五年级奥数列方程解应用题

合集下载

五年级奥数列方程解应用题

五年级奥数列方程解应用题
五年级奥数列方 程解应用题
大家好
1
1.某果园向市场运一批水果,原计划每车装1.6 吨,实际每车装2吨,结果少了4车,一共有多少 辆车?
解:设一共有X辆车 1.6X=2(X-4) 解得 X=20
答;一共有20辆车.个同学参加植树,男生平均每人种3棵, 女生平均每人种2棵,已知男生比女生多种56棵, 男、女生各有多少人?
解:168÷21=8(天) 设有X个晴天,则雨天有(8-X)个
24X+16(8-X)=168 解得 X=5
答:一共有5个晴天.
大家好
7
7.甲乙两个仓库共有大豆138吨,若从甲仓 库运走30吨,从乙仓库运走35吨,这时乙仓 库比甲仓库的一半还多4吨,求两个仓库原 来各有大豆多少吨?
解:设甲仓库有X吨,则乙仓库有(138-X)吨 (138-X)-35- (X-30) ÷2=4 解得:X=76 当X=76时 138-X=62
解:设男生有X人,则女生有(42-X)人 3X-2(42-X)=56 解得 X=28
当X=28时 42-X=14 答:男生有28人,女生有14人.
大家好
3
3.学校买来科技书的册数是文艺书册数的 1.4倍,如果再买12册文艺书,两种书的册数 相等。学校买来两种书各有多少册?
解:设文艺书买来X册,则科技收买来1.4X册 X+12=1.4X 解得 X=20
答:每张桌子60元,每把椅子20元.
大家好
5
5.东方小学五年级举行数学竞赛,共10 个赛 题每做对一题得8分,错一题倒扣5分,张华 全部解答,但只得41分,他做对多少题?
解;设张华做对X道题,则他做错(10-X)道题. 8X-5(10-X)=41 解得: X=7
答:张华做对了7道题.

五年级奥数列方程解应用题学生版

五年级奥数列方程解应用题学生版

列方程解应用题教学目标五年级奥数列方程解应用题学生版2、根据题意寻找等量关系的方法来构建方程3、合理规划等量关系,设未知数、列方程知识精讲知识点说明:一、等式的基本性质1、等式的两边同时加上或减去同一个数,结果还是等式.2、等式的两边同时乘以或除以同一个不为零的数,结果还是等式.二、解一元一次方程的基本步骤1、去括号;2、移项;3、未知数系数化为1,即求解。

三、列方程解应用题(一)、列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,然后解出未知数的值.这个含有未知数的等式就是方程.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.(二)、列方程解应用题的主要步骤是1、审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系;2、设这个量为x,用含x的代数式来表示题目中的其他量;3、找到题目中的等量关系,建立方程;4、运用加减法、乘除法的互逆关系解方程;5、通过求到的关键量求得题目答案.例题精讲板块一、直接设未知数【例 1】长方形周长是64厘米,长比宽多3厘米,求长方形的长和宽各是多少厘米?【巩固】一个三角形的面积是18平方厘米,底是9厘米,求三角形的高是多少厘米?【巩固】(全国小学数学奥林匹克)一个半圆形区域的周长等于它的面积,这个半圆的半径是.(精确到0.01,π 3.14)【例 2】用边长相同的正六边形白色皮块、正五边形黑色皮块总计32块,缝制成一个足球,如图所示,每个黑色皮块邻接的都是白色皮块;每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接.问:这个足球上共有多少块白色皮块?【例 3】(全国小学数学奥林匹克)abcdefg,则七位数abcdefg应是.某八位数形如2abcdefg,它与3的乘积形如4【巩固】有一个六位数1abcde乘以3后变成1abcde,求这个六位数.【巩固】有一个五位数,在它后面写上一个7,得到一个六位数;在它前面写上一个7,也得到一个六位数.如果第二个六位数是第一个六位数的5倍,那么这个五位数是.【例 4】有三个连续的整数,已知最小的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续整数.【巩固】已知三个连续奇数之和为75,求这三个数。

五年级奥数题

五年级奥数题

五年级奥数列方程解应用题1、体育组第一次买了6个排球和1个足球共用去155元,第二次买了13个排球和3个足球共用去365元。

求每足球、排球各多少元?2、学校买了4张办公桌和1把椅子,共用去510元,后又买来6张办公桌和1把椅子共用去750元。

求每张办公桌和每把椅子各多少元?3、一所中学食堂本周运来大米7袋,面粉4袋共重3640千克,上周运来大米3袋,面粉6袋共重1560千克,问每袋大米、每袋面粉各重多少千克?4、8头牛和3只羊每天共吃青草136千克,3条牛和8只羊每天共吃青草106千克,每头牛和每只羊每天各吃青草多少千克?5、3包科技书和5包故事书共430本,同样的5包科技书和3包故事书共450本,每包科技书和每包故事书各多少本?6、某次测验,A、B、C、D四位同学的成绩作如下统计:A、B、C的平均分为94分;B、C、D的平均分为92分;A、D的平均分为96分。

求A得了多少分?7、小名买了2本练习本、2支铅笔、2块橡皮,共用去1.8元;小军买了4本练习本、3支铅笔、2块橡皮,共用去2.8元;小芳买了5本练习本、4支铅笔、2块橡皮共用去3.4元。

问练习本、铅笔、橡皮的单价各是多少?8、有一群白兔和黑兔,白兔的1/3和黑兔的1/4合起来共有43只,白兔的1/4和黑兔的1/3合起来共有41只。

则白兔和黑兔各有多少只?9、小名有5盒奶糖,小强有4盒水果糖共值44元,如果小名和小强对换一盒,则各人手里的糖的价格相等。

一盒奶糖和一盒水果糖各值多少元?10、2个蟹将和4个虾兵能打扫龙宫的3/10,8个蟹将和10个虾兵能打扫完全部龙宫。

如果单让蟹将去打扫,与单让虾兵去打扫进行比较,那么要打扫完全部龙宫,虾兵比蟹将要多多少个?五年级上册数学练习题2分类练习题(2)一、用竖计算。

2.84×0.05 = 1.204÷0.43= 2.08×7.5=18.9÷0.54= 1.05×2.4= 1.44÷1.8=1.89÷0.54= 0.35×8.6= (得数保留一位小数) 5.61÷6.1=(得数保留两位小数)9.58÷0.23= 6.21÷0.3= 54÷0.36=二、解方程。

五年级奥数-应用题入门之列方程解应用题

五年级奥数-应用题入门之列方程解应用题

应用题入门之列方程解应用题一、知识站点:1.解方程;2.列方程解应用题的相关步骤;3.综合运用实例。

二、知识讲解与相关例题:1.解方程:⑴解一元一次方程:⑵解多元一次方程组:2.列方程解应用题的相关步骤:【引例】鸡兔同笼,共有10个头,共28只脚,那么兔子有多少只?列方程解应用题的步骤:⑴设;⑵表;⑶列;⑷解;⑸代;⑹验3.综合运用实例:例题索引:例一——和差倍问题;例二——鸡兔同笼问题;例三——盈亏问题;例四——行程问题;例五——分数应用题。

(★★)两个自然数相除,商为10,余数为21。

如果被除数,除数,商,以及余数的和是943,那么被除数是多少?(★)幸运草有两种类型,一种每株有3个叶片,一种比较罕见,每株有4个叶片。

小明采了10株幸运草,数了一下发现共有31片叶片,那么4叶幸运草有多少株?(★★★)美猴王采了一堆桃子准备分给小猴子们,如果每只小猴分6个的话,那么还剩下8个桃子;如果又来了7只小猴,并且所有小猴都分5个桃子,那么还少2个桃子。

请问:小猴子有多少只?这堆桃子有多少个?(★★★)有甲、乙两人,一直匀速行进,如果两人从相距100米的两地同时出发相向而行,则10秒后两人相遇;如果两人同时同地同向而走,则出发1分钟后两人相距120米,求他们中较快的人的速度。

(★★★)11382600妈妈发了一笔年终奖金,她打算把其中的拿来做孩子的教育基金,用来置办年货,这时还会剩余元,那么妈妈的年终奖共有多少元?【本讲小结】1.解方程;2.列方程解应用题的相关步骤;3.综合运用实例。

五年级奥数知识讲解 列方程解应用题(一)

五年级奥数知识讲解 列方程解应用题(一)

五年级奥数知识讲解列方程解应用题(一)千克,根据题意,第二袋剩下的是(x-25)千克,而且第一袋剩下的是第二袋剩下的2倍,因此可以列出等量关系式:2(x-25) = x-18解:根据等量关系式,解方XXX:2x - 50 = x - 18x = 32因此,两袋大米原来各有32千克。

验算:把x=32代入原方程2(x-25) = x-182(32-25) = 32-1814 = 14左边等于右边,因此x=32是原方程的解。

答:两袋大米原来各有32千克。

1.甲乙两个粮仓共有粮食55万千克,甲仓运出5万千克,乙仓运出6万千克后,甲、乙两仓存粮相等。

求甲、乙两仓原来各存粮多少万千克?思路分析:根据题意,甲、乙两仓原来各存粮设为x和55-x万千克。

由于甲仓运出5万千克,乙仓运出6万千克后,甲、乙两仓存粮相等,因此可以列出方程:x-5=55-x-6.解得x=28,因此甲仓原来存粮28万千克,XXX原来存粮27万千克。

2.用5千克含盐20%的盐水,如果要稀释成含盐15%的盐水,需要加多少千克水?思路分析:设需要加的水量为x千克,则原来盐水中盐的重量为5×0.2=1千克,稀释后盐水中盐的重量为5×0.15=0.75千克。

因此,可以列出方程1/(x+5)=0.75/5,解得x=1.67,因此需要加入1.67千克水。

3.有甲、乙两筐苹果,如果从甲筐取10千克放入乙筐,则两筐相等;如果从两筐中各取出10千克,这时甲筐比乙筐少了原来总重量的1/5.求甲、乙两筐原来各有多少千克苹果?思路分析:设甲、乙两筐原来各有x和y千克苹果。

根据题意,可以列出方程y+10=x-10和4/5(x+y)=x+y-20.解得x=100,y=80,因此甲筐原来有100千克苹果,乙筐原来有80千克苹果。

1.假设乙筐中苹果重x千克,那么时甲筐中苹果重(x+5)千克。

由于时甲筐比乙筐多余下10-3=7千克,因此有(x+5)-(x)=(7),解得x=2,时甲筐中苹果重7千克,乙筐中苹果重2千克。

完整版)五年级奥数:列方程解应用题

完整版)五年级奥数:列方程解应用题

完整版)五年级奥数:列方程解应用题XXX教育:列方程解应用题(一)列方程解应用题是小学数学的一项重要内容,它是一种新的解题方法,不同于传统的算术方法。

算术方法要求通过四则运算,逐步求出未知量,而列方程解应用题则是用字母来代替未知数,根据等量关系,列出含有未知数的等式,也就是方程,然后解出未知数的值。

这样做的优点是可以使未知数直接参加运算。

列方程解应用题的关键在于能够正确地设立未知数,找出等量关系,从而建立方程。

而找出等量关系,又在于熟练运用数量之间的各种已知条件。

掌握了这两点,就能正确地列出方程。

列方程解应用题的一般步骤如下:1.确定未知数及其表示方法;2.找出应用题中数量之间的相等关系,列方程;3.解方程;4.检验,写出答案。

下面是几个例题及其解法:例1.一个数的5倍加上10等于它的7倍减去6,求这个数。

解:设这个数为x,则方程为5x+10=7x-6,解得x=8.例2.两块地一共100公顷,第一块地的4们比第二块地的3倍多120公顷。

这两块地各有多少公顷?解:设第一块地为x公顷,则第二块地为(100-x)公顷。

由已知条件可得:4x=3(100-x)+120,解得x=60,第一块地为60公顷,第二块地为40公顷。

例3.琅琊路小学少年数学爱好者俱乐部五年级有三个班,一班人数是三班人数的1.12倍,二班比三班少3人,三个班共有153人。

三个班各有多少人?解:设三个班的人数分别为x、y、z,则由已知条件可得:x=1.12zy=z-3x+y+z=153代入第三个式子得:1.12z+z-3+1.12z+z-3=153,解得z=50,y=47,x=56.例4.被除数与除数的和是98,如果被除数与除数都减去9,那么,被除数是除数的4倍。

求原来的被除数和除数。

解:设除数为x,则被除数为98-x。

由已知条件可得:98-x-9=x-9,解得x=29,被除数为69,除数为29.练与思考:1.列方程解应用题,有时需要求的未知数有两个或两个以上,此时应视具体情况,设对解题有利的未知数为x,根据数量关系用含有x的式子来表示另一个未知数。

小学五年级奥数题 列方程解应用题

小学五年级奥数题 列方程解应用题

小学五年级奥数题列方程解应用题1.解方程求未知数已知一个数加上它的1.8倍等于0.56,求这个数。

设这个数为x,根据题意得到方程x+1.8x=0.56,化简得到2.8x=0.56,解得x=0.2.2.解方程求未知数已知2.9与0.5的积比一个数的5倍少1.65,求这个数。

设这个数为x,根据题意得到方程2.9×0.5=5x-1.65,化简得到x=0.83.3.解方程求未知数已知某数的8倍加上10等于它的10倍减去8,求这个数。

设这个数为x,根据题意得到方程8x+10=10x-8,化简得到2x=-18,解得x=-9.4.解方程求未知数已知XXX有64张画片,XXX送给她12张,这时XXX和XXX的画片数相等。

XXX有画片多少张?设XXX有画片为x,根据题意得到方程x+12=64-x,化简得到x=26.5.解方程求未知数已知甲桶里有油45千克,乙桶里有油24千克,问从甲桶里倒多少千克的油到乙桶里,才能使甲桶里的油的重量是乙桶里的1.5倍?设从甲桶里倒x千克的油到乙桶里,根据题意得到方程(45-x)/(24+x)=1.5,化简得到x=9.6.解方程求未知数已知一个三位数,个位上的数字是5,如果把个位上的数字移到百位上,原百位上的数字移到十位上,原十位上的数字移到个位上,那么所成的新数比原数小108,原数是多少?设原数为abc,根据题意得到方程100a+10b+c-100b-10c-a=108,化简得到99a-89b=108,由于a和b都是整数,可以得到a=2,b=1,c=5,原数为215.7.解方程求未知数已知某校附小举行了两次数学竞赛,第一次及格人数是不及格人数的3倍还多4人,第二次及格人数增加5人,正好是不及格人数的6倍,问参加竞赛的有多少人?设第一次及格人数为x,不及格人数为y,则根据题意得到方程x=3y+4和x+5=6(y+5),化简得到y=11,x=37,参加竞赛的人数为48.8.解方程求未知数已知10年前XXX的妈妈的年龄是她的7倍,15年后XXX的年龄正好是妈妈年龄的一半,问XXX现在多少岁?设XXX现在的年龄为x,妈妈现在的年龄为y,则根据题意得到方程y-10=7(x-10)和2(y+15)=x+15,化简得到y=55,x=25,XXX现在25岁。

五年级奥数:列方程解应用题

五年级奥数:列方程解应用题
10、某厂有两个车间,第一个车间每小时生产零件 25 个,当第一车间完成 160 个零件后,第二个车间 才开始生产,第二个车间生产 4 小时后,两个车间生产的零件数相等.第二车间每小时生产零件多少个?
11、一辆小轿车和一辆大卡车都从甲城开往乙城,大卡车每小时行 50 千米,小轿车比大卡车迟开 2 小 时,小轿车开出 2.5 小时后两辆汽车同时达到乙城.已知甲乙两城相距 400 千米,小轿车的速度是多少?
3、一个长方形,长是宽的 1.4 倍,如果宽增加 2 厘米,这个长方形就变长一个正方形,这个长方形的
长和宽各是多少厘米?
4、书架的上层有 120 本书,下层有书 56 本,如果两层书架有各自放上同样本数的书,这时上层的本 数是下层的 1.5 倍,两层书架都放了几本书?
5、师徒两个人加工同一种零件,师傅每小时加工 120 个,徒弟每小时加工 90 个,徒弟先加工 2 小时 后,师傅才开始工作,师傅工作几小时后两人做的零件数相等?
8、AB 两地相距 9 千米,甲乙两人同时从 AB 两地出发,同向而行,甲在前,乙在后,甲每小时行 4.5 千米,乙每小时行 6 千米.几小时后乙追上甲?
9、两辆汽车都从甲地开往乙地,甲车每小时行 60 千米,乙车每小时行 80 千米.甲车出发行了 50 千米 后,乙车才出发.乙车行了多少小时后追上甲车?
20、两辆汽车同时从甲乙两地对开,客车每小时行 40 千米,吉普车每小时行 60 千米.两车相遇后,吉 普车继续行驶 4 小时才到达甲地.两地距离多少千米?
21、一批树苗,原计划 8 个人栽,每人要栽 28 棵;后来增加到 16 个人栽,每人要栽几棵?
22、学校有一批图书,分给几个班级,如果每班分 15 本,就多 10 本,如果每个班分 18 本,那么就有 一个班只分到 4 本,这些图书有多少本?分给几个班级?

五年级奥数_列方程解应用题

五年级奥数_列方程解应用题

五年级解应用题
班级:姓名:
1.东街小学现有学生960人,比解放前的12倍少24人,解放前有学生多少人?2.用120厘米长的铁丝围成一个长方形。

它的长是38厘米,宽是多少厘米?3.商店运来苹果和梨各8筐,一共重724千克。

每筐梨重46千克,每筐苹果重多少千克?
4.学校买篮球比买排球多花84元。

买回篮球5个,每个56元,买回的排球每个49元。

学校买回多少个排球
5.一筐苹果,连筐重45.5千克,取出一半后,连筐还重24.5千克,苹果重多少千克?
6.两桶油共重102千克,甲桶油的重量是乙桶油的2.4倍。

两桶油各重多少千克?
7.友谊小学二年级人数是一年级的1.5倍,二年级比一年级多30人,一、二年级各有多少人?
8.甲乙两个工程队合修一条长240千米的公路,修完后甲队比乙队多修34千米,甲队修了多少千米?乙队修了多少千米?
9.今年许鹏比爸爸小30岁,4年后爸爸的年龄是许鹏的3倍。

问许鹏和爸爸今年各多少岁?
10.一天宋老师对小芳说:“我像你那么大时,你才1岁。

”小芳说:“我长到您这么大时,您已经43岁了。

”问他们现在各有多少岁
11.小朋友分糖果,若每人分4粒则多9粒;若每人分5粒则少6粒。

问:有多少个小朋友分多少粒糖?
12.少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。

请问,共有多少名少先队员?。

小学五年级奥数第10课《列方程解应用题》试题附答案

小学五年级奥数第10课《列方程解应用题》试题附答案

小学五年级上册数学奥数知识点讲解第10课《列方程解应用题》试题附答案第十讲列方程解应用题列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.而找出等量关系又在于熟练运用数量之间的各种已知条件.掌握了这两点就能正确地列出方程。

列方程解应用题的一般步骤是:①弄清题意,找出已知条件和所求问题;②依题意确定等量关系,设未知数X;③根据等量关系列出方程;④解方程;⑤检验,写出答案。

例1列方程,并求出方程的解。

①与减去一个数,所得差与1.35加上苧的和相等,求这个数。

5O例2已知篮球、足球、排球平均每个36元.篮球比排球每个多10元,足球比排军每个多8元,每个足球多少元?例3妈妈买回一筐苹果,按计划天数,如果每天吃4个,则多出48个苹果,如果每天吃6个,则又少8个苹果.问:妈妈买回苹果多少个?计划吃多少天?例4甲、乙、丙、丁四人共做零件270个.如果甲多做10个,乙少做10个,丙做的个数乘以2,丁做的个数除以2,那么四人做的零件数恰好相等.问:丙实际做了多少个?(这是设间接未知数的例题)例6一块长方形的地,长和宽的比是5:3,长比宽多24米,这块地的面积是多少平方米?例7某县农机厂金工车间有77个工人.已知每个工人平均每天可以加工甲种零件5个或乙种零件4个,或丙种重件3个。

但加工3个甲种零件,1个乙种妻侔和9个丙种零件才恰好配成一套.问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套?答案例1列方程,并求出方程的解。

①?减去一个数,所得差与1.35加上;的和相等,求这个数。

5O解:设这个数为x∙则依题意有11 2713--X=——+一3 206112713X20^^T,3χβ20检验:把X=2代入原方程,左边=3,-京=32,与右边相等,所以X=220 32060 20 是原方程的解。

小学五年级奥数列方程解应用题练习题

小学五年级奥数列方程解应用题练习题

小学五年级奥数列方程解应用题练习题小学五年级奥数列方程解应用题练习题篇一例题:一条船从码头顺流而下,再逆流而上,打算在8小时内回到原出发的码头,已知船的静水速度是每小时10千米,水流速度是每小时2千米,问此船最多走出多少千米就必须返回才能在8小时内回到原码头?等量关系式是:①一架飞机飞行于两城之间顺风需要6小时30分,逆风时需要7小时,已知风速是每小时26千米,求两城之间的距离是多少千米?②甲、乙两人分别从AB两地同时出发,如果两人同向而行,经过13分钟,甲赶上乙。

如两人相向而行,经过3分钟两人相遇。

已知乙每分钟行25千米,问AB两地相距多少米?小学五年级奥数列方程解应用题练习题篇二例题:笼中共有鸡兔100只,鸡兔足数共有320条,问鸡兔各有多少只?等量关系式是:①有10分和20分的邮票共18张,总面值为2.80元,问10分和20分邮票各有多少张?②小兔妈妈采蘑菇,晴天每天可采16只,雨天每天只能采11只,它一共采了195只,平均每天采13只,这几天中有几天下雨?几天晴天?小学五年级奥数列方程解应用题练习题篇三例题:一个两位数,十位数是个位数字的2倍,如果把十位数上的数字与个位上的数字对调,那么所得的两位数比原两位数小27,原两位数是多少?①一个两位数,个位数是十位上的数的3倍,若把这个十位上的数与个位上的数对调,那么所得的两位数比原来的大54,求原两位数。

②一个两位数,个位上的数字与十位上的数字和为10,如果把十位的数字与个位上数字对调,新数就比原数少36,求原来的两位数?③有一个三位数,其各位数字之和是16,十位数字是个位数字与百位数字之和,若把百位数字与个位数字对调,那么新数比原数在594,求原数?小学五年级奥数列方程解应用题练习题篇四例题:一群公猴,母猴和小猴共38只,每分钟共摘桃266个。

已知一只公猴每分钟摘桃10个,一只母猴每分钟摘桃8个,一只小猴每分钟摘桃5个,已知公猴比母猴少4只,那么这群猴中公猴、母猴、小猴各有多少只?①有大、中、小卡车共42辆,每次共运货315箱,已知每辆大卡车每次能运10箱,中卡车每辆每次运8箱,小卡车每辆每次可运5箱,又知中卡车的辆数和小卡车同样多,求大卡车有多少辆?②蜘蛛有8只脚,晴蜓有6只脚和2双翅膀,蝉有6只脚和一对翅膀,现在有这三种小虫共16只,共有110条腿,14对翅膀,问每只小虫各有多少只?③学校组织新年联欢会,用于奖品的铅笔、圆珠笔、钢笔共232支,价值100元,其中铅笔的数量是圆珠笔的4倍,已知每支铅笔0.2元,每支圆珠笔0.9元,每支钢笔2.1元。

小学五年级奥数方程应用题100道及答案完整版

小学五年级奥数方程应用题100道及答案完整版

小学五年级奥数方程应用题100道及答案完整版题目1商店有一批苹果,卖出180 千克后,剩下的是卖出的4 倍,商店原来有苹果多少千克?设商店原来有苹果x 千克,则:x - 180 = 4×180,解得x = 900 千克。

题目2小明和小红共有邮票100 张,如果小明给小红10 张,两人的邮票就一样多,小明和小红原来各有多少张邮票?设小明原来有x 张邮票,小红原来有y 张邮票,则:x + y = 100,x - 10 = y + 10,解得x = 60,y = 40。

题目3果园里有苹果树和梨树共360 棵,苹果树的棵数是梨树的 3 倍,苹果树和梨树各有多少棵?设梨树有x 棵,苹果树有3x 棵,则:x + 3x = 360,解得x = 90,3x = 270。

题目4学校买了一批篮球和足球,篮球的个数是足球的2 倍,篮球比足球多18 个,篮球和足球各有多少个?设足球有x 个,篮球有2x 个,则:2x - x = 18,解得x = 18,2x = 36。

题目5甲乙两车同时从相距480 千米的两地相对而行,甲车每小时行45 千米,5 小时后两车相遇,乙车每小时行多少千米?设乙车每小时行x 千米,则:(45 + x)×5 = 480,解得x = 51。

题目6书架上有两层书,上层书的本数是下层的3 倍,如果从上层拿60 本到下层,两层书的本数就一样多,上下层原来各有多少本书?设下层原来有x 本书,上层原来有3x 本书,则:3x - 60 = x + 60,解得x = 60,3x = 180。

题目7鸡兔同笼,共有头30 个,脚86 只,鸡和兔各有多少只?设鸡有x 只,兔有y 只,则:x + y = 30,2x + 4y = 86,解得x = 17,y = 13。

题目8妈妈买了5 千克苹果和3 千克香蕉,一共花了40 元,苹果每千克6 元,香蕉每千克多少元?设香蕉每千克x 元,则:5×6 + 3x = 40,解得x = 10/3 元。

小学五年级奥数题列方程解应用题【三篇】

小学五年级奥数题列方程解应用题【三篇】

小学五年级奥数题列方程解应用题【三篇】【第一篇】商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元。

问:胶鞋有多少双?分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。

设胶鞋有x双,则布鞋有(46-x)双。

胶鞋销售收入为7.5x元,布鞋销售收入为5.9(46-x)元,根据胶鞋比布鞋多收入10元可列出方程。

解:设有胶鞋x双,则有布鞋(46-x)双。

7.5x-5.9(46-x)=10,7.5x-271.4+5.9x=10,13.4x=281.4,x=21。

答:胶鞋有21双。

【第二篇】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍。

问:最初有多少个女生?分析与解:设最初有x个女生,则男生最初有(x-10)×2个。

根据走了10个女生、9个男生后,女生是男生人数的5倍,可列方程x-10=[(x-10)×2-9]×5,x-10=(2x-29)×5,x-10=10x-145,9x=135,x=15(个)。

【第三篇】甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克。

如果一个人带150千克的行李,除免费部分外,应另付行李费8元。

求每人可免费携带的行李重量。

分析与解:设每人可免费携带x千克行李。

一方面,三人可免费携带3x千克行李,三人携带150千克行李超重(150-3x)千克,超重行李每千克应付4÷(150-3x)元;另一方面,一人携带150千克行李超重(150-x)千克,超重行李每千克应付8÷(150-x)元。

根据超重行李每千克应付的钱数,可列方程4÷(150-3x)=8÷(150-x),4×(150-x)=8×(150-3x),600-4x=1200-24x,20x=600,x=30(千克)。

五年级奥数题:列方程解应用题

五年级奥数题:列方程解应用题

五年级奥数题:列方程解应用题例1:笼中共有鸡兔100只,鸡兔足数共有320条,问鸡兔各有多少只?等量关系式是:①有10分和20分的邮票共18张,总面值为2.80元,问10分和20分邮票各有多少张?②小兔妈妈采蘑菇,晴天每天可采16只,雨天每天只能采11只,它一共采了195只,平均每天采13只,这几天中有几天下雨?几天晴天?例2:已知鸡比兔多13只,鸡的脚比兔脚多16条,问鸡兔各有多少只?等量关系式是:①五年一班有52人做手工,男生每人做3件,女生每人做2件,已知男生比女生多做36件,求五年一班男女生各有多少人?②学校组织暑假旅游,一共用了10辆车,大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多坐了520人,问大小客车各几辆?例3:一条船从码头顺流而下,再逆流而上,打算在8小时内回到原出发的码头,已知船的静水速度是每小时10千米,水流速度是每小时2千米,问此船最多走出多少千米就必须返回才能在8小时内回到原码头?等量关系式是:①一架飞机飞行于两城之间顺风需要6小时30分,逆风时需要7小时,已知风速是每小时26千米,求两城之间的距离是多少千米?②甲、乙两人分别从AB两地同时出发,如果两人同向而行,经过13分钟,甲赶上乙。

如两人相向而行,经过3分钟两人相遇。

已知乙每分钟行25千米,问AB两地相距多少米?例4:一群公猴,母猴和小猴共38只,每分钟共摘桃266个。

已知一只公猴每分钟摘桃10个,一只母猴每分钟摘桃8个,一只小猴每分钟摘桃5个,已知公猴比母猴少4只,那么这群猴中公猴、母猴、小猴各有多少只?①有大、中、小卡车共42辆,每次共运货315箱,已知每辆大卡车每次能运10箱,中卡车每辆每次运8箱,小卡车每辆每次可运5箱,又知中卡车的辆数和小卡车同样多,求大卡车有多少辆?②蜘蛛有8只脚,晴蜓有6只脚和2双翅膀,蝉有6只脚和一对翅膀,现在有这三种小虫共16只,共有110条腿,14对翅膀,问每只小虫各有多少只?③学校组织新年联欢会,用于奖品的铅笔、圆珠笔、钢笔共232支,价值100元,其中铅笔的数量是圆珠笔的4倍,已知每支铅笔0.2元,每支圆珠笔0.9元,每支钢笔2.1元。

小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)

小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)

小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)列方程解应用题(行程问题)相遇是行程问题的基本类型,在相遇问题中可以用速度×时间=路程的公式求解全程。

下面我们来看几个例子。

例1:AB两地相距352千米。

甲乙两辆汽车从A、B两地相对开出。

甲车每小时行36千米,乙车每小时行44千米。

乙车因有事,在甲车开出32千米后才出发。

求出两车相遇需要多少小时?分析解答:为了求出两车相遇的时间,需要找到速度和、时间和和总路程之间的关系式。

根据已知条件,可以设相遇时间为X小时,列出方程:36+44)×x+32=352解方程得到X=4,因此两车相遇需要4小时。

练题:甲乙两地相距300千米,客车从甲地开往乙地,每小时行40千米。

1小时后,货车从乙地开往甲地,每小时行60千米。

货车出发几小时后与客车相遇?例2:甲乙两人从A、B两地相向而行,甲每分钟行52米,乙每分钟行48米。

两人走了10分钟后交叉而过,且相距64米。

甲从A地到B地需要多少分钟?分析解答:为了求出甲从A地到B地需要的时间,需要知道A、B两地的路程和甲的速度。

设A、B两地相距X米,则可以列出方程:52+48)×10-X=64解方程得到X=936,因此甲从A地到B地需要18分钟。

练题:从A地到B地,水路比公路近40千米。

上午8时,一艘轮船从A地驶向B地,3小时后一辆汽车从A地到B地,它们同时到达B地。

轮船的速度是每小时24千米,汽车的速度是每小时40千米。

求A地到B地水路、公路是多少千米?例3:XXX和XXX分别从一座桥的两端同时相向出发,往返于两端之间。

XXX每分钟走60米,XXX每分钟走75米。

经过6分钟两人第二次相遇,这座桥长多少米?分析解答:第一次相遇就是行了一个全程,第二次相遇就是行了三个全程。

设这座桥长X米,则可以列出方程:3X=(60+75)×6解方程得到X=270,因此这座桥长270米。

小学五年级奥数列方程解应用题(三篇)

小学五年级奥数列方程解应用题(三篇)

【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。

转化的类型有条件转化、问题转化、关系转化、图形转化等。

以下是整理的《⼩学五年级奥数列⽅程解应⽤题(三篇)》,希望帮助到您。

⼩学五年级奥数列⽅程解应⽤题篇⼀ 1、共有1428个球,每5个装⼀筒,装完后还剩3个,⼀共装了多少筒? 2、故宫的⾯积是72万平⽅⽶,⽐天安门⼴场⾯积的2倍少16万平⽅⽶。

天安门⼴场的⾯积多少万平⽅⽶? 3、宁夏的同⼼县是⼀个“⼲渴”的地区,年平均蒸发量是2325mm,⽐年平均降⽔量的8倍还多109mm,同⼼县的年平均降⽔量多少毫⽶? 4、猎豹是世界上跑得最快的动物,能达到每⼩时110km,⽐⼤象的2倍还多30km。

⼤象最快能达到每⼩时多少千⽶? 5、世界上的洲是亚洲,⾯积是4400万平⽅千⽶,⽐⼤洋洲⾯积的4倍还多812万平⽅千⽶。

⼤洋洲的⾯积是多少万平⽅千⽶? 6、⼤楼⾼29.2⽶,⼀楼准备开商店,层⾼4⽶,上⾯9层是住宅。

住宅每层⾼多少⽶? 7、太阳系的九⼤⾏星中,离太阳最近的是⽔星。

地球绕太阳⼀周是365天,⽐⽔星绕太阳⼀周所⽤时间的4倍还多13天,⽔星绕太阳⼀周是多少天? 8、地球的表⾯积为5。

1亿平⽅千⽶,其中,海洋⾯积约为陆地⾯积的2.4倍。

地球上的海洋⾯积和陆地⾯积分别是多少亿平⽅千⽶? 9、6个易拉缺罐,9个饮料瓶,每个的价钱都⼀样,⼀共是1.5元。

每个多少钱? 10、两个相邻⾃然数的和是97,这两个⾃然分别是多少?⼩学五年级奥数列⽅程解应⽤题篇⼆ 1、数学练习共举⾏了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次? 2、⼀个整数除以2余1,⽤所得的商除以5余4,再⽤所得的商除以6余1。

⽤这个整数除以60,余数是多少? 3、少先队员在校园⾥栽的苹果树苗是梨树苗的2倍。

如果每⼈栽3棵梨树苗,则余2棵;如果每⼈栽7棵苹果树苗,则少6棵。

五年级上册奥数(课件)第4讲:列方程解应用题

五年级上册奥数(课件)第4讲:列方程解应用题

学有20人,每人搬砖25块。女同学有30人,每人搬砖
多少块?
男同学搬砖数量+女同学搬砖数量=1100
解: 设女同学每人搬砖x块。 20×25+30 x=1100
20×25 + 30 x
30 x=1100-500 30 x=600
x=20
答:女同学每人搬砖20块。
练习二
客车和货车从相距600千米的甲、乙两地同时出发, 相向而行,6小时后相遇。客车每小时行驶40千米,货 车每小时行驶多少千米?
练习三
食堂买了8千克黄瓜,付出20元,找回4元,每千 克黄瓜是多少钱?
解: 设每千克黄瓜 x元。
20-8 x=4
8 x=16 x=2
答:每千克黄瓜2元。
付出的钱-买黄瓜的钱=找回的钱
例题四
芭啦啦综合教育学校五年级(1)班学生采集标本。 采集昆虫标本的有25人,采集植物标本的有19人,两种 标本都采集的有8人。全班学生共有40人,没有采集标本 的有多少人?
练习一
一块地种玉米可收入2500元,比种土豆收入的3倍 还多100元。这块地种土豆可收入多少元?
解: 设种土豆可收入 x元,则种玉米可收入(3 x+100)元。 3 x+100=2500 3 x=2400 x=800
答:这块地种土豆可收入800元。
例题二
五(2)班同学到工地去搬砖,共搬砖1100块。男同
解: 设货车每小时行驶 x千米。
客车行驶的路程加上 货车行驶的路程就是 甲、乙两地的距离。
40×6 + 6 x=600
6 x=600-240 6 x=360
x=60
答:货车每小时行驶60千米。
小结
列方程解应用题的步骤:
1. 弄清题意,确定未知数并用 x表示;

五年级奥数每日五题-列方程解应用题(带解析答案)

五年级奥数每日五题-列方程解应用题(带解析答案)

小学奥数每日五题-列方程解应用题(带答案)1、五年级买一批笔记本奖励三好生,如果每人奖励5本,还剩3本,如果每人奖励6本,又少12本。

五年级评出三好学生多少名?买了多少本笔记本?解析:假设五年级评出三好学生x名,由“如果每人奖5本,还剩3本”,则笔记本得总本数表示为5x+3,再由“如果每人奖6本,又少12本”,则笔记本得总本数表示为6x-12,根据两次分笔记本的数量相同,可列方程为5x+3=6x-12,解此方程求出三好学生总人数,从而得出笔记本的数量。

解:设五年级评出三好学生x名5x+3=6x-126x-5x=3+12x=15笔记本数量:15×5+3=78(本)答:五年级评出三好学生15名,买了78本笔记本.2、生产一批篮球,若每天生产25个,则到了规定时间还有50个未完成。

若每天生产28个,则到了规定时间超产40个。

请问一共生产了多少个篮球?解析:假设规定时间为x天,由“每天生产25个,则到了规定时间还有50个未完成”,则需要生产篮球的总数表示为25x+50,再由“若每天生产28个,则到了规定时间超产40个”,则需要生产的篮球总数表示为28x-40,根据两种生产方式生产的篮球总数相同,可列方程为25x+50=28x-40,解此方程求出规定天数,从而求出需要生产篮球总数。

解:设规定x天完成任务,根据题意得出:25x+50=28x-40,28x-25x=50+403x=90x=3025×30+50=800(个)答:要生产800个篮球。

3、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存入9吨,乙仓每天存入4吨,几天后两仓的存粮相等?解析:根据题意,从题目中可以看出,假设x天后乙仓是甲仓的存粮与乙仓相等,x天后甲仓的存粮为32+9x,乙仓的存粮为57+4x,然后找出等量关系:甲仓存粮吨数=乙仓存粮的吨数,可列出方程式:57+9x=32+4x,解方程,就是题目中要求的天数。

解:设x天后两仓存粮相等。

(完整版)五年级奥数列方程解应用题

(完整版)五年级奥数列方程解应用题

列方程解应用题姓名:一、(1)女儿今年12岁,母亲今年30岁.几年以前母亲年龄是女儿的4倍?(2)今年妈妈的岁数是小丽的4倍,5年后是小丽的3倍。

小丽今年多少岁?(3)父亲与三个儿子年龄和是108岁,若再过6年,父亲的年龄正好等于三个儿子年龄的和。

父亲今年多少岁?二、(1)五(1)班的同学去划船,他们租了一些船,如果每船坐8人,则余1人,;如果每船坐9人,则船上还有5个空位。

五(1)班级共有学生多少人?(2)水果店用筐装苹果,若每筐装50个还差1只筐;若每筐装55个,又则空1只筐.水果店有多少只筐和多少个苹果?(3)某班学生合买一件纪念品,如果每人出6元则多48元,如果每人出5元则少3元。

计算这个班级共有学生多少人?三、(1)一个三位数,十位数是百位数的2倍,百位数又是个位数的2倍,三个数位上的数字和是14。

这个三位数是多少?(2)三个数的和是112,甲数是乙数的5倍,丙数比甲数多35,这三个数各是多少?(3)一个两位数,十位数上的数字是个位上数字的1.5倍,如果调换十位与个位上的数字,则新数比原数小18,计算原来的数是多少?四、(1)有一堆树苗,松树苗的棵树是杨树苗的2倍,从这堆树苗中每次拿出5棵松树、4棵杨树.取多少次后杨树苗取尽,而松树苗还剩下21棵?(2)甲仓库的冰箱台数是乙仓库的2倍,每天从甲仓库运出冰箱3台,从乙仓库运出冰箱2台,运出几天后,乙仓库的冰箱正好运完,而甲仓库还剩下25台。

原来乙仓库有冰箱多少台?五、(1)赵云以分期付款的方式买一台手提电脑,有两种付款方式,一种是第一个月付款850元,以后每月付款250元;另一种付款方式是前一半时间每月付400元,后一半时间每月付200元。

两种付款方式总款数及时间都相同.计算这台电脑的价钱?(2)妈妈去买水果,所带的钱正好能买18千克苹果或25千克梨.已知每千克梨比每千克苹果便宜0.7元,妈妈一共带了多少钱?(3)两辆汽车运送每包价值相同的货物过收税处,押送人没有带足够的税款,就用部分货物充当税款.第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交出了5包货后收到退还款80元,这样正好付清税金。

五年级数学奥数列方程解应用题-

五年级数学奥数列方程解应用题-

列方程解应用题例1 甲乙两个数,甲数除以乙数商2余1717..乙数的10倍除以甲数商3余4545.求甲、乙二数..求甲、乙二数..求甲、乙二数.分析分析 被除数、除数、商和余数的关系:被除数=除数×商除数×商++余数.如果设乙数为x ,则根据甲数除以乙数商2余1717,得甲数,得甲数,得甲数=2x =2x =2x++1717.又根据.又根据乙数的10倍除以甲数商3余45得10x=310x=3((2x 2x++1717)+)+)+454545,列出方程.,列出方程.,列出方程. 解:设乙数为x ,则甲数为2x+172x+17..10x=310x=3((2x 2x++1717))+4510x=6x 10x=6x++51+454x=96x =242x+17=22x+17=2××24+17=6524+17=65..答:甲数是6565,乙数是,乙数是2424..例2 电扇厂计划20天生产电扇1600台.生产5天后,由于改进技术,效率提高2525%,完成计划还要多少天?%,完成计划还要多少天?%,完成计划还要多少天?思路1:分析分析 依题意,看到工效(每天生产的台数)和时间(完成任务需要的天数)是变量,而生产5天后剩下的台数是不变量(剩余工作量).原有的工效:有的工效:160016001600÷÷20=8020=80(台),提高后的工效:(台),提高后的工效:(台),提高后的工效:808080×(×(×(11+2525%)%)%)=100=100(台).时间有原计划的天数,又有提高效率后的天数,因此列出方程的等量关系是:提高后的工效x 所需的天数所需的天数==剩下台数.剩下台数.解:设完成计划还需x 天.天.16001600÷÷2020×(×(×(1+251+251+25%)×%)×%)×x=1600-1600x=1600-1600x=1600-1600÷÷2020××58080××1.25x=1600-400100x=1200x=12 x=12..天.答:完成计划还需12天.思路2:分析“思路1”是从具体数量入手列出方程的.还可以从“率”入25%.把原来效率%.把原来效率25%”是指比原效率提高%”是指比原效率提高25手列方程.已知“效率提高25看成看成天.解:设完成计划还要x天.天.答:完成计划还需12天.例3有一项工程,由甲单独做,需12天完成,丙单独做需20天完成.甲、乙、丙合作,需5天完成.如果这项工程由乙单独做,需几天完成?成?工作总量.工作总量.天完成这项工程.解:设乙单独做,需x天完成这项工程.答:乙单独做这项工程需15天完成.天完成.例4 中关村中学数学邀请赛中,中关村一、二、三小六年级大约有380380~~450人参赛.比赛结果全体学生的平均分为76分,男、女生平均分数分别为79分、分、7171分.求男、女生至少各有多少人参赛?分析 若把男、女生人数分别设为x 人和y 人.依题意全体学生的平均分为76分,男、女生平均分数分别为79分、分、7171分,可以确定等量关系:男生平均分数×男生人数系:男生平均分数×男生人数++女生平均分数×女生人数女生平均分数×女生人数==(男生人数(男生人数++女生人数)×总平均分数.解方程后可以确定男、女生人数的比,再根据总人数的取值范围确定参加比赛的最少人数,从而使问题得解. 解:设参加数学邀请赛的男生有x 人,女生有y 人.人.79x+71y 79x+71y=(=(=(x+y x+y x+y)×)×)×76 7679x+71y 79x+71y==76x+76y3x 3x==5y∴ x x::y=5y=5::3总份数:总份数:55+3=83=8..在380380~~450之间能被8整除的最小三位数是384384,所以参加邀请赛,所以参加邀请赛学生至少有384人.人.答:男生至少有240人参加,女生至少有144人参加.人参加.例5 瓶子里装有浓度为1515%的酒精%的酒精1000克.现在又分别倒入100克和400克的A 、B 两种酒精,瓶子里的酒精浓度变为1414%.已知%.已知A 种酒精的浓度是B 种酒精的2倍,求A 种酒精的浓度.www. xkb1 .co m分析 依题意,A 种酒精浓度是B 种酒精的2倍.设B 种酒精浓度为x %,则A 种酒精浓度为2x 2x%.%.%.A A 种酒精溶液10O 克,因此100100××2x 2x%为%为100克酒精溶液中含纯酒精的克数.酒精溶液中含纯酒精的克数.B B 种酒精溶液40O 克,因此400400××x %为400克酒精溶液中含纯酒精的克数.克酒精溶液中含纯酒精的克数.解:设B 种酒精浓度为x %,则A 种酒精的浓度为2x 2x%.%.%.150 150++6x 6x==1414××156x=602x 2x%=%=%=22×1010%=%=%=202020%.%.%.答:答:A A 种酒精的浓度为2020%.%.%.例6 有人用车把米从甲地运到乙地,装米的重车日行50里,空车日行70里,里,55日往返三次.问两地相距多少里?(选自《九章算术》) 分析 当你用算术法解这道题时会感到比较困难.但用方程解这一算术“难题”就容易多了.列方程解应用题的关键在于确定等量关系,确立等量关系还有一种常用的方法叫译式法,等量关系还有一种常用的方法叫译式法,即把日常用语译成代数语言,即把日常用语译成代数语言,即把日常用语译成代数语言,通通过列表可以看出列方程的过程.新课标 第 一网解 :设两地相距x 里.里.依题意列方程:依题意列方程:3×(×(100000+x 100000+x 100000+x))=10x =10x++1300000+3x=10x+17x=299999x x==42857例8 兄弟二人三年后的年龄和是26岁,弟弟今年的年龄恰好是兄弟二人年龄差的2倍.问,倍.问,33年后兄弟二人各几岁?年后兄弟二人各几岁?分析 设3年后哥哥年龄为x 岁,弟弟年龄为(岁,弟弟年龄为(26-x 26-x 26-x)岁.则今年哥)岁.则今年哥哥年龄为(x-3x-3))岁,弟弟年龄为(26-x-326-x-3))岁,兄弟二人的年龄差是(x-3x-3))-(26-x-326-x-3)岁.列方程的等量关系是:弟弟今年的年龄)岁.列方程的等量关系是:弟弟今年的年龄=兄弟二人年龄差的2倍.倍.解:设3年后哥哥x 岁,则弟弟3年后的年龄是(年后的年龄是(26-x 26-x 26-x)岁.)岁.)岁.[([(x-3x-3x-3))-(26-x-326-x-3)]×)]×)]×22=26-x-3 [2x-262x-26]×]×]×22=23-x 4x-52=23-x 5x 5x==75 x x==15 26-x 26-x==26-1526-15==11答:答:33年后哥哥年龄是15岁,弟弟11岁.岁.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程解应用题(一)
列方程解应用题是小学数学的一项重要内容,是一种不同于算术解法的新的解题方法。

传统的算术方法,要求用应用题里给出的已知条件,通过四则运算,逐步求出未知量。

而列方程解应用题是用字母来代替未知数,根据等量关系,列出含有未知数的等式,也就是方程,然后解出未知数的值。

它的优点在于可以使未知数直接参加运算。

列方程解应用题的关键在于能够正确地设立未知数,找出等量关系,从而建立方程。

而找出等量关系,又在于熟练运用数量之间的各种已知条件。

掌握了这两点,就能正确地列出方程。

列方程解应用题的一般步骤是:
1.弄清题材意,找出未知数,并用x表示;
2.找出应用题中数量之间的相等关系,列方程;
3.解方程;
4.检验,写出答案。

例题与方法:
例1.一个数的5倍加上10等于它的7倍减去6,求这个数。

例2.两块地一共100公顷,第一块地的4们比第二块地的3倍多120公顷。

这两块地各有多少公顷?
例3.琅琊路小学少年数学爱好者俱乐部五年级有三个班,一班人数是三班人数的1.12倍,二班比三班少3人,三个班共有153人。

三个班
各有多少人?
例4.被除数与除数的和是98,如果被除数与除数都减去9,那么,被除数是除数的4倍。

求原来的被除数和除数。

练习与思考:
1.列方程解应用题,有时要求的未知数有两个或两个以上,我们必须视具体情况,设对解题有利的未知数为x,根据数量关系用含有x的式子来表示另一个未知数。

2.篮球、足球、排球各1个,平均每个36元。

篮球比排球贵10元,足球
比排球贵8元。

每个排球多少元?
3.一次数学竞赛有10道题,评分规定对一道题得10分,错一题倒扣2分。

小明回答了全部10道题,结果只得了76分,他答对了几道题?
4.将自然数1—100排列如下表:
在这个表里,用长方形框出的二行六个数(图中长方形框仅为示意),如果框起来的六个数的和为432,问:这六个数中最小的数是几?
5.拉萨路小学图书馆一个书架上有上、下两层,一共有245本书。

上层每天借出15本,下层每天借出10本,3天后,上、下两层剩下图书的本数一样多。

上、下两层原来各有图书多少本?
6.甲、乙、丙三个数的和是166,已知甲数除以乙数,乙数除以丙数都是商3余2,甲、乙、丙三个数各是多少?
7.玲玲今年11岁,爷爷今年74岁。

再过几年,爷爷的年龄是玲玲年龄的4倍?
8.甲、乙两个养鸡专业户,一共养鸡3000只。

乙养鸡专业户卖掉800只鸡后,甲养鸡专业户养鸡的只数正好是乙养鸡专业户剩下的3倍。

甲、乙两个养鸡专业户原来各养鸡多少只?
列方程解应用题(二)
这一讲我们继续学习列方程解应用题。

列方程解应用题,关键是掌握分析问题的方法,对应用题中数量关系分析得越深刻,所列的方程就越优化,解答起来就越方便。

例题与方法:
例1.六(1)班同学合买一件礼物送给母校留作纪念。

如果每人出6元,则多48元;如果每人出4.5元,则少27元。

求六(1)班学生人数。

例2.五老村小学体育器材室里的足球个数是排球的2倍。

体育活动课上,每班借7个足球,5个排球,排球借完时,还有足球72个。

体育器材室里原有足球、排球各多少个?
例3.甲、乙、丙、丁四人共做零件325个。

如果甲多做10个,乙少做5个,丙做的个数乘以2,丁做的个数除以3,那么,四个人做的零件数恰好相等。

问:丁做了多少个?
例4.如右图,长方的长为12厘米,宽为5厘米。

阴影部分甲的面积比乙的面积大15平方厘米。

求ED的长。

练习与思考:
1.妈妈买回一箱库尔勒香梨,按计划天数,如果每天吃4个,则多出24个香梨;如果每天吃6个,则又少4个香梨。

问:计划吃多少天?妈妈买回香梨多少个?
2.一架飞机所带的燃料最多可以用9小时,飞机去时顺风,每小时可飞1500千米;返回时逆风,每小时可以飞1200千米。

这架飞机最多飞出多少千米,就需要往回飞?
3.某商店库存的花布比白布的2倍多20米每天卖出30米白布和40米花布,几天以后,白布全部卖完,而花布还剩下140米。

原来库存这两种布共多少米?
4.一条大鲨鱼,头长3米,身长等于头长加尾长,尾长等于头长加身长的一半。

这条大鲨鱼全长是多少米?
5.甲、乙从东镇去西镇,丙从西镇去东镇,三人同时出发,途中丙与乙相遇2分后又遇到甲。

如果每分甲行50米,乙行60米,丙行70米,问:乙比甲早多少分到西镇?
6.供销社张叔叔买回一批酒精,放在甲、乙两个桶里,两个桶都未装满。

如果把甲酒精倒入乙桶,乙桶装满后,甲桶还剩下10升;如果把乙桶酒精全部倒入甲桶,甲桶还能再盛20升。

已知甲桶容量是乙桶的2.5倍,张叔叔一共买回多少升酒精?
7.一个两位数十位止的数字比个位上的数字扩大4倍,个位上的数字减去2,那么,所得的两位数比原来大58。

求原来的两位数。

8.如右图,正方形ABCD的边长是8厘米,三角形ADF的面积比三角形CEF的面积小6平方厘米。

求CE的长。

相关文档
最新文档