新人教版七年级上册数学第3章-一元一次方程全章教案

合集下载

人教版七年级上册数学第三章一元一次方程教学设计

人教版七年级上册数学第三章一元一次方程教学设计
(三)情感态度与价值观
1.培养学生对数学的兴趣和好奇心,激发学生主动学习的积极性。
2.使学生认识到数学在现实生活中的重要性,增强学生的应用意识。
3.培养学生面对问题时的耐心和毅力,提高学生克服困难的信心。
4.培养学生的团队精神,让学生学会与人合作、交流,共同解决问题。
二、学情分析
七年级上册的学生经过前两章的学习,已经具备了一定的数学基础和解决问题的能力。在此基础上,他们对一元一次方程的学习既有挑战性,又是提高数学素养的契机。学生在小学阶段已经接触过简单的方程,对方程有一定的认识,但对方程的解法和应用还较为陌生。因此,在本章节的教学中,教师需要关注以下几点:
3.教师简要介绍一元一次方程的定义和特点,为学生后续学习打下基础。
(二)讲授新知
1.教师详细讲解一元一次方程的定义、未知数、已知数和解的概念。
2.通过具体的例题,讲解等式的性质,如两边同时加上或减去、乘以或除以同一个数,方程的解不变。
3.引导学生掌握一元一次方程的解法,如移项、合并同类项等。
4.教师示范解题过程,强调注意事项,如符号变化、化简步骤等。
2.分步教学,循序渐进:将一元一次方程的解法分解为若干个步骤,引导学生逐步掌握,降低学习难度。
3.合作探究,互帮互助:组织学生进行小组合作,共同探究一元一次方程的解法,培养学生的合作意识和团队精神。
4.精讲精练,巩固提高:在课堂上,教师精选典型例题进行讲解,让学生在练习中巩固所学知识,提高解题能力。
2.完成课本第三章第一节后的练习题,包括基础题和拓展题。基础题旨在巩固一元一次方程的基本概念和解法,拓展题则旨在提高学生的思维能力和知识运用能力。
3.针对本节课的学习内容,编写至少三道一元一次方程的题目,并尝试给出解题思路。通过出题和解答,培养学生的问题提出和解决能力。

新人教版七年级数学上册第三章一元一次方程的解法教案设计

新人教版七年级数学上册第三章一元一次方程的解法教案设计

新人教版七年级数学上册第三章一元一次方程的解法教案设计一、教学目标1. 了解一元一次方程的定义与性质。

2. 研究解一元一次方程的基本步骤和方法。

3. 掌握使用逆运算解一元一次方程的技巧。

4. 运用所学知识解决实际问题。

二、教学准备1. 教材:新人教版七年级数学上册。

2. 教具:黑板、粉笔、教学PPT、题练册。

三、教学过程1. 导入- 通过简单的问题引入一元一次方程的概念,激发学生的兴趣。

- 用生活中的例子说明一元一次方程的应用场景。

2. 知识讲解- 结合教材内容,讲解一元一次方程的定义和性质。

- 介绍解一元一次方程的基本步骤和方法,包括两边加减同一个数、两边乘除同一个非零数等。

- 强调使用逆运算解一元一次方程的重要性和技巧。

3. 案例演练- 提供一些简单的实例,引导学生通过运用所学方法解一元一次方程。

- 让学生积极参与,提供解题思路,讲解解题过程。

4. 讲解技巧与方法- 教授一些解一元一次方程的常见技巧与方法,如整理方程、消元法等。

- 指导学生如何有效地应用这些技巧解决较复杂的方程。

5. 综合练- 提供一些综合性的题,要求学生将所学知识灵活运用解决实际问题。

- 强调解题过程的合理性和正确性,鼓励学生多思考,多尝试。

6. 运用扩展- 引导学生思考一元一次方程在实际生活中的应用,例如用于解决购物、旅行等问题。

- 鼓励学生运用所学知识解决更复杂的实际问题。

7. 总结归纳- 对本节课所学内容进行总结概括,强调解一元一次方程的重要性和应用价值。

四、教学评价1. 教师实时检查学生课堂表现,观察他们对知识的掌握情况。

2. 针对学生的理解程度和解题能力,进行个别辅导和巩固训练。

3. 提供题练册,让学生课后进行自主练,发现问题并及时解决。

五、教学反思本课设计以简单明了的步骤和方法为主线,通过案例演练和综合练习,培养学生解一元一次方程的能力和运用能力。

同时,引导学生思考方程在实际生活中的应用,激发学生学习数学的兴趣。

七年级数学上册第三章《一元一次方程》教学设计1新人教版

七年级数学上册第三章《一元一次方程》教学设计1新人教版

教学目标:1.知识与技能:掌握一元一次方程的基本概念,能够解一元一次方程。

2.过程与方法:培养学生的逻辑思维能力,培养学生解决实际问题的能力。

3.情感态度价值观:培养学生的合作意识,培养学生的数学思维能力。

教学重点:1.理解一元一次方程的概念及求解方法。

2.掌握方程的基本性质,能够利用方程解决实际问题。

教学难点:1.将实际问题转化为方程。

2.解决复杂实际问题。

教学准备:1.教师准备教学课件和活动材料。

2.学生准备教材、笔记本和计算器。

教学过程:一、引入(15分钟)1.现实生活中的问题:如何求两个数之和为50的两个数?二、概念讲解(20分钟)1.解释什么是方程、一元一次方程。

2.讲解方程的基本性质:等式两边加(减)同一个数,等式仍然成立;等式两边乘(除)同一个不等于零的数,等式仍然成立。

3.讲解“解方程”的概念。

三、解一元一次方程(40分钟)1.解方程的基本方法:等式两边同时加(减)同一个数,等式仍然成立;等式两边同时乘(除)同一个不等于零的数,等式仍然成立。

2.讲解具体的数学符号表示和步骤。

3.利用实例讲解解方程的过程。

4.操练解方程的方法。

四、应用(25分钟)1.解决生活实际问题:如有两个数,它们之和是30,其中一个是另一个的3倍,求这两个数。

2.引导学生找出问题中的未知数和已知条件,将问题转化为方程。

3.步骤演示解决问题的过程。

五、总结(10分钟)1.总结解一元一次方程的基本方法。

2.检查学生对解一元一次方程的掌握情况。

拓展延伸:1.组织学生分组进行解决实际问题的竞赛,加深对一元一次方程解题的理解。

2.给学生布置一些实际生活中的问题,要求学生用方程解决问题,并在下节课进行讲解与分享。

人教版数学七年级上册第三章一元一次方程(教案)

人教版数学七年级上册第三章一元一次方程(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
本节课的核心素养目标主要包括以下几方面:
1.理解与运用:使学生理解一元一次方程的概念,掌握其解法,并能将其应用于解决实际问题。
2.思维能力:培养学生逻辑思维和分析问题的能力,提高他们从实际问题中抽象出一元一次方程的能力。
3.数学表达:训练学生运用数学语言表达问题和解决问题的过程,提高他们的数学表达能力。
举例:在讲解移项难点时,可以使用数轴辅助教学,让学生直观地看到移项时数字的正负变化。对于合并同类项,可以通过具体的例题,如2x+3x-5x=4,让学生通过实际计算来理解合并的过程。在方程建模方面,可以给出如“小明买了3本书和一支笔花了32元,已知每本书的价格相同,求每本书的价格”这样的问题,引导学生如何设未知数并建立方程。至于解的检验,通过具体方程的解,如x=2,展示如何将x=2代入原方程进行验证,确保解的正确性。
-解方程的步骤:详细讲解移项、合并同类项、化简等基本解法,确保学生能够熟练运用。
-实际问题的方程建模:通过具体例题,展示如何从实际问题中抽象出一元一次方程,并运用解方程的方法求解。
-方程解的检验:教授并强调解方程后必须进行检验,确保解是正确的。
举例:在教学过程中,以方程3x-7=11为例,重点讲解移项(将-7移至等号右边)、合并同类项(将11和-7合并)和化简(求解x)的过程。

新人教版七年级上册数学第3章-一元一次方程全章教案

新人教版七年级上册数学第3章-一元一次方程全章教案

第三章 一元一次方程从算式到方程§一元一次方程(一)教学目标:知识与技能: 通过处理实际问题,让学生体验从算术方法到代数方法是一种进步; 过程与方法:初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念; {情感、态度、价值观:培养学生获取信息,分析问题,处理问题的能力。

教学重点:从实际问题中寻找相等关系教学难点:从实际问题中寻找相等关系教学过程:一、情境引入提出教科收第78页的问题,并用多媒体直观演示,同进出现下图:)问题1:从上图中你能获得哪些信息(可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。

)可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:()50701510702301513+⨯--=- ()50701310502301513+⨯-+=- 。

问题3:能否用方程的知识来解决这个问题呢二、学习新知1、引导学生设未知数,并用含未知数的字母表示有关的数量.如果设王家庄到翠湖的路程为x 千米,那么王家庄距青山 千米,王家庄距秀水 千米.2、引导学生寻找相等关系,列出方程.问题1:题目中的“汽车匀速行驶”是什么意思问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示你能表示其他各段路程的车速吗问题3:根据车速相等,你能列出方程吗)根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:507035x x -+= , 依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程: 50507032x -+= 3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.4、归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z 等字母);'(2)根据问题中的相等关系,列出方程.三、举一反三,讨论交流1、比较列算式和列方程两种方法的特点.列算式:只用已知数,表示计算程序,依据是间题中的数量关系; 列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

最新新人教版初中七年级数学上册第三章《一元一次方程》教案

最新新人教版初中七年级数学上册第三章《一元一次方程》教案

新人教版初中七年级数学上册第三章《一元一次方程》精品教案一、教学目标:知识与技能:1.通过本节知识的学习,使学生清楚了方程、一元一次方程的概念。

2.体会字母表示数的好处,画示意图有利于分析问题、找相等关系是列方程的重要一步,从算式到方程(从算式到代数)是数学的一大进步。

过程与方法:1.会将实际问题抽象为数学问题,通过列方程解决问题;2.认识列方程解决问题的思想以及用字母表示未知数、用方程表示相等关系得符号化方法;3.能结合具体例子认识一元一次方程的定义,体会设未知数、列方程的过程,会用方程表示简单实际问题的相等关系。

情感态度与价值观:增强用数学的意识,激发学习数学的热情。

二、教学重点:会根据实际问题列出一元一次方程。

三、教学难点:会根据实际问题列出一元一次方程。

四、教学过程设计:一、选择题1.在①2x+3y-1;②1+7=15-8+1;③1-12x=x+1④x+2y=3中方程有( )个. ( ) A.1 B.2 C.3 D.42.若方程3ax -4=5(a 已知,x 未知)是一元一次方程,则a 等于( ) A.任意有理数 B.0 C.1 D.0或13.x=2是下列方程( )的解.A.2x=6B.(x-3)(x+2)=0C.x 2=3 D.3x-6=04.x 、y 是两个有理数,“x 与y 的和的13等于4”用式子表示为( ) A.1()43x y += B.143x y += C.143x y ++= D.以上都不对 二、填空题5.在方程①732-=-x ②32=-b a ③963-=+y y ④212=x ⑤y y 31421=-中是一元一次方程的是 。

三、解答题6.王浩妈妈买了6千克香蕉和3千克苹果,共花去51元钱,但她忘了香蕉的价格,只记得苹果每千克5元,她想考一考正上七年级的王浩,你能替王浩得出香蕉的价格吗? 附答案:1.B 2.C 3.D 4.A 5.①③⑤6.解:设香蕉的单价为x 元,根据题意,得51356=⨯+x七年级数学(上册)第 2 课 3.1.2 等式的性质一、教学目标:知识与技能:1.会利用等式的两条性质解方程.过程与方法:2.利用天平,通过观察、分析得出等式的两条性质.情感态度与价值观:培养学生参与数学活动的自信心、合作交流意识.二、教学重点:了解等式的概念和等式的两条性质,并能运用这两条性质解方程.三、教学难点:由具体实例抽象出等式的性质.四、教学过程设计:达标测评题(时间约5分钟,题目、题型要根据本节内容灵活把握)一、选择题1.下列方程的解是x=2的有().A.3x-1=2x+1 B.3x+1=2x-1 C.3x+2x-2=0 D.3x-2x+2=0 2.下列各组方程中,解相同的是().A .x=3与2x=3B .x=3与2x+6=0C .x=3与2x-6=0D .x=3与2x=5 二、填空题3.在等式2x-1=4,两边同时________得2x=5. 4.在等式5x=5y ,两边都_______得x=y . 5.在等式-13x=4的两边都______,得x=______. 三、解答题6.用等式的性质解方程(1)x+2=5; (2)-3x=15; (3)23x-1=5. 附答案:1.A2.C3. 加14. 除以55.乘-3 , x=-12 6.解:(1)两边减2,得x+2-2=5-2 ,于是 x=3(2)两边同除以-3,得31533-=--x ,于是 x=-5 (3)两边加1,得23x-1+1=5+1,化简,得23x=6,两边同乘23,得x=9。

人教版初中数学七年级上册第三章:一元一次方程(全章教案)

人教版初中数学七年级上册第三章:一元一次方程(全章教案)

人教版初中数学七年级上册第三章:一元一次方程(全章教
案)
第三章一元一次方程
本章的内容包括:一元一次方程及其相关的概念,等式的性质;一元一次方程的解法;利用一元一次方程分析与解决实际问题.方程是一种重要的描述现实世界的数学模型.教材以实际问题为主线引入方程和方程的解的概念,探索等式的性质以及解一元一次方程,然后通过实践与探索,经历“问题情境——建立数学模型——解答——应用与拓展”的过程,体会数学建模思想.在中考中只要考查一元一次方程的解法以及列一元一次方程解应用题,既可能单独命题,也可能结合其他知识综合命题,题型主要是填空题、选择题和解答题.【本章重点】
1.理解和掌握一元一次方程的解法.
2.能利用一元一次方程解应用题.
【本章难点】
1
上一页下一页。

人教版七年级数学上册《 第三章 一元一次方程 》教学设计

人教版七年级数学上册《 第三章 一元一次方程 》教学设计

人教版七年级数学上册《第三章一元一次方程》教学设计一. 教材分析人教版七年级数学上册第三章《一元一次方程》是学生继初中代数初步知识学习之后,进一步深化对数学概念的理解和运用的关键章节。

本章通过引入一元一次方程,让学生掌握方程的解法,提高解决实际问题的能力。

教材内容主要包括一元一次方程的概念、解法以及应用。

二. 学情分析学生在学习本章内容前,已经掌握了整数、分数、有理数等基础知识,具备了一定的逻辑思维能力。

但对于一元一次方程这一概念,可能还存在一定的难度,需要通过实例和练习来逐渐理解和掌握。

三. 教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。

2.能够应用一元一次方程解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.一元一次方程的概念。

2.一元一次方程的解法。

3.一元一次方程在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索;通过案例分析,让学生理解和掌握一元一次方程的解法;通过小组合作学习,培养学生的团队协作能力。

六. 教学准备1.教材、教案、课件。

2.练习题、测试题。

3.教学工具(如黑板、粉笔、多媒体设备等)。

七. 教学过程1.导入(5分钟)利用实例引入一元一次方程的概念,让学生思考和讨论,引导学生发现一元一次方程的特点。

2.呈现(10分钟)讲解一元一次方程的定义,通过示例演示一元一次方程的解法。

让学生跟随老师一起解方程,确保学生能够掌握解法。

3.操练(10分钟)让学生独立完成练习题,老师巡回指导。

针对学生出现的问题进行讲解和解答。

4.巩固(10分钟)通过案例分析,让学生应用一元一次方程解决实际问题。

让学生分组讨论,分享解题过程和心得。

5.拓展(10分钟)引导学生思考:如何判断一个方程是否是一元一次方程?如何求解一元一次方程?让学生进行小组讨论,老师点评并总结。

6.小结(5分钟)对本节课的内容进行总结,强调一元一次方程的概念和解法。

初中数学人教七年级上册第三章 一元一次方程一元一次方程教案

初中数学人教七年级上册第三章 一元一次方程一元一次方程教案

一元一次方程(1)一、教学目标:1.理解什么是方程,什么是一元一次方程.2.理解方程的解和解方程是两个不同的概念.3.根据条件列简单的一元一次方程.二、教学重点:方程与一元一次方程的概念三、教学难点:找等量关系列方程四、教学方法:读书指导法、观察归纳法、合作探究五、教学用具:PPT六、教学安排:1课时七、教学过程1、导入新课老师展出情景:欧拉是数学史上着名的数学家,在孩提时代他一点也不讨老师的喜欢,但是个很聪明的孩子。

有一天,回家后无事,他就帮助爸爸放羊。

他一面放羊,一面读书。

爸爸的羊群渐渐增多了,达到了100只。

原来的羊圈有点小了,爸爸决定建造一个新的羊圈。

他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。

正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。

若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。

小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。

他有办法。

父亲不相信小欧拉会有办法,听了没有理他。

小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。

父亲听了直摇头,心想:“世界上哪有这样便宜的事情?”但是,小欧拉却坚持说,他一定能两全齐美。

父亲终于同意让儿子试试看。

小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。

他以一个木桩为中心,将原来的40米边长截短,缩短到25米。

父亲着急了,说:“那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。

”小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。

经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。

然后,小欧拉很自信地对爸爸说:“现在,篱笆也够了,面积也够了。

”父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。

七年级数学上册 第三章 一元一次方程教案 新人教版-新人教版初中七年级上册数学教案

七年级数学上册 第三章 一元一次方程教案 新人教版-新人教版初中七年级上册数学教案
当此方程有唯一解时,a 的取值 X 围是_____________; 当此方程无解时,a 的取值 X 围是_____________; 当此方程有无数多解时,a 的取值 X 围是_____________。
6/7
word
板书 设计
第三章一元一次方程复习小结
一、理脉络
二、列方程
每天的路程(米/天) 时 间 长 跑 的 路 程
4/7
word
①已知方程(m+1)x m -3=4 是关于 x 的一元一次方程,则 m 的值
是( )
A.±1
B.1
C.﹣
②下列方程:⑴x+ 1 =2 .⑵x 2 -x=2. ⑶x =0. ⑷x+2y=0. ⑸ x
x 1 1 2 4x 其中,是一元一次方程的有( ) 23 6
A1 个
.B2 个
word
一元一次方程
知识与技能
通过梳理概念,明晰数,式,方程的区别联系。
回顾解一元一次方程的一般步骤,达到可以熟练地解一元一次方
教 学 过程与方法
程,即利用等式的性质和运算律,将方程逐步变成 x=a(常数)的
目标
形式,解题时应根据题目特征,合理选择解题步骤。
情感态度价值观
通过从不同角度分析实际问题中的数量关系,列出方程,进一步 体会符号化,模型化思想,感受数学的魅力。
a 45000=(30-200)30 (4)若以路程 a 为等量,则方程可列为 a=45000+200×30 (5))若以时间 30 为等量,则方程可列为
30 45000 或 30
a
或30 a 45000
a 200
45000 200
200
30
30

数学人教新版七年级上册秋季:第3章《一元一次方程》全章教案(版)

数学人教新版七年级上册秋季:第3章《一元一次方程》全章教案(版)

数学人教新版七年级上册实用资料第三章一元一次方程3.1从算式到方程3.1.1一元一次方程(2课时)第1课时方程的概念1.初步学会寻找问题中的相等关系,列出方程,了解方程的概念.2.培养学生获取信息、分析问题、处理问题的能力.重点了解一元一次方程及相关概念.难点寻找问题中的相等关系,列方程.活动1:创设情境,导入新课师:中我们已经学习过列方程解决问题,什么是方程?你能举一个例子吗?学生回答.活动2:探究新知1.定义方程,回顾举例师:你知道什么叫方程吗?生:含有未知数的等式叫做方程.师:你能举出一些方程的例子吗?由学生举例,教师总结.练习:判断下列式子是不是方程,正确的打“√”,错误的打“×”.(1)1+2=3(2)x+2>1(3)1+2x=4(4)x+y=2(5)x2-1(6)x2=x+2(7)x+3-5(8)x=82.如何根据题意列方程师:利用多媒体展示图片,出示教材本小节开头的问题:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1小时经过B地,A,B两地间的路程是多少?学生分组活动,同桌两个同学讨论看能否用算术方法解,然后考虑用方程如何解决,然后小组内同学交流,教师可以参与到学生中去,要关注学生解决问题的思路,在用算术法时,是否遇到了麻烦,用方程可以轻松解决吗?让学生感受方程在解决实际问题时的优势.解:设A,B两地间的路程是x km.根据客车比卡车早1小时经过B地,可得方程x 60-x70=1.在这一过程的教学中,教师不仅要使学生掌握本问题的解决方法,更重要的是让学生去体会列方程过程中的一般思路和方法.在这一过程中,教师还应当注意培养学生的发散思维和创新能力,可以让他们进行小组间的交流,也可以根据题意画一个表格讨论,看一看各小组所列的方程是否一致,以开拓学生的思路,从而掌握更多的解题方法.活动3:归纳整理师:提出问题,你能谈谈列方程过程中的思路和方法吗?你是怎样一步步列出方程的?学生讨论交流,然后回答.算术法和方程法有什么不同?你能谈谈你的认识吗?两种方法的比较:从形式上观察:算术方法与方程方法有什么不同的情况出现?从思路上看:你刚才做题的想法有什么不同?(师根据学生的口述列成表,便于比较)了列式的不同特点.学生讨论交流后回答.教师不必苛求学生的回答,只要学生能谈出一两点体会,教师都应当加以鼓励.练习:教材练习第1,2题.学生独立完成,然后交流.活动4:小结与作业小结:谈谈你本节课的收获.作业:习题3.1第1,5题.要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也就是常说的要学会做学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住实施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果.第2课时一元一次方程1.理解一元一次方程、方程的解的概念.2.掌握检验某个值是不是方程的解的方法.重点寻找等量关系,列出方程.难点对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力.一、情境引入师出示问题:问题:小雨、小思的年龄和是25,小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?在学生回答的基础上,教师加以引导:小思的年龄可以用两个不同的式子25-x和2x -8来表示,这说明许多实际问题中的数量关系可以用含字母的式子来表示.由于这两个不同的式子表示的是同一个量,因此我们可以写成:25-x=2x-8.这样就得到了一个方程.二、尝试探究师:让学生尝试解决例1,对于基础比较差的学生,教师可以作如下提示:(1)选择一个未知数,设为x.(2)对于这三个问题,分别考虑:用含x的式子分别表示正方形的周长;用含x的式子表示这台计算机x个月的使用时间;用含x的式子分别表示男生和女生的人数.(3)找一个问题中的相等关系列出方程.学生讨论完成后交流.师:让学生观察并讨论所列方程等号两边式子的关系,师生归纳:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.简单地说:列方程就是用两种不同的方法表示同一个量.学生讨论交流:以上各题,你还能用两种不同的方法来表示另一个量,再列出方程吗?让学生在学习小组内讨论,然后分组汇报交流:如(2)题中,选“已使用的时间”可列方程:2450-150x=1700.选“还可使用的时间”可列方程:150x=2450-1700.解题书写过程(略).三、探究概念学生讨论交流.在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的指数都是1,这样的方程叫做一元一次方程式.“一元”:一个未知数,“一次”:未知数的次数是一次.引导学生归纳:从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示:实际问题――→设未知数 列方程一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.列出方程后,还必须解这个方程,求出未知数的值,对于简单的方程,我们可以采用估算的方法.①问题:你认为该怎样进行估算?可以采用“尝试—发现—归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.可以用列表的方法进行尝试,也可以像下面的示意图那样按程序进行尝试.②在此基础上给出概念:能使方程左右两边相等的未知数的值,叫做方程的解,求方程解的过程,叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代入方程,看方程左右两边是否相等.四、练习与小结练习:教材练习第3题. 小结:1.谈谈你对一元一次方程的认识. 2.谈谈你对列方程的认识. 3.如何进行估算? 五、布置作业习题3.1第6,7,8题.学生在已经对方程有初步认识,但这个过程没有给“一元一次方程”这样准确的理性的概念.本节课是基于学生在已经学习的基础上来进行的.继续对有关方程的一些初步知识,并能通过对多个熟悉的实际问题的分析,由学生结合已有知识,得出一元一次方程,并能给出一元一次方程的简单概念及一些相关概念.3.1.2等式的性质(2课时)第1课时等式的性质1.了解等式的两条性质.2.会用等式的性质解简单的(用等式的一条性质)一元一次方程.3.培养观察、分析、概括及逻辑思维能力.重点理解和应用等式的性质.难点应用等式的性质把简单的一元一次方程化成“x=a”的形式.活动1:创设情境,导入新课师:哪位同学能谈谈上节课我们学习了哪些内容?学生思考回答.师:通过估算的方法,我们可以求得方程的解,可是我们也看到,通过估算求解,需要通过多次尝试才能得到正确的答案,有没有相对简单的方法,使我们可以获得方程的解呢?从今天开始我们就来学习解方程.活动2:探究等式的性质分组进行实验(时间约10~15分钟);每小组准备天平一架,砝码、等质量小木块等若干.教师引导学生进行以下操作.操作(1)1.先在托盘中放入一块小木块,然后在另一个托盘中加入砝码,使天平平衡.2.然后在两个托盘中放入等质量的木块各一块,观察此时天平是否平衡,可以重复此步骤.操作(2)在两个托盘中放入等质量的木块各一块,观察此时天平是否平衡. 在两个托盘中放入等质量的木块各两块,观察此时天平是否平衡. 在两个托盘中放入等质量的木块各相等数量的块数,观察此时天平是否平衡,可以重复此步骤.思考:这其中包含的数学道理是什么? 学生讨论后交流.然后师生共同归纳出等式的性质: 如果a =b ,那么a±c =b±c.等式性质1:等式两边加(或减)同一个数或同一个式子,结果仍相等.教师按类似的方法得出等式性质2: 如果a =b ,那么ac =bc ; 如果a =b ,那么a c =bc(c ≠0).等式性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.活动3:解决问题师出示教材82页例2(1)(2).师生共同分析如何运用等式的性质解决这两个问题,在分析过程中教师注意化归思想的渗透,应当告诉学生解方程就是使方程向“x =a ”的形式进行化归,沿着这个思路进行引导,使学生感受化归思想,能自觉地运用等式的性质解决问题.解:略练习:教材第83页练习(1)(2). 学生独立完成,然后同学间交流.根据时间情况和学生的掌握情况,教师可以随机再补充几个练习. 活动4:小结与作业小结:谈谈你对等式性质的认识. 作业:习题3.1第2,3题.等式的性质(关于乘除的),是在学生掌握了等式的性质(关于加减的)的基础上教学的.学生已掌握了一定的学习方法,形成了一定的推理能力.因此,本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力.第2课时用等式的性质解方程1.通过解一元一次方程进一步理解等式的性质;2.会用等式的性质解简单的(两次运用等式的性质)一元一次方程.重点用等式的性质解方程.难点需要两次运用等式的性质,并且有一定的思维顺序.一、创设情境,复习引入解下列方程:(1)x +7=5;(2)2x =5. 要求学生能说出:①每一步的依据分别是什么?②求方程的解就是把方程化成什么形式?师:这节课继续学习用等式的性质解一元一次方程. 二、探究新知 对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?例1:利用等式的性质解方程:(1)0.6-x =2.4 (2)-13x -5=4先让学生对第(1)题进行尝试,然后教师进行引导:①要把方程0.6-x =2.4转化为x =a 的形式,必须去掉方程左边的0.6,怎么去? ②要把方程-x =1.8转化为x =a 的形式,必须去掉x 前面的“-”,怎么去? 然后给出解答:解:两边减0.6,得0.6-x -0.6=2.4-0.6. 化简,得 -x =1.8,两边同乘-1得 x =-1.8.小结:(1)这个方程的解答中两次运用了等式的性质;(2)解方程的目标是把方程最终化为x =a 的形式,在运用性质进行变形时,始终要朝着这个目标去转化.你能用这种方法解第(2)题吗? 在学生解答后点评.解:两边加5,得到13x -5+5=4+5,化简,得-13x =9,两边同乘-3,得x =-27.解后反思:①第(2)题能否先在方程的两边同乘“-3”?②比较这两种方法,你认为哪一种方法更好?为什么?允许学生在讨论后再回答.例2:(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米.现已做了80套成人服装,用余下的布还可以做几套儿童服装?在学生弄清题意后,教师再作分析:如果设余下的布可以做x 套儿童服装,那么这x 套服装就需要布1.5x 米,根据题意,你能列出方程吗?解:设余下的布可以做x 套儿童服装,那么这x 套服装就需要布1.5x 米,根据题意,得80×3.5+1.5x =355. 化简,得280+1.5x =355, 两边减280,得280+1.5x -280=355-280, 化简,得 1.5x =75,两边同除以1.5,得x =50.答:用余下的布还可以做50套儿童服装.解后反思:对于许多实际问题,我们可以通过设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.问题:我们如何才能判别求出的答案50是否正确?在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x =50代入方程80×3.5+1.5x =355的左边,得80×3.5+1.5×50=280+75=355.方程的左右两边相等,所以x =50是方程的解.你能检验一下x =-27是不是方程13x -5=4的解吗?三、课堂练习练习:1.课本83页练习(3),(4).2.补充练习:小刚带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解)解:设笔记本的单价为x 元.根据圆珠笔和笔记本的钱的总和为18元,得方程 5×1.2+8x =18. 化简,得6+8x =18.两边减6,得6+8x -6=18-6, 化简,得8x =12.两边同除以8,得x =1.5. 答:笔记本的单价是每本1.5元. 四、小结(1)这节课学习的内容. (2)我有哪些收获?(3)我应该注意什么问题?五、作业习题3.1第4,10题.解方程是学生刚接触的新知识,学生原有的知识储备与生活经验不足,因此教学中老师要时刻关注学生的学习的情况,引导学生经历将现实生活问题加以数学化,引导学生通过操作、观察、分析和比较,由具体的知识渗透到抽象的去理解等式的性质,并应用等式的性质来解方程.3.2解一元一次方程(一)——合并同类项与移项(4课时)第1课时合并同类项1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.学会合并(同类项),会解“ax+bx=c”类型的一元一次方程.重点建立方程解决实际问题,会解“ax +bx =c ”类型的一元一次方程. 难点分析实际问题中的已知量和未知量,找出相等关系,列出方程.一、创设情境,导入新课师:背景资料投影展示:约公元820年,中亚细亚数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.二、探究分析,解决问题 师:出示教材问题1.某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:引导学生回忆:实际问题――→设未知数 列方程一元一次方程问题:如何列方程?分哪些步骤?师生共同讨论分析:①设未知数:前年购买计算机x 台. ②找相等关系:前年购买量+去年购买量+今年购买量=140台. 然后教师引导学生列出方程. ③x +2x +4x =140. 进一步提出问题:怎样解这个方程?如何将方程向x =a 的形式进行转化?学生观察,讨论交流,教师引导学生说出将方程左边合并同类项,向x =a 的形式转化. 教师板演过程或用教材的框图表示过程.(过程略)思考:本问题的解决过程中,合并同类项起到了什么作用? 学生讨论后回答.(让学生感受化归的思想)问题:对于本问题,你还有其他的方法解决吗? 三、尝试运用,巩固加深 教师出示教材例1. 解下列方程: (1)2x -52x =6-8;(2)7x -2.5x +3x -1.5x =-15×4-6×3. 师生共同解决,教师板书过程. 四、练习与小结练习:课本第88页练习1.小结:谈谈你对这节课的收获. 五、作业习题3.2第1,4,5题.本节课研究的内容是“合并同类项”,“合并同类项”是化简解方程的重要方法.通过合并同类项可以使方程向x =a 的形式转化.这节课与前面所学的知识有千丝万缕的联系.合并同类项的法则是建立在数的运算的基础上,在合并同类项的过程中,要不断运用数的运算,可以说合并同类项是有理数加减运算的延伸和拓广.第2课时合并同类项的应用学会探索数列中的规律,建立等量关系.能正确地求解一元一次方程.重点建立一元一次方程解决实际问题.难点探索并发现实际问题中的等量关系,并列出方程.活动1:创设情境,导入新课师:练习解方程:(1)-4x+0.5x=6;(2)7x-4.5x=7.5-5;(3)-12x+34x=-3.学生独立完成,然后同学交流.活动2:探究新知教师出示教材例2.有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1701,这三个数各是多少?引导学生探究规律:面进行观察.师生共同完成解答过程,教师注意要规范地书写过程.在这一过程中,老师要关注学生能否准确地发现规律,能否列出方程,本问题的难点在于它有多个未知数,要引导学生找到相邻的数的关系,然后设出未知数,再用含未知数的式子表示相邻的数.解:设这三个相邻数中的第1个数为x,则第2个数为-3x,第3个数为-3×(-3x)=9x.根据这三个数的和是-1701.得x-3x-9x=-1701,合并,得x=-243,所以-3x=729,9x =-2187.答:这三个数是-243,729,-2187.思考:有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,你能说出它的第n 个数是多少吗?(用含n 的式子表示)可作为课下思考题,本问题与本课时的关系不大,但作为对本例题的一个拓展,却有让学生重新思考的价值.活动3:综合运用教师出示例题.(或投影展示) 补例:一批商界人士在露天茶座聚会,他们先是两人一桌,服务员给每桌送上一瓶果汁,后来他们又改为三人一桌,服务员又给每桌送上一瓶葡萄酒,不久他们改坐成四人一桌,服务员再给每桌一瓶矿泉水.此外他们每人都要了一瓶可口可乐.聚会结束时服务员共收拾了50个空瓶.如果没人带走瓶子,那么聚会有几人参加?分析:要求聚会有几人参加,就要先设出未知数,再根据题意列出等量关系,设共有x 人参加,由题意得,一共要了x 2瓶果汁,x 3瓶葡萄酒,x4瓶矿泉水,x 瓶可口可乐,即:空瓶子数为各类饮料瓶子数之和,由这个等量关系,列出方程求解.解:设这次聚会共有x 人参加,由题意得:x +x 2+x 3+x4=50,解得:x =24.答:这次聚会共有24人参加. 学生讨论交流,师生共同解决. 活动4:小结小结:谈谈你这节课的收获. 活动5:作业习题3.2第5,12,13题.实施开放式教学,倡导自主探索、合作交流的学习方式.让学生从熟悉的生活实例出发,探索获得同类项概念,体验知识的形成过程,体会观察、分析、归纳等解决问题的技能与方法.教师只是整个教学活动的组织者和指导者,体现了以人为本的现代教学理念.第3课时 移项1.通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.2.掌握移项方法,学会解“ax+b=cx+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想.重点建立方程解决实际问题,会解“ax+b=cx+d”类型的一元一次方程.难点分析实际问题中的相等关系,列出方程.一、创设情境,导入新课出示教材问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?二、探究新知引导学生回顾列方程解决实际问题的基本思路.学生讨论、分析:1.设未知数:设这个班有x名学生.2.找相等关系:这批书的总数是一个定值,表示它的两个等式相等.3.列方程:3x+20=4x-25.问题1:怎样解这个方程?它与上节课遇到的方程有何不同?学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25).问题2:怎样才能使它向x=a 的形式转化呢?学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20.3x-4x=-25-20.问题3:以上变形依据是什么?等式的性质1.归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项. 师生共同完成解答过程,或用框图表示.问题4:以上解方程中“移项”起了什么作用? 学生讨论、回答,师生共同整理:通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x =a 的形式.师:解方程时,要合并同类项和移项.前面提到的古老的代数书中的“对消”与“还原”,指的就是“合并同类项”和“移项”.三、尝试运用,加深巩固师出示教材例3.解下列方程:(1)3x +7=32-2x ;(2)x -3=32x +1.教师引导学生按照框图所展示的过程,共同完成本例. 练习:课本第90页练习1. 四、小结谈谈本节课你的收获. 五、作业习题3.2第2,3题.这节课要学习的方程类型是两边都有x和常数项,通过移项的方法化到合并同类项的方程类型.教学重点是用移项解一元一次方程,难点是移项法则的探究.在教学过程中一定要强调学生,移项的时候要注意变号.第4课时方程的应用1.进一步培养学生列方程解应用题的能力.2.通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题、解决问题的能力.重点建立一元一次方程解决实际问题. 难点探究实际问题与一元一次方程的关系.活动1:创设情境,引入新课 师:展示投影:练习解方程:(1)12x +4x =9 (2)-4x =-2x +6 (3)5x +4=4x -3 (4)0.6x =50+0.4x学生独立完成,然后师生交流答案,看谁做得又对又快.活动2:探究新知 教师展示教材例4.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t ;如用新工艺,则废水排量比环保限制的最大量少100 t .新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?学生讨论交流.教师可提示学生分析:1.本题可否用学习的算术法来求解?2.题目中两种工艺的废水排量都是与环保最大值相关的,根据学过的比例式,如果设环保设计的最大量为x t,你能否列出一个关于x的比例式?3.根据新旧工艺的废水排量之比为2:5,如果设新、旧工艺的废水排量分别为2x t和5x t,你能列出方程吗?解:设新、旧工艺的废水排量分别为2x t和5x t.根据废水排量与环保限制最大量之间的关系,得5x-200=2x+100.移项,得5x-2x=100+200.合并同类项,得3x=300,系数化为1,得x=100,所以2x=200,5x=500.答:新、旧工艺产生的废水排量分别为200 t和500 t.师:通过解答过程,你能说一下这种设法的好处吗?活动3:综合运用补例:一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?学生思考、讨论出多种解法,师生共同讲评.本问题是一个与上一问题相似的问题,关键是让学生认真分析出各个量之间的关系,让学生学会类比、用上一问题的方法模式去解决本问题。

人教版七年级数学上册第三章《一元一次方程》教学设计

人教版七年级数学上册第三章《一元一次方程》教学设计

人教版七年级数学上册第三章《一元一次方程》教学设计一. 教材分析人教版七年级数学上册第三章《一元一次方程》是学生学习方程的入门内容,主要介绍一元一次方程的概念、解法及其应用。

这一章节的内容是后续学习更复杂方程的基础,因此在本章节中,让学生掌握一元一次方程的基本概念、解法和应用是非常重要的。

二. 学情分析学生在进入七年级之前,已经学习了代数知识,对代数式、函数等概念有一定的了解。

但大部分学生对这些知识的掌握程度有限,因此,在教学过程中需要从基础入手,让学生逐步理解和掌握一元一次方程的知识。

三. 教学目标1.让学生了解一元一次方程的概念,理解一元一次方程的解法;2.培养学生解决实际问题的能力,能够运用一元一次方程解决生活中的问题;3.培养学生合作学习、积极思考的能力。

四. 教学重难点1.一元一次方程的概念;2.一元一次方程的解法;3.一元一次方程在实际问题中的应用。

五. 教学方法1.采用问题驱动法,让学生在解决问题的过程中,自然地引入一元一次方程的知识;2.使用案例教学法,让学生通过具体案例,理解一元一次方程的应用;3.采用小组合作学习,培养学生合作学习的能力。

六. 教学准备1.准备相关案例,用于讲解一元一次方程的应用;2.准备练习题,用于巩固所学知识;3.准备课件,用于辅助教学。

七. 教学过程1.导入(5分钟)利用生活中的实例,引出一元一次方程的概念,激发学生的学习兴趣。

2.呈现(15分钟)讲解一元一次方程的基本概念,如解、解集等,并通过示例让学生理解这些概念。

3.操练(15分钟)让学生分组讨论,尝试解一些简单的一元一次方程,引导学生发现解一元一次方程的方法。

4.巩固(10分钟)讲解一元一次方程的解法,并通过练习题让学生巩固所学知识。

5.拓展(10分钟)让学生运用一元一次方程解决实际问题,培养学生的应用能力。

6.小结(5分钟)总结本节课所学内容,让学生明确一元一次方程的概念、解法及应用。

7.家庭作业(5分钟)布置一些练习题,让学生课后巩固所学知识。

最新人教版初一数学七年级上册 第三章 一元一次方程 全单元教案设计

最新人教版初一数学七年级上册 第三章 一元一次方程 全单元教案设计

新人教版七年级上学期数学第三章一元一次方程概述教学内容本章主要内容包括:一元一次方程及其相关概念,一元一次方程的解法,利用一元一次方程分析和解决实际问题。

分析实际问题中的数量关系并用一元一次方程表示是始终贯穿这些内容的主线,而且始终渗透着“数学建模”和“化归”的思想方法。

通过丰富实例,从算式到方程建立一元一次方程,展开方程是刻划现实生活的有效数学模型;通过观察、归纳引出不等式的两条性质,为进一步讨论较复杂的一元一次方程的解法准备理论依据;从实际问题出发,运用等式的性质解方程,归纳“移项”、“合并”、“去括号”等法则,逐步展现求解方程的一般步骤;运用方程解决实际问题,通过探究活动,加强数学建模思想,提高学生分析问题和解决问题的能力。

本教案对列方程解决实际问题的内容作了较集中的归类讨论。

教学目标〔知识与技能〕1、理解一元一次方程及有关概念和等式的基本性质;2、熟练掌握一元一次方程的解法(数字系数)并学会运用一元一次方程解决简单的实际问题。

〔过程与方法〕经历解一元一次方程和列一元一次方程解决实际问题的过程,明确解一元一次方程和列一元一次方程的基本步骤,初步树立数学建模思想和体会化归思想的运用。

〔情感、态度与价值观〕在解决实际问题中,体会数学的应用价值,激发学习数学的欲望,提高分析问题和解决问题的能力。

重点难点一元一次方程的解法和运用是重点,列一元一次方程解决实际问题是难点。

课时分配3.1 从算式到方程………………………………………… 2课时3.2 解一元一次方程的讨论(一)………………………… 3课时3.3 解一元一次方程的讨论(一)………………………… 4课时3.4 实际问题与一元一次方程………………………… 3课时本章小结………………………………………… 2课时3.1.1一元一次方程[教学目标]理解一元一次方程的概念,会识别一元一次方程;了解方程的解,会验证方程的解;知道怎样列方程解决实际问题,感受方程作为刻画现实世界有效模型的意义。

2021年最新人教版七年级数学上册第三章一元一次方程(全章)教学设计

2021年最新人教版七年级数学上册第三章一元一次方程(全章)教学设计

第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程教学目标:1.通过现实生活中的例子,体会方程的意义,领悟一元一次方程的概念,并会进行简单的辨别;(重点)2.初步学会找实际问题中的等量关系,设出未知数,列出方程.(重点,难点)教学过程:一、情境导入问题:一辆客车和一辆卡车同时从A地出发沿同一公路同一方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A,B两地间的路程是多少?1.若用算术方法解决应怎样列算式?2.如果设A,B两地相距x km,那么客车从A地到B地的行驶时间为________,货车从A 地到B地的行驶时间为________.3.客车与货车行驶时间的关系是____________.4.根据上述关系,可列方程为____________.5.对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?二、合作探究探究点一:方程的概念判断下列各式是不是方程;若不是,请说明理由.(1)4×5=3×7-1;(2)2x+5y=3;(3)9-4x>0;(4)x-32=13;(5)2x+3.解析:根据方程的定义对各小题进行逐一分析即可.解:(1)不是,因为不含有未知数;(2)是方程;(3)不是,因为不是等式;(4)是方程;(5)不是,因为不是等式.方法总结:本题考查的是方程的概念,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.探究点二:一元一次方程的概念【类型一】 一元一次方程的辨别下列方程中是一元一次方程的有( )A .x +3=y +2B .1-3(1-2x )=-2(5-3x )C .x -1=1x D.y3-2=2y -7 解析:A.含有两个未知数,不是一元一次方程,错误;B.化简后含有未知数项可以消去,不是方程,错误;C.分母中含有字母,不是一元一次方程,错误;D.符合一元一次方程的定义,正确.故选D.方法总结:判断一元一次方程需满足三个条件:(1)只含有一个未知数;(2)未知数的次数是1;(3)是整式方程.【类型二】 利用一元一次方程的概念求字母次数的值方程(m +1)x |m |+1=0是关于x 的一元一次方程,则( )A .m =±1B .m =1C .m =-1D .m ≠-1解析:由一元一次方程的概念,一元一次方程必须满足未知数的次数为1且系数不等于0,所以⎩⎨⎧|m |=1m +1≠0, 解得m =1.故选B.方法总结:解决此类问题要明确:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1且系数不为0,则这个方程是一元一次方程.据此可求方程中相关字母的值.探究点三:方程的解下列方程中,解为x=2的方程是( )A.3x-2=3 B.-x+6=2xC.4-2(x-1)=1 D.12x+1=0解析:A.当x=2时,左边=3×2-2=4≠右边,错误;B.当x=2时,左边=-2+6=4,右边=2×2=4,左边=右边,即x=2是该方程的解,正确;C.当x=2时,左边=4-2×(2-1)=2≠右边,错误;D.当x=2时,左边=12×2+1=2≠右边,错误.故选B.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等.探究点四:列方程某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为( ) A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:设铅笔卖出x支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,据此列出方程为1.2×0.8x+2×0.9(60-x)=87.故选B.方法总结:解题的关键是正确理解题意,设出未知数,找到题目当中的等量关系,列方程.三、板书设计一元一次方程只含有一个未知数(元),未知数的次数都是1的整式方程叫做一元一次方程.3.列方程解决实际问题的步骤:①设未知数(用字母) ②找等量关系(表示出相关的量)③列出方程第三章一元一次方程3.1 从算式到方程3.1.2 等式的性质教学目标:1.利用等式的基本性质对等式进行变形.2.会用等式的性质解简单的一元一次方程;教学过程:一、情境导入同学们,你们玩过跷跷板吗?它有什么特征?翘翘板的两边增加的量之间到底满足什么关系时,翘翘板才能保持平衡?二、合作探究探究点一:应用等式的性质对等式进行变形.方法总结:运用等式的性质,可以将等式进行变形,变形时等式两边必须同时进行完全相同的四则运算,否则就会破坏原来的相等关系。

人教版数学七年级上册第三章《一元一次方程》教学设计

人教版数学七年级上册第三章《一元一次方程》教学设计

人教版数学七年级上册第三章《一元一次方程》教学设计一. 教材分析人教版数学七年级上册第三章《一元一次方程》是学生在初中阶段首次接触方程的学习,本章通过实际问题引入方程的概念,使学生了解方程在实际生活中的应用,培养学生解决实际问题的能力。

本章内容包括一元一次方程的定义、解法、检验及应用。

通过本章的学习,学生能理解一元一次方程的本质,熟练掌握解一元一次方程的方法,并能在实际问题中应用。

二. 学情分析学生在进入七年级之前,已经学习了整数、分数、有理数等基础知识,对数学运算有一定的掌握。

但大部分学生可能还未接触过方程,对于用数学语言描述实际问题还比较陌生。

因此,在教学过程中,需要注重引导学生理解方程的概念,培养学生运用方程解决实际问题的能力。

三. 教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。

2.能够运用一元一次方程解决实际问题。

3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.重难点:一元一次方程的概念、解法及应用。

2.重点:一元一次方程的解法,包括加减法、乘除法、移项等。

3.难点:实际问题中的一元一次方程的建立和求解。

五. 教学方法1.采用问题驱动法,引导学生从实际问题中发现方程,理解方程的概念。

2.运用实例讲解法,通过具体例题讲解一元一次方程的解法。

3.采用小组合作学习法,鼓励学生相互讨论、交流,共同解决问题。

4.运用巩固练习法,及时检查学生的学习效果,提高学生运用知识解决问题的能力。

六. 教学准备1.教材、教案、PPT等相关教学资料。

2.练习题、测试题等教学用纸。

3.教学多媒体设备。

七. 教学过程1.导入(5分钟)通过一个实际问题引入方程的概念,激发学生的学习兴趣。

例如:某商店举行打折活动,原价为100元的商品,打八折后价格为80元,求打折力度是多少?2.呈现(15分钟)讲解一元一次方程的定义,展示一元一次方程的解法,包括加减法、乘除法、移项等。

通过具体例题,让学生理解并掌握一元一次方程的解法。

新人教版数学七年级上 一元一次方程全章教案

新人教版数学七年级上 一元一次方程全章教案

一元一次方程全章教案一、单元教学策略分析[说明]在本单元的教学中,一元一次方程的解法可以作为一个整体来看待。

因此,在这里,将解法这部分内容作为《一元一次方程》单元中的一个小单元进行分析。

(一)教材所处的地位----------教材分析:新人教版《数学》七年级上册第三章《一元一次方程》是继《有理数》《整式》两个单元后对“数与代数”领域的进一步探索。

方程是代数学的核心内容,而一元一次方程是最简单的代数方程,也是所有代数方程的基础。

其中一元一次方程的解法是二元一次方程组以及一元二次方程的解法的基础,学好它将为将来的学习打下坚实的基础。

同时,通过解方程,使学生对方程以及方程的解的意义有更深一步的认识。

(二)单元教学目标1、知识目标(1)熟悉解方程的一般步骤:系数化1,移项,合并同类项,去括号,去分母等,掌握一元一次方程的解法。

(2)能够找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出一元一次方程来表示问题中的等量关系。

2、过程与方法目标(1)了解解方程的基本目标,通过把一元一次方程化为x=a的形式,让学生体会解法中蕴含的化归思想。

(2)通过学生的探索,交流,补充,初步体会数学建模的过程和思想,为进一步的实践与探索作准备。

3、情感态度目标(1)通过将不同的一元一次方程化为x=a的形式,让学生比较,体会方程的不同解法,让学生充分体验成功的感觉。

(2)通过教学内容中数学历史以及故事的学习,使学生逐步认识数学的科学价值和人文价值,提高科学文化素养。

(三)单元教学重难点本小单元的教学重点是一元一次方程的解法,难点是正确求解带有分母的一元一次方程。

(四)单元教学思路及策略由于列方程是本章知识的重点和难点,因此为了分散难点,教材的本意是使学生能有较多机会接触列方程,因此把对实际问题的讨论作为贯穿全章的一条主线。

对一元一次方程解法的讨论也是结合解决实际问题进行的。

而根据我们学生的实际情况:列方程是学生学习方程中的难点,不少学生对于列方程这一内容的学习都感到害怕。

2024年一元一次方程教案完整版

2024年一元一次方程教案完整版

2024年一元一次方程教案完整版一、教学内容本节课选自人教版《数学》七年级上册第三章第一节“一元一次方程”,内容包括方程的概念、一元一次方程的定义及其解法。

具体章节内容为:3.1.1 方程的概念及3.1.2 一元一次方程的解法。

二、教学目标1. 理解方程的概念,掌握一元一次方程的定义及解法。

2. 能够根据实际问题列出一元一次方程,并运用所学知识解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点难点:一元一次方程解法的运用。

重点:一元一次方程的定义及其解法。

四、教具与学具准备教具:黑板、粉笔、PPT课件。

学具:练习本、铅笔、直尺。

五、教学过程1. 实践情景引入通过PPT展示小明和小华分苹果的情景,提出问题:“小明和小华一共分了10个苹果,小明分了3个,小华分了多少个?”引导学生列出方程。

2. 知识讲解(1)方程的概念:含有未知数的等式。

(2)一元一次方程的定义:含有一个未知数,且未知数的次数为1的方程。

(3)一元一次方程的解法:移项、合并同类项、化简。

3. 例题讲解讲解一个一元一次方程的例题,并详细解释解题过程。

4. 随堂练习让学生完成PPT上的两道练习题,巩固所学知识。

六、板书设计1. 方程的概念2. 一元一次方程的定义3. 一元一次方程的解法4. 例题及解题过程5. 练习题七、作业设计1. 作业题目:(1)求解一元一次方程:2x + 3 = 7(2)根据实际问题列出方程并求解。

2. 答案:(1)x = 2(2)答案不唯一,合理即可。

八、课后反思及拓展延伸1. 反思:本节课学生对一元一次方程的概念和解法掌握情况,及时调整教学方法。

2. 拓展延伸:引导学生思考一元一次方程在实际生活中的应用,提高学生的数学素养。

重点和难点解析1. 实践情景引入的设置。

2. 一元一次方程解法的详细讲解。

3. 例题的选择与讲解。

4. 随堂练习的设计与反馈。

5. 作业设计的合理性和答案的完整性。

人教版七年级上册第三章一元一次方程课程设计

人教版七年级上册第三章一元一次方程课程设计

人教版七年级上册第三章一元一次方程课程设计课程设计背景本次课程设计针对人教版七年级上册第三章——一元一次方程进行设计,该章节共包括三个小节:•第一节:认识方程•第二节:一元一次方程•第三节:解一元一次方程学生在初中数学阶段,首次学习了方程的基本概念和解法,对于初中生而言,这是一个新的知识点,需要加强学习,理解和掌握。

教学目标1.理解什么是方程,掌握方程的基本概念。

2.掌握一元一次方程的基本形式,了解方程的系数和常数项。

3.掌握解一元一次方程的基本方法,尤其是通过移项变号和化简以得到解,培养解题思维能力。

教学内容和解释1. 认识方程方程是一个数学的计算式,它表示的是一个等式关系,左右两边的值相等。

这种表达方式通常用一个字母或符号来代替需要求解的数。

例如,下列式子就是一个方程:2x+3=7在这个方程中,未知数是x,我们需要求解x的值。

2. 一元一次方程一元一次方程是指只有一个未知数,而且它的最高次数为 1,即它是一次方程。

比如:2x+3=7这就是一个一元一次方程。

一元一次方程的基本形式是:ax+b=c其中,a为未知数的系数,b为常数项,c为方程右侧的常数。

3. 解一元一次方程解一元一次方程的基本方法是“移项变号和化简”。

移项变号即是指将方程中某一项的加减转化为减加,如,在上面的一元一次方程中,可以将等式两边减去3,则:2x=4此时的方程已经被化为只有一个未知数的形式了,而后就可以通过化简得出它的解:x=2同样,我们也可以将其变为2x=7−3的形式,然后进行消元求解。

教学方法本次课程设计采用“理论教学+例题讲解+学生练习”相结合的教学方法。

1. 理论教学对于学生初次接触的内容,先由教师讲解相关的理论知识。

主要包括方程概念和一元一次方程基本形式的介绍。

2. 例题讲解教师通过板书或 PowerPoint 展示不同的例题,并对其进行解析,包括变形过程,消元过程和最终计算结果。

在这个过程中,教师可以借助图形来进行辅助讲解和解释。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版七年级上册数学第3章-一元一次方程全章教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第三章 一元一次方程3.1从算式到方程§3.1.1一元一次方程(一)教学目标:知识与技能:通过处理实际问题,让学生体验从算术方法到代数方法是一种进步; 过程与方法:初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念; 情感、态度、价值观:培养学生获取信息,分析问题,处理问题的能力。

教学重点:从实际问题中寻找相等关系教学难点:从实际问题中寻找相等关系教学过程:一、情境引入提出教科收第78页的问题,并用多媒体直观演示,同进出现下图:问题1:从上图中你能获得哪些信息?(可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。

)可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:()50701510702301513+⨯--=- ()50701310502301513+⨯-+=- 问题3:能否用方程的知识来解决这个问题呢?二、学习新知1、引导学生设未知数,并用含未知数的字母表示有关的数量.如果设王家庄到翠湖的路程为x 千米,那么王家庄距青山 千米,王家庄距秀水 千米.2、引导学生寻找相等关系,列出方程.问题1:题目中的“汽车匀速行驶”是什么意思?问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示你能表示其他各段路程的车速吗问题3:根据车速相等,你能列出方程吗?根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程: 507035x x -+= , 依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程: 50507032x -+= 3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.4、归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z 等字母);(2)根据问题中的相等关系,列出方程.三、举一反三,讨论交流1、比较列算式和列方程两种方法的特点.列算式:只用已知数,表示计算程序,依据是间题中的数量关系; 列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

2、思考:对于上面的问题,你还能列出其他方程吗如果能,你依据的是哪个相等关系如果直接设元,还可列方程:70605x += 如果设王家庄到青山的路程为x 千米,那么可以列方程:12060;335x x x +== 说明:要求出王家庄到翠湖的路程,只要解出方程中的x 即可,我们在以后几节课中再来学习.四、初步应用1、例题(补充):根据下列条件,列出关于x 的方程:(1)x 与18的和等于54;(2)27与x 的差的一半等于x 的4倍.本例题可以先让学生尝试解答,然后教师点评.解:(1)x +18=54;(2)12(27-x )=4x. 2、练习(补充):(1)列式表示:① 比a 小9的数; ② x 的2倍与3的和;③ 5与y 的差的一半; ④ a 与b 的7倍的和.(2)根据下列条件,列出关于x 的方程:(1) 12与x 的差等于x 的2倍;(2)x 的三分之一与5的和等于6.五、课堂小结1、本节课我们学了什么知识?2、你有什么收获?说明方程解决许多实际问题的工具。

六、作业设计课本P84~85:1、5§3.1.1 一元一次方程(二)教学目标:1.理解一元一次方程、方程的解等概念;2.掌握检验某个值是不是方程的解的方法;3.培养学生根据间题寻找相等关系、根据相等关系列出方程的能力;4.体验用估算方法寻求方程的解的过程,培养学生求实的态度。

教学重点:寻找相等关系、列出方程.教学难点:对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力教学过程:一、情境引入问题:小雨、小思的年龄和是25.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?学生回答,教师加以引导:小思的年龄可以用两个不同的式子25-x和2x-8来表示,这说明许多实际问题中的数量关系可以用含字母的式子来表示.由于这两个不同的式子表示的是同一个量,因此我们又可以写成:25-x=2x-8.这样就得到了一个方程.二、自主尝试1.尝试:让学生尝试解答课本第67页的例1。

对于基础比较差的学生,教师可以作如下提示:(1)选择一个未知数,设为x,(2)对于这三个问题,分别考虑:用含x的式子表示这台计算机的检修时间;用含x的式子分别表示长方形的长和宽;用含x的式子分别表示男生和女生的人数.(3)找一个问题中的相等关系列出方程.2.交流:在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.3.教师在学生回答的基础上作补充讲解,并强调:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.4.讨论:问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?让学生在学习小组内讨论,然后分组汇报交流:选“已使用的时间”可列方程:2 450-150x=1 700.选“还可使用的时间”可列方程:150x=2 450-1 700.问题2:在第(3)题中,你还能设其他的未知数为x吗?在学生独立思考、小组讨论的基础上交流:设这个学校的男生数为x ,那么女生数为(x+80),全校的学生数为(x+x+80).列方程:x +80=52%(x+x +80).三、建立概念1.概念的建立.让学生在观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的指数都是1,这样的方程叫做一元一次方程.“一元”:一个未知数;“一次”:未知数的指数是一次.判断下列方程是不是一元一次方程:(1)23-x=一7: (2)2a-b=3(3)y+3=6y-9; (4)0.32 m-(3+0.02 m) =0.7.(5)x 2=1 (6)11423y y -= 2.引导学生归纳:从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.四、估算求解列出方程后,还必须解这个方程,求出未知数的值.对于简单的方程,我们可以采用估算的方法.①问题:你认为该怎样进行估算?可以采用“尝试—发现—归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.可以像课本那样用列表的方法进行尝试,也可以像下面的示意图那样按程序进行尝试.②在此基础上给出概念:能使方程左右两边的值相等的未知数的值,叫做方程的解.求方程的解的过程,叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代人方程,看方程左右两边的值是否相等. 实际问一元一次方设未知数 列方程五、课堂练习练习课本第82页中练习六、课堂小结着重引导学生从以下几个方面进行归纳:①这节课我们学习了什么内容?②用列方程的方法解决实际问题的一般思路是什么?③列方程的实质就是用两种不同的方法来表示同一个量.④估算是一种重要的方法.思考:课本第81页中的“思考”.(目的是体验用估算的方法有时会很麻烦)七、作业设计课本第84--85页习题3.1第2,6,7,8题第11题.§3.1.2 等式的性质(一)教学目标:1.了解等式的两条性质;2.会用等式的性质解简单的(用等式的一条性质)一元一次方程;3.培养学生观察、分析、概括及逻辑思维能力;4.渗透“化归”的思想.教学重点:理解和应用等式的性质教学难点:应用等式的性质把简单的一元一次方程化成“x=a”教学过程:一、提出问题用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1) 3x-5=22; (2) 0.28-0.13y=0.27y+1.第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,此时教师提出:我们必须学习解一元一次方程的其他方法.二、探究新知1.实验演示:教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律.然后按课本第71页图2.1-2的方法演示实验.教师可以进行两次不同物体的实验.2.归纳:请几名学生回答前面的问题.在学生叙述发现的规律后,教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8-11=8-11”.3.表示:问题1:你能用文字来叙述等式的这个性质吗?在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.问题2:等式一般可以用a=b来表示.等式的性质1怎样用式子的形式来表示?字母a、b、c可以表示具体的数,也可以表示一个式子。

4.观察课本P71图2.1-3,你又能发现什么规律你能用实验加以验证吗在学生观察图2.1一3时,必须注意图上两个方向的箭头所表示的含义.观察后再请一名学生用实验验证.然后让学生用两种语言表示等式的性质2.三、应用举例方程是含有未知数的等式,我们可以运用等式的性质来解方程。

例1课本第72页例2中的第(1)、(2)题.分析:所谓“解方程”,就是要求出方程的解“x=’’因此我们需要把方程转化为“x=a(a为常数)”形式。

问题 1:怎样才能把方程x+7=26转化为x=a的形式?学生回答,教师板书:解:(1)两边减7,得、x+7-7=26-7,x=19. I问题2:式子“-5x”表示什么?我们把其中的-5叫做这个式子的系数.你能运用等式的性质把方程-5x=20转化为x=a的形式吗?用同样的方法给出方程的解.小结:请你归纳一下解一元一次方程的依据和结果的形式.例2(补充)小涵的妈妈从商店买回一条裤子,小涵问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是36元.”你知道标价是多少元吗?要求学生尝试用列方程的方法进行解答.在学生基本完成的情况下,教师给出示范.解:设标价是x元,则售价就是80%x元,根据售价是36元可列方程:80%x=36,两边同除以80%,得x=45.答:这条裤子的标价是45元.四、课堂练习1.分别说出下列各式子的系数3x,-7m,35y,a,-x,12n-2.利用等式的性质解下列方程(1) x-5=6 (2)0.3x=45(3)-y=0.6 (4)12 3y=-3.七年级3班有18名男生,占全班人数的45%,求七年级3班的学生人数。

相关文档
最新文档