2018-2019学年浙江省绍兴市诸暨市八年级(下)期末数学试卷含解析
2018-2019学年浙教版八年级数学下册期末测试题含答案
- 1 - 2018-2019学年浙教版八年级数学下册期末测试题一、选择题(每小题3分,共30分)1、下列计算正确的是 ( )A )()13132-=-B )12223=-C )52553-=+-D )636±= 2、八年级某班50位同学中,1月份出生的频率是0.20,那么这个班1月份生日的同学有 ( )A )10位B )11位C )12位D )13位3、在式子21-x ,31-x ,2-x ,3-x 中,x 可以取2和3的是( ) A. 21-x B. 31-x C. 2-x D. 3-x 4、下列计算正确的是( ) A . (6)2=±6 B. 2)7(-=-7;C. 3×6=32;D. 6÷3=35、下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是( )A ) 5B )2C )4D )86、 “I am a good student .”这句话中,字母”a“出现的频率是 ( )A )2B )152C )181D ) 111 7、用配方法解方程542=-x x 时,此方程可变形为( )A .1)2(2=+xB .1)2(2=-xC .9)2(2=+xD .9)2(2=-x8、某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长( )A .10%B .15%C .20%D .25%9、用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形;⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是 ( ).(A )①②③ (B )①④⑤ (C )①②⑤ (D )②⑤⑥10、一张矩形纸片按如图甲或乙所示对折,然后沿着图丙中的虚线剪下,得到①,•②两部分,将①展开后得到的平面图形是 ( ).(A )三角形 (B )矩形 (C )菱形 (D )梯形。
浙教版2018--2019学年度第二学期八年级期末考试数学试卷
绝密★启用前浙教版2018--2019学年度第二学期八年级期末考试数学试卷注意事项:1.做卷时间100分钟,满分120分 2.做题要仔细,不要漏做 一、单选题(计30分)1.(本题3分)反比例函数y=x1的图象经过的象限是( ) A .第一二象限 B .第一三象限 C .第二三象限 D .第二四象限 2.(本题3分)若反比例函数3m y x-=的图象在第一、三象限,则m 的值可以是( ) A .4 B .3 C .0 D .3- 3.(本题3分)下列计算错误的是( ) A .B .C .D .4.(本题3分)方程(x -2)2+(x -2)=0的解是( )A .2,1B .,1C .D .25.(本题3分)如图,已知某广场菱形花坛ABCD 的周长是12米,∠BAD =60°,则花坛对角线AC 的长等于( )A. 33米B. 4米C. 32米D. 2米 6.(本题3分)若关于的一元二次方程的一个根为1,则的值为( )A .或B .C .1D .-1 7.(本题3分)如图,在矩形ABCD 中,,则BD 的长为A .5B .10C .12D .138.(本题3分)在某次射击训练中,甲、乙、丙、丁4人各射击10次,平均成绩相同,方差分别是=0.35,=0.15,=0.25,=0.27,这4人中成绩发挥最稳定的是( )A .甲B .乙C .丙D .丁 9.(本题3分)关于的方程的两根为直角三角形的两直角边的长,且该直角三角形的面积为1,则斜边长为( )A .5B .7C .5D .710.(本题3分)如图所示,反比例函数y=xk(k≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为( )A .B .2C .22D .25 二、填空题(计32分)11.(本题4分)若一组数据6、7、4、6、x 、1的平均数是5,则这组数据的众数是_____. 12.(本题4分)如图,已知菱形ABCD 的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD 的面积为 .13.(本题4分)五边形的内角和的度数是______.14.(本题4分)若关于x 的一元二次方程kx 2-4x+3=0有实数根,则k 的取值范围是 .连接、.当为________度时,四边形为矩形.16.(本题4分)如图,正方形ABCD 的边长为1,E 是边CD 外的一点,满足CE ∥BD ,BE=BD .则CE= .17.(本题4分)已知四边形ABCD 是平行四边形,再从①AB=BC ,②∠ABC=90°, ③AC=BD ,④AC⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,其中错误的是_______ (只填写序号).18.(本题4分)如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y=xk的图象上,OA=1,OC=6,则正方形ADEF 的边长为________.三、解答题19.(本题7分)解方程:(1)(2)(3)12x x --= (2)231y +=20.(本题7分)计算:(1))22 (2)2111a a a +-+-.21.(本题7分)青山村种的水稻2014年平均每公顷产8000kg ,2016年平均每公顷产9680kg ,求该村水稻每公顷产量的年平均增长率.22.(本题7分)一定质量的氧气,其密度ρ(kg/m 3)是它的体积v (m 3)的反比例函数.当V=10m 3时ρ=1.43kg/m 3. (1)求ρ与v 的函数关系式;(2)求当V=2m 3时,氧气的密度.23.(本题7分)如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,两条对角线AC 、OB 的长分别是6和4,反比例函数y=xk的图象经过点C. (1)写出点A 的坐标,并求k 的值;(2)将菱形OABC 沿y 轴向下平移多少个单位长度后点A 会落在该反比例函数的图象上?24.(本题7分)如图,在平面直角坐标系中,直线y=0.5x+2与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第二象限内作正方形ABCD ,过点D 作DE ⊥x 轴,垂足为E. (1)求点A 、B 的坐标,并求边AB 的长; (2)求点D 的坐标;(3)你能否在x 轴上找一点M ,使△MDB 的周长最小?如果能,请求出M 点的坐标;如果不能,说明理由.25.(本题8分)已知关于的方程.求证:方程总有两个实数根;已知方程有两个不相等的实数根,,且满足,求的值.26.(本题8分)甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表. (1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.参考答案1.B【解析】【分析】根据反比例函数y中的4的符号来判定该函数所经过的象限.【详解】∵4>0,∴反比例函数y的图象经过第一、三象限.故选B.【点睛】本题考查了反比例函数的性质与图象.对于反比例函数y(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.2.A【解析】分析: 先根据反比例函数的性质列出关于k的不等式,求出k的取值范围,进而可得出结论.详解: ∵反比例函数3myx-=的图象位于第一、三象限,∴m−3>0,解得m>3,∴k的值可以是4.故选:A.点睛: 本题考查的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解答此题的关键.3.B【解析】根据二次根式的运算法则逐一作出判断:A.,计算正确;B.,计算错误;C.,计算正确;D.,计算正确。
浙江省绍兴市越城区2018-2019年八年级(下)期末数学试卷 解析版
2018-2019学年八年级(下)期末数学试卷一.选择题(共10小题)1.下列计算正确的是()A.4B.C.2=D.32.下列各点中,在函数图象上的是()A.(﹣2,﹣4)B.(2,3)C.(﹣6,1)D.(﹣,3)3.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2=4.一个多边形的内角和比外角和的3倍多180°,则它的边数是()A.八B.九C.十D.十一5.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE6.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为()A.12 B.10 C.8 D.67.甲、乙两人各射击6次,甲所中的环数是8,5,5,a,b,c,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲、乙射击成绩的正确判断是()A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定C.甲、乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较8.如图,要在平行四边形ABCD内作一个菱形,甲、乙两位同学的作法分别如下:甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形;乙:分别作∠A与∠B的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF 是菱形.对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误9.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长10.如图,在正方形ABCD中,AB=3,点EF分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为()A.7 B.3+C.8 D.3+二.填空题(共6小题)11.如果一组数据的方差为9,那么这组数据的标准差是.12.在▱ABCD中,如果∠A+∠C=140°,那么∠B=度.13.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=.14.如图,如果一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(n,3)两点,那么不等式kx+b>的解集为:.15.已知m是实数,且m+2和﹣2都是整数,那么m的值是.16.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.三.解答题(共8小题)17.计算或化简:(1)|﹣4|﹣22+(2)(+2)﹣18.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.19.如图,平行四边形ABCD的对角线AC、BD相交于点O,EF过点O与AD、BC分别相交于点E、F,求证:OE=OF.20.反比例函数y=的图象如图所示,A(﹣1,b1),B(﹣2,b2)是该图象上的两点.(1)求m的取值范围;(2)比较b1与b2的大小.21.甲,乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在某次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分,甲校:93 82 76 77 76 89 89 89 83 87 88 89 84 92 87 89 79 54 88 92 90 87 68 7694 84 76 69 83 92乙校:84 63 90 89 71 92 87 92 85 61 79 91 84 92 92 73 76 92 84 57 87 89 88 9483 85 80 94 72 90(1)请根据乙校的数据补全条形统计图;(2)两组样本数据的平均数、中位数、众数如表所示,写出m、n的值;平均数中位数众数甲校83.4 87 89乙校83.2 m n (3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好一些,请为他们各写出一条可以使用的理由:甲校:,乙校:.(4)综合来看,可以推断出校学生的数学业水平更好些,理由为.22.某地2017年为做好“旧城改造工程“投入资金1280万元用于拆迁安置,并规划投入资金按相同幅度逐年增加,预计到2019年年底投入资金比2017年基础上增加1600万元.(1)从2017年到2019年,该地投入拆迁安置资金的年平均增长率为多少?(2)在2019年拆迁安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按每户需租房400天计算,求2019年该地至少有多少户享受到优先搬迁租房奖励.23.(1)如图1,已知△ABC与△ABD的面积相等,证明AB∥CD;(2)①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,E,请利用(1)的结果,证明:MN∥EF;②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行(不用写理由).24.在正方形ABCD中,点P是直线BC上一点,连接PA,将线段PA绕点P顺时针旋转90°,得到线段PE,连接CE.(1)如图1,若点P在线段CB的延长线上.过点E作EF⊥BC于H,与对角线AC交于点F.①请根据题意补全图形;②求证:EH=FH;(2)若点P在射线BC上,直接写出CE,CP,CD三条线段的数量关系为.参考答案与试题解析一.选择题(共10小题)1.下列计算正确的是()A.4B.C.2=D.3【分析】根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.【解答】解:A、4﹣3=,原式计算错误,故本选项错误;B、与不是同类二次根式,不能直接合并,故本选项错误;C、2=,计算正确,故本选项正确;D、3+2≠5,原式计算错误,故本选项错误;故选:C.2.下列各点中,在函数图象上的是()A.(﹣2,﹣4)B.(2,3)C.(﹣6,1)D.(﹣,3)【分析】根据函数,得到﹣6=xy,只要把点的坐标代入上式成立即可.【解答】解:∵函数,∴﹣6=xy,只要把点的坐标代入上式成立即可,把答案A、B、D的坐标代入都不成立,只有C成立.故选:C.3.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2=【分析】根据配方法即可求出答案.【解答】解:y2﹣y﹣=0y2﹣y=y2﹣y+=1(y﹣)2=1故选:B.4.一个多边形的内角和比外角和的3倍多180°,则它的边数是()A.八B.九C.十D.十一【分析】多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是3×360°+180°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,得到方程,从而求出边数.【解答】解:根据题意可得:(n﹣2)•180°=3×360°+180°,解得:n=9.所以这个多边形的边数是九.故选:B.5.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE 【分析】把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.【解答】解:添加:∠F=∠CDE,理由:∵∠F=∠CDE,∴CD∥AB,在△DEC与△FEB中,,∴△DEC≌△FEB(AAS),∴DC=BF,∵AB=BF,∴DC=AB,∴四边形ABCD为平行四边形,故选:D.6.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为()A.12 B.10 C.8 D.6【分析】先根据反比例函数的图象在第一象限判断出k的符号,再延长线段BA,交y轴于点E,由于AB∥x轴,所以AE⊥y轴,故四边形AEOD是矩形,由于点A在双曲线y=上,所以S矩形AEOD=4,同理可得S矩形OCBE=k,由S矩形ABCD=S矩形OCBE﹣S矩形AEOD即可得出k 的值.【解答】解:∵双曲线y=(k≠0)在第一象限,∴k>0,延长线段BA,交y轴于点E,∵AB∥x轴,∴AE⊥y轴,∴四边形AEOD是矩形,∵点A在双曲线y=上,∴S矩形AEOD=4,同理S矩形OCBE=k,∵S矩形ABCD=S矩形OCBE﹣S矩形AEOD=k﹣4=8,∴k=12.故选:A.7.甲、乙两人各射击6次,甲所中的环数是8,5,5,a,b,c,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲、乙射击成绩的正确判断是()A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定C.甲、乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较【分析】要判断甲,乙射击成绩的稳定性就是要比较两人成绩的方差的大小,关键是求甲的方差.甲的这组数中的众数是8就说明a,b,c中至少有两个是8,而平均数是6,则可以得到a,b,c三个数其中一个是2,另两个数是8,求得则甲的方差,再进行比较得出结果.【解答】解:∵这组数中的众数是8∴a,b,c中至少有两个是8∵平均数是6∴a,b,c三个数其中一个是2∴∴乙射击成绩比甲稳定.故选:B.8.如图,要在平行四边形ABCD内作一个菱形,甲、乙两位同学的作法分别如下:甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形;乙:分别作∠A与∠B的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF 是菱形.对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误【分析】如图1,利用垂直平分线的性质得到EA=EC,FA=FC,则∠EAC=∠ECA,再根据平行线的性质得到∠EAC=∠FCA,所以∠ECA=∠FCA,根据等腰三角形的判定方法得到CE=CF,所以AE=EC=CF=AF,从而可判断所以甲正确;如图2,利用角平分线的定义得到∠BAE=∠FAE,再根据平行线的性质得到∠FAE=∠BEA,所以∠BEA=∠BAE,则BA=BE,同理可得AB=AF,所以AF=BE,则可判断四边形ABEF是菱形,从而判断乙正确.【解答】解:如图1,EF垂直平分AC,∴EA=EC,FA=FC,∴∠EAC=∠ECA,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠EAC=∠FCA,∴∠ECA=∠FCA,而CA⊥EF,∴CE=CF,∴AE=EC=CF=AF,∴四边形AFCE是菱形;所以甲正确;如图2,∵AE平分∠BAD,∴∠BAE=∠FAE,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FAE=∠BEA,∴∠BEA=∠BAE,∴BA=BE,同理可得AB=AF,∴AF=BE,而AF∥BE,∴四边形ABEF是平行四边形,而AB=AF,四边形ABEF是菱形,所以乙正确.故选:C.9.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长【分析】表示出AD的长,利用勾股定理求出即可.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.10.如图,在正方形ABCD中,AB=3,点EF分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为()A.7 B.3+C.8 D.3+【分析】根据阴影部分的面积与正方形ABCD的面积之比为2:3,得出阴影部分的面积为6,空白部分的面积为3,进而依据△BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.【解答】解:∵阴影部分的面积与正方形ABCD的面积之比为2:3,∴阴影部分的面积为×9=6,∴空白部分的面积为9﹣6=3,由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,∴△BCG的面积与四边形DEGF的面积相等,均为×3=,∠CBE=∠DCF,∵∠DCF+∠BCG=90°,∴∠CBG+∠BCG=90°,即∠BGC=90°,设BG=a,CG=b,则ab=,又∵a2+b2=32,∴a2+2ab+b2=9+6=15,即(a+b)2=15,∴a+b=,即BG+CG=,∴△BCG的周长=+3,故选:D.二.填空题(共6小题)11.如果一组数据的方差为9,那么这组数据的标准差是 3 .【分析】样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.【解答】解:因为方差为9,所以这组数据的标准差为=3,故答案为3.12.在▱ABCD中,如果∠A+∠C=140°,那么∠B=110 度.【分析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.【解答】解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°.故答案为:110.13.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m= 2 .【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【解答】解:∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2.故答案是:2.14.如图,如果一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(n,3)两点,那么不等式kx+b>的解集为:1<x<2 .【分析】首先求出A、B两点坐标,然后观察图象,一次函数的图象在反比例函数的图象上方,写出x的取值范围即可.【解答】解:∵点A(m,6)、B(n,3)在反比例函数y=(x>0)的图象上,∴m=1,n=2,∴A点坐标是(1,6),B点坐标是(2,3),观察图象可知,不等式kx+b>的解集是1<x<2,故答案为1<x<2.15.已知m是实数,且m+2和﹣2都是整数,那么m的值是3﹣2或﹣3﹣2.【分析】由m+2是整数,开设m=a﹣2,其中a为整数,==也是整数,即+中,含有2,即分母a2﹣8=1,求出a的值,进而确定m的值.【解答】解:∵m+2是整数,∴m=a﹣2,(其中a为整数),∴==,又∵﹣2是整数,∴a2﹣8=1,∴a=±3,∴m=3﹣2或m=﹣3﹣2,故答案为:3﹣2或﹣3﹣2.16.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为7 .【分析】过O作OF垂直于BC,再过A作AM垂直于OF,由四边形ABDE为正方形,得到OA=OB,∠AOB为直角,可得出两个角互余,再由AM垂直于MO,得到△AOM为直角三角形,其两个锐角互余,利用同角的余角相等可得出一对角相等,再由一对直角相等,OA =OB,利用AAS可得出△AOM与△BOF全等,由全等三角形的对应边相等可得出AM=OF,OM=FB,由三个角为直角的四边形为矩形得到ACFM为矩形,根据矩形的对边相等可得出AC=MF,AM=CF,等量代换可得出CF=OF,即△COF为等腰直角三角形,由斜边OC的长,利用勾股定理求出OF与CF的长,根据OF﹣MF求出OM的长,即为FB的长,由CF+FB 即可求出BC的长.【解答】解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.三.解答题(共8小题)17.计算或化简:(1)|﹣4|﹣22+(2)(+2)﹣【分析】(1)利用绝对值的意义和二次根式的性质计算;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=4﹣﹣4+2=;(2)原式=a+2﹣a=2.18.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.【分析】(1)运用根的判别式判断,列出判别式的表达式,再变形成为非负数,得出△≥0即可;(2)设另一根为x1,根据一元二次方程根与系数的关系,﹣1+x1=﹣,﹣1•x1=﹣,联立解答即可.【解答】(1)证明:∵a=2,b=k,c=﹣1,∴△=k2﹣4×2×(﹣1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0.∴方程有两个不相等的实数根;(2)解:设另一根为x1,则﹣1+x1=﹣,﹣1•x1=﹣,解得,x1=,k=1.19.如图,平行四边形ABCD的对角线AC、BD相交于点O,EF过点O与AD、BC分别相交于点E、F,求证:OE=OF.【分析】要证明线段相等,只需证明两条线段所在的两个三角形全等即可.【解答】证明:∵ABCD为平行四边形,∴AD∥BC,OA=OC,∴∠EAO=∠FCO,∠AEO=∠CFO,∴△AEO≌△CFO(AAS),∴OE=OF.20.反比例函数y=的图象如图所示,A(﹣1,b1),B(﹣2,b2)是该图象上的两点.(1)求m的取值范围;(2)比较b1与b2的大小.【分析】(1)根据反比例函数的图象和性质可知2m﹣1>0,从而可以解答本题;(2)根据反比例函数的性质可以判断b1与b2的大小.【解答】解:(1)由函数图象可知,该函数图象在第一、三象限,∴2m﹣1>0,解得,m>,即m的取值范围是m>;(2)由图知,当x<0时,y随x增大而减小,∵﹣1>﹣2,∴b1<b2.21.甲,乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在某次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分,甲校:93 82 76 77 76 89 89 89 83 87 88 89 84 92 87 89 79 54 88 92 90 87 68 7694 84 76 69 83 92乙校:84 63 90 89 71 92 87 92 85 61 79 91 84 92 92 73 76 92 84 57 87 89 88 9483 85 80 94 72 90(1)请根据乙校的数据补全条形统计图;(2)两组样本数据的平均数、中位数、众数如表所示,写出m、n的值;平均数中位数众数甲校83.4 87 89乙校83.2 m n(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好一些,请为他们各写出一条可以使用的理由:甲校:我们学校的平均分高于乙校,所以我们学校的成绩好,乙校:我们学校的众数高于甲校,所以我们学校的成绩好.(4)综合来看,可以推断出甲校学生的数学业水平更好些,理由为甲校的平均分高于乙校,说明总成绩甲校好于乙校,中位数甲校高于乙校,说明甲校一半以上的学生成绩较好.【分析】(1)根据表格中的数据可以得到乙校,70﹣79的和60﹣69的各有多少人,从而可以将条形统计图补充完整;(2)根据表格中的数据将乙校的数据按照从小到大排列,即可得到这组数据的中位数和众数;(3)答案不唯一,理由需包含数据提供的信息;(4)答案不唯一,理由需支撑推断结论.【解答】解:(1)由表格可得,乙校70﹣79的有5人,60﹣69的有2人,补全条形统计图,如下图.(2)由条形统计图可得,乙校数据按照从小到大排列是:57、61、63、71、72、73、76、79、80、83、84、84、84、85、85、87、87、88、89、89、90、90、91、92、92、92、92、92、94、94、∴这组数据的中位数m==86,众数n=92;(3)甲校:我们学校的平均分高于乙校,所以我们学校的成绩好;乙校:我们学校的众数高于甲校,所以我们学校的成绩好;故答案为:我们学校的平均分高于乙校,所以我们学校的成绩好;我们学校的众数高于甲校,所以我们学校的成绩好;(4)综合来看,甲校学生的数学学业水平更好一些,理由:甲校的平均分高于乙校,说明总成绩甲校好于乙校,中位数甲校高于乙校,说明甲校一半以上的学生成绩较好.故答案为:甲、甲校的平均分高于乙校,说明总成绩甲校好于乙校,中位数甲校高于乙校,说明甲校一半以上的学生成绩较好.22.某地2017年为做好“旧城改造工程“投入资金1280万元用于拆迁安置,并规划投入资金按相同幅度逐年增加,预计到2019年年底投入资金比2017年基础上增加1600万元.(1)从2017年到2019年,该地投入拆迁安置资金的年平均增长率为多少?(2)在2019年拆迁安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按每户需租房400天计算,求2019年该地至少有多少户享受到优先搬迁租房奖励.【分析】(1)设该地投入拆迁安置资金的年平均增长率为x,根据:2017年投入资金×(1+增长率)2=2019年投入资金,列出方程求解可得;(2)设2019年该地至少有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.【解答】解:(1)设从2015年到2017年,该地投入异地安置资金的年平均增长率为x,根据题意得:1280(1+x)2=1280+1600,解得:x=0.5=50%或x=﹣2.5(舍去).答:从2017年到2019年,该地投入拆迁安置资金的年平均增长率为50%;(2)设2019年该地至少有a户享受到优先搬迁租房奖励,根据题意,得:8×1000×400+5×400(a﹣1000)≥5000000,整理,得2a+1200≥5000解得:a≥1900,答:2019年该地至少有1900户享受到优先搬迁租房奖励.23.(1)如图1,已知△ABC与△ABD的面积相等,证明AB∥CD;(2)①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,E,请利用(1)的结果,证明:MN∥EF;②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行(不用写理由).【分析】(1)过点C作CP⊥AB于点P,过点D作DQ⊥AB于点Q,则∠CPA=∠DQB=90°,进而可得出CP∥DQ,由△ABC与△ABD的面积相等,可得出CP=DQ,结合CP∥DQ可得出四边形CPQD为平行四边形,再利用平行四边形的性质可证出AB∥CD;(2)①连接FM,EN,设点M的坐标为(x1,y1),点N的坐标为(x2,y2),利用反比例函数图象上点的坐标特征可得出k=x1y1=x2y2,由ME⊥y轴,NF⊥x轴可得出OE=y1,OF=x2,ME=x1,NF=y2,利用三角形的面积公式可得出S△EFM=k=S△EFN,结合(1)的结论可证出MN∥EF;②连接MN,FM,EN,重复①的步骤,可得出S△EFM=k=S△EFN,进而可证出MN∥EF.【解答】(1)证明:在图1中,过点C作CP⊥AB于点P,过点D作DQ⊥AB于点Q,则∠CPA=∠DQB=90°,∴CP∥DQ.∵△ABC与△ABD的面积相等,∴CP=DQ,∴四边形CPQD为平行四边形,∴AB∥CD.(2)①证明:在图2中,连接FM,EN.设点M的坐标为(x1,y1),点N的坐标为(x2,y2).∵点M,N在反比例函数y=(k>0)的图象上,∴k=x1y1=x2y2.∵ME⊥y轴,NF⊥x轴,∴OE=y1,OF=x2,ME=x1,NF=y2.∵S△EFM=ME•OE=x1y1=k,S△EFN=NF•OF=x2y2=k,∴S△EFM=S△EFN,∴MN∥EF;②解:MN∥EF,理由如下:在图3中,连接MN,FM,EN.设点M的坐标为(x1,y1),点N的坐标为(x2,y2).∵点M,N在反比例函数y=(k>0)的图象上,∴k=x1y1=x2y2.∵ME⊥y轴,NF⊥x轴,∴OE=y1,OF=x2,ME=x1,NF=y2.∵S△EFM=ME•OE=x1y1=k,S△EFN=NF•OF=x2y2=k,∴S△EFM=S△EFN,∴MN∥EF;24.在正方形ABCD中,点P是直线BC上一点,连接PA,将线段PA绕点P顺时针旋转90°,得到线段PE,连接CE.(1)如图1,若点P在线段CB的延长线上.过点E作EF⊥BC于H,与对角线AC交于点F.①请根据题意补全图形;②求证:EH=FH;(2)若点P在射线BC上,直接写出CE,CP,CD三条线段的数量关系为EC=(CD ﹣PC)或EC=(CD+PC).【分析】(1)①构建题意画出图形即可;②想办法证明△APB≌△PEH即可;(2)结论:当点P在线段BC上时:.当点P在线段BC的延长线上时:.构造全等三角形即可解决问题;【解答】解:(1)①补全图形如图所示:②证明:∵线段PA绕点P顺时针旋转90°得到线段PE,∴PA=PE,∠APE=90°,∵四边形ABCD是正方形,∴∠4=∠ABC=90°,AB=BC,∵EF⊥BC于H,∴∠5=90°=∠4,∴∠2+∠3=90°,∴∠1=∠3,∴△APB≌△PEH,∴PB=EH,AB=PH,∴BC=PH,∴PB=CH,∴CH=EH,∵,∴CH=FH,∴EH=FH.(2)当点P在线段BC上时:.理由:在BA上截取BM=BP.则△PBM是等腰直角三角形,PM=PB.易证△PCE≌△AMP,可得EC=PM,∵CD﹣PC=BC﹣PC=PB,∴EC=PM=PB=(CD﹣PC)当点P在线段BC的延长线上时:.理由:在BA上截取BM=BP.则△PBM是等腰直角三角形,PM=PB.易证△PCE≌△AMP,可得EC=PM,∵CD+PC=BC+PC=PB,∴EC=PM=PB=(CD+PC).。
2018-2019学年浙教版八年级下册期末数学试卷 含答案
2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)下面调查中,适合采用普查的是()A.调查你所在的班级同学的身高情况B.调查全国中学生心理健康现状C.调查我市食品合格情况D.调查中央电视台《少儿节目》收视率3.(3分)若分式有意义,则x的取值范围是()A.x≠1B.x=1C.x>1D.x<14.(3分)下列成语所描述的事件为必然事件的是()A.水中捞月B.守株待兔C.拔苗助长D.翁中捉鳖5.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.6.(3分)反比例函数的图象经过点(1,﹣2),则此函数的解析式是()A.y=2x B.C.D.7.(3分)顺次联结对角线相等的四边形各边中点所得到的四边形是()A.平行四边形B.矩形C.正方形D.菱形8.(3分)某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是()A.80B.144C.200D.909.(3分)如果a2﹣6ab+9b2=0(a、b均不为0),那的值是()A.﹣B.C.﹣D.10.(3分)若,则()A.b>3B.b<3C.b≥3D.b≤311.(3分)如图,直线y=x与双曲线y=交于M、N两点,点P在x轴上,连接MP,NP,若MP⊥NP,且△MNP的面积为10,则k的值是()A.6B.8C.10D.1212.(3分)在菱形ABCD中,∠C=∠EDF=60°,AB=1,现将∠EDF绕点D任意旋转,分别交边AB、BC于点E、F(不与菱形的顶点重合),连接EF,则△BEF的周长最小值是()A.1+B.1+C.2D.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接写在答题卡相应位置上)13.(3分)为了解我县11000名九年级毕业生的体育成绩,从中抽取了100名考生的体育成绩进行统计,在这个问题中,样本容量是.14.(3分)一只不透明的袋子中有1个红球、1个黑球和2个白球,这些球除颜色不同外其它都相同,搅匀后从中任意摸出1个球,摸出白球可能性摸出红球可能性(填“等于”或“小于”或“大于”).15.(3分)在▱ABCD中,若∠B=50°,则∠C=°.16.(3分)方程=的解是 .17.(3分)某电子商城推出分期付款购买电脑的活动,一台电脑的售价为1.2万元,前期付款0.4万元,后期每个月分期付一定的数额,则每个月的付款额 y (万元)与付款月数x 之间的函数表达式是 .18.(3分)已知+|2﹣b |=0,则+= .19.(3分)已知点A (1,y 1),B (2,y 2),都在反比例函数y =的图象上,则y 1,y 2的大小关系是 .20.(3分)在四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DE ⊥AB ,垂足为E 点,已知四边形ABCD 的面积是16,且AE =1,则AD = .三、解答题(本大题共8小题,共90分解答时应写出必要的文字说明、证明过程或演算步骤)21.(12分)计算(1)+﹣(2)×(﹣)22.(12分)计算(1)﹣(2)1﹣÷23.(10分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:请你根据统计图提供的信息,解答下列问题:(1)条形统计图中,m=,n=;(2)求扇形统计图中,艺术类读物所在扇形的圆心角的度数.24.(10分)如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=3,BC=4,求四边形OCED的周长.25.(10分)为了美化城市,某县园林局计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数是原计划的倍,结果提前2天完成了任务,求原计划每天栽树多少棵?26.(12分)仿照下列过程:﹣===﹣1;﹣===;(1)运用上述的方法可知:=,=;(2)拓展延伸:计算:++…+.27.(12分)已知四边形ABCD为矩形,AB=8cm,BC=10cm,点P在边AD上以每秒2cm的速度由点A向点D运动,同时点Q在边CD上以每秒acm的速度由点C向点D 运动(如图1),设运动时间为t秒(t>0),当P、Q中有一点运动到点D时,两点同时停止运动.(1)若a=1,则t为何值时,△DPQ为等腰直角三角形?(2)在运动过程中,若存在某一时刻t,使BQ能垂直平分CP,求此时a,t的值.(3)若G为BC中点,M、N、E、F分别为线段PD、DQ、PG、GQ中点(如图2).①记四边形MNFE的面积为S(cm2),请直接写出S(cm2)与时间t(s)的函数关系式;②在运动过程中,若存在某一时刻t,使得四边形MNFE恰好为正方形,试求出此时a、t的值.28.(12分)如图,正方形OABC边长为4,点A、C分别在x轴和y轴上,点B在第一象限,M为BC中点,反比例函数y=过点M,交BA于点N,D为线段AC上一动点,(点D与A、C两点不垂合),过D作x轴垂线交反比例函数y=函数于点E,连接BE、DE.(1)直接写出k值及N点坐标:k=,N(,).(2)AD=4时,求四边形ABED是菱形.(3)小明说:“当D在线段AC上运动时(D点与A,C两点不重合)△DEB始终为等腰三角形”,你认为他说的正确吗?如果正确,请说说理由,如果不正确,请举一个反例.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B、不是轴对称图形,也不是中心对称的图形,故本选项不符合题意;C、不是轴对称图形,是中心对称的图形,故本选项不符合题意;D、是轴对称图形,也是中心对称的图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)下面调查中,适合采用普查的是()A.调查你所在的班级同学的身高情况B.调查全国中学生心理健康现状C.调查我市食品合格情况D.调查中央电视台《少儿节目》收视率【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查你所在的班级同学的身高情况适合普查,故A符合题意;B、调查全国中学生心理健康现状调查范围广适合抽样调查,故B不符合题意;C、调查我市食品合格情况无法普查,故C不符合题意;D、调查中央电视台《少儿节目》收视率调查范围广适合抽样调查,故D不符合题意;故选:A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)若分式有意义,则x的取值范围是()A.x≠1B.x=1C.x>1D.x<1【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,x﹣1≠0,解得x≠1.故选:A.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.(3分)下列成语所描述的事件为必然事件的是()A.水中捞月B.守株待兔C.拔苗助长D.翁中捉鳖【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、水中捞月是不可能事件;B、守株待兔是随机事件;C、拔苗助长是不可能事件;D、瓮中捉鳖是必然事件;故选:D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义选择答案即可.【解答】解:∵=,=,=2,∴属于最简二次根式的是.故选:C.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6.(3分)反比例函数的图象经过点(1,﹣2),则此函数的解析式是()A.y=2x B.C.D.【分析】把(1,﹣2)代入函数y=中可先求出k的值,那么就可求出函数解析式.【解答】解:由题意知,k=1×(﹣2)=﹣2.则反比例函数的解析式为:y=﹣.故选:B.【点评】本题考查了待定系数法求解反比例函数解析式,此为近几年中考的热点问题,同学们要熟练掌握.7.(3分)顺次联结对角线相等的四边形各边中点所得到的四边形是()A.平行四边形B.矩形C.正方形D.菱形【分析】因为四边形的两条对角线相等,根据三角形的中位线定理,可得所得的四边形的四边相等,则所得的四边形是菱形.【解答】解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,根据三角形的中位线的性质知,EH=FG=BD,EF=HG=AC,∵AC=BD,∴EH=FG=FG=EF,∴四边形EFGH是菱形.故选:D.【点评】本题考查了三角形的中位线定理,难度中等,需要掌握三角形的中位线平行于第三边,并且等于第三边的一半,另外要知道四边相等的四边形是菱形.8.(3分)某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是()A.80B.144C.200D.90【分析】根据乙类书籍有90本,占总数的45%即可求得总书籍数,丙类所占的比例是1﹣15%﹣45%,所占的比例乘以总数即可求得丙类书的本数.【解答】解:总数是:90÷45%=200(本),丙类书的本数是:200×(1﹣15%﹣45%)=200×40%=80(本)故选:A.【点评】本题考查了扇形统计图,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,正确求得总书籍数是关键.9.(3分)如果a2﹣6ab+9b2=0(a、b均不为0),那的值是()A.﹣B.C.﹣D.【分析】由a2﹣6ab+9b2=0,即(a﹣3b)2=0得a=3b,代入计算可得.【解答】解:∵a2﹣6ab+9b2=0,即(a﹣3b)2=0,∴a﹣3b=0,即a=3b,则原式===,故选:B.【点评】本题主要考查分式的值,解题的关键是掌握完全平方公式及其非负性和分式的约分.10.(3分)若,则( ) A .b >3 B .b <3 C .b ≥3 D .b ≤3【分析】根据二次根式的性质得出b ﹣3≥0,求出即可.【解答】解:∵=b ﹣3,∴b ﹣3≥0,解得:b ≥3,故选:C .【点评】本题考查了对二次根式的性质的应用,注意:当a ≥0时,=a ,当a <0时,=﹣a .11.(3分)如图,直线y =x 与双曲线y =交于M 、N 两点,点P 在x 轴上,连接MP ,NP ,若MP ⊥NP ,且△MNP 的面积为10,则k 的值是( )A .6B .8C .10D .12【分析】设M (x , x ),P (a ,0),根据反比例函数的对称性可得N (﹣x ,﹣x ),且x >0,a >0.由OM =ON 可得S △OMP =S △ONP =S △MNP =5.根据直角三角形斜边上的中线等于斜边的一半得出OM =OP ,即x 2+(x )2=a 2,化简得出a =x .由S △OMP =5,得出•a •x =5,将a =x 代入整理得出x 2=.再把M 点坐标代入y =,即可求出k 的值.【解答】解:如图,设M (x , x ),P (a ,0),则N (﹣x ,﹣x ),且x >0,a >0.∵△MNP 中,MP ⊥NP ,OM =ON ,∴S △OMP =S △ONP =S △MNP =×10=5. ∵OM =OP ,∴x 2+(x )2=a 2, ∴a =x . ∵S △OMP =5,∴•a •x =5,∴•x •x =5,∴x 2=.∵双曲线y =过M 点,∴k =x •x =x 2=×=6. 故选:A .【点评】本题考查了反比例函数的性质,直角三角形的性质,反比例函数图象上点的坐标特征,三角形的面积等知识.设M (x , x ),P (a ,0),根据条件列出关于x 、a 的两个方程是解题的关键.12.(3分)在菱形ABCD 中,∠C =∠EDF =60°,AB =1,现将∠EDF 绕点D 任意旋转,分别交边AB 、BC 于点E 、F (不与菱形的顶点重合),连接EF ,则△BEF 的周长最小值是( )A .1+B .1+C .2D .【分析】连接BD ,如图,利用菱形的性质可判断△ABD 和△CBD 都是等腰直角三角形,则BD =AD ,∠ADB =∠DBC =∠A =60°,再证明∠ADE =∠BDF ,则可判断△ADE ≌△BDF ,所以AE =BF ,DE =DF ,接着判断△DEF 为等边三角形得到EF =DE ,利用等线段代换得到△BEF 的周长=AB +DE =1+DE ,利用垂线段最短得到DE ⊥AB 时,DE的长最小,最小值为AB=,从而得到△BEF的周长最小值.【解答】解:连接BD,如图,∵在菱形ABCD中,∠C=60°,∴△ABD和△CBD都是等腰直角三角形,∴BD=AD,∠ADB=∠DBC=∠A=60°,∵∠EDF=60°,∴∠ADE=∠BDF,在△ADE和△BDF中,∴△ADE≌△BDF,∴AE=BF,DE=DF,∴△DEF为等边三角形,∴EF=DE,∴△BEF的周长=BE+BF+EF=BE+AE+DE=AB+DE=1+DE,当DE的值最小时,△BEF的周长,而DE⊥AB时,DE的长最小,最小值为AB=,∴△BEF的周长最小值是1+.故选:B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质和等边三角形的判定与性质.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接写在答题卡相应位置上)13.(3分)为了解我县11000名九年级毕业生的体育成绩,从中抽取了100名考生的体育成绩进行统计,在这个问题中,样本容量是100.【分析】依据样本容量的定义进行判断,一个样本包括的个体数量叫做样本容量.【解答】解:为了解我县11000名九年级毕业生的体育成绩,从中抽取了100名考生的体育成绩进行统计,在这个问题中样本容量是100,故答案为:100.【点评】本题主要考查了样本容量的定义,一个样本包括的个体数量叫做样本容量,样本容量只是个数字,没有单位.14.(3分)一只不透明的袋子中有1个红球、1个黑球和2个白球,这些球除颜色不同外其它都相同,搅匀后从中任意摸出1个球,摸出白球可能性大于摸出红球可能性(填“等于”或“小于”或“大于”).【分析】分别求出摸出两种颜色球的概率,再比较摸出两个颜色球的可能性大小即可.【解答】解:∵袋子中有1个红球、1个黑球和2个白球共4个小球,其中摸出1个球,摸出白球有2种可能、摸出红球有1种可能,∴摸出白球的概率为=、摸出红球的概率为,∴摸出白球可能性大于摸出红球可能性,故答案为:大于.【点评】本题主要考查了可能性的大小,只需求出各自所占的比例大小即可,求比例时,应注意记清各自的数目,难度适中.15.(3分)在▱ABCD中,若∠B=50°,则∠C=130°.【分析】根据平行四边形的邻角互补即可得出∠C的度数.【解答】解:∵在▱ABCD中∠B=50°,∴∠C=180°﹣∠A=180°﹣50°=130°.故答案为130°.【点评】本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等,邻角互补的性质.16.(3分)方程=的解是x=﹣.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到未知数的值,代入检验即可【解答】解:方程两边都乘以x(x+1),得:30(x+1)=20x,解得:x=﹣,检验:当x=﹣时,x(x+1)=﹣≠0,所以分式方程的解为x=﹣,故答案为:x=﹣.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17.(3分)某电子商城推出分期付款购买电脑的活动,一台电脑的售价为1.2万元,前期付款0.4万元,后期每个月分期付一定的数额,则每个月的付款额y(万元)与付款月数x之间的函数表达式是y=.【分析】根据题意可得电脑的售价=0.4+后期付款金额,根据等量关系列出等式,再整理即可.【解答】解:由题意得:yx+0.4=1.2,xy=0.8,y==,故答案为:y=.【点评】此题主要考查了函数关系式,关键是正确理解题意,找出题目中的等量关系.18.(3分)已知+|2﹣b|=0,则+=.【分析】先由非负数性质得出a、b的值,再代入算式,利用二次根式混合运算顺序和运算法则计算可得.【解答】解:∵+|2﹣b|=0,∴a﹣3=0且2﹣b=0,即a=3、b=2,则原式=+=+=,故答案为:【点评】本题主要考查二次根式的化简求值,解题的关键是掌握非负数的性质与二次根式混合运算顺序和运算法则.19.(3分)已知点A (1,y 1),B (2,y 2),都在反比例函数y =的图象上,则y 1,y 2的大小关系是 y 1<y 2 .【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据各点横坐标的值判断出各点所在的象限.进而可得出结论.【解答】解:∵反比例函数y =(k 为常数)中,﹣k 2﹣1<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y 随x 的增大而增大. ∵点A (1,y 1),B (2,y 2), ∴点A 、B 都在第四象限, 又1<2, ∴y 1<y 2. 故答案为:y 1<y 2.【点评】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.20.(3分)在四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DE ⊥AB ,垂足为E点,已知四边形ABCD 的面积是16,且AE =1,则AD =.【分析】作辅助线,构建全等三角形,证明∴△ADE ≌△CDF ,可得S 正方形BEDF =S 四边形ABCD=16,则DE =4,利用勾股定理得AD 的长.【解答】解:过D 作DF ⊥BC 于F , ∵DE ⊥AB ,∴∠AED =∠BED =90°, ∵∠B =∠F =90°, ∴四边形BEDF 是矩形, ∴∠EDF =90°,∴∠FDC +∠EDC =∠EDC +∠ADE =90°, ∴∠ADE =∠CDF , 在△ADE 和△CDF 中,∵,∴△ADE ≌△CDF ,∴DE =DF ,S △ADE =S △CDF , ∴矩形BEDF 是正方形, ∴S 正方形BEDF =S 四边形ABCD =16, ∴DE =4,由勾股定理得:AD ===,故答案为:.【点评】本题考查了三角形全等的性质和判定、矩形和正方形的判定、勾股定理等知识,正确作辅助线,构建并证明△ADE ≌△CDF 是关键.三、解答题(本大题共8小题,共90分解答时应写出必要的文字说明、证明过程或演算步骤)21.(12分)计算(1)+﹣(2)×(﹣)【分析】(1)先化简二次根式,再合并同类二次根式即可得;(2)先化简二次根式,再合并括号内的同类二次根式,最后计算乘法即可得.【解答】解:(1)原式=2+3﹣=4;(2)原式=×(3﹣)=×2=2.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.22.(12分)计算(1)﹣(2)1﹣÷【分析】根据分式的运算法则即可求出答案.【解答】解:(1)原式==1;(2)原式=1•=1﹣=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.23.(10分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:请你根据统计图提供的信息,解答下列问题:(1)条形统计图中,m=40,n=60;(2)求扇形统计图中,艺术类读物所在扇形的圆心角的度数.【分析】(1)根据文学类的人数和所占的百分比求出总人数,再乘以科普所占的百分比求出n的值,再用总人数减去文学、科普、和其他的人数,即可求出m的值;(2)用360°乘以艺术类读物所占的百分比即可得出答案.【解答】解:(1)本次调查中,一共调查了:70÷35%=200人,科普类人数为:n=200×30%=60人,则m=200﹣70﹣30﹣60=40人,故答案为:40,60;(2)艺术类读物所在扇形的圆心角是:×360°=72°.【点评】此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题的关键.24.(10分)如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=3,BC=4,求四边形OCED的周长.【分析】(1)根据DE∥AC,CE∥BD.得出四边形OCED是平行四边形,根据矩形的性质求得OC=OD,即可判定四边形OCED是菱形.(2)利用勾股定理求得AC的长,从而得出该菱形的边长,即可得出答案.【解答】解:(1)四边形OCED是菱形.∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,在矩形ABCD中,OC=OD,∴四边形OCED是菱形.(2)∵四边形ABCD是矩形,∴AC===5,∴CO=OD=,∴四边形OCED的周长=4×=10.【点评】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.25.(10分)为了美化城市,某县园林局计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数是原计划的倍,结果提前2天完成了任务,求原计划每天栽树多少棵?【分析】设原计划每天种树x棵,则实际每天栽树的棵数为x,根据题意可得,实际比计划少用2天,据此列方程求解.【解答】解:设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),由题意得,﹣=2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:原计划每天种树100棵.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.(12分)仿照下列过程:﹣===﹣1;﹣===;(1)运用上述的方法可知:=﹣2,=+;(2)拓展延伸:计算:++…+.【分析】(1)将两式的分子、分母分别乘以﹣2、﹣计算可得;(2)由=﹣将原式展开后,两两相互抵消即可得.【解答】解:(1)===﹣2,===+,故答案为:﹣2、+.(2)原式=﹣1+﹣+﹣+…+﹣=﹣1.【点评】本题主要考查分母有理化,解题的关键是掌握分母有理化和根据计算得出规律=﹣.27.(12分)已知四边形ABCD 为矩形,AB =8cm ,BC =10cm ,点P 在边AD 上以每秒2cm 的速度由点A 向点D 运动,同时点Q 在边CD 上以每秒acm 的速度由点C 向点D 运动(如图1),设运动时间为t 秒(t >0),当P 、Q 中有一点运动到点D 时,两点同时停止运动.(1)若a =1,则t 为何值时,△DPQ 为等腰直角三角形?(2)在运动过程中,若存在某一时刻t ,使BQ 能垂直平分CP ,求此时a ,t 的值. (3)若G 为BC 中点,M 、N 、E 、F 分别为线段PD 、DQ 、PG 、GQ 中点(如图2). ①记四边形MNFE 的面积为S (cm 2),请直接写出S (cm 2)与时间t (s )的函数关系式;②在运动过程中,若存在某一时刻t ,使得四边形MNFE 恰好为正方形,试求出此时a 、t 的值.【分析】(1)先表示出DP ,DQ ,用等腰直角三角形建立方程即可得出结论; (2)先判断出BP =BC =10,PQ =CQ ,建立方程求解即可得出结论;(3)①利用三角形中位线判断出S △DMN =S △DPQ ,S △GEF =S △GPQ ,进而得出S △DMN +S △GEF =S 四边形DPGQ ,S △PMN +S △QNF =S 四边形DPGQ 即可得出结论;②先判断出PQ ⊥DG ,PQ =DG ,进而判断出△PDQ ≌△DCG 即可得出结论. 【解答】解:(1)当a =1时,∵四边形ABCD 是矩形, ∴AD =BC =10,CD =AB =8, 由运动知,AP =2t ,CQ =t , ∴DP =10﹣2t ,DQ =8﹣t , ∵△DPQ 为等腰直角三角形, ∴DP =DQ , ∴10﹣2t =8﹣t ,∴t =2秒;(2)如图,连接BP ,PQ ,BQ ,∵BQ 能垂直平分CP ,∴BP =BC =10,PQ =CQ ,在Rt △ABP 中,BP =,∴=10, ∴t =﹣3(舍)或t =3秒,∴CQ =3a ,AP =6,∴DP =4,DQ =8﹣3a ,∴PQ =3a ,在Rt △PDQ 中,16+(8﹣3a )2=9a 2,∴a =;(3)如图2,连接PQ ,DG ,∵点M ,N 是DP ,DQ 的中点,∴MN ∥PQ ,MN =PQ ,∴,∴S △DMN =S △DPQ同理:S △GEF =S △GPQ ,∴S △DMN +S △GEF =(S △DPQ +S △GPQ )=S 四边形DPGQ ,同理:S △PMN +S △QNF =S 四边形DPGQ ,∴S =S 四边形EFNM =S 四边形DPGQ ﹣S 四边形DPGQ =S 四边形DPGQ ,∵S 四边形DPGQ =S 矩形ABCD ﹣S △CQG ﹣S 梯形ABGP =﹣(4+a )t +60;∴S=S=﹣(2+a)t+30;四边形DPGQ②∵点M,N是DP,DQ的中点,∴MN∥PQ,MN=PQ,同理:EF∥PQ,EF=PQ,∴EF=MN,∴四边形EFNM是平行四边形,∵四边形EFNM是正方形,∴PQ=DG,PQ⊥DG,∴∠DHQ=90°,∴∠CDG+∠DQP=90°,∵∠CDG+∠CGD=90°,∴∠DQP=∠CGD,∵∠DCG=∠PDQ=90°,∴△PDQ≌△DCG,∴DP=CD=8,DQ=CG=5,∴10﹣2t=8,8﹣at=5,∴t=1,a=3.即:t=1,a=3时,四边形EFNM是正方形.【点评】此题是四边形综合题,主要考查了矩形的性质,三角形中位线定理,相似三角形的判定和性质,全等三角形的判定和性质,用方程的思想解决问题是解本题的关键.28.(12分)如图,正方形OABC边长为4,点A、C分别在x轴和y轴上,点B在第一象限,M为BC中点,反比例函数y=过点M,交BA于点N,D为线段AC上一动点,(点D与A、C两点不垂合),过D作x轴垂线交反比例函数y=函数于点E,连接BE、DE.(1)直接写出k值及N点坐标:k=4,N(4,1).(2)AD=4时,求四边形ABED是菱形.(3)小明说:“当D在线段AC上运动时(D点与A,C两点不重合)△DEB始终为等腰三角形”,你认为他说的正确吗?如果正确,请说说理由,如果不正确,请举一个反例.【分析】(1)先求出A,B,C的坐标,进而求出M的坐标,求出k,即可得出结论;(2)先求出点D坐标,进而求出点E坐标,即可得出结论;(3)先求出直线AC解析式,设出点D坐标,表示出E坐标,即可判断出BE=DE,即可得出结论.【解答】解:(1)∵正方形的边长为4,∴BC=OA=AB=4,∴A(4,0),C(0,4),B(4,4),∵M是BC的中点,∴M(2,4),∵反比例函数y=过点M,∴k=2×4=8,∴反比例函数解析式为y=,当x=4时,y=1,∴N(4,2),故答案为:8,4,2;(2)如图,延长ED交OA于F,∴DF⊥OA,在Rt△ADF中,DF=AF=2,∴OF=4﹣2,∴E(4﹣2,4+2),∴DE=4+2﹣2=4,∴DE=AD,∵AB∥DE,∴四边形ABED是平行四边形,∵AB=AD,∴▱ABED是菱形;(3)小明的说法正确,理由:∵A(4,0),C(0,4),∴直线AC的解析式为y=﹣x+4,设D(m,﹣m+4),∴E(m,),∵B(4,4),∴BE2=(m﹣4)2+(﹣4)2=m2﹣8m+﹣+32,DE2=(+m﹣4)2=m2﹣8m+﹣+32,∴BE=DE,∴当D在线段AC上运动时(D点与A,C两点不重合)△DEB始终为等腰三角形”,小明说的正确.【点评】此题是反比例函数综合题,主要考查了待定系数法,正方形的性质,平行四边形的判定和性质,菱形的判定,两点间的距离公式,求出点M坐标是解本题的关键.。
浙教版2018-2019学年八年级数学第二学期期末测试卷(含答案)
2018-2019学年八年级(下)期末数学试卷
一、选择题(本题有10小题,每小题3分,共30分)
1.下列属于最简二次根式的是()
A.B.C.D.
2.下列方程是一元二次方程的是()
A.x﹣3=2x B.x2﹣2=0 C.x2﹣2y=1 D.
3.如图在平行四边形中,∠B+∠D=100°,则∠B等于()
A.50°B.65°C.100°D.130°
4.阿克苏冰糖心苹果享誉全国,具有果面光滑细腻、果肉细腻、果核透明等特点,五个苹果的质量(单位:g)分别为:180,200,210,180,190,则这五个苹果质量的中位数和众数分别为()
A.200和180 B.200和190 C.180和180 D.190和180 5.用反证法证明,“在△ABC中,∠A、∠B对边是a、b,若∠A>∠B,则a>b.”
第一步应假设()
A.a<b B.a=b C.a≤b D.a≥b
6.反比例函数的图象如图所示,则k的值可能是()
A.﹣1 B.C.1 D.2
7.某商店四月份的利润为 6.3万元,此后两个月进入淡季,利润均以相同的百分比下降,至六月份利润为 5.4万元.设下降的百分比为x,由题意列出方。
浙江省绍兴市越城区2018-2019年八年级(下)期末数学试卷 解析版
2018-2019学年八年级(下)期末数学试卷一.选择题(共10小题)1.下列计算正确的是()A.4B.C.2=D.32.下列各点中,在函数图象上的是()A.(﹣2,﹣4)B.(2,3)C.(﹣6,1)D.(﹣,3)3.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2=4.一个多边形的内角和比外角和的3倍多180°,则它的边数是()A.八B.九C.十D.十一5.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE6.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为()A.12 B.10 C.8 D.67.甲、乙两人各射击6次,甲所中的环数是8,5,5,a,b,c,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲、乙射击成绩的正确判断是()A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定C.甲、乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较8.如图,要在平行四边形ABCD内作一个菱形,甲、乙两位同学的作法分别如下:甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形;乙:分别作∠A与∠B的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF 是菱形.对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误9.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长10.如图,在正方形ABCD中,AB=3,点EF分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为()A.7 B.3+C.8 D.3+二.填空题(共6小题)11.如果一组数据的方差为9,那么这组数据的标准差是.12.在▱ABCD中,如果∠A+∠C=140°,那么∠B=度.13.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=.14.如图,如果一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(n,3)两点,那么不等式kx+b>的解集为:.15.已知m是实数,且m+2和﹣2都是整数,那么m的值是.16.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.三.解答题(共8小题)17.计算或化简:(1)|﹣4|﹣22+(2)(+2)﹣18.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.19.如图,平行四边形ABCD的对角线AC、BD相交于点O,EF过点O与AD、BC分别相交于点E、F,求证:OE=OF.20.反比例函数y=的图象如图所示,A(﹣1,b1),B(﹣2,b2)是该图象上的两点.(1)求m的取值范围;(2)比较b1与b2的大小.21.甲,乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在某次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分,甲校:93 82 76 77 76 89 89 89 83 87 88 89 84 92 87 89 79 54 88 92 90 87 68 7694 84 76 69 83 92乙校:84 63 90 89 71 92 87 92 85 61 79 91 84 92 92 73 76 92 84 57 87 89 88 9483 85 80 94 72 90(1)请根据乙校的数据补全条形统计图;(2)两组样本数据的平均数、中位数、众数如表所示,写出m、n的值;平均数中位数众数甲校83.4 87 89乙校83.2 m n (3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好一些,请为他们各写出一条可以使用的理由:甲校:,乙校:.(4)综合来看,可以推断出校学生的数学业水平更好些,理由为.22.某地2017年为做好“旧城改造工程“投入资金1280万元用于拆迁安置,并规划投入资金按相同幅度逐年增加,预计到2019年年底投入资金比2017年基础上增加1600万元.(1)从2017年到2019年,该地投入拆迁安置资金的年平均增长率为多少?(2)在2019年拆迁安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按每户需租房400天计算,求2019年该地至少有多少户享受到优先搬迁租房奖励.23.(1)如图1,已知△ABC与△ABD的面积相等,证明AB∥CD;(2)①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,E,请利用(1)的结果,证明:MN∥EF;②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行(不用写理由).24.在正方形ABCD中,点P是直线BC上一点,连接PA,将线段PA绕点P顺时针旋转90°,得到线段PE,连接CE.(1)如图1,若点P在线段CB的延长线上.过点E作EF⊥BC于H,与对角线AC交于点F.①请根据题意补全图形;②求证:EH=FH;(2)若点P在射线BC上,直接写出CE,CP,CD三条线段的数量关系为.参考答案与试题解析一.选择题(共10小题)1.下列计算正确的是()A.4B.C.2=D.3【分析】根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.【解答】解:A、4﹣3=,原式计算错误,故本选项错误;B、与不是同类二次根式,不能直接合并,故本选项错误;C、2=,计算正确,故本选项正确;D、3+2≠5,原式计算错误,故本选项错误;故选:C.2.下列各点中,在函数图象上的是()A.(﹣2,﹣4)B.(2,3)C.(﹣6,1)D.(﹣,3)【分析】根据函数,得到﹣6=xy,只要把点的坐标代入上式成立即可.【解答】解:∵函数,∴﹣6=xy,只要把点的坐标代入上式成立即可,把答案A、B、D的坐标代入都不成立,只有C成立.故选:C.3.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2=【分析】根据配方法即可求出答案.【解答】解:y2﹣y﹣=0y2﹣y=y2﹣y+=1(y﹣)2=1故选:B.4.一个多边形的内角和比外角和的3倍多180°,则它的边数是()A.八B.九C.十D.十一【分析】多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是3×360°+180°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,得到方程,从而求出边数.【解答】解:根据题意可得:(n﹣2)•180°=3×360°+180°,解得:n=9.所以这个多边形的边数是九.故选:B.5.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE 【分析】把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.【解答】解:添加:∠F=∠CDE,理由:∵∠F=∠CDE,∴CD∥AB,在△DEC与△FEB中,,∴△DEC≌△FEB(AAS),∴DC=BF,∵AB=BF,∴DC=AB,∴四边形ABCD为平行四边形,故选:D.6.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为()A.12 B.10 C.8 D.6【分析】先根据反比例函数的图象在第一象限判断出k的符号,再延长线段BA,交y轴于点E,由于AB∥x轴,所以AE⊥y轴,故四边形AEOD是矩形,由于点A在双曲线y=上,所以S矩形AEOD=4,同理可得S矩形OCBE=k,由S矩形ABCD=S矩形OCBE﹣S矩形AEOD即可得出k 的值.【解答】解:∵双曲线y=(k≠0)在第一象限,∴k>0,延长线段BA,交y轴于点E,∵AB∥x轴,∴AE⊥y轴,∴四边形AEOD是矩形,∵点A在双曲线y=上,∴S矩形AEOD=4,同理S矩形OCBE=k,∵S矩形ABCD=S矩形OCBE﹣S矩形AEOD=k﹣4=8,∴k=12.故选:A.7.甲、乙两人各射击6次,甲所中的环数是8,5,5,a,b,c,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲、乙射击成绩的正确判断是()A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定C.甲、乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较【分析】要判断甲,乙射击成绩的稳定性就是要比较两人成绩的方差的大小,关键是求甲的方差.甲的这组数中的众数是8就说明a,b,c中至少有两个是8,而平均数是6,则可以得到a,b,c三个数其中一个是2,另两个数是8,求得则甲的方差,再进行比较得出结果.【解答】解:∵这组数中的众数是8∴a,b,c中至少有两个是8∵平均数是6∴a,b,c三个数其中一个是2∴∴乙射击成绩比甲稳定.故选:B.8.如图,要在平行四边形ABCD内作一个菱形,甲、乙两位同学的作法分别如下:甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形;乙:分别作∠A与∠B的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF 是菱形.对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误【分析】如图1,利用垂直平分线的性质得到EA=EC,FA=FC,则∠EAC=∠ECA,再根据平行线的性质得到∠EAC=∠FCA,所以∠ECA=∠FCA,根据等腰三角形的判定方法得到CE=CF,所以AE=EC=CF=AF,从而可判断所以甲正确;如图2,利用角平分线的定义得到∠BAE=∠FAE,再根据平行线的性质得到∠FAE=∠BEA,所以∠BEA=∠BAE,则BA=BE,同理可得AB=AF,所以AF=BE,则可判断四边形ABEF是菱形,从而判断乙正确.【解答】解:如图1,EF垂直平分AC,∴EA=EC,FA=FC,∴∠EAC=∠ECA,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠EAC=∠FCA,∴∠ECA=∠FCA,而CA⊥EF,∴CE=CF,∴AE=EC=CF=AF,∴四边形AFCE是菱形;所以甲正确;如图2,∵AE平分∠BAD,∴∠BAE=∠FAE,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FAE=∠BEA,∴∠BEA=∠BAE,∴BA=BE,同理可得AB=AF,∴AF=BE,而AF∥BE,∴四边形ABEF是平行四边形,而AB=AF,四边形ABEF是菱形,所以乙正确.故选:C.9.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长【分析】表示出AD的长,利用勾股定理求出即可.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.10.如图,在正方形ABCD中,AB=3,点EF分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为()A.7 B.3+C.8 D.3+【分析】根据阴影部分的面积与正方形ABCD的面积之比为2:3,得出阴影部分的面积为6,空白部分的面积为3,进而依据△BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.【解答】解:∵阴影部分的面积与正方形ABCD的面积之比为2:3,∴阴影部分的面积为×9=6,∴空白部分的面积为9﹣6=3,由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,∴△BCG的面积与四边形DEGF的面积相等,均为×3=,∠CBE=∠DCF,∵∠DCF+∠BCG=90°,∴∠CBG+∠BCG=90°,即∠BGC=90°,设BG=a,CG=b,则ab=,又∵a2+b2=32,∴a2+2ab+b2=9+6=15,即(a+b)2=15,∴a+b=,即BG+CG=,∴△BCG的周长=+3,故选:D.二.填空题(共6小题)11.如果一组数据的方差为9,那么这组数据的标准差是 3 .【分析】样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.【解答】解:因为方差为9,所以这组数据的标准差为=3,故答案为3.12.在▱ABCD中,如果∠A+∠C=140°,那么∠B=110 度.【分析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.【解答】解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°.故答案为:110.13.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m= 2 .【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【解答】解:∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2.故答案是:2.14.如图,如果一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(n,3)两点,那么不等式kx+b>的解集为:1<x<2 .【分析】首先求出A、B两点坐标,然后观察图象,一次函数的图象在反比例函数的图象上方,写出x的取值范围即可.【解答】解:∵点A(m,6)、B(n,3)在反比例函数y=(x>0)的图象上,∴m=1,n=2,∴A点坐标是(1,6),B点坐标是(2,3),观察图象可知,不等式kx+b>的解集是1<x<2,故答案为1<x<2.15.已知m是实数,且m+2和﹣2都是整数,那么m的值是3﹣2或﹣3﹣2.【分析】由m+2是整数,开设m=a﹣2,其中a为整数,==也是整数,即+中,含有2,即分母a2﹣8=1,求出a的值,进而确定m的值.【解答】解:∵m+2是整数,∴m=a﹣2,(其中a为整数),∴==,又∵﹣2是整数,∴a2﹣8=1,∴a=±3,∴m=3﹣2或m=﹣3﹣2,故答案为:3﹣2或﹣3﹣2.16.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为7 .【分析】过O作OF垂直于BC,再过A作AM垂直于OF,由四边形ABDE为正方形,得到OA=OB,∠AOB为直角,可得出两个角互余,再由AM垂直于MO,得到△AOM为直角三角形,其两个锐角互余,利用同角的余角相等可得出一对角相等,再由一对直角相等,OA =OB,利用AAS可得出△AOM与△BOF全等,由全等三角形的对应边相等可得出AM=OF,OM=FB,由三个角为直角的四边形为矩形得到ACFM为矩形,根据矩形的对边相等可得出AC=MF,AM=CF,等量代换可得出CF=OF,即△COF为等腰直角三角形,由斜边OC的长,利用勾股定理求出OF与CF的长,根据OF﹣MF求出OM的长,即为FB的长,由CF+FB 即可求出BC的长.【解答】解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.三.解答题(共8小题)17.计算或化简:(1)|﹣4|﹣22+(2)(+2)﹣【分析】(1)利用绝对值的意义和二次根式的性质计算;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=4﹣﹣4+2=;(2)原式=a+2﹣a=2.18.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.【分析】(1)运用根的判别式判断,列出判别式的表达式,再变形成为非负数,得出△≥0即可;(2)设另一根为x1,根据一元二次方程根与系数的关系,﹣1+x1=﹣,﹣1•x1=﹣,联立解答即可.【解答】(1)证明:∵a=2,b=k,c=﹣1,∴△=k2﹣4×2×(﹣1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0.∴方程有两个不相等的实数根;(2)解:设另一根为x1,则﹣1+x1=﹣,﹣1•x1=﹣,解得,x1=,k=1.19.如图,平行四边形ABCD的对角线AC、BD相交于点O,EF过点O与AD、BC分别相交于点E、F,求证:OE=OF.【分析】要证明线段相等,只需证明两条线段所在的两个三角形全等即可.【解答】证明:∵ABCD为平行四边形,∴AD∥BC,OA=OC,∴∠EAO=∠FCO,∠AEO=∠CFO,∴△AEO≌△CFO(AAS),∴OE=OF.20.反比例函数y=的图象如图所示,A(﹣1,b1),B(﹣2,b2)是该图象上的两点.(1)求m的取值范围;(2)比较b1与b2的大小.【分析】(1)根据反比例函数的图象和性质可知2m﹣1>0,从而可以解答本题;(2)根据反比例函数的性质可以判断b1与b2的大小.【解答】解:(1)由函数图象可知,该函数图象在第一、三象限,∴2m﹣1>0,解得,m>,即m的取值范围是m>;(2)由图知,当x<0时,y随x增大而减小,∵﹣1>﹣2,∴b1<b2.21.甲,乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在某次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分,甲校:93 82 76 77 76 89 89 89 83 87 88 89 84 92 87 89 79 54 88 92 90 87 68 7694 84 76 69 83 92乙校:84 63 90 89 71 92 87 92 85 61 79 91 84 92 92 73 76 92 84 57 87 89 88 9483 85 80 94 72 90(1)请根据乙校的数据补全条形统计图;(2)两组样本数据的平均数、中位数、众数如表所示,写出m、n的值;平均数中位数众数甲校83.4 87 89乙校83.2 m n(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好一些,请为他们各写出一条可以使用的理由:甲校:我们学校的平均分高于乙校,所以我们学校的成绩好,乙校:我们学校的众数高于甲校,所以我们学校的成绩好.(4)综合来看,可以推断出甲校学生的数学业水平更好些,理由为甲校的平均分高于乙校,说明总成绩甲校好于乙校,中位数甲校高于乙校,说明甲校一半以上的学生成绩较好.【分析】(1)根据表格中的数据可以得到乙校,70﹣79的和60﹣69的各有多少人,从而可以将条形统计图补充完整;(2)根据表格中的数据将乙校的数据按照从小到大排列,即可得到这组数据的中位数和众数;(3)答案不唯一,理由需包含数据提供的信息;(4)答案不唯一,理由需支撑推断结论.【解答】解:(1)由表格可得,乙校70﹣79的有5人,60﹣69的有2人,补全条形统计图,如下图.(2)由条形统计图可得,乙校数据按照从小到大排列是:57、61、63、71、72、73、76、79、80、83、84、84、84、85、85、87、87、88、89、89、90、90、91、92、92、92、92、92、94、94、∴这组数据的中位数m==86,众数n=92;(3)甲校:我们学校的平均分高于乙校,所以我们学校的成绩好;乙校:我们学校的众数高于甲校,所以我们学校的成绩好;故答案为:我们学校的平均分高于乙校,所以我们学校的成绩好;我们学校的众数高于甲校,所以我们学校的成绩好;(4)综合来看,甲校学生的数学学业水平更好一些,理由:甲校的平均分高于乙校,说明总成绩甲校好于乙校,中位数甲校高于乙校,说明甲校一半以上的学生成绩较好.故答案为:甲、甲校的平均分高于乙校,说明总成绩甲校好于乙校,中位数甲校高于乙校,说明甲校一半以上的学生成绩较好.22.某地2017年为做好“旧城改造工程“投入资金1280万元用于拆迁安置,并规划投入资金按相同幅度逐年增加,预计到2019年年底投入资金比2017年基础上增加1600万元.(1)从2017年到2019年,该地投入拆迁安置资金的年平均增长率为多少?(2)在2019年拆迁安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按每户需租房400天计算,求2019年该地至少有多少户享受到优先搬迁租房奖励.【分析】(1)设该地投入拆迁安置资金的年平均增长率为x,根据:2017年投入资金×(1+增长率)2=2019年投入资金,列出方程求解可得;(2)设2019年该地至少有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.【解答】解:(1)设从2015年到2017年,该地投入异地安置资金的年平均增长率为x,根据题意得:1280(1+x)2=1280+1600,解得:x=0.5=50%或x=﹣2.5(舍去).答:从2017年到2019年,该地投入拆迁安置资金的年平均增长率为50%;(2)设2019年该地至少有a户享受到优先搬迁租房奖励,根据题意,得:8×1000×400+5×400(a﹣1000)≥5000000,整理,得2a+1200≥5000解得:a≥1900,答:2019年该地至少有1900户享受到优先搬迁租房奖励.23.(1)如图1,已知△ABC与△ABD的面积相等,证明AB∥CD;(2)①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,E,请利用(1)的结果,证明:MN∥EF;②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行(不用写理由).【分析】(1)过点C作CP⊥AB于点P,过点D作DQ⊥AB于点Q,则∠CPA=∠DQB=90°,进而可得出CP∥DQ,由△ABC与△ABD的面积相等,可得出CP=DQ,结合CP∥DQ可得出四边形CPQD为平行四边形,再利用平行四边形的性质可证出AB∥CD;(2)①连接FM,EN,设点M的坐标为(x1,y1),点N的坐标为(x2,y2),利用反比例函数图象上点的坐标特征可得出k=x1y1=x2y2,由ME⊥y轴,NF⊥x轴可得出OE=y1,OF=x2,ME=x1,NF=y2,利用三角形的面积公式可得出S△EFM=k=S△EFN,结合(1)的结论可证出MN∥EF;②连接MN,FM,EN,重复①的步骤,可得出S△EFM=k=S△EFN,进而可证出MN∥EF.【解答】(1)证明:在图1中,过点C作CP⊥AB于点P,过点D作DQ⊥AB于点Q,则∠CPA=∠DQB=90°,∴CP∥DQ.∵△ABC与△ABD的面积相等,∴CP=DQ,∴四边形CPQD为平行四边形,∴AB∥CD.(2)①证明:在图2中,连接FM,EN.设点M的坐标为(x1,y1),点N的坐标为(x2,y2).∵点M,N在反比例函数y=(k>0)的图象上,∴k=x1y1=x2y2.∵ME⊥y轴,NF⊥x轴,∴OE=y1,OF=x2,ME=x1,NF=y2.∵S△EFM=ME•OE=x1y1=k,S△EFN=NF•OF=x2y2=k,∴S△EFM=S△EFN,∴MN∥EF;②解:MN∥EF,理由如下:在图3中,连接MN,FM,EN.设点M的坐标为(x1,y1),点N的坐标为(x2,y2).∵点M,N在反比例函数y=(k>0)的图象上,∴k=x1y1=x2y2.∵ME⊥y轴,NF⊥x轴,∴OE=y1,OF=x2,ME=x1,NF=y2.∵S△EFM=ME•OE=x1y1=k,S△EFN=NF•OF=x2y2=k,∴S△EFM=S△EFN,∴MN∥EF;24.在正方形ABCD中,点P是直线BC上一点,连接PA,将线段PA绕点P顺时针旋转90°,得到线段PE,连接CE.(1)如图1,若点P在线段CB的延长线上.过点E作EF⊥BC于H,与对角线AC交于点F.①请根据题意补全图形;②求证:EH=FH;(2)若点P在射线BC上,直接写出CE,CP,CD三条线段的数量关系为EC=(CD ﹣PC)或EC=(CD+PC).【分析】(1)①构建题意画出图形即可;②想办法证明△APB≌△PEH即可;(2)结论:当点P在线段BC上时:.当点P在线段BC的延长线上时:.构造全等三角形即可解决问题;【解答】解:(1)①补全图形如图所示:②证明:∵线段PA绕点P顺时针旋转90°得到线段PE,∴PA=PE,∠APE=90°,∵四边形ABCD是正方形,∴∠4=∠ABC=90°,AB=BC,∵EF⊥BC于H,∴∠5=90°=∠4,∴∠2+∠3=90°,∴∠1=∠3,∴△APB≌△PEH,∴PB=EH,AB=PH,∴BC=PH,∴PB=CH,∴CH=EH,∵,∴CH=FH,∴EH=FH.(2)当点P在线段BC上时:.理由:在BA上截取BM=BP.则△PBM是等腰直角三角形,PM=PB.易证△PCE≌△AMP,可得EC=PM,∵CD﹣PC=BC﹣PC=PB,∴EC=PM=PB=(CD﹣PC)当点P在线段BC的延长线上时:.理由:在BA上截取BM=BP.则△PBM是等腰直角三角形,PM=PB.易证△PCE≌△AMP,可得EC=PM,∵CD+PC=BC+PC=PB,∴EC=PM=PB=(CD+PC).。
2018-2019学年浙江省绍兴市诸暨市八年级(下)期末数学试卷含解析
2018-2019学年浙江省绍兴市诸暨市八年级(下)期末数学试卷一、选择题(本大题有10小题,每小题3分,共30分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(3分)若二次根式有意义,则x的取值范围是()A.x<4 B.x>4 C.x≥4 D.x≤42.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分4.(3分)若关于x的一元二次方程x2﹣3x+m=0有解,则m的值可为()A.2 B.3 C.4 D.55.(3分)下列各式中计算正确的是()A.+=B.=C.D.(+)2=3+2=56.(3分)已知:如图,M是正方形ABCD内的一点,且MC=MD=AD,则∠AMB的度数为()A.120°B.135°C.145°D.150°7.(3分)下图入口处进入,最后到达的是()A.甲B.乙C.丙D.丁8.(3分)如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2.若设AD=xm,则可列方程()A.(50﹣)x=900 B.(60﹣x)x=900C.(50﹣x)x=900 D.(40﹣x)x=9009.(3分)如图1是由5个全等的边长为1的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是5的大正方形,则()A.甲、乙都可以B.甲可以,乙不可以C.甲不可以,乙可以D.甲、乙都不可以10.(3分)已知:如图,在菱形OABC中,OC=8,∠AOC=60°,OA落在x轴正半轴上,点D是OC边上的一点(不与端点O,C重合),过点D作DE⊥AB于点E,若点D,E 都在反比例函数y=(x>0)图象上,则k的值为()A.8B.9 C.9 D.16二、填空题(本大题有10小题,每小题3分,共30分)11.(3分)计算=.12.(3分)在反比例函数的图象每一条曲线上,y都随x的增大而减小,则m的取值范围是.13.(3分)用反证法证明“若|a|<2,则a2<4”时,应假设.14.(3分)甲,乙,丙,丁四人参加射击测试,每人10次射击的平均环数都为8.9环,各自的方差见如下表格甲乙丙丁方差0.2930.3750.3620.398则四个人中成绩最稳定的是.15.(3分)一个多边形的每个内角都等于150°,则这个多边形是边形.16.(3分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60,∠BAC=80°,则∠1的度数为.17.(3分)三角形的两边长为2和4,第三边长是方程x2﹣6x+8=0的根,则这个三角形的周长是.18.(3分)为预防传染病,某校定期对教室进行“药熏消毒”,已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为6mg.研究表明当每立方米空气中含药量低于1.2mg时,对人体方能无毒害作用,那么从消毒开始,至少需要经过分钟后,学生才能回到教室.19.(3分)如图,在矩形ABCD内放入四个小正方形和两个小长方形后成中心对称图形,其中顶点E,F分别在边AD,BC上,小长方形的长与宽的比值为4,则的值为.20.(3分)在矩形ABCD中,AB=3,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点B的对应点为点F.(1)若点F恰好落在AD边上,则AD=.(2)延长AF交直线CD于点P,已知=,则AD=.三、解答题(本大题有5小题,第21小题6分,第22~24小题8分,第25小题10分,共40分.解答需写出必要的文字说明、演算步骤或证明过程)21.(6分)(1)计算:(2﹣)(2+)﹣()2.(2)解方程:x2﹣4x+1=0.22.(8分)某中学开展的“好书伴我成长”读书活动中,为了解七年级600名学生读书情况,随机调查了七年级50名学生读书的册数,统计数据如下表所示:册数01234人数31316171(1)这50个样本数据的众数为、中位数为;(2)求这50个样本数据的平均数;(3)根据样本数据,估计该校七年级600名学生在本次活动中读书多于2册的人数.23.(8分)如图,矩形ABCD中,点E、F分别在边CD、AB上,且DE=BF.(1)求证:四边形AFCE是平行四边形.(2)若四边形AFCE是菱形,AB=8,AD=4,求菱形AFCE的周长.24.(8分)如图,平面直角坐标系xOy中,函数y=(x<0)的图象经过点A(﹣1,6),直线y=mx﹣2与x轴交于点B(﹣1,0).(1)求k,m的值.(2)点P是直线y=﹣2x位于第二象限上的一个动点,过点P作平行于x轴的直线,交直线y=mx﹣2于点C,交函数y=(x<0)的图象于点D,设P(n,﹣2n).①当n=﹣1时,判断线段PD与PC的数量关系,并说明理由②当PD≥2PC时,结合函数的图象,直接写出n的取值范围.25.(10分)如图,以矩形OABC的顶点O为坐标原点,OA所在直线为x轴,OC所在直线为y轴,建立平面直角坐标系,已知OA=8,OC=10,将矩形OABC绕点O逆时针方向旋转α(0<α<180°)得到矩形ODEF.(1)当点E恰好落在y轴上时,如图1,求点E的坐标.(2)连结AC,当点D恰好落在对角线AC上时,如图2,连结EC,EO,①求证:△ECD≌△ODC;②求点E的坐标.(3)在旋转过程中,点M是直线OD与直线BC的交点,点N是直线EF与直线BC的交点,若BM=BN,请直接写出点N的坐标.2018-2019学年浙江省绍兴市诸暨市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题3分,共30分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(3分)若二次根式有意义,则x的取值范围是()A.x<4 B.x>4 C.x≥4 D.x≤4【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣4≥0,解得x≥4.故选:C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分【分析】将数据重新排列后,根据中位数的定义求解可得.【解答】解:将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C.【点评】本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.(3分)若关于x的一元二次方程x2﹣3x+m=0有解,则m的值可为()A.2 B.3 C.4 D.5【分析】根据判别式的意义得到△=(﹣3)2﹣4m≥0,然后解不等式求出m的范围后对各选项进行判断.【解答】解:根据题意得:△=(﹣3)2﹣4m≥0,解得m≤.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.5.(3分)下列各式中计算正确的是()A.+=B.=C.D.(+)2=3+2=5【分析】根据二次根式的加减法对A进行判断;根据二次根式的性质对B、C进行判断;利用完全平方公式对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=,所以B选项正确;C、原式==5,所以C选项错误;D、原式=3+2+2=5+2,所以D选项错误.故选:B.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.(3分)已知:如图,M是正方形ABCD内的一点,且MC=MD=AD,则∠AMB的度数为()A.120°B.135°C.145°D.150°【分析】利用等边三角形和正方形的性质求得∠ADM=30°,然后利用等腰三角形的性质求得∠MAD的度数,从而求得∠BAM=∠ABM的度数,利用三角形的内角和求得∠AMB的度数.【解答】解:∵MC=MD=AD=CD,∴△MDC是等边三角形,∴∠MDC=∠DMC=∠MCD=60°,∵∠ADC=∠BCD=90°,∴∠ADM=30°,∴∠MAD=∠AMD=75°,∴∠BAM=15°,同理可得∠ABM=15°,∴∠AMB=180°﹣15°﹣15°=150°,故选:D.【点评】本题考查了正方形的性质及等边三角形的性质,解题的关键是根据等腰三角形的性质求得有关角的度数,难度不大.7.(3分)下图入口处进入,最后到达的是()A.甲B.乙C.丙D.丁【分析】利用平行四边形的判定和菱形的判定可求解;【解答】解:∵一组对边平行,另一组对边相等的四边形不一定是平行四边形;对角线互相垂直的四边形不一定是菱形;∴最后到达的是丁故选:D.【点评】本题考查了菱形的判定,平行四边形的判定,熟练运用这些判定是本题的关键.8.(3分)如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2.若设AD=xm,则可列方程()A.(50﹣)x=900 B.(60﹣x)x=900C.(50﹣x)x=900 D.(40﹣x)x=900【分析】设AD=xm,则AB=(60﹣x)m,根据矩形面积公式列出方程.【解答】解:设AD=xm,则AB=(60﹣x)m,由题意,得(60﹣x)x=900.故选:B.【点评】考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.(3分)如图1是由5个全等的边长为1的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是5的大正方形,则()A.甲、乙都可以B.甲可以,乙不可以C.甲不可以,乙可以D.甲、乙都不可以【分析】直接利用图形的剪拼方法结合正方形的性质分别分析得出答案.【解答】解:如图所示:可得甲、乙都可以拼一个面积是5的大正方形.故选:A.【点评】此题主要考查了图形的剪拼以及正方形的性质,正确应用正方形的性质是解题关键.10.(3分)已知:如图,在菱形OABC中,OC=8,∠AOC=60°,OA落在x轴正半轴上,点D是OC边上的一点(不与端点O,C重合),过点D作DE⊥AB于点E,若点D,E 都在反比例函数y=(x>0)图象上,则k的值为()A.8B.9 C.9 D.16【分析】过D作DH∥BC,交AB于H,根据菱形的性质得出四边形BCDH是平行四边形,DH=BC=8,∠DHE=∠B=60°,解直角三角形求得DE,作DM⊥x轴于M,过E点作EN⊥DM于N,解直角三角形求得DN,EN,设D(x,x),则E(x+6,x ﹣2),根据反比例函数系数k的几何意义得出k=x=(x+6)(x﹣2),解得x=3,从而求得k的值.【解答】解:过D作DH∥BC,交AB于H,∵在菱形OABC中,OC=8,∠AOC=60°,∴OA∥BC,OC∥AB,BC=OC=8,∠B=∠AOC=60°,∴∠DHE=∠B=60°,四边形BCDH是平行四边形,∴DH=BC=8,∵DE⊥AB于点E,∴DE=DH•sin60°=4,作DM⊥x轴于M,过E点作EN⊥DM于N,∵OC∥AB,DE⊥AB,∴E⊥OC,∴∠ODM+∠NDE=90°,∵∠DOM+∠ODM=90°,∴∠NDE=∠DOM=60°,∴DM=OM,DN=DE=2,NE=DE=6,设D(x,x),则E(x+6,x﹣2),∵点D,E都在反比例函数y=(x>0)图象上,∴k=x=(x+6)(x﹣2),解得x=3,∴D(3,3),∴k=3×3=9.故选:C.【点评】本题考查了反比例函数系数k的几何意义,菱形的性质,解直角三角形等,求得D点的坐标是解题的关键.二、填空题(本大题有10小题,每小题3分,共30分)11.(3分)计算=2.【分析】先求﹣2的平方,再求它的算术平方根,进而得出答案.【解答】解:==2,故答案为:2.【点评】本题考查了二次根式的性质与化简,注意算术平方根的求法,是解此题的关键.12.(3分)在反比例函数的图象每一条曲线上,y都随x的增大而减小,则m的取值范围是m>2.【分析】根据反比例函数的性质得到m﹣2>0,然后解不等式即可.【解答】解:∵在反比例函数的图象每一条曲线上,y都随x的增大而减小,∴m﹣2>0,∴m>2.故答案为m>2.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.13.(3分)用反证法证明“若|a|<2,则a2<4”时,应假设a2≥4.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【解答】解:用反证法证明“若|a|<2,则a2<4”时,应假设a2≥4.故答案为:a2≥4.【点评】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.14.(3分)甲,乙,丙,丁四人参加射击测试,每人10次射击的平均环数都为8.9环,各自的方差见如下表格甲乙丙丁方差0.2930.3750.3620.398则四个人中成绩最稳定的是甲.【分析】根据方差的意义:方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.【解答】解:∵0.293<0.362<0.375<0.398,∴四个人中成绩最稳定的是甲.故答案为:甲.【点评】此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(3分)一个多边形的每个内角都等于150°,则这个多边形是12边形.【分析】根据多边形的内角和定理:180°•(n﹣2)求解即可.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.【点评】主要考查了多边形的内角和定理.n边形的内角和为:180°•(n﹣2).此类题型直接根据内角和公式计算可得.16.(3分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60,∠BAC=80°,则∠1的度数为40°.【分析】直接利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案.【解答】解:∵∠ABC=60°,∠BAC=80°,∴∠BCA=180°﹣60°﹣80°=40°,∵对角线AC与BD相交于点O,E是边CD的中点,∴EO是△DBC的中位线,∴EO∥BC,∴∠1=∠ACB=40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是△DBC的中位线是解题关键.17.(3分)三角形的两边长为2和4,第三边长是方程x2﹣6x+8=0的根,则这个三角形的周长是10.【分析】先解方程求得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣6x+8=0得第三边的边长为2或4.∵2<第三边的边长<6,∴第三边的边长为4,∴这个三角形的周长是2+4+4=10.故答案为10.【点评】本题考查了一元二次方程的解法和三角形的三边关系定理.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.18.(3分)为预防传染病,某校定期对教室进行“药熏消毒”,已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为6mg.研究表明当每立方米空气中含药量低于1.2mg时,对人体方能无毒害作用,那么从消毒开始,至少需要经过50分钟后,学生才能回到教室.【分析】先求得反比例函数的解析式,然后把y=1.2代入反比例函数解析式,求出相应的x即可;【解答】解:设药物燃烧后y与x之间的解析式y=,把点(10,6)代入得6=,解得k=60,∴y关于x的函数式为:y=;当y=1.2时,由y=;得x=50,所以50分钟后学生才可进入教室;故答案为:50.【点评】本题考查了一次函数与反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.19.(3分)如图,在矩形ABCD内放入四个小正方形和两个小长方形后成中心对称图形,其中顶点E,F分别在边AD,BC上,小长方形的长与宽的比值为4,则的值为.【分析】连结EF,作MN⊥HN于N,根据中心对称图形的定义和相似三角形的性质可得两直角边的比是2:1,进一步得到长AD与宽AB的比即可.【解答】解:连结EF,作MN⊥HN于N,∵在矩形ABCD内放入四个小正方形和两个小长方形后成中心对称图形,∴△MNH∽△FME,△MNH≌△HKE≌△ESP,∴==,∴长AD与宽AB的比为(4+2+1+2):(2+1+1)=9:4,即=,故答案为:.【点评】此题考查了中心对称图形、相似三角形的性质、全等三角形的性质、矩形的性质、正方形的性质等知识,关键是理解直角三角形两直角边的比是2:1.20.(3分)在矩形ABCD中,AB=3,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点B的对应点为点F.(1)若点F恰好落在AD边上,则AD=6.(2)延长AF交直线CD于点P,已知=,则AD=4或4+.【分析】(1)由矩形的性质得出AD∥BC,AD=BC,由折叠的性质得出∠BAE=∠F AE,由平行线的性质得出∠F AE=∠BEA,推出∠BAE=∠BEA,得出AB=BE,即可得出结果;(2)①当点F在矩形ABCD内时,连接EP,由折叠的性质得出BE=EF,∠B=∠AFE =90°,AB=AF,由矩形的性质和E是BC的中点,得出AB=CD=6,BE=CE=EF,∠C=∠EFP=90°,由HL证得Rt△EFP≌Rt△ECP,得出FP=CP,由=,得出CP=FP=4,PD=2,AP=10,由勾股定理即可求出AD;②当点F在矩形ABCD外时,连接EP,由折叠的性质得出BE=EF,∠B=∠AFE=90°,AB=AF,由矩形的性质和E是BC的中点,得出AB=CD=6,BE=CE=EF,∠C=∠EFP=90°,由HL证得Rt△EFP≌Rt△ECP,得出EC=PF=BC=AD,由=,得出PD=2,由勾股定理得出:AP2﹣PD2=AD2,即(6+AD)2﹣4=AD2,即可求出AD.【解答】解:(1)∵四边形ABCD是矩形,∴AD∥BC,AD=BC,由折叠的性质可知,∠BAE=∠F AE,如图1所示:∵AD∥BC,∴∠F AE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,∵E是BC的中点,∴BC=2AB=6,∴AD=6,故答案为:6;(2)①当点F在矩形ABCD内时,连接EP,如图2所示:由折叠的性质可知,BE=EF,∠B=∠AFE=90°,AB=AF,∵四边形ABCD是矩形,E是BC的中点,∴AB=CD=6,BE=CE=EF,∠C=∠EFP=90°,在Rt△EFP和Rt△ECP中,,∴Rt△EFP≌Rt△ECP(HL),∴FP=CP,∵=,∴CP=FP=4,PD=2,AP=AF+FP=6+4=10,∴AD===4;②当点F在矩形ABCD外时,连接EP,如图3所示:由折叠的性质可知,BE=EF,∠B=∠AFE=90°,AB=AF=6,∵四边形ABCD是矩形,E是BC的中点,∴AB=CD=6,BE=CE=EF,∠C=∠EFP=90°,在Rt△EFP和Rt△ECP中,,∴Rt△EFP≌Rt△ECP(HL),∴EC=PF=BC=AD,∵=,∴PD=2,∴AP2﹣PD2=AD2,即:(AF+PF)2﹣22=AD2,(6+AD)2﹣4=AD2,解得:AD1=4+,AD2=4﹣(不合题意舍去),综上所述,AD=4或4+,故答案为:4或4+.【点评】本题考查了折叠的性质、矩形的性质、平行线的性质、勾股定理、全等三角形的判定与性质等知识,熟练掌握折叠的性质、证明三角形全等并运用勾股定理得出方程是解题的关键.三、解答题(本大题有5小题,第21小题6分,第22~24小题8分,第25小题10分,共40分.解答需写出必要的文字说明、演算步骤或证明过程)21.(6分)(1)计算:(2﹣)(2+)﹣()2.(2)解方程:x2﹣4x+1=0.【分析】(1)先利用平方差和乘方计算,再计算加减可得;(2)根据配方法的步骤求解可得.【解答】解:(1)原式=4﹣3﹣5=﹣4;(2)∵x2﹣4x+1=0,∴x2﹣4x=﹣1,则x2﹣4x+4=﹣1+4,即(x﹣2)2=3,∴x﹣2=±,∴x=2±,即x1=2+,x2=2﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.22.(8分)某中学开展的“好书伴我成长”读书活动中,为了解七年级600名学生读书情况,随机调查了七年级50名学生读书的册数,统计数据如下表所示:册数01234人数31316171(1)这50个样本数据的众数为3、中位数为2;(2)求这50个样本数据的平均数;(3)根据样本数据,估计该校七年级600名学生在本次活动中读书多于2册的人数.【分析】(1)根据众数、中位数的概念求解;(2)根据平均数的概念求解;(3)根据样本数据,估计本次活动中读书多于2册的人数.【解答】解:(1)由题意得,读书册数为3的人数最多,即众数为3,第25人和第26人读数厕所的平均值为中位数,及中位数为:=2,故答案为:3,2;(2)平均数为:=2,即这50个样本数据的平均数为2;(3)600×=216(人).答:估计七年级读书多于2册的有216人.【点评】本题考查了众数、中位数、平均数的知识,掌握各知识点的概念是解答本题的关键.23.(8分)如图,矩形ABCD中,点E、F分别在边CD、AB上,且DE=BF.(1)求证:四边形AFCE是平行四边形.(2)若四边形AFCE是菱形,AB=8,AD=4,求菱形AFCE的周长.【分析】(1)由矩形的性质得出AB∥CD,AB=CD,∠B=90°,证出AF=CE,即可得出四边形AFCE是平行四边形.(2)由菱形的性质得出AF=FC=CE=AE,BC=AD=4,设AF=CF=x,则BF=8﹣x,在Rt△BCF中,由勾股定理得出方程,解方程即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∠B=90°,∵DE=BF,∴AF=CE,∴四边形AFCE是平行四边形.(2)∵四边形AFCE是菱形,∴AF=FC=CE=AE,BC=AD=4,设AF=CF=x,则BF=8﹣x,在Rt△BCF中,由勾股定理得:(8﹣x)2+42=x2,解得:x=5,∴AF=FC=CE=AE=5,∴菱形AFCE的周长=4×5=20.【点评】此题考查了菱形的性质、矩形的性质、平行四边形的判定以及勾股定理.此题难度不大,注意掌握数形结合思想的应用.24.(8分)如图,平面直角坐标系xOy中,函数y=(x<0)的图象经过点A(﹣1,6),直线y=mx﹣2与x轴交于点B(﹣1,0).(1)求k,m的值.(2)点P是直线y=﹣2x位于第二象限上的一个动点,过点P作平行于x轴的直线,交直线y=mx﹣2于点C,交函数y=(x<0)的图象于点D,设P(n,﹣2n).①当n=﹣1时,判断线段PD与PC的数量关系,并说明理由②当PD≥2PC时,结合函数的图象,直接写出n的取值范围.【分析】(1)由点A的坐标,利用反比例函数图象上点的坐标特征可求出k值,由点B 的坐标,利用待定系数法可求出m的值;(2)①代入n=﹣1可得出点P的坐标,利用一次函数图象上点的坐标特征及反比例函数图象上点的坐标特征可得出点C,D的坐标,结合点P的坐标可得出PC=1,PD=2,进而可得出PD=2PC;②同①可得出当n=﹣3时PD=2PC,结合点P在第二象限及函数图象,可得出:当PD ≥2PC时,0<n≤﹣1或n≤﹣3.【解答】解:(1)∵函数y=(x<0)的图象经过点A(﹣1,6),∴k=﹣1×6=﹣6;将B(﹣1,0)代入y=mx﹣2,得:0=﹣m﹣2,解得:m=﹣2.(2)①PD=2PC,理由如下:当n=﹣1时,点P的坐标为(﹣1,2).当y=2时,﹣2x﹣2=2,=2,解得:x=﹣2,x=﹣3,∴点C的坐标为(﹣2,2),点D的坐标为(﹣3,2),∴PC=1,PD=2,∴PD=2PC.②当n=﹣3时,点P的坐标为(﹣3,6).当y=6时,﹣2x﹣2=6,=6,解得:x=﹣4,x=﹣1,∴点C的坐标为(﹣4,6),点D的坐标为(﹣1,6),∴PC=1,PD=2,∴PD=2PC.∵点P是直线y=﹣2x位于第二象限上的一个动点,∴当PD≥2PC时,0<n≤﹣1或n≤﹣3.【点评】本题考查了反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及两点间的距离,解题的关键是:(1)利用反比例函数图象上点的坐标特征及待定系数法,分别求出k,m的值;(2)①利用一次函数图象上点的坐标特征及反比例函数图象上点的坐标,求出点P,C,D的坐标;②利用极限值法找出当PD=2PC时n的值.25.(10分)如图,以矩形OABC的顶点O为坐标原点,OA所在直线为x轴,OC所在直线为y轴,建立平面直角坐标系,已知OA=8,OC=10,将矩形OABC绕点O逆时针方向旋转α(0<α<180°)得到矩形ODEF.(1)当点E恰好落在y轴上时,如图1,求点E的坐标.(2)连结AC,当点D恰好落在对角线AC上时,如图2,连结EC,EO,①求证:△ECD≌△ODC;②求点E的坐标.(3)在旋转过程中,点M是直线OD与直线BC的交点,点N是直线EF与直线BC的交点,若BM=BN,请直接写出点N的坐标.【分析】(1)由旋转的性质可得OF=OC=10,EF=BC=8,∠F=∠OCB=90°,由勾股定理可求OE的长,即可求点E坐标;(2)①连接BO交AC于点H,由旋转的性质可得DE=AB=OC,OE=BO,OD=OA,∠ABO=∠DEO,∠EDO=∠BAO=90°,∠BOA=∠EOD,可得∠ACO=∠DEO,可证点C,点E,点O,点D四点共圆,可得∠CED=∠COD,∠ECO=∠EDO=90°,∠EDC=∠EOD,由“AAS”可证△ECD≌△ODC;②通过证明点B,点E关于OC对称,可求点E坐标;(3)分两种情况讨论,由面积法可求OM=MN,由勾股定理可求x的值,即可求点N 坐标.【解答】解:(1)∵四边形ABCD是矩形∴OA=BC=8,OC=AB=10,∠OCB=90°∵将矩形OABC绕点O逆时针方向旋转α(0<α<180°)得到矩形ODEF.∴OF=OC=10,EF=BC=8,∠F=∠OCB=90°∴OE===2∴点E(0,)(2)①如图,连接BO交AC于点H,∵四边形ABCD是矩形∴AC=OB,AH=OH∴∠OAH=∠AOH,且∠BAO=∠COA=90°∴∠ABO=∠ACO,∵将矩形OABC绕点O逆时针方向旋转α(0<α<180°)得到矩形ODEF.∴DE=AB=OC,OE=BO,OD=OA,∠ABO=∠DEO,∠EDO=∠BAO=90°,∠BOA =∠EOD,∴∠ACO=∠DEO∴点C,点E,点O,点D四点共圆,∴∠CED=∠COD,∠ECO=∠EDO=90°,∠EDC=∠EOD,∵OD=OA∴∠OAH=∠ODA∴∠ODA=∠EOD∴AD∥OE∴∠CDE=∠OED=∠OCD,且DE=OC,∠DEC=∠COD∴△ECD≌△ODC(AAS)②∵△ECD≌△ODC∴EC=OD=OA=BC=8,∵∠ECO=90°∴∠ECO+∠BCO=180°∴点E,点C,点B共线∵EC=BC,OC⊥BC∴点B,点E关于OC对称,且B(8,10)∴点E(﹣8,10)(3)如图,当点M在点B右侧,连接ON,过点N作NG⊥OD于G,∵BM=BN,∴设BM=x,则BN=2x,MN=3x,∵NG⊥OD,∠FED=∠EDO=90°∴四边形NEDG是矩形∴NG=DE=10=AB=CO∵S△OMN=×MN×OC=×OM×NG∴OM=MN=3x,∵OC2+CM2=OM2,∴100+(x+8)2=9x2,∴x=(负值舍去)∴BN=2+∴NC=BN﹣BC=﹣6,∴点N(6﹣,10)如图,若点M在点B左侧,连接ON,过点N作NG⊥OD于G,∵BM=BN,∴设BM=x,则BN=2x,MN=x,∵NG⊥OD,∠FED=∠EDO=90°∴四边形NEDG是矩形∴NG=DE=10=AB=CO∵S△OMN=×MN×OC=×OM×NG∴OM=MN=x,∵OC2+CM2=OM2,∴100+(x﹣8)2=x2,∴x=∴BN=2×=∴NC=BN﹣BC=∴点N(﹣,10)综上所述:点N(6﹣,10),(﹣,10)。
2018-2019学年八年级下期末数学试卷及答案
2018-2019学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是()A.B.C. D.10.下列计算正确的是()A.2B. C.D.=﹣311.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.12.一次函数y=kx+b的图象如图所示,则k、b的符号()A.k<0,b>0 B.k>0,b>0 C.k<0,b<0 D.k>0,b<013.下列命题中,为真命题的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组对边平行的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:3458月用水量(吨)户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.2018-2019学年八年级(下)期末考试八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分…………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形,∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分 ②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分 ∴∠EPF=90°∴∠BPE=∠QPF ,………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPEQPF PF PE QFPBEP∴△PEB ≌△PFQ (ASA )………………………9分 ∴PB=PQ .………………………10分 (其它做法参照给分)。
浙教版2018-2019学年八年级数学下册期末检测题(含答案)
- 1 -(第12题)浙教版2018-2019学年八年级数学下册期末检测题考生须知:1.全卷共三大题,24小题,满分为100分。
2.考试时间为90分钟,本次考试采用闭卷形式,不允许使用计算器。
3.全卷答案必须做在答题卷的相应位置上,做在试题卷上无效。
4.请用钢笔或黑色墨迹签字笔将学校、姓名、准考证号、座位号分别填在答题卷的相应位置上。
一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.若二次根式3x -在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≥C .3x <D .3x ≠2.一元二次方程2231x x -=的二次项系数a 、一次项系数b 和常数c 分别是( )A .2,3,1a b c ===-B .2,1,3a b c ===-C .2,3,1a b c ==-=-D .2,3,1a b c ==-=3.下列图形,既是轴对称图形又是中心对称图形的是( )A .平行四边形B .正五边形C .等边三角形D .矩形 4.五边形的内角和是( )A .360°B .540°C .720°D .900°5.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数都为8.8环,方差分别为20.016s =甲,20.025s =乙,20.012s =丙,则三人中成绩最稳定的选手是 ( )A .甲B .乙C .丙D .不能确定 6.在平行四边形ABCD 中,已知∠A :∠B =1:2,则∠B 的度数是( ) A .45°B .90°C .120°D .135°7.用反证法证明某一命题的结论“b a <”时,应假设( ) A .b a >B .b a ≥C .b a =D .b a ≤ 8.用配方法解方程244=0x x +-,配方变形结果正确的是( )A .2(2)8x +=-B . 2(2)8x -=-C .2(2)8x -=D . 2(2)8x +=9.关于x 的一元二次方程ax 2-2x +1=0有实数根,则整数a 的最大值是( )A .1B .1-C .2D .2-10.如图,在矩形ABCD 中,AB =6,BC =8,M 是AD 上任意一点,且ME ⊥AC 于E , MF ⊥BD 于F ,则ME +MF 为 ( ) A .245 B .125 C .65D .不能确定 二、填空题(本题有6小题,每小题3分,共18分)11.计算:2(5)= .12.如图,A 、B 两点分别位于山脚的两端,小明想测量A 、B 两点间的距离,于是想了个主意:先在地上取一个可以直接达到A 、BF EDA BCM (第10题)。
浙教版2018-2019学年度八年级数学第二学期期末综合复习检测题1(含答案详解)
浙教版2018-2019学年度八年级数学第二学期期末综合复习检测题1(含答案详解) 1.已知□ABCD 的周长是26cm ,其中△ABC 的周长是18cm ,则AC 的长为 A .12cm B .10cm C .8cm D .5cm 2.关于x 的一元二次方程的一个根为2,则的值是( ) A . B .C .D .3.若关于x 的一元二次方程()21220k x x -+-=有两个不相等实数根,则k 的取值范围是( ). A .12k >B .12k ≥C .102k k >≠且D .102k k ≥≠且4.下列选项中能使二次根式x 的值是( ) A .-2 B .0 C .2 D .0.995.如果E 、F 、G 、H 是四边形ABCD 四条边的中点,要使四边形EFGH 是矩形,那么四边形ABCD 应具备的条件是( )A .一组对边平行而另一组对边不平行B .对角线相等C .对角线互相垂直D .对角线相等且互相平分 6.一元二次方程x 2﹣3x+5=0的根的情况是( ) A .没有实数根 B .有两个相等的实数根 C .只有一个实数根 D .有两个不相等的实数根7.用配方法解方程,变形后的结果正确的是A .B .C .D .8.2017年春学期小红同学四次中考数学测试成绩分别是:103,103,105,105,关于这组数据下列说法错误的是( )A .平均数是104B .众数是103C .中位数是104D .方差是1 9.已知线段AB ,下列尺规作图中,PQ 与AB 的交点O 不一定是AB 的中点的是( )10.大自然中存在很多对称现象,下列植物叶子的图案中既是轴对称,又是中心 对称图形的是( )A .B .C .D .11.已知一组数据:17,18,20,17,x ,18中唯一的众数是18,则这组数据的平均数为_________.12.23x =-,则x 的范围是_____________。
2018-2019学年八年级下期末数学试卷2(含答案解析)
2018-2019学年八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣22.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65 4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.109.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.810.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是.12.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD 的面积和对角线长.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试8085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是.24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣2【解答】解:由题意得:a+2≥0,解得:a≥﹣2,故选:B.2.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣【解答】解:A、=2,故原题计算错误;B、+=+2=3,故原题计算错误;C、==4,故原题计算正确;D、2和不能合并,故原题计算错误;故选:C.3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65【解答】解:由表可知1.75m出现次数最多,有4次,所以众数为1.75m,这15个数据最中间的数据是第8个,即1.70m,所以中位数为1.70m,故选:A.4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位【解答】解:要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象向上平移5个单位,故选:C.5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角【解答】解:∵菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分,每一条对角线平分一组对角,;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:每一条对角线平分一组对角.故选:D.6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)【解答】解:在y=3x﹣2中,∵k=3>0,∴y随x的增大而增大;∵b=﹣2<0,∴函数与y轴相交于负半轴,∴可知函数过第一、三、四象限;∵当x=﹣2时,y=﹣8,所以与x轴交于(﹣2,0)错误,∵当y=﹣2时,x=0,所以与y轴交于(0,﹣2)正确,故选:C.8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.10【解答】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴AD=6,∵CD=AB=8,∴AC==10,∴BO=AC=5.故选:A.9.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选:A.10.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6【解答】解:联立两函数的解析式,得:,解得;即两函数图象交点为(﹣3,﹣2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而增大;因此当x=5时,m值最大,即m=6.故选:D.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是5.【解答】解:=5,故答案为:512.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=8.【解答】解:根据勾股定理得:a2+b2=c2,∵a=6,c=10,∴b===8,故答案为8.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为2.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD﹣AE=BC﹣AB=5﹣3=2.故答案为2.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为y=2x﹣7.【解答】解:∵B(8,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC的对称中心,∴平行四边形OABC的对称中心D(4,1),设直线QD的解析式为y=kx+b,∴,∴,∴该直线的函数表达式为y=2x﹣7,故答案为:y=2x﹣7.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为87°.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠DAE=∠AEB,∵∠EAB=∠EAD,∴∠EAB=∠AEB,∴BA=BE,∵AB=AE,∴AB=BE=AE,∴∠B=∠BAE=∠AEB=60°,∴∠EAD=∠CDA=60°,∵EA=AB,CD=AB,∴EA=CD,∵AD=DA,∴∠AED≌△DCA,∴∠AED=∠DCA,∵AB∥CD,∴∠ACD=∠BAC=60°+27°=87°,∴∠AED=87°.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.【解答】解:∵AB∥CD,CD=BC=AB,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∴B、D关于AC对称,连接BE交AC于H′,连接DH′,此时DH′+EH′的值最小,最小值=BE,作AM⊥EC于M,EN⊥BA交BA的延长线于N.∵四边形ABCD是菱形,∴AD∥BC,∴∠ADM=∠BCD=30°,∵AD=2,∴AM=AD=1,∵∠AEC=45°,∴AM=EM=1,∵AM⊥CE,EN⊥BN,CE∥NB,∴∠AME=∠N=∠MAN=90°,∴四边形AMEN是矩形,∴AN=EM=AM=EN=1,在Rt△BNE中,BE===,故答案为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)【解答】解:原式=42﹣()2=16﹣7=9.18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD的面积和对角线长.【解答】解:连接BD.∵ABCD为正方形,∴∠A=∠C=90°.在Rt△BCE中,BC=.在Rt△ABD中,BD=.∴正方形ABCD的面积=.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【解答】解:(1)∵一次函数图象过原点,∴,解得:m=3(2)∵一次函数的图象经过第二、三、四象限,∴,∴1<m<3.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试908085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.【解答】解:(1)观察图象1可知:A的面试成绩为90分.故答案为90.条形图如图所示:(2)A的得票数:300×35%=105(人)B的得票数:300×40%=120(人)C的得票数:300×25%=75(人);(3)A的成绩:=93B的成绩:=96.5C的成绩:=83.5,故B学生成绩最高,能当选学生会主席.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.【解答】解:(1)∵A(0,3)、点B(3,0),∴直线AB的解析式为y=﹣x+3,由,解得,∴P(﹣3,6).(2)设Q(m,0),由题意:•|m﹣3|•6=6,解得m=5或1,∴Q(1,0)或(5,0).(3)当直线y=﹣2x+m经过点O时,m=0,当直线y=﹣2x+m经过点B时,m=6,∴若直线y=﹣2x+m与△AOB三条边只有两个公共点,则有0<m<6.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.【解答】解:(1)设每件A商品的单价是x元,每件B商品的单价是y元,由题意得,解得.答:A商品、B商品的单价分别是50元、40元;(2)当0<x≤10时,y=50x;当x>10时,y=10×50+(x﹣10)×50×0.6=30x+200;(3)设购进A商品a件(a>10),则B商品消费40a元;当40a=30a+200,则a=20所以当购进商品正好20件,选择购其中一种即可;当40a>30a+200,则a>20所以当购进商品超过20件,选择购A种商品省钱;当40a<30a+200,则a<20所以当购进商品少于20件,选择购B种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是MN=(BM+ND).【解答】证明:(1)延长NO交BM交点为F,如图∵四边形ABCD是菱形∴AC⊥BD,BO=DO∵DN⊥MN,BM⊥MN∴BM∥DN∴∠DBM=∠BDN,且BO=DO,∠BOF=∠DON∴△BOF≌△DON∴NO=FO,∵BM⊥MN,NO=FO∴MO=NO=FO(2)如图:延长MO交ND的延长线于F∵BM⊥PC,DN⊥PC∴BM∥DN∴∠F=∠BMO∵BO=OD,∠F=∠BMO,∠BOM=∠FOD ∴△BOM≌△FOD∴MO=FO∵FN⊥MN,OF=OM∴NO=OM=OF(3)如图:∵∠BAD=120°,四边形ABCD是菱形,∴∠ABC=60°,AC⊥BD∵∠OBC=30°∵BM⊥PC,AC⊥BD∴B,M,C,O四点共圆∴∠FMN=∠OBC=30°∵FN⊥MN∴MN=FN=(BM+DN)答案为MN=(BM+FN)24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.【解答】解:(1)▱A′B′CD如图所示,A′(2,2t).(2)∵C′(6,t),A(2,0),=12t﹣×2×2t﹣×6×t﹣×4×t=9.∵S△OA′C∴t=.(3)∵D(0,t),B(6,0),∴直线BD的解析式为y=﹣x+t,∴线BD沿x轴的方向平移m个单位长度的解析式为y=﹣x+(6+m),把点A(2,2t)代入得到,2t=﹣+t+,解得m=8.。
2018-2019学年浙教版数学八年级下册期末测试卷及答案
2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每题3分,共30分)1.如果反比例函数y=的图象经过点(﹣1,﹣2),则k的值是()A.2B.﹣2C.﹣3D.32.方程x2+4x=2的正根为()A.2﹣B.2+C.﹣2﹣D.﹣2+3.某校八(5)为筹备班级端午节纪念爱国诗人屈原联谊会,班长对全班学生爱吃哪几种水果作了民意调查,最终买哪些水果,下面的调查数据中您认为最值得关注的是()A.中位数B.平均数C.众数D.加权平均数4.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°5.若不等式k<<k+1成立,则整数k的值为()A.6B.7C.8D.96.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣367.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为()A.20°B.25°C.30°D.35°8.下表为某校八年级72位女生在规定时间内的立定投篮数统计,若投篮投进个数的中位数为a,众数为b,则a+b的值为()A.20B.21C.22D.239.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的值可能是()A.4B.5C.6D.710.如图,每个立方体的6个面上分别写有1到6这个自然数,并且任意两个相对面上所写两个数字之和为7,把这样的7个立方体一个挨着一个地连接起来,紧挨着的两个面上的数字之和为8,则图中“﹡”所在面上的数字是()A.4B.3C.2D.1二、填空题(本大题共6小题,每题3分,共18分)11.2﹣的绝对值是.12.请写一个图象在第二、四象限的反比例函数解析式:.13.已知2x2+3x+1的值是10,则代数式4x2+6x+1的值是.14.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形相邻两内角度数的比值等于.15.过反比例函数y=(k>0)图象上一动点M作MN⊥x轴交x轴于点N,Q是直线MN上一点,且MQ=2MN,过点Q作QR∥x轴交该反比例函数图象于点R.已知S△QRM=8,那么k的值为.16.如图,过正方形ABCD的顶点C作CF⊥CE,交AD于点F,交AB的延长线于点E,交BC于点G.如果S正方形ABCD=144,S△CEF=84.5,那么S△CEG=.三、解答题(本大题共52分17.计算:(1)﹣﹣(2)(3﹣)﹣18.用适当的方法解下列方程:(1)(x﹣3)2﹣2(x﹣3)=0(2)3x2﹣6x﹣9=0.19.(5分)如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=AB,连接EF,判断四边形ADEF的形状,并加以证明.20.(5分)已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)若方程的一个根是0,求出它的另一个根及k的值.21.若一次函数y=2x﹣1和反比例函数y=的图象都经过点(1,1).(1)求反比例函数的解析式;(2)已知点A在第三象限,且同时在两个函数的图象上,求点A的坐标.22.某校八年级两个班,各选派10名学生参加学校举行的“美丽绍兴乡土风情知识”大赛预赛各参赛选手的成绩如下:八(1)班:88,91,92,93,93,93,94,98,98,100;八(2)班:89,93,93,93,95,96,96,98,98,99.通过整理,得到数据分析表如下:(1)求表中m、n的值;(2)依据数据分析表,有同学说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有同学说(2)班的成绩更好请您写出两条支持八(2)班成绩好的理由.23.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB 边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)在点M移动过程中:①当四边形AMDN成矩形时,求此时AM的长;②当四边形AMDN成菱形时,求此时AM的长.24.已知点P的坐标为(m,0),点Q在x轴上(不与P重合),以PQ为边,∠PQM=60°作菱形PQMN,使点M落在反比例函数y=﹣的图象上.(1)如图所示,若点P的坐标为(1,0),求出图中点M的坐标;(2)当P(1,0)时,在(1)图中已经画出一个符合条件的菱形PQMN,请您在原图上画出另一个符合条件的菱形PQ1M1N1,并求点M1的坐标;(3)随着m的取值不同,这样的菱形还可以画出三个和四个,当符合上述条件的菱形刚好能画出三个时,请直接写出点M的坐标.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每题3分,共30分)1.【解答】解:根据题意,得﹣2=,即2=k﹣1,解得,k=3.故选:D.2.【解答】解:∵x2+4x=2,∴(x+2)2=6,∴x1=﹣2+,x2=﹣2﹣;∴方程x2+4x=2的正根为﹣2+.故选:D.3.【解答】解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是为筹备班级端午节纪念爱国诗人屈原联谊会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.故选:C.4.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选:C.5.【解答】解:∵9<<10,∴k=9,k+1=10,故选:D.6.【解答】解:∵A(﹣3,4),∴OA==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣32.故选:C.7.【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE==25°,故选:B.8.【解答】解:第36 与37人投中的个数均为9,故中位数a=9,11出现了13次,次数最多,故众数b=11,所以a+b=9+11=20.故选:A.9.【解答】解:根据题意,可知:点D的坐标为(4,1).当y=1时,有x+3=1,解得:x=﹣2,∴4﹣(﹣2)=6,∴4<m<6.故选:B.10.【解答】解:由题意可知:正方体的六个面上分别写着1、2、3、4、5、6六个数,并且它们任意两个相对的面上所写的两个数的和都等于7,故第一个正方体的后面为3,∵紧挨着的两个面上的两个数之和都等于8,则与它相接的第二个正方体的前面为5,对面为2,依此类推,与它相接的第三个正方体的前面为6,对面为1,∴第三个正方体的左面为5,右面为2;或左面为2,右面为5.(1)当第三个正方体的左面为5,右面为2时,第四个正方体的左面为6,右面为1,第五个正方体的左面为7(不合题意舍去);(2)当第三个正方体的左面为2,右面为5时,第四个正方体的左面为3,右面为4,第五个正方体的左面为4,右面为3.∴第五个正方体的下面为5,上面为2;或下面为2,上面为5.①当第五个正方体的下面为5,上面为2时,第六个正方体的下面为6,上面为1,第七个正方体的下面为7(不合题意舍去);②当第五个正方体的下面为2,上面为5时,第六个正方体的下面为3,上面为4,第七个正方体的下面为4,上面为3.则“※”所在面上的数是3.故选:B.二、填空题(本大题共6小题,每题3分,共18分)11.【解答】解:2﹣的绝对值是|2﹣|=﹣2.故本题的答案﹣2.12.【解答】解:∵图象在第二、四象限,∴y=﹣,故答案为:y=﹣.13.【解答】解:由题意,得2x2+3x+1=10∴2x2+3x=9∵4x2+6x+1=2(2x2+3x)+1=2×9+1=19∴代数式4x2+6x+1的值是:19故答案为:1914.【解答】解:作AE⊥BC于E,如图所示:则∠AEB=90°,根据题意得:平行四边形的面积=BC•AE=BC•AB,∴AE=AB,∴sin B==,∴∠ABC=30°,∴∠BCD=150°,∴平行四边形相邻两内角度数的比值1:5,故答案为1:5.15.【解答】解:有两种情形:①当点Q在第一象限时,如图1中.设M(,m),则R(,3m),由题意:×2m×(﹣)=8,解得k=12.②如图2中,当点Q在第三象限时,设M(,m),则R(﹣,﹣m),由题意:••2m=8,∴k=4,故答案为4或12,16.【解答】解:如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBE=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=90°,∴∠1=∠3,在△CDF和△CBE中,,∴△CDF≌△CBE,∴CE=CF,∴△CEF是等腰直角三角形,∵S△CEF=84.5,∴=84.5,CE=13,∵S正方形ABCD=144,∴CD=AD=12,由勾股定理得:DF=BE=5,∴AF=12﹣5=7,∵BG∥AF,∴△EBG∽△EAF,∴,∴,∴BG=,∴CG=12﹣=,∴S△CEG===.故答案为:.三、解答题(本大题共52分17.【解答】解:(1)原式=﹣﹣=;(2)原式=3﹣2﹣3=﹣2.18.【解答】解:(1)(x﹣3)(x﹣3﹣2)=0,x﹣3=0或x﹣3﹣2=0,所以x1=3,x2=5;(2)x2﹣2x﹣3=0,△=(﹣2)2﹣4×1×(﹣3)=20,x==±所以x1=+,x2=﹣.19.【解答】答:四边形ADEF是平行四边形.证明:∵点D,E分别是边BC,AC的中点,∴DE∥BF,DE=AB,∵AF=AB,∴DE=AF,∴四边形ADEF是平行四边形.20.【解答】解:(1)∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根,∴b2﹣4ac=[2(k﹣1)]2﹣4(k2﹣1)>0,解得:k<1;(2)∵方程的一个根是0,∴代入方程得:k2﹣1=0,解得:k=±1,∵k<1,∴k=﹣1,∴原方程为:x2+2(﹣1﹣1)x=0,解得:x1=0,x2=4.21.【解答】解:(1)∵反比例函数y=的图象经过点(1,1)∴k=2xy=2×1×1=2∴反比例函数解析式:y=(2)∵点A在第三象限,且同时在两个函数的图象上∴解得:(舍去)∴点A坐标(﹣,﹣2)22.【解答】解:(1)八(1)班的平均分m=×(88+91+92+93+93+93+94+98+98+100)=94;八(2)班的中位数n==95.5;(2)八(2)班的平均分高于八(1)班;八(2)班的成绩集中在中上游,故支持八(2)班成绩好.23.【解答】解:(1)∵四边形ABCD是菱形∴AB=CD=AD=2,AB∥CD∴∠NDA=∠DAM∵点E是AD边的中点∴AE=DE,且∠NDA=∠DAM,∠NED=∠AEM ∴△AEM≌△DNE∴DN=AM又∵NC∥AB∴四边形AMDN是平行四边形(2)①若四边形AMDN成矩形时,则DM⊥AB在Rt△ADM中,DM⊥AB,∠DAB=60°,AD=2∴AM=1∴当AM=1时,四边形AMDN成矩形.②若四边形AMDN成菱形则DM=AM∵DM=AM,∠DAB=60°∴△ADM为等边三角形∴AM=AD=2∴当AM=2时,四边形AMDN成菱形24.【解答】解:(1)如图,∵四边形PQMN是菱形,∴PN∥QM,MN∥PQ,∴∠OPN=∠PQM=60°,∵P(1,0),∴OP=1,PN=PQ=MN=2OP=2,OM=OP=∴M(2,﹣).(2)如下图中,∵四边形PQ1M1N1是菱形,∴Q1P=Q1M1,∵∠PQ1M1=60°,∴△PQ1M1是等边三角形,∴∠Q1PM1=60°,∴直线PM1的解析式为y=﹣x+,由解得或,∴M1(﹣1,2).(3)如下图,当过点P与x轴的夹角为60°的直线与反比例函数的交点的个数只有3个时,满足条件的菱形只有3个.设直线PM1的解析式为y=x+b,由,消去y得到:x2+bx+2=0,由题意:△=0,∴b=±2,当b=﹣2时,可得y=x﹣2,由:,解得,∴M1(,﹣),由解得或,∴M2(+2,﹣2),M2(﹣2,+2),当b=2时,同法可得满足条件的点M的坐标为(﹣,)或(﹣﹣2,2﹣)或(﹣+2,﹣2﹣).。
浙教版2018-2019学年八年级数学下册期末检测题(含答案解析)
浙教版2018-2019学年八年级数学下册期末检测题
一、选择题(每题2分,共20分)
1.在式子
21-x ,31-x ,2-x ,3-x 中,x 可以取2和3的是( ) A . 21-x B . 31-x C . 2-x D . 3-x
2.用配方法解方程542=-x x 时,此方程可变形为( )
A .1)2(2=+x
B .1)2(2=-x
C .9)2(2=+x
D .9)2(2=-x
3.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件:①AD ∥BC ;②AD =BC ;③OA =OC ;④OB =OD 从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( )
A .3种
B .4种
C .5种
D .6种
4.已知直线y =x -3与函数
的图象相交于点(a ,b ),则a 2+b 2的值是( ) A .13 B .11 C .7 D .5
5.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,则折痕
为 DG 的长为( )
A .3
B .234
C .2
D .52
3 6.如图,菱形ABCD 中,AB =3,DF =1,∠DAB =60°,∠EFG =15°,FG ⊥BC ,则AE =( )
A .
B .
C .
D .
7.如图,在正方形ABCD 的对角线上取点E ,使得∠BAE =15°,连结AE ,CE .延长CE 到F ,连结BF ,使得BC =BF .若AB =1,则下列结论:
①AE =CE ;②F 到BC 的距离为23;③BE +EC =EF ;④S △AED =12341+;。
浙江省绍兴市诸暨市2018-2019学年第二学期八年级科学期末试题(含答案 含答题卡 )
八年级科学期末考试参考答案题号 1 2 3 4 5 6 7 8 9 10 答案 C B B C B D D D B B 题号 11 12 13 14 15 16 17 18 19 20 答案CADCACCBDB21、①3N ②N 2 ③2SO 42- ④Na 2CO 3 22、(1)质子数(核电荷数) (2)H 2O (3)Mg(OH)2 23、(1)P (2)元素 6 : 1 (3)根毛区 气孔 24、CO 2 光合 25、B 甲 26、(1)灯泡处于静止状态 (2)电磁感应现象 (3)升高 27、(1)处于焰心的镁条不能与氧气接触(2)镁条燃烧产生的热量使石蜡的温度重新达到着火点 28、CD 间断路 见右图三、实验探究题(本题共3小题,每空2分,共20分) 29、(1)防止冷凝水倒流导致试管破裂把带火星的木条放在集气瓶口,如果木条复燃,说明已收集满。
(2)C30、(1)叶绿素 (2)天竺葵通过呼吸作用消耗掉体内原有的有机物(3) b (4)光合作用需要阳光 31、【实验回顾】白磷的着火点更低【交流与表达】(1)烧杯内蒸馏水减少的体积为氧气的体积=90mL ﹣63.6mL= 26.4mL空气中氧气含量=26.4 mL/130 mL×100% ≈ 20.3%(2)铁丝在有水、氧气的条件下很容易生锈,使装置内残留的氧气更少,实验结果更准确; 四、分析计算题(本题共3小题,32题5分,33、34题各6分,共计17分) 32、(1)N 极(1分) (2)强(1分) 断开(1分) (3)70℃(2分) 33、(1) 光合作用 (2)呼吸作用 (3)蒸腾作用(4)清水(或0.3g/mL 蔗糖溶液) 0.3g/mL 蔗糖溶液(或清水)清水中气孔开放,蔗糖溶液中气孔关闭。
34、(1)13g-8.2g=4.8g (2分)(2)解:设参加反应的KClO 3的质量为x ,生成KCl 的质量为y2 KClO 3====2KCl+3O 2↑ 245 149 96 x y 4.8x=12.25g y=7.45g 答:参加反应的KClO 3的质量为12.25g (2分)(3)氯化钾溶液质量=7.45g÷10%=74.5g (2分) 答:氯化钾溶液的质量为74.5gMnO 2△。
2018至2019第二学期八年级数学试卷(含答案)
图3 2018—2019学年度第二学期期末教学质量检测试卷 八年级 数学(总分:100分 作答时间:100分钟)一、选择题(本题共10小题,每小题3分,共30分. 在每小题给出的四个选项中只有一项是符合要求的。
)1、下列式子中,是最简二次根式的是( )A. 21B. 313C. 51 D.8 2、已知一个直角三角形的两边长分别为3和5,则第三边的长是( ) A.5 B.4 C. 34 D.4或343.如图1,在□ABCD 中,O 是对角线AC ,BD 的交点,下列结论中错误的是( )A. AB ∥CDB.AB=CDC. AC=BDD.OA=OC4、如图2,函数3221+=-=ax y x y 与的图像相交于点 A (m ,2),则关于x 的不等式32+>-ax x 的解集是( )A.x>2B. x<2C.x>-1D.x<-15、在某次义务植树活动中,10名同学植树的棵数如图3所示.若他们植树的棵树的平均数是a 棵,中位数是b 棵,众数是c 棵,则下列结论中正确的是( )A. a=bB. b>aC. b=cD. c>b6、如图4,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,∠ACD=3∠AB 上的中点,则∠ECD 的度数是( )A. 30°B. 45°C. 50°D.55°7、小李与小陆从A 地出发,骑自行车沿同一条路行驶到B 地.他们离出发地的距离s(km)和行驶时间t(h)之间的函数关系如图5所示.根据图中提供的信息,有下列说法:①他们都行驶了20km;②小陆全程共用了1.5h ;③小李与小陆相遇后,小李的速度小于小陆的速度;④小李在途中停留了0.5h.其中正确的说法有几个( )A.1个B. 2个C. 3个D. 4个8、如图6,E 是边长为4的正方形ABCD 的对角线BD 上一点,且BE=BC.P 为CE 上任意一图2 图1 图4点,PQ ⊥BC 于点Q ,PR ⊥BD 于点R.则PQ+PR 的值是( )A.22B. 2C. 32D.389、如图7,已知等腰△ABC 的底边BC=20,D 是腰AB 上一点,且CD=16,BD=12.则△ABC的周长是( )A. 56B. 40C. 3153 D. 5347 10、如图8,在锐角△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN ∥BC ,设MN交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,有下列四个结论:①OE=OF ;②CE=CF ;③若CE=12,CF=5,则OC 的长为6;④当AO=CO 时,四边形AECF 是矩形.其中正确的有( )A. ①②B. ①④C. ①③④D.②③④二、填空题(本题共8小题,每小题3分,共24分)11、在函数72-=x y 中,自变量x 的取值范围是_______________.12、若0131=-++b a ,则___________20182017=+b a13、已知点A (2,0),B (0,2),C (-1,m )在同一条直线上,则m 的值为_____________14、甲、乙、丙、丁四位同学最近5次数学考试成绩的平均分分别是80、85、85、80,方差分别是42、42、54、59.如果从这四位同学中选出一位成绩较好且状态稳定的同学参加即将举行的数学竞赛,那么应该选________.15、如图9,在△ABC 中,D ,E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,点G是CE 的中点,CF=2,则BC=___________.16、将矩形纸片ABCD 按图10的方式折叠,得到菱形AECF ,若AB=3,则BC 的长为_____.17、如图11,在平面直角坐标系中,有点A (1,6),B (5,0).点C 是y 轴上的一个动点.当△ABC 的周长最小时,点C 的坐标为____________.图5 图6 图8 图11 图9 图10 图718、 图12是一个“羊头”图案.其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②’……若正方形①的边长为64cm,则正方形⑦的边长为___________cm 。
2018-2019学年八年级下期末数学试卷含答案解析
2018-2019学年八年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,34.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.36.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠57.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.810.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=4811.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.1812.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.当x时,有意义.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=cm.16.直线y=﹣3x+5向下平移6个单位得到直线.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.20.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】74:最简二次根式.【分析】根据最简二次根式的概念即可求出答案.【解答】解:(A)原式=2,故A不是最简二次根式;(B)原式=4,故B不是最简二次根式;(C)原式=,故C不是最简二次根式;故选(D)2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分【考点】LB:矩形的性质;L5:平行四边形的性质.【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,3【考点】KS:勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、32+42=52,能构成直角三角形,故符合题意;C、52+62≠72,不能构成直角三角形,故不符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选B.4.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定【考点】W7:方差;W1:算术平均数.【分析】方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,据此判断即可.【解答】解:∵1.5<2,∴S小明2<S小李2,∴成绩最稳定的是小明.故选:A.5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.3【考点】LE:正方形的性质.【分析】根据正方形的面积=对角线的乘积的一半.【解答】解:因为正方形的对角线互相垂直且相等,所以正方形的面积=对角线的乘积的一半=×6×6=18,故选C.6.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠5【考点】E4:函数自变量的取值范围.【分析】根据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0且x﹣5≠0,解得x≥1且x≠5,故选:D.7.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】F5:一次函数的性质.【分析】利用一次函数的性质求解.【解答】解:∵k=3>0,b=5>0,∴一次函数y=3x+5的图象经过第一、二、三象限.故选D.8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC【考点】L6:平行四边形的判定.【分析】A、B、D,都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形.【解答】解:根据平行四边形的判定:A、B、D可判定为平行四边形,而C不具备平行四边形的条件,故选:C.9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.8【考点】LB:矩形的性质.【分析】只要证明△AOB是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=2,∴AC=2OA=4,故选B.10.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=48【考点】L8:菱形的性质.【分析】画出几何图形,利用菱形的面积等于对角线乘积的一半即可得到此菱形的面积,根据菱形的性质得AC⊥BD,AO=OC=4,OB=OD=3,然后根据勾股定理计算AB即可.【解答】解:如图,菱形ABCD的对角线AC=8,BD=6,菱形的面积=•AC•BD=×8×6=24,∵四边形ABCD为菱形,∴AC⊥BD,AO=OC=4,OB=OD=3,在Rt△AOB中,AB===5,即菱形的边长为5.∴a=5,S=24,故选A.11.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.18【考点】KP:直角三角形斜边上的中线;KH:等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.12.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.【考点】E6:函数的图象.【分析】在江边休息10分钟后,应是一段平行与x轴的线段,B是10分钟,而A是20分钟,依此即可作出判断.【解答】解:根据题意,从20分钟到30分钟在江边休息,离家距离没有变化,是一条平行于x轴的线段.故选B.二、填空题(共6小题,每小题3分,满分18分)13.当x≥2时,有意义.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得3x﹣6≥0,再解不等式即可.【解答】解:由题意得:3x﹣6≥0,解得:x≥2,故答案为:≥2.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是2.【考点】W7:方差;W1:算术平均数.【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…x n的平均数为,=(x1+x2+…+x n),则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=2cm.【考点】L5:平行四边形的性质.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=4cm,∵BC=AD=6cm,∴EC=BC﹣BE=2cm,故答案为:2.16.直线y=﹣3x+5向下平移6个单位得到直线y=﹣3x﹣1.【考点】F9:一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,y=﹣3x+5向下平移6个单位,所得直线解析式是:y=﹣3x+5﹣6,即y=﹣3x﹣1.故答案为:y=﹣3x﹣1.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为5.【考点】KQ:勾股定理;KP:直角三角形斜边上的中线.【分析】根据勾股定理求得斜边的长,从而不难求得斜边上和中线的长.【解答】解:∵直角三角形两条直角边分别是6、8,∴斜边长为10,∴斜边上的中线长为5.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是m <8.【考点】F5:一次函数的性质.【分析】先根据一次函数的增减性判断出(m﹣8)的符号,再求出m的取值范围即可.【解答】解:∵一次函数y=(m﹣8)x+5中,若y的值随x值的增大而减小,∴m﹣8<0,∴m<8.故答案为:m<8.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.【考点】2C:实数的运算;6E:零指数幂.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017=3﹣2﹣×1﹣1=﹣﹣1=﹣120.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE ≌△CDF即可推出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF,∴AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?【考点】VC:条形统计图;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)用2册的人数除以其所占百分比可得;(2)总人数减去其余各项目人数可得答案;(3)根据中位数和众数定义求解可得.【解答】解:(1)15÷30%=50,答:该班有学生50人;(2)捐4册的人数为50﹣(10+15+7+5)=13,补全图形如下:(3)八(1)班全体同学所捐图书的中位数=3(本),众数为2本.22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.【考点】L8:菱形的性质;JA:平行线的性质.【分析】(1)猜想:四边形CEDO是矩形;(2)根据平行四边形的判定推出四边形是平行四边形,根据菱形性质求出∠DOC=90°,根据矩形的判定推出即可;【解答】(1)解:猜想:四边形CEDO是矩形.(2)证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形OCED是矩形.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?【考点】FH:一次函数的应用.【分析】把x=60,y=5代入里待定系数法求解即可得到解析式,再把x=84代入求解即可;令y=0,即可求得旅客最多可免费携带30千克行李.【解答】解:(1)将x=60,y=5代入了y=kx﹣5中,解得,∴一次函数的表达式为,将x=84代入中,解得y=9,∴京京该交行李费9元;(2)令y=0,即,解得,解得x=30,∴旅客最多可免费携带30千克行李.答:京京该交行李费9元,旅客最多可免费携带30千克行李.24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.【考点】FH:一次函数的应用.【分析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;(2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解.=60(千米/时).【解答】解:(1)根据图象信息:货车的速度V货=∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5).。
浙教版2018-2019学年八年级数学下册期末检测题含答案解析
- 1 - 浙教版2018-2019学年八年级数学下册期末检测题(时
间:100分钟 满分:120分)
一、精心选一选(每小题3分,共30分)
1.下列四个图形分别是四届国际数学家大会的会标:
其中属于中心对称图形的有( B )
A .1个
B .2个
C .3个
D .4个
2.下列计算错误的是( D )
A .14×7=7 2
B .60÷30= 2
C .9a +25a =8a
D .32-2=3
3.多边形的每个内角都等于150°,则从此多边形的一个顶点出发可作的对角线共有( B )
A .8条
B .9条
C .10条
D .11条
4.顺次连结矩形ABCD 各边的中点,所得四边形必定是( D )
A .邻边不等的平行四边形
B .矩形
C .正方形
D .菱形
5.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18 ℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度
y (℃)随时间x (小时)变化的函数图象,其中BC 段是双曲线y =k x
(k ≠0)的一部分,则当x =16时,大棚内的温度约为( C )
A .18 ℃
B .15.5 ℃
C .13.5 ℃
D .12 ℃
第5题图 第9题图 第10题图
6.已知四边形ABCD ,下列说法正确的是( B )
A .当AD =BC ,A
B ∥D
C 时,四边形ABC
D 是平行四边形
B .当AD =B
C ,AB =DC 时,四边形ABC
D 是平行四边形。
2018-2019学年浙教版八年级数学下学期期末测试卷(含答案)
2018-2019学年八年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.下列属于最简二次根式的是()A.B.C.D.2.下列方程是一元二次方程的是()A.x﹣3=2x B.x2﹣2=0 C.x2﹣2y=1 D.3.如图在平行四边形中,∠B+∠D=100°,则∠B等于()A.50°B.65°C.100°D.130°4.阿克苏冰糖心苹果享誉全国,具有果面光滑细腻、果肉细腻、果核透明等特点,五个苹果的质量(单位:g)分别为:180,200,210,180,190,则这五个苹果质量的中位数和众数分别为()A.200和180 B.200和190 C.180和180 D.190和180 5.用反证法证明,“在△ABC中,∠A、∠B对边是a、b,若∠A>∠B,则a>b.”第一步应假设()A.a<b B.a=b C.a≤b D.a≥b6.反比例函数的图象如图所示,则k的值可能是()A.﹣1 B.C.1 D.27.某商店四月份的利润为6.3万元,此后两个月进入淡季,利润均以相同的百分比下降,至六月份利润为5.4万元.设下降的百分比为x,由题意列出方程正确的是()A.5.4(1+x)2=6.3 B.5.4(1﹣x)2=6.3C.6.3(1+x)2=5.4 D.6.3(1﹣x)2=5.48.函数y=6﹣x与函数y=(x>0)的图象交于A、B两点,设点A的坐标为(x1,y1),则边长分别为x1、y1的矩形面积和周长分别为()A.4,12 B.4,6 C.8,12 D.8,69.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4 B.C.D.510.如图,将三角形纸片△ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,下列结论中,一定正确的个数是()①△BDF是等腰三角形;②DE=BC;③四边形ADFE是菱形;④∠BDF+∠FEC=2∠A.A.1 B.2 C.3 D.4二、填空题(本题有6小题,每小题4分,共24分)11.若二次根式有意义,则x的取值范围是.12.反比例函数y=﹣的图象位于第象限.13.如图,一束平行太阳光照射到每个内角都相等的五边形上,若∠1=44°,则∠2=.14.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A,O,B的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个中心对称图形,请写出棋子P 的位置坐标(写出1个即可).15.如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G,若G是CD的中点,GE=5,则FO的长是.16.如图,边长为2的正方形OABC顶点O与坐标原点O重合,边OA、OC分别与x、y正半轴重合,在x轴上取点P(﹣2,0),将正方形OABC绕点O逆时针旋转a°(0°<a<180°),得到正方形OA′B′C′,在旋转过程中,使得以P,A′,B′为顶点的三角形是等腰三角形时,点A′的坐标是.三、解答题(本题共8个小题,共66分)17.计算:(1)(﹣)2﹣+(2)18.解下列方程:(1)x2+3x=0(2)x2﹣4x+1=019.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.求证:四边形AECF是平行四边形.20.在如图所示的4×4的网格中,每个小正方形的边长都为1,点A在格点(小正方形的顶点)上,试在各网格中画出各顶点在格点上,有一边长为,且分别符合以下条件的图形.21.文明交通是金华创建全国文明城市重要窗口,是城市文明程度的最直观体现,市区也正式吹响了交通文明整治行动的号角.八(3)班为了参加学校举行的“文明出行”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“文明出行”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图,解答下列问题:(1)八(3)班甲、乙两组共有名学生参加模拟竞赛?并将条形统计图补充完整.2=1.5,请通过计算(2)已求得甲组成绩优秀人数的平均数=7,S说明,哪组成绩优秀的人数较稳定?22.研学旅行继承和发展了我国传统游学、“读万卷书,行万里路”的教育理念和人文精神,成为素质教育的新内容和新方式.某校八(1)班组织学生进行“一日研学”活动,某旅行社推出了如下收费标准:如果人数不超过30人,人均旅游费用为100元;如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.(1)当参加人数25人时,人均旅游费用元;当参加人数40人时,人均旅游费用元;(2)已知该班实际人数超过30人,共支付给旅行社3150元.问:共有多少名同学参加了研学活动?23.在直角坐标系xOy中,矩形ABCD的顶点A、B在x轴上,矩形ABCD的相邻两边长之比2:1,顶点C在反比例函数y=(k>0)的图象上.(1)当点A与原点重合,且矩形ABCD的面积为2时,求反比例函数的解析式;(2)当A点坐标为(1,0)时,点C在反比例函数y=图象上,且AB>BC 时,求矩形ABCD边AB的长;(3)当A点坐标为(5,0)时,在反比例函数y=图象上,符合题意的矩形ABCD有个.24.(12分)将一个含30°、60°、90°角的直角三角形纸片EFO放置在平面直角坐标系中,点E(5,0),点F(0,),点O(0,0),直线OP【解析式为y=kx(k>0)】与线段EF交于点P,沿着OP折叠该纸片,得点E的对应点B.(1)如图①,当点B在第一象限,且满足BF⊥OF时,求△OBF的面积;(2)如图②,当直线OP与x轴夹角为30°(即∠POE=30°)时,求出OP 和BF的长;(3)当对称点B坐标是(3,4)时,此时y轴上有一动点A,以AB为边作正方形ABCD或以AB为对角线构造正方形ACBD.当正方形的顶点C(或D)落在x轴上时,请求出另一顶点D(或C)的坐标.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.【解答】解:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.2.【解答】A、x﹣3=2x是一元一次方程,故此选项错误;B、x2﹣2=0是一元二次方程,故此选项正确;C、x2﹣2y=1是二元二次方程,故此选项错误;D、+1=2x,是分式方程,故此选项错误.故选:B.3.【解答】解:▱ABCD中,∠B=∠D,∵∠B+∠D=100°,∴∠B=×100°=50°,故选:A.4.【解答】解:将这5个苹果质量从小到大重新排列为:180、180、190、200、210,所以这五个苹果质量的中位数为190kg、众数为180kg,故选:D.5.【解答】解:根据反证法的步骤,得第一步应假设a>b不成立,即a≤b.故选:C.6.【解答】解:∵反比例函数在第一象限,∴k>0,∵当图象上的点的横坐标为1时,纵坐标小于1,∴k<1,故选:B.7.【解答】解:由题意得,5月份的利润为:6.3(1﹣x),6月份的利润为:6.3(1﹣x)(1﹣x),故可得方程:6.3(1﹣x)2=5.4.故选:D.8.【解答】解:∵点A(x1,y1)在函数y=上,∴x1y1=4,矩形面积=|x1×y1|=4,∵点A(x1,y1)在函数y=6﹣x上,∴x1+y1=6,∴矩形周长=2(x1+y1)=12.故选:A.9.【解答】解:连接BD,交AC于O点,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴AC⊥BD,AO=AC,BD=2BO,∴∠AOB=90°,∵AC=6,∴AO=3,∴B0==4,∴DB=8,∴菱形ABCD的面积是×AC•DB=×6×8=24,∴BC•AE=24,AE=,故选:C.10.【解答】解:①∵DE∥BC,∴∠ADE=∠B,∠EDF=∠BFD,又∵△ADE≌△FDE,∴∠ADE=∠EDF,AD=FD,AE=CE,∴∠B=∠BFD,∴△BDF是等腰三角形,故①正确;同理可证,△CEF是等腰三角形,∴BD=FD=AD,CE=FE=AE,∴DE是△ABC的中位线,∴DE=BC,故②正确;∵∠B=∠BFD,∠C=∠CFE,又∵∠A+∠B+∠C=180°,∠B+∠BFD+∠BDF=180°,∠C+∠CFE+∠CEF=180°,∴∠BDF+∠FEC=2∠A,故④正确.而无法证明四边形ADFE是菱形,故③错误.所以一定正确的结论个数有3个,故选:C.二、填空题(本题有6小题,每小题4分,共24分)11.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.12.【解答】解:反比例函数y=﹣的k=﹣15<0,∴反比例函数y=﹣的图象位于第二四象限,故答案为:二四.13.【解答】解:∵AB∥CD,∴∠1=∠3=44°,∵∠4=180°﹣=108°,∴∠2=180°﹣108°﹣44°=28°,故答案为:28°.14.【解答】解:如图所示:点P(0,1)答案不唯一.故答案为:(0,1).15.【解答】解:∵矩形ABCD,AB=8,AE=4,∴∠A=90°,∴BE=,∵BE的垂直平分线交BC的延长线于点F,∴EO=,∵G是CD的中点,∴DG=GC,在△EDG与△FCG中,∴△EDG≌△FCG,∴EG=GF=5,∴EF=10,∴在Rt△EFO中,OF=.故答案为:416.【解答】解:有四种情形:①如图1中,当PB′=PA′时,连接PC′.易证△POC′是等边三角形,∴∠POA′=150°,∠A′OA=30°,∵OA′=2,∴A′(,1).②如图2中,当A′与C重合时,△PA′B′是等腰三角形,此时A′(0,2)③如图3中,当PA′=A′B′时,△A′OP是等边三角形,∴∠A′OP=60°,∴A′(﹣1,).④如图4中,当PA′=PB′时,易证△POC′是等边三角形,∴∠POC′=60°,∵∠A′OC′=90°,∴∠A′OP=30°,∵OA′=2,∴A′(﹣,1),综上所述,满足条件的点A′坐标为(,1)或(0,2)或(﹣1,)或(﹣,1).故答案为(,1)或(0,2)或(﹣1,)或(﹣,1).三、解答题(本题共8个小题,共66分)17.【解答】解:(1)原式=6﹣5+3=4;(2)原式=﹣2=2﹣6=﹣4.18.【解答】解:(1)分解因式得:x(x+3)=0,可得x=0或x+3=0,解得:x1=0,x2=﹣3;(2)方程整理得:x2﹣4x=﹣1,配方得:x2﹣4x+4=3,即(x﹣2)2=3,开方得:x﹣2=±,则x1=2+,x2=2﹣.19.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形.20.【解答】解:如图所示:21.【解答】解:(1)总人数:(5+6)÷55%=20(人),第四次乙组的优秀人数为:20×85%﹣8=17﹣8=9(人).补全条形统计图,如图所示:(2)=(6+8+5+9)÷4=7,S2=×[(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2]=2.5,乙组S2<S2乙组,甲组所以甲组成绩优秀的人数较稳定.22.【解答】解:(1)当参加人数25人时,人均旅游费用100元;当参加人数40人时,人均旅游费用100﹣2(40﹣30)=80元;故答案为:100,80.(2)设共有x名同学参加了研学活动,根据题意,得:x[100﹣2(x﹣30)]=3150,整理,得:x2﹣80x+1575=0,解得:x1=35,x2=45,∵100﹣2(x﹣30)≥80,∴x≤40,∴x=35,答:共有35名同学参加了研学活动.23.【解答】解:(1)设点C的坐标为(m,),∵四边形ABCD是矩形,点A与原点重合,∴AB=|m|,BC=||,∵矩形ABCD的面积为2,∴AB×BC=2,∴|m|×||=2,∴|k|=2,∵k>0,∴k=2;(2)∵点C在反比例函数y=图象上,∴设C(n,),∴B(n,0),BC=||,∵A(1,0),∴AB=|n﹣1|,∵AB>BC,矩形ABCD的相邻两边长之比2:1,∴|n﹣1|=2||,∴|n2﹣n|=6,∴n=3或n=﹣2,∴AB=2;(3)∵点C在反比例函数y=图象上,∴设C(n,),∴B(n,0),BC=||,∵A(5,0),∴AB=|n﹣5|,∵矩形ABCD的相邻两边长之比2:1,∴|n﹣5|=2||或||=2|n﹣5|,①当|n﹣5|=2||,∴|n2﹣5n|=6,∴Ⅰ、n2﹣5n+6=0,∴n=2或n=3,Ⅱ、n2﹣5n﹣6=0,∴n=6或n=﹣1,②当||=2|n﹣5|时,∴2|n2﹣5n|=3,∴Ⅰ、2n2﹣10n+3=0,∴n=Ⅱ、2n2﹣10n﹣3=0,∴n=,∴符合题意的矩形ABCD有8个,故答案为:8.24.【解答】解:(1)如图①中,∵E(5,0),点F(0,),∴OE=5,OF=,由翻折不变性可知:OB=OE=5,在Rt△OBF中BF===,∴S△OBF=××=.(2)如图②中,由复杂不变性可知,∠POE=∠POB=∠FOB=30°,∵tan∠FEO=,∴∠FEO=30°,EF=2OF=,∴∠POE=∠PEO=30°,∴PO=PE,∵∠POF=∠PFO=60°,∴△POF是等边三角形,∴OP=OF=PF=PE=,∵∠OPB=∠OPE=120°,∴∠POF+∠OPB=180°,∴OF∥PB,OF=PE=PB,∴四边形OPBF是平行四边形,∵OP=OF,∴四边形OPBF是菱形,∴BF=OF=.(3)如图③中,当点D落在x轴上时,作BE⊥y轴于E.∵∠AOD=∠AEB=∠BAD=90°,∴∠BAE+∠ABE=90°,∠BAE+∠OAD=90°,∴∠OAD=∠ABE,∵AD=AB,∴△OAD≌△EBA,∴BE=OA=3,AE=OD=1,∴D(1,0),此时C(4,1)如图④中当点D落在x轴的负半轴上时,作BE⊥y轴于E,同法可证:OA=BE=3,AE=DO=3+4=7,∴D(﹣7,0),此时C(﹣4,10).如图⑤中,当AB为对角线,点D在x轴上时,作BE⊥x轴于E,由△DEB≌△AOD,可得OD=BE=4,∴D(﹣4,0),此时C(7,﹣3).如图⑥中,当AB为对角线时,点C在x轴上时,同法可得C(4,0),此时D (﹣1,3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年浙江省绍兴市诸暨市八年级(下)期末数学试卷一、选择题(本大题有10小题,每小题3分,共30分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(3分)若二次根式有意义,则x的取值范围是()A.x<4 B.x>4 C.x≥4 D.x≤42.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分4.(3分)若关于x的一元二次方程x2﹣3x+m=0有解,则m的值可为()A.2 B.3 C.4 D.55.(3分)下列各式中计算正确的是()A.+=B.=C.D.(+)2=3+2=56.(3分)已知:如图,M是正方形ABCD内的一点,且MC=MD=AD,则∠AMB的度数为()A.120°B.135°C.145°D.150°7.(3分)下图入口处进入,最后到达的是()A.甲B.乙C.丙D.丁8.(3分)如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2.若设AD=xm,则可列方程()A.(50﹣)x=900 B.(60﹣x)x=900C.(50﹣x)x=900 D.(40﹣x)x=9009.(3分)如图1是由5个全等的边长为1的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是5的大正方形,则()A.甲、乙都可以B.甲可以,乙不可以C.甲不可以,乙可以D.甲、乙都不可以10.(3分)已知:如图,在菱形OABC中,OC=8,∠AOC=60°,OA落在x轴正半轴上,点D是OC边上的一点(不与端点O,C重合),过点D作DE⊥AB于点E,若点D,E 都在反比例函数y=(x>0)图象上,则k的值为()A.8B.9 C.9 D.16二、填空题(本大题有10小题,每小题3分,共30分)11.(3分)计算=.12.(3分)在反比例函数的图象每一条曲线上,y都随x的增大而减小,则m的取值范围是.13.(3分)用反证法证明“若|a|<2,则a2<4”时,应假设.14.(3分)甲,乙,丙,丁四人参加射击测试,每人10次射击的平均环数都为8.9环,各自的方差见如下表格甲乙丙丁方差0.2930.3750.3620.398则四个人中成绩最稳定的是.15.(3分)一个多边形的每个内角都等于150°,则这个多边形是边形.16.(3分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60,∠BAC=80°,则∠1的度数为.17.(3分)三角形的两边长为2和4,第三边长是方程x2﹣6x+8=0的根,则这个三角形的周长是.18.(3分)为预防传染病,某校定期对教室进行“药熏消毒”,已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为6mg.研究表明当每立方米空气中含药量低于1.2mg时,对人体方能无毒害作用,那么从消毒开始,至少需要经过分钟后,学生才能回到教室.19.(3分)如图,在矩形ABCD内放入四个小正方形和两个小长方形后成中心对称图形,其中顶点E,F分别在边AD,BC上,小长方形的长与宽的比值为4,则的值为.20.(3分)在矩形ABCD中,AB=3,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点B的对应点为点F.(1)若点F恰好落在AD边上,则AD=.(2)延长AF交直线CD于点P,已知=,则AD=.三、解答题(本大题有5小题,第21小题6分,第22~24小题8分,第25小题10分,共40分.解答需写出必要的文字说明、演算步骤或证明过程)21.(6分)(1)计算:(2﹣)(2+)﹣()2.(2)解方程:x2﹣4x+1=0.22.(8分)某中学开展的“好书伴我成长”读书活动中,为了解七年级600名学生读书情况,随机调查了七年级50名学生读书的册数,统计数据如下表所示:册数01234人数31316171(1)这50个样本数据的众数为、中位数为;(2)求这50个样本数据的平均数;(3)根据样本数据,估计该校七年级600名学生在本次活动中读书多于2册的人数.23.(8分)如图,矩形ABCD中,点E、F分别在边CD、AB上,且DE=BF.(1)求证:四边形AFCE是平行四边形.(2)若四边形AFCE是菱形,AB=8,AD=4,求菱形AFCE的周长.24.(8分)如图,平面直角坐标系xOy中,函数y=(x<0)的图象经过点A(﹣1,6),直线y=mx﹣2与x轴交于点B(﹣1,0).(1)求k,m的值.(2)点P是直线y=﹣2x位于第二象限上的一个动点,过点P作平行于x轴的直线,交直线y=mx﹣2于点C,交函数y=(x<0)的图象于点D,设P(n,﹣2n).①当n=﹣1时,判断线段PD与PC的数量关系,并说明理由②当PD≥2PC时,结合函数的图象,直接写出n的取值范围.25.(10分)如图,以矩形OABC的顶点O为坐标原点,OA所在直线为x轴,OC所在直线为y轴,建立平面直角坐标系,已知OA=8,OC=10,将矩形OABC绕点O逆时针方向旋转α(0<α<180°)得到矩形ODEF.(1)当点E恰好落在y轴上时,如图1,求点E的坐标.(2)连结AC,当点D恰好落在对角线AC上时,如图2,连结EC,EO,①求证:△ECD≌△ODC;②求点E的坐标.(3)在旋转过程中,点M是直线OD与直线BC的交点,点N是直线EF与直线BC的交点,若BM=BN,请直接写出点N的坐标.2018-2019学年浙江省绍兴市诸暨市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题3分,共30分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(3分)若二次根式有意义,则x的取值范围是()A.x<4 B.x>4 C.x≥4 D.x≤4【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣4≥0,解得x≥4.故选:C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分【分析】将数据重新排列后,根据中位数的定义求解可得.【解答】解:将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C.【点评】本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.(3分)若关于x的一元二次方程x2﹣3x+m=0有解,则m的值可为()A.2 B.3 C.4 D.5【分析】根据判别式的意义得到△=(﹣3)2﹣4m≥0,然后解不等式求出m的范围后对各选项进行判断.【解答】解:根据题意得:△=(﹣3)2﹣4m≥0,解得m≤.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.5.(3分)下列各式中计算正确的是()A.+=B.=C.D.(+)2=3+2=5【分析】根据二次根式的加减法对A进行判断;根据二次根式的性质对B、C进行判断;利用完全平方公式对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=,所以B选项正确;C、原式==5,所以C选项错误;D、原式=3+2+2=5+2,所以D选项错误.故选:B.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.(3分)已知:如图,M是正方形ABCD内的一点,且MC=MD=AD,则∠AMB的度数为()A.120°B.135°C.145°D.150°【分析】利用等边三角形和正方形的性质求得∠ADM=30°,然后利用等腰三角形的性质求得∠MAD的度数,从而求得∠BAM=∠ABM的度数,利用三角形的内角和求得∠AMB的度数.【解答】解:∵MC=MD=AD=CD,∴△MDC是等边三角形,∴∠MDC=∠DMC=∠MCD=60°,∵∠ADC=∠BCD=90°,∴∠ADM=30°,∴∠MAD=∠AMD=75°,∴∠BAM=15°,同理可得∠ABM=15°,∴∠AMB=180°﹣15°﹣15°=150°,故选:D.【点评】本题考查了正方形的性质及等边三角形的性质,解题的关键是根据等腰三角形的性质求得有关角的度数,难度不大.7.(3分)下图入口处进入,最后到达的是()A.甲B.乙C.丙D.丁【分析】利用平行四边形的判定和菱形的判定可求解;【解答】解:∵一组对边平行,另一组对边相等的四边形不一定是平行四边形;对角线互相垂直的四边形不一定是菱形;∴最后到达的是丁故选:D.【点评】本题考查了菱形的判定,平行四边形的判定,熟练运用这些判定是本题的关键.8.(3分)如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2.若设AD=xm,则可列方程()A.(50﹣)x=900 B.(60﹣x)x=900C.(50﹣x)x=900 D.(40﹣x)x=900【分析】设AD=xm,则AB=(60﹣x)m,根据矩形面积公式列出方程.【解答】解:设AD=xm,则AB=(60﹣x)m,由题意,得(60﹣x)x=900.故选:B.【点评】考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.(3分)如图1是由5个全等的边长为1的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是5的大正方形,则()A.甲、乙都可以B.甲可以,乙不可以C.甲不可以,乙可以D.甲、乙都不可以【分析】直接利用图形的剪拼方法结合正方形的性质分别分析得出答案.【解答】解:如图所示:可得甲、乙都可以拼一个面积是5的大正方形.故选:A.【点评】此题主要考查了图形的剪拼以及正方形的性质,正确应用正方形的性质是解题关键.10.(3分)已知:如图,在菱形OABC中,OC=8,∠AOC=60°,OA落在x轴正半轴上,点D是OC边上的一点(不与端点O,C重合),过点D作DE⊥AB于点E,若点D,E 都在反比例函数y=(x>0)图象上,则k的值为()A.8B.9 C.9 D.16【分析】过D作DH∥BC,交AB于H,根据菱形的性质得出四边形BCDH是平行四边形,DH=BC=8,∠DHE=∠B=60°,解直角三角形求得DE,作DM⊥x轴于M,过E点作EN⊥DM于N,解直角三角形求得DN,EN,设D(x,x),则E(x+6,x ﹣2),根据反比例函数系数k的几何意义得出k=x=(x+6)(x﹣2),解得x=3,从而求得k的值.【解答】解:过D作DH∥BC,交AB于H,∵在菱形OABC中,OC=8,∠AOC=60°,∴OA∥BC,OC∥AB,BC=OC=8,∠B=∠AOC=60°,∴∠DHE=∠B=60°,四边形BCDH是平行四边形,∴DH=BC=8,∵DE⊥AB于点E,∴DE=DH•sin60°=4,作DM⊥x轴于M,过E点作EN⊥DM于N,∵OC∥AB,DE⊥AB,∴E⊥OC,∴∠ODM+∠NDE=90°,∵∠DOM+∠ODM=90°,∴∠NDE=∠DOM=60°,∴DM=OM,DN=DE=2,NE=DE=6,设D(x,x),则E(x+6,x﹣2),∵点D,E都在反比例函数y=(x>0)图象上,∴k=x=(x+6)(x﹣2),解得x=3,∴D(3,3),∴k=3×3=9.故选:C.【点评】本题考查了反比例函数系数k的几何意义,菱形的性质,解直角三角形等,求得D点的坐标是解题的关键.二、填空题(本大题有10小题,每小题3分,共30分)11.(3分)计算=2.【分析】先求﹣2的平方,再求它的算术平方根,进而得出答案.【解答】解:==2,故答案为:2.【点评】本题考查了二次根式的性质与化简,注意算术平方根的求法,是解此题的关键.12.(3分)在反比例函数的图象每一条曲线上,y都随x的增大而减小,则m的取值范围是m>2.【分析】根据反比例函数的性质得到m﹣2>0,然后解不等式即可.【解答】解:∵在反比例函数的图象每一条曲线上,y都随x的增大而减小,∴m﹣2>0,∴m>2.故答案为m>2.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.13.(3分)用反证法证明“若|a|<2,则a2<4”时,应假设a2≥4.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【解答】解:用反证法证明“若|a|<2,则a2<4”时,应假设a2≥4.故答案为:a2≥4.【点评】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.14.(3分)甲,乙,丙,丁四人参加射击测试,每人10次射击的平均环数都为8.9环,各自的方差见如下表格甲乙丙丁方差0.2930.3750.3620.398则四个人中成绩最稳定的是甲.【分析】根据方差的意义:方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.【解答】解:∵0.293<0.362<0.375<0.398,∴四个人中成绩最稳定的是甲.故答案为:甲.【点评】此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(3分)一个多边形的每个内角都等于150°,则这个多边形是12边形.【分析】根据多边形的内角和定理:180°•(n﹣2)求解即可.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.【点评】主要考查了多边形的内角和定理.n边形的内角和为:180°•(n﹣2).此类题型直接根据内角和公式计算可得.16.(3分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60,∠BAC=80°,则∠1的度数为40°.【分析】直接利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案.【解答】解:∵∠ABC=60°,∠BAC=80°,∴∠BCA=180°﹣60°﹣80°=40°,∵对角线AC与BD相交于点O,E是边CD的中点,∴EO是△DBC的中位线,∴EO∥BC,∴∠1=∠ACB=40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是△DBC的中位线是解题关键.17.(3分)三角形的两边长为2和4,第三边长是方程x2﹣6x+8=0的根,则这个三角形的周长是10.【分析】先解方程求得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣6x+8=0得第三边的边长为2或4.∵2<第三边的边长<6,∴第三边的边长为4,∴这个三角形的周长是2+4+4=10.故答案为10.【点评】本题考查了一元二次方程的解法和三角形的三边关系定理.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.18.(3分)为预防传染病,某校定期对教室进行“药熏消毒”,已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为6mg.研究表明当每立方米空气中含药量低于1.2mg时,对人体方能无毒害作用,那么从消毒开始,至少需要经过50分钟后,学生才能回到教室.【分析】先求得反比例函数的解析式,然后把y=1.2代入反比例函数解析式,求出相应的x即可;【解答】解:设药物燃烧后y与x之间的解析式y=,把点(10,6)代入得6=,解得k=60,∴y关于x的函数式为:y=;当y=1.2时,由y=;得x=50,所以50分钟后学生才可进入教室;故答案为:50.【点评】本题考查了一次函数与反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.19.(3分)如图,在矩形ABCD内放入四个小正方形和两个小长方形后成中心对称图形,其中顶点E,F分别在边AD,BC上,小长方形的长与宽的比值为4,则的值为.【分析】连结EF,作MN⊥HN于N,根据中心对称图形的定义和相似三角形的性质可得两直角边的比是2:1,进一步得到长AD与宽AB的比即可.【解答】解:连结EF,作MN⊥HN于N,∵在矩形ABCD内放入四个小正方形和两个小长方形后成中心对称图形,∴△MNH∽△FME,△MNH≌△HKE≌△ESP,∴==,∴长AD与宽AB的比为(4+2+1+2):(2+1+1)=9:4,即=,故答案为:.【点评】此题考查了中心对称图形、相似三角形的性质、全等三角形的性质、矩形的性质、正方形的性质等知识,关键是理解直角三角形两直角边的比是2:1.20.(3分)在矩形ABCD中,AB=3,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点B的对应点为点F.(1)若点F恰好落在AD边上,则AD=6.(2)延长AF交直线CD于点P,已知=,则AD=4或4+.【分析】(1)由矩形的性质得出AD∥BC,AD=BC,由折叠的性质得出∠BAE=∠F AE,由平行线的性质得出∠F AE=∠BEA,推出∠BAE=∠BEA,得出AB=BE,即可得出结果;(2)①当点F在矩形ABCD内时,连接EP,由折叠的性质得出BE=EF,∠B=∠AFE =90°,AB=AF,由矩形的性质和E是BC的中点,得出AB=CD=6,BE=CE=EF,∠C=∠EFP=90°,由HL证得Rt△EFP≌Rt△ECP,得出FP=CP,由=,得出CP=FP=4,PD=2,AP=10,由勾股定理即可求出AD;②当点F在矩形ABCD外时,连接EP,由折叠的性质得出BE=EF,∠B=∠AFE=90°,AB=AF,由矩形的性质和E是BC的中点,得出AB=CD=6,BE=CE=EF,∠C=∠EFP=90°,由HL证得Rt△EFP≌Rt△ECP,得出EC=PF=BC=AD,由=,得出PD=2,由勾股定理得出:AP2﹣PD2=AD2,即(6+AD)2﹣4=AD2,即可求出AD.【解答】解:(1)∵四边形ABCD是矩形,∴AD∥BC,AD=BC,由折叠的性质可知,∠BAE=∠F AE,如图1所示:∵AD∥BC,∴∠F AE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,∵E是BC的中点,∴BC=2AB=6,∴AD=6,故答案为:6;(2)①当点F在矩形ABCD内时,连接EP,如图2所示:由折叠的性质可知,BE=EF,∠B=∠AFE=90°,AB=AF,∵四边形ABCD是矩形,E是BC的中点,∴AB=CD=6,BE=CE=EF,∠C=∠EFP=90°,在Rt△EFP和Rt△ECP中,,∴Rt△EFP≌Rt△ECP(HL),∴FP=CP,∵=,∴CP=FP=4,PD=2,AP=AF+FP=6+4=10,∴AD===4;②当点F在矩形ABCD外时,连接EP,如图3所示:由折叠的性质可知,BE=EF,∠B=∠AFE=90°,AB=AF=6,∵四边形ABCD是矩形,E是BC的中点,∴AB=CD=6,BE=CE=EF,∠C=∠EFP=90°,在Rt△EFP和Rt△ECP中,,∴Rt△EFP≌Rt△ECP(HL),∴EC=PF=BC=AD,∵=,∴PD=2,∴AP2﹣PD2=AD2,即:(AF+PF)2﹣22=AD2,(6+AD)2﹣4=AD2,解得:AD1=4+,AD2=4﹣(不合题意舍去),综上所述,AD=4或4+,故答案为:4或4+.【点评】本题考查了折叠的性质、矩形的性质、平行线的性质、勾股定理、全等三角形的判定与性质等知识,熟练掌握折叠的性质、证明三角形全等并运用勾股定理得出方程是解题的关键.三、解答题(本大题有5小题,第21小题6分,第22~24小题8分,第25小题10分,共40分.解答需写出必要的文字说明、演算步骤或证明过程)21.(6分)(1)计算:(2﹣)(2+)﹣()2.(2)解方程:x2﹣4x+1=0.【分析】(1)先利用平方差和乘方计算,再计算加减可得;(2)根据配方法的步骤求解可得.【解答】解:(1)原式=4﹣3﹣5=﹣4;(2)∵x2﹣4x+1=0,∴x2﹣4x=﹣1,则x2﹣4x+4=﹣1+4,即(x﹣2)2=3,∴x﹣2=±,∴x=2±,即x1=2+,x2=2﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.22.(8分)某中学开展的“好书伴我成长”读书活动中,为了解七年级600名学生读书情况,随机调查了七年级50名学生读书的册数,统计数据如下表所示:册数01234人数31316171(1)这50个样本数据的众数为3、中位数为2;(2)求这50个样本数据的平均数;(3)根据样本数据,估计该校七年级600名学生在本次活动中读书多于2册的人数.【分析】(1)根据众数、中位数的概念求解;(2)根据平均数的概念求解;(3)根据样本数据,估计本次活动中读书多于2册的人数.【解答】解:(1)由题意得,读书册数为3的人数最多,即众数为3,第25人和第26人读数厕所的平均值为中位数,及中位数为:=2,故答案为:3,2;(2)平均数为:=2,即这50个样本数据的平均数为2;(3)600×=216(人).答:估计七年级读书多于2册的有216人.【点评】本题考查了众数、中位数、平均数的知识,掌握各知识点的概念是解答本题的关键.23.(8分)如图,矩形ABCD中,点E、F分别在边CD、AB上,且DE=BF.(1)求证:四边形AFCE是平行四边形.(2)若四边形AFCE是菱形,AB=8,AD=4,求菱形AFCE的周长.【分析】(1)由矩形的性质得出AB∥CD,AB=CD,∠B=90°,证出AF=CE,即可得出四边形AFCE是平行四边形.(2)由菱形的性质得出AF=FC=CE=AE,BC=AD=4,设AF=CF=x,则BF=8﹣x,在Rt△BCF中,由勾股定理得出方程,解方程即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∠B=90°,∵DE=BF,∴AF=CE,∴四边形AFCE是平行四边形.(2)∵四边形AFCE是菱形,∴AF=FC=CE=AE,BC=AD=4,设AF=CF=x,则BF=8﹣x,在Rt△BCF中,由勾股定理得:(8﹣x)2+42=x2,解得:x=5,∴AF=FC=CE=AE=5,∴菱形AFCE的周长=4×5=20.【点评】此题考查了菱形的性质、矩形的性质、平行四边形的判定以及勾股定理.此题难度不大,注意掌握数形结合思想的应用.24.(8分)如图,平面直角坐标系xOy中,函数y=(x<0)的图象经过点A(﹣1,6),直线y=mx﹣2与x轴交于点B(﹣1,0).(1)求k,m的值.(2)点P是直线y=﹣2x位于第二象限上的一个动点,过点P作平行于x轴的直线,交直线y=mx﹣2于点C,交函数y=(x<0)的图象于点D,设P(n,﹣2n).①当n=﹣1时,判断线段PD与PC的数量关系,并说明理由②当PD≥2PC时,结合函数的图象,直接写出n的取值范围.【分析】(1)由点A的坐标,利用反比例函数图象上点的坐标特征可求出k值,由点B 的坐标,利用待定系数法可求出m的值;(2)①代入n=﹣1可得出点P的坐标,利用一次函数图象上点的坐标特征及反比例函数图象上点的坐标特征可得出点C,D的坐标,结合点P的坐标可得出PC=1,PD=2,进而可得出PD=2PC;②同①可得出当n=﹣3时PD=2PC,结合点P在第二象限及函数图象,可得出:当PD ≥2PC时,0<n≤﹣1或n≤﹣3.【解答】解:(1)∵函数y=(x<0)的图象经过点A(﹣1,6),∴k=﹣1×6=﹣6;将B(﹣1,0)代入y=mx﹣2,得:0=﹣m﹣2,解得:m=﹣2.(2)①PD=2PC,理由如下:当n=﹣1时,点P的坐标为(﹣1,2).当y=2时,﹣2x﹣2=2,=2,解得:x=﹣2,x=﹣3,∴点C的坐标为(﹣2,2),点D的坐标为(﹣3,2),∴PC=1,PD=2,∴PD=2PC.②当n=﹣3时,点P的坐标为(﹣3,6).当y=6时,﹣2x﹣2=6,=6,解得:x=﹣4,x=﹣1,∴点C的坐标为(﹣4,6),点D的坐标为(﹣1,6),∴PC=1,PD=2,∴PD=2PC.∵点P是直线y=﹣2x位于第二象限上的一个动点,∴当PD≥2PC时,0<n≤﹣1或n≤﹣3.【点评】本题考查了反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及两点间的距离,解题的关键是:(1)利用反比例函数图象上点的坐标特征及待定系数法,分别求出k,m的值;(2)①利用一次函数图象上点的坐标特征及反比例函数图象上点的坐标,求出点P,C,D的坐标;②利用极限值法找出当PD=2PC时n的值.25.(10分)如图,以矩形OABC的顶点O为坐标原点,OA所在直线为x轴,OC所在直线为y轴,建立平面直角坐标系,已知OA=8,OC=10,将矩形OABC绕点O逆时针方向旋转α(0<α<180°)得到矩形ODEF.(1)当点E恰好落在y轴上时,如图1,求点E的坐标.(2)连结AC,当点D恰好落在对角线AC上时,如图2,连结EC,EO,①求证:△ECD≌△ODC;②求点E的坐标.(3)在旋转过程中,点M是直线OD与直线BC的交点,点N是直线EF与直线BC的交点,若BM=BN,请直接写出点N的坐标.【分析】(1)由旋转的性质可得OF=OC=10,EF=BC=8,∠F=∠OCB=90°,由勾股定理可求OE的长,即可求点E坐标;(2)①连接BO交AC于点H,由旋转的性质可得DE=AB=OC,OE=BO,OD=OA,∠ABO=∠DEO,∠EDO=∠BAO=90°,∠BOA=∠EOD,可得∠ACO=∠DEO,可证点C,点E,点O,点D四点共圆,可得∠CED=∠COD,∠ECO=∠EDO=90°,∠EDC=∠EOD,由“AAS”可证△ECD≌△ODC;②通过证明点B,点E关于OC对称,可求点E坐标;(3)分两种情况讨论,由面积法可求OM=MN,由勾股定理可求x的值,即可求点N 坐标.【解答】解:(1)∵四边形ABCD是矩形∴OA=BC=8,OC=AB=10,∠OCB=90°∵将矩形OABC绕点O逆时针方向旋转α(0<α<180°)得到矩形ODEF.∴OF=OC=10,EF=BC=8,∠F=∠OCB=90°∴OE===2∴点E(0,)(2)①如图,连接BO交AC于点H,∵四边形ABCD是矩形∴AC=OB,AH=OH∴∠OAH=∠AOH,且∠BAO=∠COA=90°∴∠ABO=∠ACO,∵将矩形OABC绕点O逆时针方向旋转α(0<α<180°)得到矩形ODEF.∴DE=AB=OC,OE=BO,OD=OA,∠ABO=∠DEO,∠EDO=∠BAO=90°,∠BOA =∠EOD,∴∠ACO=∠DEO∴点C,点E,点O,点D四点共圆,∴∠CED=∠COD,∠ECO=∠EDO=90°,∠EDC=∠EOD,∵OD=OA∴∠OAH=∠ODA∴∠ODA=∠EOD∴AD∥OE∴∠CDE=∠OED=∠OCD,且DE=OC,∠DEC=∠COD∴△ECD≌△ODC(AAS)②∵△ECD≌△ODC∴EC=OD=OA=BC=8,∵∠ECO=90°∴∠ECO+∠BCO=180°∴点E,点C,点B共线∵EC=BC,OC⊥BC∴点B,点E关于OC对称,且B(8,10)∴点E(﹣8,10)(3)如图,当点M在点B右侧,连接ON,过点N作NG⊥OD于G,∵BM=BN,∴设BM=x,则BN=2x,MN=3x,∵NG⊥OD,∠FED=∠EDO=90°∴四边形NEDG是矩形∴NG=DE=10=AB=CO∵S△OMN=×MN×OC=×OM×NG∴OM=MN=3x,∵OC2+CM2=OM2,∴100+(x+8)2=9x2,∴x=(负值舍去)∴BN=2+∴NC=BN﹣BC=﹣6,∴点N(6﹣,10)如图,若点M在点B左侧,连接ON,过点N作NG⊥OD于G,∵BM=BN,∴设BM=x,则BN=2x,MN=x,∵NG⊥OD,∠FED=∠EDO=90°∴四边形NEDG是矩形∴NG=DE=10=AB=CO∵S△OMN=×MN×OC=×OM×NG∴OM=MN=x,∵OC2+CM2=OM2,∴100+(x﹣8)2=x2,∴x=∴BN=2×=∴NC=BN﹣BC=∴点N(﹣,10)综上所述:点N(6﹣,10),(﹣,10)。