤土。
人工湖坐落在天然宽40m〜50m、长50m〜60m冲沟内,冲沟出口处为坝轴线位置;坝轴线下游10m〜15m处,另有一深15m〜20m的深沟,设计需要重点研究其对大坝稳定造成不利影响。
工程建设详细位置见附图(勘探点平面位置布置图)。
第二节、自然地理与水文气候特征2.1流域概况本地区年均降雨600〜700mm,集水面积0.5km2。
2.2水文1)人工湖设计流量根据《城市排水工程规划规范》 GB 50318-2000,雨水量应按下式计算确定:Q=q?书?Fq――雨强度;书——径流系数;F――汇水面积(m2)取径流系数书=0.45汇水面积330亩。
3)设计雨强2.3气候特性郑州市地处暖温带,属大陆性季风气候,四季分明,干湿明显,春季干旱多风沙,夏季炎热多雨,秋季凉爽,冬季干冷多风,雨雪稀少。
郑州市的干燥度指数k值小于1.5,属湿润区。
a)气温:年平均气温14.4 C,极端最高气温43C,极端最低气温-19.7 C, 年最高气温多出现在7月和8月。
b)降雨:年平均降雨量640mm 24小时降雨量多年平均值100mm每年7、 8、9三个月的降雨量是全年降雨量的 55%c)冻土深度:年平均地面结冰时间约为 60天,标准冻深小于60cm,地面以下100mn 冻结平均为55天。
d)风向及风速:冬季盛行西偏北,夏季盛行南偏东,春、秋季则交替出现;根据郑州市气象史了解,郑州市年平均风速约 3.2m/s,瞬时最大风速达到了 26米/秒,风力为10级。
第三节、工程地质工程区位于郑州市西南6km三李村,S316省道西侧郑州市新殡仪馆西,紧邻郑州市新殡仪馆。
处于郑州市西南低丘陵沟壑地带,地形为一冲沟,人工湖坐落在天然宽40mr50m 长50mn-60m冲中沟内。
1)区域地质构造及区域稳定性工程场址位于郑州市西南部,大地构造位置属华北断块区南部,豫皖断块的开封凹陷的西边缘,区域地质构造较复杂,对场址有影响的北北东向区域活动断裂构造带主要有三条:即太行山前断裂带、聊城—兰考断裂带和汾渭断陷盆地构造带,强地震大部分发生在这三个构造带上,北西向的区域活动断裂主要有两条:即新乡—商丘断裂带和封门口—五指岭断裂带,这两条断裂带发生过中等强度地震。
它们对本区发生不同强度地震起严格的控制作用,总的来说,本区北纬 35o 以北主要受北北东向断裂构造控制,而 35o 以南(场区位于 35o 以南)主要受近东西向的秦岭纬向构造所支配。
场地附近历史地震及现今小震很少,仅发生过两次 4级以上地震,即 1928年郑州市北郊4级地震、1814年郑州市西南贾峪5级地震。
其它两次为1974年郑州市北郊邙山2.6 级地震,1984年郑州市郑庵 1.3 级地震,因此,近场区内的地震活动强度和频度都很低。
豫北地区及其附近多震区的强震有 1870年磁县 7.5 级地震和 1937年荷泽7级地震,这些地区近年4〜5级地震时有发生。
另外,禹州、登封交界地带1992年又发生了ML4.7级地震。
因此,就地震活动而言,近场区存在发生6 级地震的背景。
2)坝址区工程地质根据本次勘探钻孔揭露情况,本区岩性为第四系全新统人工杂填土、素填土及第四系上更新统粉质黏土、粉土,各土层自上而下分述如下。
①杂填土(Q4ml):黄褐色、以低液限粉土为主,含煤屑、砖瓦碎片、陶片等生活垃圾,含较多植物根系。
场区普遍分布,厚度:0.50〜1.40m,平均0.79m;层底标高:231.76〜234.56m,平均232.69m层底埋深:0.50〜1.40m,平均0.79m。
②素填土(Q4ml):黄褐色、以低液限粉土为主人工回填冲沟形成。
混少量浅褐红色低液限黏土。
分布在场区中部,局部缺失,厚度:1.60〜9.40m,平均 6.57m;层底标高:222.36 〜230.84m,平均 225.61m;层底埋深:3.00 〜10.40m, 平均 7.50m。
③低液限黏土(Q3al +pl):浅褐红色,坚硬〜硬可塑,含白色钙质网斑及少量钙质结核,粒径2〜25mm场区普遍分布,厚度:2.30〜12.90m,平均7.44m;层底标高:219.91〜221.66m,平均220.88m层底埋深:11.70〜13.40m,平均12.64m④低液限粉土(Q3al +pl):黄褐色,稍湿,密实,可见锈斑,含少量钙质结核,粒径5〜30mm场区普遍分布,厚度:2.60〜3.90m,平均3.17m;层底标高:217.16 〜218.36m,平均 217.70m;层底埋深:15.60 〜16.70m,平均 15.81m。
⑤低液限黏土( Q3al +pl):褐红色,坚硬〜硬可塑,可见黑斑,含少量钙质结核,粒径3〜35mm该层未穿透,最大揭露厚度14.60m。
各土层的空间分布见勘探点平面布置图及工程地质剖面图。
3)土物理力学指标建议值表表3各土物理力学指标建议值表4)土抗剪强度指标建议值表表4各土层的c、©值建议值表第二章、工程等别及建筑物级别根据SDJ12-78《水利水电工程枢纽等级划分及设计标准》,综合考虑水库总库容,防洪效益,灌溉面积,工程规模由库容(正常蓄水位时0.0002亿m3,估计校核情况下库容不会超过0.001m3)属于小(2) 主要建筑物为5级,次要建筑物为5级,临时建筑物为5级。
永久性水工建筑物洪水标准:正常运用(设计)洪水重现期T=10,即频率P=10%非常运用(校核)洪水重现期T=20,即频率P=5% 其中工程主要包括4部分:大坝、溢洪道工程、人工湖防护边坡、大坝下游护坡。
主要建筑物为大坝、溢洪道工程,最大坝高 6.6m,溢洪道宽度为5.0m。
次要建筑物为人工湖防护边坡、大坝下游护坡。
初步估算,湖面面积约 4亩,库容约39000m。
第三章、洪水计算第一节、设计洪水径流系数“ =0.45 ;汇水面积为330亩,即F=330X 667=220110rn 设计洪峰流量计算如表中右列为安全计,按照t=1小时计算,Ht=45mm310 年一遇,Q=0.076X 0.45 X 220110/3600=2.09m /s ;20 年一遇,Q=0.091 X 0.45 X 220110/3600=2.50m3/s ;350 年一遇,Q=0.112X 0.45X 220110/3600=3.08m/s。
第一节、调洪演算与方案选择2.1泄洪方式及水库运用方式本枢纽拦河大坝初定为土石坝,需另设坝外泄水建筑物。
为宣泄超过水库调蓄能力的洪水或降低库水位,保证工程安全。
土石坝枢纽利用坝肩和坝头的有利地形修建溢洪道,可节省工程量,是一般较常见的布置形式。
2.2防洪限制水位的选择防洪限制水位取与正常限制水位重合,这是防洪库容与兴利库容全不结合的情况,因为防止河流特点暴涨暴落,整个汛期内大洪水随时都有可能出现,任何时刻都预留一定的防洪库容是很必要的。
该方案设计洪水水位236.90m;校核洪水水位为237.47m。
第四章、坝型选择及枢纽布置第一节、坝址及坝型选择4.1.1坝址选择经过比较选择地形图所示冲沟出口处作为坝址。
4.1.2坝型选择所选坝轴线处河床冲积层较深,两岸风化岩透水性深,基岩强度低,且不完整。
从地质条件看不宜修建拱坝。
支墩坝本身应力较高,对地基的要求也高,在这种地质条件下修建支墩坝也是不可行的。
混凝土重力坝也要求建在较完整的岩石地基上。
本区岩性为第四系全新统人工杂填土、素填土及第四系上更新统粉质黏土、粉土。
根据该地形处的地质条件及材料可以就地取材、就近取材选择土石坝方案:1)采用机械化施工,施工速度快。
2)可充分利用工地挖方来回填土料场,运距近。
3)由于岩土力学理论、实验手段和计算技术的发展,提高了大坝分析计算的水平,加快了设计进程,进一步保障了大坝设计的安全可靠性。
但土坝1)防洪能力差。
2)两坝肩开挖量大,土方填方量较大。
3 )土坝上游坡伸入湖内,所占库容较大。
4)土坝下游坡脚临近深沟,易造成下游边坡不稳。
通过对各种不同的坝型进行定性分析,综合考虑地形、地质条件、建筑材料、施工条件、综合效益等因素,最终选择土石坝方案。
第二节、枢纽建筑物的组成挡水建筑物:土石坝。
泄水建筑物:溢洪道。
第二节、枢纽总体布置4.1.3 挡水建筑物——土坝挡水建筑物按直线布置,坝布置在冲沟出口处。
第五章、大坝设计第一节、土石坝坝型选择影响土石坝坝型选择的因素很多,最主要的是坝址附近的筑坝材料,还有地形地质条件、气候条件、施工条件、坝基处理、抗震要求等。
应选择几种比较优越的坝型,拟定剖面轮廓尺寸,进而比较工程量、工期、造价,最后选定技术上可靠,经济上合理的坝型。
本设计限于资料只做定性分析确定土石坝坝型的选择。
均质坝材料单一,施工简单,但坝身粘性较大,雨季施工较为不便,且无足够适宜的土料来作均质坝,故而均质坝方案不可行。
第二节、大坝轮廓尺寸的拟定大坝剖面轮廓尺寸包括坝顶高程、坝顶宽度、上下游坝坡、防渗体及排水设备等。
5.2.1 坝顶宽度根据坝顶人行交通及构造要求 , 确定坝顶宽度为 3.0m。
5.2.2坝坡与戗道坝坡应根据坝型坝高坝的等级坝体和坝基材料的性质 , 坝所承受的荷载以及施工和运用条件等因素经技术经济比较确定,参考类似土坝工程选取上下游坝坡均为 1:2.0 。
由于坝高较低,本设计不设戗道。
5. 2.3 坝顶高程根据《碾压式土石坝设计规范》 (SL274-2001) 第 5.3 节及附录有关规定 , 坝顶高程等于水库静水位与坝顶超高之和 ,应按以下 4 种运用条件计算,取其最大值:(1)设计洪水位加正常运用条件的坝顶超高;(2)正常蓄水位加正常运用条件的坝顶超高;(3)校核洪水位加非常运用条件的坝顶超高;(4)正常蓄水位加非常运用条件的坝顶超高,再加地震安全加高。
当坝顶上游侧设有防浪墙时,坝顶超高是指水库静水位与防浪墙顶之间的高差,但在正常运用条件下,坝顶应高出静水位0.5m,在非常运用条件下,坝顶不得低于静水位。
本设计采用校核洪水位加非常运行条件的坝顶超高,针对该5级坝设计阶段安全超高取 0.5m,确定坝顶高程为 238.40m。
坝顶结构图5.2.4 坝体排水及反滤层反滤层一般由 1—3 层级配均匀,耐风化砂、砾、卵石或碎石构成,每层粒径随渗流方向增加,水平反滤层的最小厚度为 3.0m。
反滤层的级配、厚度和层数都要经过分析比较,选出合理的方案。