五年级奥数全套专题系列:应用题

合集下载

五年级奥数应用题练习30题

五年级奥数应用题练习30题

五年级奥数应用题练习一(附答案)1. 甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。

问:甲、乙两班谁将获胜?2. 轮船从A城到B城需行3天,而从B城到A城需行4天。

从A城放一个无动力的木筏,它漂到B城需多少天?3. 小红和小强同时从家里出发相向而行。

小红每分走52米,小强每分走70米,二人在途中的A处相遇。

若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A 处相遇。

小红和小强两人的家相距多少米?4. 小明和小军分别从甲、乙两地同时出发,相向而行。

若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。

甲、乙两地相距多少千米?5. 甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。

相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。

求甲原来的速度。

6. 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?7. 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。

坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?8.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。

问:两人每秒各跑多少米?9.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。

问:(1)A,B相距多少米?(2)如果丙从A跑到B用24秒,那么甲的速度是多少?10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。

五年级奥数综合应用题

五年级奥数综合应用题

五年级奥数综合应用题1、两筐重量相同的梨。

甲筐取出7千克,乙筐加入19千克,这时乙筐的重量是甲筐的3倍。

两筐原来各有梨多少千克?2、一根电线长180米,将它截成三段,第一段比第二段长20米,第三段长为第一段长的2倍,则第二段的长度为多少米?3、五、一班的男生人数和女生人数同样多,抽去18名男生和26名女生参加合唱团,剩下的男生人数是女生人数的3倍。

五、一班原有男女生各多少人?4、哥哥现存的钱是弟弟的5倍,如果哥哥再存20元,弟弟再存100元。

两人的存款正好相等,哥哥原来存有多少钱?5、有两块同样长的布,第一块用去27米,第二块用去18米,结果所剩的布第二块是第一块的4倍,两块布原来各长多少米?6、甲乙两人同时从两地骑车相向而行,甲的速度每小时20千米,乙每小时行18千米,两人相遇时距中点4千米,全路程是多少千米?7、六一班同学参加学校运动会,参加田赛的有26人,参加径赛的有30人,以上的两项都参加的有12人,这两项都没参加的有4人,全班有学生多少人?8、有两块同样长的布,第一块用去32米,第二块用去20米,结果所剩的米数第二块是第一块的3倍,两块布原来有多少米?9、副食店原有的白糖比红糖多200千克,当卖出红糖50千克时,白糖比红糖的千克数正好是红糖所剩千克数的一半,原来有白糖、红糖各多少克?10、有一个长方形,如果长增加6厘米,或者宽增加4厘米,面积都比原来增加48平方厘米,求这个长方形原来面积是多少平方厘米?11、甲乙两筐水果个数一样多,从第一筐中取出31个,第二筐中取出19个后,第二筐剩下的个数是第一筐的4倍,原来两筐水果各有多少个?12、有两筐水果,甲筐水果的个数是乙筐的3倍,如果从乙筐中拿15个放进甲筐,这是甲筐的水果恰好是乙筐的5倍,原来两筐水果各有多少个水果?13、第一筐有280个桔子,第二只筐有40只桔子,每次从第一只筐取出8个放入第二只筐,去多少次后两筐桔子相等14、一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且全班没人至少参加一个队,两个队都参加的有多少人?15、甲乙两个学校共有学生1245人,如果从甲校调20人去乙校后,甲校比乙校还多5人,两校原有学生多少人?16、把200个苹果分成四堆,第一堆比第二堆的2倍多10个,第三堆如去掉15个刚好与第二堆相等,第四堆比第二堆的2倍少5个,四堆苹果各有多少个?17、A、B、C、D、E五人进行乒乓球单循环赛,比赛进行一段时间之后,对已赛果的场次作一个小统计,A赛4场,B赛3场,C赛2场,D赛1场,这时E赛了几场?到比赛结束还需要几场比赛?应用题练习11、小红有1角、5角的硬币共35枚,一共是9元5角,问两种硬币各多少枚?(两种假设)2、有鸡兔共20只,脚44只,鸡兔各几只?3、班主任张老师带五年级(2)班50名同学栽树,张老师一人载5课,男生每人栽3棵,女生每人栽2棵,总共栽树120棵,问有几名男生,几名女生?4、某玻璃杯厂要为商店运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这一个不但不给运费,而且要赔偿4元,结果运到目的地后结算时,玻璃杯厂共得运费895元,求打碎几个玻璃杯?5、小张、小李两人进行射击比赛,约定每中一发记20分,脱靶一发扣20分,两人各打了10发,共得208分,其中小张比小李多64分,问小张、小李两人各中几发。

小学五年级应用题奥数应用题100道(含答案)

小学五年级应用题奥数应用题100道(含答案)

小学五年级应用题奥数应用题100道(含答案)1. 商店有苹果300 千克,梨200 千克,梨的重量是苹果的几分之几?答案:200÷300 = 2/32. 一条公路长500 米,已经修了200 米,剩下的占全长的几分之几?答案:(500 - 200)÷500 = 3/53. 五年级一班有学生40 人,其中男生25 人,女生占全班人数的几分之几?答案:(40 - 25)÷40 = 3/84. 一本故事书240 页,小明第一天看了全书的1/6,第二天看了全书的3/8,两天一共看了多少页?答案:240×(1/6 + 3/8)= 130(页)5. 学校运来一堆沙子,砌墙用去2/5 吨,修运动场用去3/8 吨,还剩1/10 吨。

这堆沙子原有多少吨?答案:2/5 + 3/8 + 1/10 = 7/8(吨)6. 服装厂计划一个月生产衣服3600 件,上半月完成了4/9,下半月完成的与上半月同样多,这个月实际生产多少件?答案:3600×4/9×2 = 3200(件)7. 一辆汽车从甲地开往乙地,已经行了全程的3/8,离中点还有25 千米,甲乙两地相距多少千米?答案:25÷(1/2 - 3/8)= 200(千米)8. 水果店运来一批水果,其中苹果120 千克,梨比苹果多1/4,梨有多少千克?答案:120×(1 + 1/4)= 150(千克)9. 五年级同学收集树种56 千克,六年级收集的比五年级多4/7,六年级收集树种多少千克?答案:56×(1 + 4/7)= 88(千克)10. 某工厂十月份用水480 吨,比原计划节约了1/9,十月份原计划用水多少吨?答案:480÷(1 - 1/9)= 540(吨)11. 一根绳子长40 米,第一次用去15 米,第二次用去一些后,还剩下这根绳子的1/5,第二次用去多少米?答案:40 - 15 - 40×1/5 = 17(米)12. 一本书有300 页,第一天看了全书的1/5,第二天看了全书的1/6,第三天应从第几页看起?答案:300×(1/5 + 1/6)+ 1 = 111(页)13. 修一条路,第一天修了全长的1/4,第二天修了全长的1/5,第一天比第二天多修20 米,这条路全长多少米?答案:20÷(1/4 - 1/5)= 400(米)14. 食堂运来一批大米,已经吃了600 千克,正好吃了3/4,这批大米一共有多少千克?答案:600÷3/4 = 800(千克)15. 一辆汽车4 小时行了全程的2/5,照这样的速度,行完全程需要几小时?答案:4÷2/5 = 10(小时)16. 有一块长方形的地,长80 米,宽60 米,在这块地的四周每隔5 米种一棵树,一共可以种多少棵树?答案:(80 + 60)×2÷5 = 56(棵)17. 一个圆形花坛的周长是37.68 米,在它的周围铺一条2 米宽的小路,小路的面积是多少平方米?答案:花坛半径:37.68÷3.14÷2 = 6(米),外圆半径:6 + 2 = 8(米),小路面积:3.14×(8²- 6²)= 87.92(平方米)18. 一个正方体的棱长总和是96 厘米,它的表面积是多少平方厘米?答案:棱长:96÷12 = 8(厘米),表面积:8×8×6 = 384(平方厘米)19. 做一个无盖的长方体铁皮水箱,长5 分米,宽4 分米,高3 分米,至少要用多少平方分米的铁皮?答案:5×4 + 5×3×2 + 4×3×2 = 74(平方分米)20. 把一个棱长8 厘米的正方体铁块,锻造成一个长16 厘米,宽4 厘米的长方体铁块,这个长方体铁块的高是多少厘米?答案:8×8×8÷(16×4)= 8(厘米)21. 一个房间的长6 米,宽3.5 米,高3 米,门窗面积是8 平方米。

小学五年级奥数应用题及解答

小学五年级奥数应用题及解答

小学五年级奥数应用题及解答【篇二】1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7那么4小时就是行全程的4/7所以乙行一周用的时间=4/(4/7)=7小时4、甲乙两人同时从A地步行走向B地,当甲走了全程的14时,乙离B地还有640米,当甲走余下的56时,乙走完全程的710,求AB两地距离是多少米?解:甲走完1/4后余下1-1/4=3/4那么余下的5/6是3/4×5/6=5/8此时甲一共走了1/4+5/8=7/8那么甲乙的路程比=7/8:7/10=5:4所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5那么AB距离=640/(1-1/5)=800米5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。

甲车每小时行75千米,乙车行完全程需7小时。

两车开出3小时后相距15千米,A,B两地相距多少千米?解:一种情况:此时甲乙还没有相遇乙车3小时行全程的3/7甲3小时行75×3=225千米AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米一种情况:甲乙已经相遇(225-15)/(1-3/7)=210/(4/7)=367.5千米6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇?解:甲相当于比乙晚出发3+3+3=9分钟将全部路程看作单位1那么甲的速度=1/30乙的速度=1/20甲拿完东西出发时,乙已经走了1/20×9=9/20那么甲乙合走的距离1-9/20=11/20甲乙的速度和=1/20+1/30=1/12那么再有(11/20)/(1/12)=6.6分钟相遇7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?解:路程差=36×2=72千米速度差=48-36=12千米/小时乙车需要72/12=6小时追上甲8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?解:甲在相遇时实际走了36×1/2+1×2=20千米乙走了36×1/2=18千米那么甲比乙多走20-18=2千米那么相遇时用的时间=2/0.5=4小时所以甲的速度=20/4=5千米/小时乙的速度=5-0.5=4.5千米/小时9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?解:速度和=60+40=100千米/小时分两种情况,没有相遇那么需要时间=(400-100)/100=3小时已经相遇那么需要时间=(400+100)/100=5小时10、甲每小时行驶9千米,乙每小时行驶7千米。

五年级奥数的应用题及答案

五年级奥数的应用题及答案

五年级奥数的应用题及答案五年级奥数的应用题及答案「篇一」1.一个工程队每天筑路85米。

照这样计算,4个工程队7天筑路多少米?(1)85×4×7=2380(米)(2)4×7×85=2380(米)2. 电扇厂5个车间30天生产电扇2250台,平均每个车间每天生产电扇多少台?(解答后再检验)(1)2250/(5×30) =15(台)(2)2250/5/30=15(台)3. 李师傅每小时加工零件49个,张师傅每小时加工零件54个,两人各做8小时,李师傅比张师傅少做多少个?(1)54×8--49×8=40(个)(2)(54—49)×8=40(个)4. 水果店运来苹果和梨子各25筐,苹果每筐6千克,梨子每筐8千克,苹果和梨子一共有多少千克?(1)25×6+25×8=350(千克)(2)25×(6+8)=350(千克)5. 参加春季植树时,五年级去了52人,每人植树26棵;四年级去了48人,每人植树25棵。

五年级比四年级多植树多少棵?52×26--48×25=152(棵)6. 学校举行运动会,三年级有45人参加,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数还多15人。

五年级参加比赛的有多少人?45×3=135(人)135+45+15=195(人)7. 养鸡场有公鸡46只,母鸡比公鸡的25倍少20只,养鸡场共有鸡多少只?46×25-20=1105(只) 1105+46=1151(只)8. 某校各年级的少先队员的人数如下:一年级没有,二年级36人,三年级97人,四年级185人,五年级254人,六年级238人。

全校平均每个年级有少先队员多少人?(36+97+185+254+238)/5=162(人)9. 某小学的同学修理桌椅用了40.5元,装订图书比修理桌椅少用了3.7元。

小学五年级奥数应用题

小学五年级奥数应用题

小学五年级奥数应用题【篇一】小学五年级奥数应用题2、修一条路,甲队单独修20天可以修完,乙队单独修25天可以修完。

现在两队合修,中途甲队休息3天,乙队休息若干天,这样一共用了15天才修完。

乙队休息了几天?3、搬运一个汽车的。

货物,甲需12天,乙需15天,丙需20天。

有同样的装货汽车M和N,甲搬运M汽车的货物,乙同时搬运N汽车的货物。

丙开始帮助甲搬运,中途又去帮助乙去搬运,最后同时搬完两个汽车的货物。

丙帮助甲搬运了几小时?4、一项工作,如果单独做,小张需10天完工,小李需12天完工,小王需15天完工。

现在三人合作,中途小张先休息了1天,小李再休息3天,而小王一直工作到完工为止。

这样一共用了几天时间?5、甲、乙合做一项工程,20天完成。

如果甲队做7天,乙队做5天,只能完成工程的1/3,两队单独做完任务各需多少天?6、一件工作,甲先独做3天,然后与乙合做5天,这样才完成全工程的一半。

已知甲、乙工作效率的比是3:4。

如果由乙单独做,需要多少天才能完成?7、老师把一些苹果分给小朋友。

如果每人分一个,还剩下8个苹果;如果每人分2个,那么还少2个苹果。

一共有多少个小朋友?8、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩17块;如果每人搬7块,则少10块砖.这个班少先队有几个人?要搬的砖共有多少块?9、学校为新生分配宿舍.如果每个房间住3人,则多出22人;如果每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人?10、妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?【篇二】小学五年级奥数应用题列式:_______________________(?)答:一共有(?)辆车。

2、五年级一班有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,已知男生比女生多种56棵,男、女生各有多少人?列式:_______________________(?)答:男生有(?)人,女生有(?)人。

五年级奥数专题训练

五年级奥数专题训练

五年级奥数专题训练:一般应用题三1。

工厂里有2个锅炉,原来每月烧煤5.6吨。

进行技术改造后,1号锅炉每月节约1吨煤,2号锅炉每月烧煤量减少了一半,现在每月共烧煤3.5吨。

原来两个锅炉每月各烧煤多少吨?2。

甲、乙两人生产同样的零件,原计划每天共生产80个。

由于更换了机器,甲每天多做40个,乙每天生产的是原来的4倍,这样二人一天共生产零件300个。

甲、乙原计划每天各生产多少个零件?3。

甲、乙两队合挖一条水渠,原计划两队每天共挖100米,实际甲队因有人请假,每天比计划少挖15米,而乙队由于增加了人,每天挖的是原计划的2倍,这样两队每天一共挖了150米。

求两队原计划每天各挖多少米?4。

有一根铁丝,截去一半多10厘米,剩下的部分正好做一个长8厘米,宽6厘米的长方形框架。

这根铁丝原来长多少厘米?5。

有一根竹竿,两头各截去20厘米,剩下部分的长度比截去的4倍少10厘米。

这根竹竿原来长多少厘米?6。

两根电线一样长,第一根剪去80米,第二根剪去320米,剩下部分第一根是第二根长度的4倍。

两根电线原来各长多少米?7。

某人过一个小山坡共用了20分钟,他上坡每分钟走80米,下坡每分钟走102米。

上坡路比下坡路少220米。

这段小坡路全长多少米?8。

食堂里买来15袋大米和面粉,每袋大米25千克,每袋面粉10千克。

已知买回的大米比面粉多165千克,求买回大米、面粉各多少千克?9。

老师买回两种笔共16支奖给三好学生,其中铅笔每支0.4元,圆珠笔每支1.2元,买圆珠笔比买铅笔共多用了1.6元。

求买这些笔共用去多少钱?10。

甲每小时生产12个零件,乙每小时生产8个零件。

一次,二人同时生产同样多的零件,结果甲比乙提前5小时完成了任务。

问:甲一共生产了多少个零件?练习一:1、甲乙两工人生产同样的零件,原计划每天共生产700个。

由于改进技术,甲每天多生产100个,乙的日产量提高了1倍。

这样二人一天一共生产1020个。

甲乙原计划每天各生产多少个零件?乙:(1020―700―100)÷(2-1)=220(个)甲:700-220=480(个)2、工厂里有2个锅炉,原来每月烧煤5.6吨,进行技术改造后,1号锅炉每月节约1吨煤,2号锅炉每月烧煤量减少了一半,现在每月共烧煤3.5吨。

五年级奥数应用题

五年级奥数应用题

1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?2、甲乙两辆汽车同时从东站开往西站。

甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31.5千米的地方和乙车相遇,甲车每小时行多少千米?3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?4、兄妹两人同时离家去上学。

哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。

问他们家离学校多远?5、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。

某一时刻,汽车追上了甲,6秒钟之后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟,汽车离开了乙。

问再过多少秒后,甲、乙两人相遇?6、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。

货车速度每小时60千米,客车每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发后几小时两车相遇?7、车与慢车同时从甲、乙两地相对开出,经过12小时相遇。

相遇后快车又行了8小时到达乙地。

慢车还要行多少小时到达甲地?8、两地相距380千米。

有两辆汽车从两地同时相向开出。

原计划甲汽车每小时行36千米,乙汽车每小时行40千米,但开车时甲汽车改变了速度,以每小时40千米的速度开出,问在相遇时,乙汽车比原计划少行了多少千米?9、东、西两镇相距240千米,一辆客车在上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在两镇间的中点相遇。

如果两车都从上午8时由两镇相向开行,速度不变,到上午10时,两车还相距多少千米?10、客车和货车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到乙站后立即返回,货车到甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。

小学五年级奥数应用题200道及答案完整版

小学五年级奥数应用题200道及答案完整版

小学五年级奥数应用题200道及答案完整版1. 有一堆货物,用甲车单独运需要15 次,用乙车单独运需要10 次,如果两车同时运,几次可以运完?答案:6 次解析:甲车每次运这堆货物的1/15,乙车每次运这堆货物的1/10,两车同时运,每次运(1/15 + 1/10) = 1/6,所以需要1÷(1/6) = 6 次。

2. 一项工程,甲单独做20 天完成,乙单独做30 天完成,甲乙合作几天完成?答案:12 天解析:甲每天完成工程的1/20,乙每天完成工程的1/30,两人合作每天完成(1/20 + 1/30) = 1/12,所以合作需要1÷(1/12) = 12 天。

3. 小明从家到学校,如果每分钟走50 米,就会迟到3 分钟,如果每分钟走70 米,就会提前5 分钟到校,小明家到学校的距离是多少米?答案:1400 米解析:设按时到校需要x 分钟,50(x + 3) = 70(x - 5),解得x = 25,距离为50×(25 + 3) = 1400 米。

4. 一艘轮船从甲港开往乙港,顺水航行每小时行25 千米,逆水航行每小时行15 千米,往返一次共用4 小时,甲、乙两港相距多少千米?答案:37.5 千米解析:设顺水航行用x 小时,25x = 15(4 - x),解得x = 1.5,距离为25×1.5 = 37.5 千米。

5. 果园里苹果树的棵数是梨树的3 倍,又知苹果树比梨树多262 棵,苹果树和梨树各有多少棵?答案:苹果树393 棵,梨树131 棵解析:梨树有262÷(3 - 1) = 131 棵,苹果树有131×3 = 393 棵。

6. 五年级学生参加课外活动,做游戏的人数比打球的人数的3 倍多2 人。

已知做游戏的比打球的多38 人,打球和做游戏的各有多少人?答案:打球18 人,做游戏56 人解析:打球人数为(38 - 2)÷(3 - 1) = 18 人,做游戏人数为18×3 + 2 = 56 人。

小学五年级奥数方程应用题100道及答案完整版

小学五年级奥数方程应用题100道及答案完整版

小学五年级奥数方程应用题100道及答案完整版题目1商店有一批苹果,卖出180 千克后,剩下的是卖出的4 倍,商店原来有苹果多少千克?设商店原来有苹果x 千克,则:x - 180 = 4×180,解得x = 900 千克。

题目2小明和小红共有邮票100 张,如果小明给小红10 张,两人的邮票就一样多,小明和小红原来各有多少张邮票?设小明原来有x 张邮票,小红原来有y 张邮票,则:x + y = 100,x - 10 = y + 10,解得x = 60,y = 40。

题目3果园里有苹果树和梨树共360 棵,苹果树的棵数是梨树的 3 倍,苹果树和梨树各有多少棵?设梨树有x 棵,苹果树有3x 棵,则:x + 3x = 360,解得x = 90,3x = 270。

题目4学校买了一批篮球和足球,篮球的个数是足球的2 倍,篮球比足球多18 个,篮球和足球各有多少个?设足球有x 个,篮球有2x 个,则:2x - x = 18,解得x = 18,2x = 36。

题目5甲乙两车同时从相距480 千米的两地相对而行,甲车每小时行45 千米,5 小时后两车相遇,乙车每小时行多少千米?设乙车每小时行x 千米,则:(45 + x)×5 = 480,解得x = 51。

题目6书架上有两层书,上层书的本数是下层的3 倍,如果从上层拿60 本到下层,两层书的本数就一样多,上下层原来各有多少本书?设下层原来有x 本书,上层原来有3x 本书,则:3x - 60 = x + 60,解得x = 60,3x = 180。

题目7鸡兔同笼,共有头30 个,脚86 只,鸡和兔各有多少只?设鸡有x 只,兔有y 只,则:x + y = 30,2x + 4y = 86,解得x = 17,y = 13。

题目8妈妈买了5 千克苹果和3 千克香蕉,一共花了40 元,苹果每千克6 元,香蕉每千克多少元?设香蕉每千克x 元,则:5×6 + 3x = 40,解得x = 10/3 元。

五年级奥数专题之一般应用题

五年级奥数专题之一般应用题

五年级奥数专题之一般应用题1.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?2.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友共有糖多少粒?3.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多少分?4.某乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了多少电费?5.一小、二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满.现在知道,若两校都租用有14个座位的旅游车,则两校共需租用这种车72辆;若两校都租用19个座位的旅游车,则二小要比一小多租用这种车7辆.问两校参加这次春游的人数各是多少?6.某游客在10时15分由码头划出一条小船,他欲在不迟于13时回到码头.河水的流速为每小时1.4千米,小船在静水中的速度为每小时3千米,他每划30分钟就休息15分钟,中途不改变方向,并在某次休息后往回划.那么他最多能划离码头多远?7.机械厂计划生产一批机床,原计划每天生产40台,可在预定的时间内完成任务,实际每天生产48台,结果提前4天完成任务,求这批机床有多少台?8. 某印刷厂计划用24天装订一批书,每天装订12000本,实际提前4天完成了任务,实际比原计划每天多装订多少本?9.甲、乙两砖厂,甲厂原存砖87500块,乙厂比甲厂多存砖4500块,某日甲厂卖出25000块,乙厂比甲厂少卖出3000块,这时哪厂存砖多?多多少块?10. 一筐苹果连筐共重45千克,卖出一半后,剩下的苹果连筐共重24千克,求原来有苹果多少千克?【分析与解】人数增加1.5倍后,每人分4块,相当于原来的人数,每人分1.5×4=6块.有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块.【分析与解】由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒.如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍.也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍.那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒.【分析与解】如果甲、乙两家用电均超过24度,那么他们两家的电费差应是2角钱的整数倍;如果甲、乙两家用电均不超过24度,那么他们两家的电费差应是9分钱的整数倍.现在9角6分既不是2角钱的整数倍,又不是9分钱的整数倍,所以甲家的用电超过了24度,乙家的用电不超过24度.设甲家用了24+x度电,乙家用了24-y度电,有20x+9y=96,得x=3,y=4.即甲家用了27度电,乙家用了20度电,那么乙家应交电费20×9=180分=1元8角,则甲家交了180+96=276分=2元7角6分.即甲、乙两家各交电费2元7角6分,1元8角.【分析与解】方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数.因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分.又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.在3840~4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032分.那么甲班的平均分为4032÷42=96分,乙班的平均分为4032÷48=84分.所以甲班的平均分比乙班的平均分高96-84=12分.方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,又因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.所以甲班的平均分比乙班的平均分高12×(8-7)=12分.【分析与解】设二小春游人数为m,一小春游人数为n.由已知乘19座面包车二小比一小多租用7辆.所以19×6+1≤m-n≤19×8-1,即115≤m-n≤151.又已知两校共需租用14座面包车72辆,所以70×14+2≤m+n≤72×14,即982≤m+n≤1008.同时已知m与n都是10的倍数,于是有, 解得, 另外四组因为解得m、n不是10的倍数.经检验只有满足.所以,一小参加春游430人,二小参加春游570人.【分析与解】从10时15分出发,不迟于13时必须返回,所以最多可划行2小时45分,即165分钟.165=4×30+3×15,最多可划4个30分钟,休息3个15分钟.顺流速度为3+1.4=4.4千米/4,时;所以顺流半小时划行路程为4.4×0.5=2.2千米;逆流速度为3-1.4=1.6千米/4,时;所以逆流半小时划行路程为1.6×0.5=0.8千米.休息15分钟,则船顺流漂行的路程为1.4×0.25=0.35千米.第一种情况:当开始顺流时,至少划行半小时,行驶2.2千米,而在休息的3个时问内船又顺流漂行0.35×3=1.05千米的路程,所以逆流返回时需划行2.2+1.05=3.25千米.3.25÷1.6=2.03125小时=121.875分钟.即最少需30+15×3+121.875=196.875分钟>165分钟,来不及按时还船.不满足.第二种情况:当开始逆流时,每逆流半小时,则行驶0.8千米,则3次逆流后,行驶了0.8×3=2.4千米,船在游客休息时顺流漂行了1.05千米,所以回划时只用划行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小时≈18.41分钟.共需3×30+3×15+18.41=153.41分钟<165分钟,满足.于是,只有第二种情况满足,此时最远的路程为休息了2次后第3次逆流所至的地点,为0.8×3-0.35×2=1.7千米.所以,他最多能划离码头1.7千米.48×[40×4÷(48-40)]=960(台)12000×24÷(24-4)-12000=2400(本)甲厂存砖:87500-25000=62500(块)乙厂存砖:(87500+4500)-(25000-3000)=70000(块)∴乙厂存砖多,多70000-62500=7500(块) (45-24)×2=42(千克)。

小学五年级奥数应用题五篇

小学五年级奥数应用题五篇

小学五年级奥数应用题五篇1.小学五年级奥数应用题1、学校买来4张办公桌和9把椅子共用891元。

已知1张办公桌和6把椅子的价钱相同,每把椅子,每张办公桌各多少元?2、甲乙两城相距280千米,两辆汽车同时从两城相对开出,3.5小时两车相遇,已知其中一辆汽车每小时行38千米,另一辆汽车每小时行多少千米?3、李师傅五月份计划10天做1800个零件,实际每天比计划多做15个,李师傅五月份做多少个零件?4、一条水渠,原计划每天修0.45千米,30天完成,实际每天的工作效率是原计划的1.2倍。

完成这项任务,实际需要多少天?5、一个农具厂要生产2500件小农具,前5天每天生产180件,余下的要在8天内完成,每天应生产多少件农具?2.小学五年级奥数应用题1、甲、乙两地相距420千米,一辆客车从甲地到乙地计划行使7小时。

实际每小时比原计划多行使10千米,实际几小时到达?2、小强从家回校上课,如果每分钟走50米,12分钟回到学校,如果每分钟多走10米,提前几分钟可以回到学校?3、服装厂原计划做120套西服,每套西服用布4.8米,改进裁剪方法后。

每套节约用布0.3米,原来用的布现在可做西服多少套?4、一本故事书,原来每页排576字,排了25页。

再版时字改小了,只需排18页。

现在每页比原来多排多少个字?5、一列客车和一列货车同时从甲、乙两地相对开出,客车每小时行使80千米,货车每小时行使60千米,经过5小时两车相遇。

甲、乙两地的铁路长多少千米?6、甲、乙两人同时合打一份7000字的稿件,甲每小时打600字,乙比甲每小时多打200字,经过几小时可以完成任务?7、甲、乙两地的路程是630千米,客车从甲地开出2小时后,货车从乙地相向开出,已知客车每小时行使65千米,货车每小时行使60千米。

货车开出几小时后与客车相遇8、王芳的存款数是李丽存款数的2.2倍,如果李丽再存入银行75元,两人的存款数就相等了,原来两人各存款多少元?9、五年级买一批笔记本奖给三好学生,如果每人奖给5本,还剩3本;如果每人奖给6本,又少12本。

小学五年级奥数应用题5篇

小学五年级奥数应用题5篇

【导语】奥数是奥林匹克数学竞赛的简称。

1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。

以下是⽆忧考整理的《⼩学五年级奥数应⽤题5篇》相关资料,希望帮助到您。

1.⼩学五年级奥数应⽤题 1、⼩明和⼩军分别从甲、⼄两地同时出发,相向⽽⾏。

若两⼈按原定速度前进,则4时相遇;若两⼈各⾃都⽐原定速度多1千⽶/时,则3时相遇。

甲、⼄两地相距多少千⽶? 2、甲、⼄两⼈沿400⽶环形跑道练习跑步,两⼈同时从跑道的同⼀地点向相反⽅向跑去。

相遇后甲⽐原来速度增加2⽶/秒,⼄⽐原来速度减少2⽶/秒,结果都⽤24秒同时回到原地。

求甲原来的速度。

3、甲、⼄两车分别沿公路从A,B两站同时相向⽽⾏,已知甲车的速度是⼄车的1.5倍,甲、⼄两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻? 4、⼀列快车和⼀列慢车相向⽽⾏,快车的车长是280⽶,慢车的车长是385⽶。

坐在快车上的⼈看见慢车驶过的时间是11秒,那么坐在慢车上的⼈看见快车驶过的时间是多少秒? 5、甲、⼄⼆⼈练习跑步,若甲让⼄先跑10⽶,则甲跑5秒可追上⼄;若⼄⽐甲先跑2秒,则甲跑4秒能追上⼄。

问:两⼈每秒各跑多少⽶? 2.⼩学五年级奥数应⽤题 1、⼀辆空调车上有42⼈,中途下车8⼈,⼜上来16⼈,现在车上有多少⼈? 2、⾯包房⼀共做了54个⾯包,第⼀队⼩朋友买了8个,第⼆队⼩朋友买了22个,现在剩下多少个? 3、个组⼀共收集了94个易拉罐,其中第⼀组收集了34个易拉罐,第⼆纽收集了29个易拉罐。

那第三⼩组收集了多少个易拉罐? 4、新型电脑公司有87台电脑,上午卖出19台,下午卖出26台,还剩下多少台?(⽤两种⽅法解答) 5、班级⾥有22张腊光纸,⼜买来27张。

开联欢会时⽤去38张,还剩下多少张? 6、少年宫新购进⼩提琴52把,中提琴⽐⼩提琴少20把,两种琴⼀共有多少把? 7、⼀辆公共汽车⾥有36位乘客,到福州路下去8位,⼜上来12位,这时车上有多少位? 8、甲数是20,⼄数⽐甲数多5,⼄数是多少? 9、有25个苹果,梨⽐苹果少7个,有多少个梨? 10、⼩青有28张画⽚,照⽚⽐画⽚多16张。

五年级小学生奥数应用题[6篇]

五年级小学生奥数应用题[6篇]

五年级小学生奥数应用题[6篇]1.五年级小学生奥数应用题篇一1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7那么4小时就是行全程的4/7所以乙行一周用的时间=4/(4/7)=7小时2.五年级小学生奥数应用题篇二1、甲乙两车从相距600千米的.两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?解:速度和=42+58=100千米/小时相遇时间=600/100=6小时相遇时乙车行了58×6=148千米或者甲乙两车的速度比=42:58=21:29所以相遇时乙车行了600×29/(21+29)=348千米2、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?解:将两车看作一个整体两车每小时行全程的1/64小时行1/6×4=2/3那么全程=188/(1-2/3)=188×3=564千米3.五年级小学生奥数应用题篇三1、一个长方形长是5.8米,长比宽多2米,这个长方形的面积是多少?周长是多少?2、水果店运来140千克苹果,比香蕉的2倍少15千克,运来香蕉多少千克?3、中兴小学买了1台电视机和2台录音机,一共用了3025元,一台电视机的价格是一台录音机的3倍,电视机和录音机每台各多少元?(列方程解答)4、某市自来水公司为鼓励节约用水,采取按月分段计费的方法收取水费。

小学五年级奥数应用题100道及答案解析

小学五年级奥数应用题100道及答案解析

小学五年级奥数应用题100道及答案解析1. 有两根绳子,第一根长56 厘米,第二根长36 厘米。

同时点燃后,平均每分钟都烧掉2 厘米。

多少分钟后,第一根绳子的长度是第二根绳子长度的 3 倍?答案:13 分钟解析:设经过x 分钟。

则第一根绳子剩下56 - 2x 厘米,第二根绳子剩下36 - 2x 厘米。

56 - 2x = 3×(36 - 2x),解得x = 13 。

2. 鸡兔同笼,共有30 个头,88 只脚。

求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只解析:假设全是鸡,应有脚2×30 = 60 只,比实际少88 - 60 = 28 只。

因为每把一只兔当成鸡就少算2 只脚,所以兔有28÷2 = 14 只,鸡有30 - 14 = 16 只。

3. 一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。

求这列火车的速度是每秒多少米?车长多少米?答案:车速15 米/秒,车长70 米解析:设火车速度为x 米/秒,车长为y 米。

40x = 530 + y,30x = 380 + y,解得x = 15,y = 70 。

4. 某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。

那么有多少人两个小组都不参加?答案:17 人解析:参加了至少一个小组的人数为15 + 18 - 10 = 23 人,两个小组都不参加的人数为40 - 23 = 17 人。

5. 甲、乙、丙三个数的和是105,甲数比乙数多4,乙数比丙数多4,求丙数。

答案:31解析:设丙数为x,则乙数为x + 4,甲数为x + 8 。

x + x + 4 + x + 8 = 105 ,解得x = 31 。

6. 果园里苹果树的棵数是桃树棵数的3 倍,管理人员每天能给25 棵苹果树和15 棵桃树喷撒农药。

几天后,当给桃树喷完农药时,苹果树还有140 棵没有喷药。

五年级数学奥数应用题

五年级数学奥数应用题

五年级数学奥数应用题一、工程问题1. 题目一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成。

两队合作需要多少天完成?解析把这项工程的工作量看作单位“1”。

根据工作效率 = 工作量÷工作时间,甲队的工作效率为公式,乙队的工作效率为公式。

两队合作的工作效率为公式。

再根据工作时间 = 工作量÷工作效率,两队合作完成需要的时间为公式(天)二、行程问题1. 题目甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是每小时5千米,乙的速度是每小时4千米,经过3小时两人相遇。

A、B两地相距多少千米?解析这是一个相遇问题。

根据路程 = 速度和×相遇时间,甲、乙的速度和为公式(千米/小时)。

经过3小时相遇,那么A、B两地的距离为公式(千米)2. 题目一辆汽车从甲地开往乙地,去时每小时行60千米,返回时每小时行40千米。

求这辆汽车往返的平均速度。

解析设甲地到乙地的距离为s千米。

去时的时间为公式小时,返回的时间为公式小时。

往返的总路程为公式千米,总时间为公式小时。

根据平均速度 = 总路程÷总时间,往返的平均速度为公式(千米/小时)三、倍数问题1. 题目有甲、乙两个仓库,甲仓库存粮是乙仓库的3倍,如果从甲仓库运出90吨,从乙仓库运出10吨,则两仓库剩余粮食相等。

甲、乙两仓库原来各存粮多少吨?解析设乙仓库原来存粮x吨,则甲仓库原来存粮3x吨。

根据运出后两仓库剩余粮食相等可列方程:公式公式公式公式则甲仓库原来存粮公式(吨),乙仓库原来存粮40吨。

[精]五年级数学必考应用题+经典奥数题(含答案)

[精]五年级数学必考应用题+经典奥数题(含答案)

五年级数学必考应用题+经典奥数题(含答案)五年级必考应用题50道1.火车从甲城到乙城,现已行了200千米,是剩下路程的4倍。

甲乙两城相距多少千米?2.甲港到乙港的航程有210千米,一艘轮船运货从甲港到乙港,用了6小时,返回时每小时比去时多行7千米,返回时用了几小时?3.小方从家到学校,每分钟走60米,要14分钟,如果她每分钟多走10米,需要多少分钟?4.一辆汽车3小时行了135千米,一架飞机飞行的速度是汽车的28倍还少60千米,这架飞机每小时行多少千米?5. 某工地需水泥240吨,用5辆汽车来运,每辆汽车每次运3吨,需运多少次才能运完?6.甲乙两地相距750千米,一辆汽车以每小时50千米的速度行驶,多少小时可以到达乙地?7.甲乙两地相距560千米,一辆汽车从甲地开往乙地,每小时行48千米,另一辆汽车从乙地开往甲地,每小时行32千米.两车从两地相对开出5小时后,两车相距多少千米?8.一段公路原计划20天修完.实际每天比原计划多修45米,提前5天完成任务.原计划每天修路多少米?9.这辆汽车每秒行18米,车的长度是18米,隧道长324米,这辆汽车全部通过隧道要用多长时间?10.石家庄到承德的公路长是546千米.红红一家从石家庄开车到承德游览避暑山庄,如果平均每小时行驶78千米,上午8时出发,那么几时可以到达?11.一个平行四边形四条边长度相等都是5厘米高是3厘米求这个平行四边形面积是多少?12. 一个长方形长是18厘米宽是长的一半多2厘米求这个长方形面积和周长分别是多少?13.一个正方形边长9厘米把它分成四个相等大小的小正方形请问小正方形的面积是多少?14.一个长方形是由两个大小相等的正方形拼成的正方形的边长是4厘米求这个长方形的面积是多少?15.一个正方形纸条周长是64厘米把这个正方形对折变成两个大小相同的长方形求这两个大小相同的长方形的面积是多少?16.印刷厂4小时印书8540本,照这样计算,再印3小时共可印书多少本?17、某校办工厂去年原计划平均每月生产文具盒3190个,实际生产11个月就完成了全年的计划任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不定方程与不定方程组知识框架一、知识点说明历史概述不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来.考点说明在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。

二、不定方程基本定义(1)定义:不定方程(组)是指未知数的个数多于方程个数的方程(组)。

(2)不定方程的解:使不定方程等号两端相等的未知数的值叫不定方程的解,不定方程的解不唯一。

(3)研究不定方程要解决三个问题:①判断何时有解;②有解时确定解的个数;③求出所有的解三、不定方程的试值技巧(1)奇偶性(2)整除的特点(能被2、3、5等数字整除的特性)(3)余数性质的应用(和、差、积的性质及同余的性质)(1) 利用整除及奇偶性解不定方程(2) 不定方程的试值技巧(3) 学会解不定方程的经典例题一、 利用整除性质解不定方程【例 1】 求方程 2x -3y =8的整数解【考点】不定方程【解析】 方法一:由原方程,易得 2x =8+3y ,x =4+32y ,因此,对y 的任意一个值,都有一个x 与之对应,并且,此时x 与y 的值必定满足原方程,故这样的x 与y 是原方程的一组解,即原方程的解可表为:342x k y k⎧=+⎪⎨⎪=⎩,其中k 为任意数.说明由y取值的任意性,可知上述不定方程有无穷多组解.方法二:根据奇偶性知道2x 是偶数,8为偶数,所以若想2x -3y =8成立,y 必为偶数,当y =0,x =4;当y =2,x =7;当y =4,x =10……,本题有无穷多个解。

【答案】无穷多个解【巩固】 求方程2x +6y =9的整数解【考点】不定方程例题精讲重难点【解析】因为2x+6y=2(x+3y),所以,不论x和y取何整数,都有2|2x+6y,但2Œ9,因此,不论x和y取什么整数,2x+6y都不可能等于9,即原方程无整数解.说明:此题告诉我们并非所有的二元一次方程都有整数解。

【答案】无整数解【例 2】求方程4x+10y=34的正整数解【考点】不定方程【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得2x+5y=17,5y的个位是0或5两种情况,2x是偶数,要想和为17,5y的个位只能是5,y为奇数即可;2x的个位为2,所以x的取值为1、6、11、16……x=1时,17-2x=15,y=3,x=6时,17-2x=5,y=1,x=11时,17-2x=17 -22,无解所以方程有两组整数解为:16,31 x xy y==⎧⎧⎨⎨==⎩⎩【答案】16,31 x xy y==⎧⎧⎨⎨==⎩⎩【巩固】求方程3x+5y=12的整数解【考点】不定方程【解析】由3x+5y=12,3x是3的倍数,要想和为12(3的倍数),5y也为3的倍数,所以y为3的倍数即可,所以y的取值为0、3、6、9、12……y=0时,12-5y=12,x=4,x=3时,12-5y=12-15,无解所以方程的解为:40 xy=⎧⎨=⎩【答案】40 xy=⎧⎨=⎩【例 3】求719213x y+=的所有正整数解.【考点】不定方程【解析】按照顺序逻辑讨论,从y值讨论,由y=1开始,当y=2时,x=25,当y=9时,x=6. 【答案】x=25,y=2X=6,y=9【巩固】求62290x y+=的自然数解【考点】不定方程【解析】按照顺序逻辑思维先考虑y的取值,当y=0时,x=15,当y=3时,x=4.【答案】x=15,y=0X=4,y=3二、利用余数性质解不定方程【例 4】求方程3x+5y=31的整数解【考点】不定方程【解析】方法一:利用欧拉分离法,由原方程,得x=3153y-,即x=10-2y+13y+,要使方程有整数解13y+必须为整数.取y=2,得x=10-2y+13y+=10-4+1=7,故x=7,y=2当y=5,得x=10-2y+13y+=10-10+2=2,故x=2,y=5当y=8,得x=10-2y+13y+=10-16+3无解所以方程的解为:72,25 x xy y==⎧⎧⎨⎨==⎩⎩方法二:利用余数的性质3x是3的倍数,和31除以3余1,所以5y除以3余1(2y除以3余1),根据这个情况用余数的和与乘积性质进行判定为:取y=1,2y=2,2÷3=0……2(舍)y=2,2y=4,4÷3=1……1(符合题意)y=3,2y=6,6÷3=2(舍)y=4,2y=8,8÷3=2……2(舍)y=5,2y=10,10÷3=3……1(符合题意)y=6,2y=12,12÷3=4(舍)当y>6时,结果超过31,不符合题意。

所以方程的解为:72,25 x xy y==⎧⎧⎨⎨==⎩⎩【答案】72,25 x xy y==⎧⎧⎨⎨==⎩⎩【巩固】解方程7489x y+=,(其中x、y均为正整数)【考点】不定方程【解析】方法一:7489x y+=,4y是4的倍数,和89除以4余1,所以7x除以4余1(7÷4≡3),可以看成3x除以4余1,根据这个情况用余数的和与乘积性质进行判定为(x<13)x=1,3x=3,3÷4≡3(舍)x=2,3x=6,6÷4≡2(舍)x=3,3x=9,9÷4≡1(符合题意)x=4,3x=12,12÷4≡0(舍)x=5,3x=15,15÷4≡3(舍)x=6,3x=18,18÷4≡2(舍)x=7,3x=21,21÷4≡1(符合题意)x=8,3x=24,24÷4≡0(舍)x=9,3x=27,27÷4≡3(舍)x=10,3x=30,30÷4≡2(舍)x=11,3x=33,33÷4≡1(符合题意)x=12,3x=36,36÷4≡0(舍)所以方程的解为:3711,,17103 x x xy y y===⎧⎧⎧⎨⎨⎨===⎩⎩⎩方法二:利用欧拉分离法,由原方程,897122244x xy x-+==-+,()1x+的取值为4的倍数即可,所以方程的解为:3711,,17103x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩ 【答案】3711,,17103x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩【例 5】 求方程5322x y +=的所有正整数解.【考点】不定方程【解析】 因为能被5整除的数的末位数字是0或者5,所以3y 的末尾数字应为2或者7,所以当y=4时,x=2.【答案】x=2,y=4.三、 解不定方程组【例 6】 解方程180012008001600015a b c a b c ++=⎧⎨++=⎩(其中a 、b 、c 均为正整数)【考点】不定方程【难度】3星【题型】解答【解析】 根据等式的性质将第一个方程整理得9648015a b c a b c ++=⎧⎨++=⎩,根据消元的思想将第二个式子扩大4倍相减后为:(964)4()80415a b c a b c ++-++=-⨯,整理后得5220a b +=,根据等式性质,2b 为偶数,20为偶数,所以5a 为偶数,所以a 为偶数,当2a =时,52220b ⨯+=,5b =,所以8c =,当4a =时,54220b ⨯+=,5b =,所以无解。

所以方程解为258a b c =⎧⎪=⎨⎪=⎩【答案】258a b c =⎧⎪=⎨⎪=⎩【例 7】 解不定方程1531003100x y z x y z ⎧++=⎪⎨⎪++=⎩ (其中x 、y 、z 均为正整数)【考点】不定方程【难度】3星【题型】解答【解析】 根据等式的性质将第一个方程整理得159300100x y z x y z ++=⎧⎨++=⎩,根据消元思想与第二个式子相减得148200x y +=,根据等式的性质两边同时除以2得:74100x y +=,根据等式性质4y 为4的倍数,100为4的倍数,所以7y 为4的倍数,所以y 为4的倍数试值如下481218,11,4788184x x x y y y z z z ===⎧⎧⎧⎪⎪⎪===⎨⎨⎨⎪⎪⎪===⎩⎩⎩【答案】481218,11,4788184x x x y y y z z z ===⎧⎧⎧⎪⎪⎪===⎨⎨⎨⎪⎪⎪===⎩⎩⎩【随练1】 解不定方程:2940x y +=(其中x,y 均为正整数)【考点】不定方程【解析】 方法一:2x 是偶数,要想和为40(偶数),9y 也为偶数,即y 为偶数,也可以化简方程2940x y +=,40920522x y x y -==-+知道y 为偶数,所以方程解为:112,24x x y y ==⎧⎧⎨⎨==⎩⎩【答案】112,24x x y y ==⎧⎧⎨⎨==⎩⎩【随练2】 求不定方程7111288x y +=的正整数解有多少组?【考点】不定方程【解析】 本题无论x 或是y ,情况都较多,故不可能逐一试验.检验可知1288是7的倍数,所以11y 也是7的倍数,则y 是7的倍数.课堂检测设7y z =,原方程可变为11184x z +=,z 可以为1,2,3,……16.由于每一个z 的值都确定了原方程的一组正整数解,所以原方程共有16组正整数解.【答案】16组【作业1】 求23734x y z ++=的正整数解.【考点】不定方程【解析】 本题按照逻辑顺序思维,先确定z 的值再讨论x 与y 的值【答案】略【作业2】 求x+2y+5z=18的自然数解【考点】不定方程【解析】 本题按照逻辑顺序思维,先讨论z 的取值,因为5z 的值变化较大【答案】z 分别等于0、1、2.共三组解教学反馈家庭作业一、 知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几? 方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=. 方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=. 二、 怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

相关文档
最新文档