2017-2018期末随机过程试题及答案
随机过程试题及答案
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
《随机过程》期末试题
《随机信号》期末试题学号:姓名:计算题和解答题(注:答题纸上作答,请写出必要的步骤,直接写出答案不得分)1、(10分)设随机过程(),(0,)X t Vt b t =+∈∞,b 为常数,V 是服从正态分布N(0,1)的随机变量。
求X(t)的一维概率密度、均值和相关函数。
2、(15分)设随机过程1nn j j Y X ==∑,其中X j (j=1,2,…,n)是相互独立的随机变量,且P{Xj=1}=p ,P{Xj=0}=1-p=q ,求{Yn ,n=1,2,…}的均值函数和协方差函数。
3、(15分)设电话总机在(0,t]内接到电话呼叫数X(t)是具有强度(每分钟)为λ的泊松过程,求:(1)两分钟内接到3次呼叫的概率;(2)“第二分钟内收到第三次呼叫”的概率;4、(15分)某商店每日8时开始营业,从8时到11时平均顾客到达率线性增加,在8时顾客平均到达率为5人/时,11时到达率达最高峰20人/时。
从11时到13时,平均顾客到达率维持不变,为20人/时,从13时到17时,顾客到达率线性下降,到17时顾客到达率为12人。
假定在不相重叠的时间间隔内到达商店的顾客数是相互独立的,问在8:30-9:30问无顾客到达商店的概率是多少?在这段时间内到达商店的顾客数的数学期望是多少?5、(15分)设马尔科夫链的状态空间为I={1,2,3,4,5,6},状态转移图如下所示,写出转移概率矩阵。
6、(15分)设马尔科夫链的转移概率矩阵分别为(1)11221233⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(2)112233000p q p q q p ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦计算1112,,1,2,3n n f f n =7、(15分)设S(t)是一周期为T 的函数,θ在(0,T )上均匀分布,称X(t)=S(t+θ)为随机相位周期过程,讨论其平稳性。
随机过程习题及部分解答【直接打印】
随机过程习题及部分解答习题一1. 若随机过程()(),X t X t At t =-∞<<+∞为,式中A 为(0,1)上均匀分布的随机变量,求X (t )的一维概率密度(;)X P x t 。
2. 设随机过程()cos(),X t A t t R ωθ=+∈,其中振幅A 及角频率ω均为常数,相位θ是在[,]ππ-上服从均匀分布的随机变量,求X (t )的一维分布。
习题二1. 若随机过程X (t )为X (t )=At t -∞<<+∞,式中A 为(0,1)上均匀分布的随机变量,求12[()],(,)X E X t R t t2. 给定一随机过程X (t )和常数a ,试以X (t )的相关函数表示随机过程()()()Y t X t a X t =+-的自相关函数。
3. 已知随机过程X (t )的均值M X (t )和协方差函数12(,),()X C i t t ϕ是普通函数,试求随机过程()()()Y t X t t ϕ=+是普通函数,试求随机过程()()()Y t X t t ϕ=+的均值和协方差函数。
4. 设()cos sin X t A at B at =+,其中A ,B 是相互独立且服从同一高斯(正态)分布2(0,)N σ的随机变量,a 为常数,试求X (t )的值与相关函数。
习题三1. 试证3.1节均方收敛的性质。
2. 证明:若(),;(),X t t T Y t t T ∈∈均方可微,a ,b 为任意常数,则()()aX t bY t +也是均方可微,且有[()()]()()aX t bY t aX t bY t '''+=+3. 证明:若(),X t t T ∈均方可微,()f t 是普通的可微函数,则()()f t X t 均方可微且[()()]()()()()f t X t f t X t f t X t '''=+4. 证明:设()[,]X t a b 在上均方可微,且()[,]X t a b '在上均方连续,则有()()()b aX t dt X b X a '=-⎰5. 证明,设(),[,];(),[,]X t t T a b Y t t T a b ∈=∈=为两个随机过程,且在T 上均方可积,αβ和为常数,则有[()()]()()b b baaaX t Y t dt X t dt Y t dt αβαβ+=+⎰⎰⎰()()(),b c baacaX t dt X t dt X t dt a c b =+⎰⎰⎰≤≤6. 求随机微分方程()()()[0,](0)0X t aX t Y t t X '+=∈+∞⎧⎨=⎩的()X t 数学期望[()]E X t 。
随机过程期末试题及答案(2)
{N(t),t ≥ 0} 独立,令 X(t)=∑X(t)] = λ tE {Y1} 。
k=1
N(t)
2
证明:由条件期望的性质 E [X(t) ] = E E ⎡ ⎣ X(t) N(t) ⎤ ⎦ ,而 E ⎡ ⎣ X(t) N(t) = n ⎤ ⎦ = E⎢
P(X(t) ≤ x X(t1 )=x1 , X(t 2 )=x 2 , X(t n )=x n ) = P(X(t)-X(t n ) ≤ x-x n X(t1 )-X(0)=x1 , X(t 2 )-X(0)=x 2 , X(t n )-X(0)=x n ) = P(X(t)-X(t n ) ≤ x-x n ) ,又因为 P(X(t) ≤ x X(t n )=x n )= P(X(t)-X(t n ) ≤ x-x n X(t n )=x n ) = P(X(t)-X(t n ) ≤ x-x n ) ,故 P(X(t) ≤ x X(t1 )=x1 , X(t 2 )=x 2 , X(t n )=x n ) = P(X(t) ≤ x X(t n )=x n )
2 2
0 0 1 4 0
4 0
0⎤ ⎥ 0⎥ ⎥ 1 ⎥ 4⎥ 1⎥ ⎦
(2) p33 = 1, 而p30,p31,p32 均为零,所以状态 3 构成一个闭集,它是吸收态,记 C1 = {3} ;0, 1 两个状态互通,且它们不能到达其它状态,它们构成一个闭集,记 C2 = {0, 1},且它们都是正常返 非周期状态;由于状态 2 可达 C1,C 2 中的状态,而 C1,C 2 中的状态不可能达到它,故状态 2 为非 常返态,记 D= {2} 。 (3)状态空间 I 可分解为: E=D ∪ C1 ∪ C2 四.简答题(6 分)简述指数分布的无记忆性与马尔科夫链的无后效性的关系。 答: (略)
概率统计随机过程-期末试卷-参考答案
7. 1
8. 1 1
4. ,
2
数理统计
57 33 e 30 154 e 15 9. , 8 24
2 2 2
又由
15 S 2
2
4
即
152
2 15 S 2 (15) 知 D 2 2 15
D S 2 2 15
2
得 D S
2 15
4
五、解:
数理统计
1 2 3 (1) 先求二步转移概率矩阵 1 1/ 2 1/ 4 1/ 4 2 P (2) [ P (1)] 2 1/ 4 1/ 2 1/ 4 3 1/ 4 1/ 4 1/ 2 3 P{ X 2 2} P X 0 iP X 2 2 | X 0 i
数理统计
《概率统计与随机过程》期末试卷二 参考答案 一、填空题
1. F (1, n)
2. P X 1 x1 ,..., X n xn p i 1 (1 p) 其中xi 0或1;
1 n 3. X , Xi X n i 1
xi
n
n
xi
i 1
n
,
E ( S 2 ) p(1 - p)
六、解:
a2 (3) 因 RX ( t , t ) cos 0 , 2 i 故 S X R e d X
2 a i cos( ) e d 0 2 2 a cos(0 )e i d 2 a2 0 0 2
p1 (0) P12 (2) p2 (0) P22 (2) p3 (0) P32 (2) 1 1 1 1 1 ( ) 3 4 2 4 3 (2) P{ X 2 2, X 3 2 | X 0 1}
随机过程复习题答案
随机过程复习题答案
1. 随机过程的定义是什么?
答:随机过程是一组随机变量的集合,这些随机变量是时间或空间的函数,用来描述系统随时间或空间的演变。
2. 什么是马尔可夫链?
答:马尔可夫链是一种随机过程,其中未来状态的概率分布仅依赖于当前状态,而与之前的状态无关。
3. 描述随机游走的特点。
答:随机游走是一种马尔可夫过程,其中每一步移动到相邻状态的概率是固定的,并且每一步都是独立的。
4. 什么是平稳过程?
答:平稳过程是指其统计特性不随时间变化的过程,即过程的均值、方差和自相关函数不随时间变化。
5. 如何定义一个过程的遍历性质?
答:一个过程的遍历性质是指该过程的样本函数的统计特性与该过程的总体统计特性相一致。
6. 什么是鞅?
答:鞅是一种随机过程,其中给定当前和过去信息,未来某个时间点的期望值等于当前的值。
7. 描述泊松过程的基本性质。
答:泊松过程是一种计数过程,具有独立增量、平稳增量和泊松分布的到达时间间隔等基本性质。
8. 什么是布朗运动?
答:布朗运动是一种连续时间随机过程,其增量服从正态分布,且具有独立性和平稳性。
9. 如何确定一个过程是否是高斯过程?
答:如果一个过程的所有有限维分布都是多元正态分布,则该过程是高斯过程。
10. 什么是随机过程的谱分析?
答:随机过程的谱分析是研究过程功率谱密度的方法,它描述了过程在不同频率上的功率分布。
(完整版)随机过程习题和答案
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
随机过程复习题(含答案)
随机过程复习题一、填空题:1.对于随机变量序列}{n X 和常数a ,若对于任意0>ε,有______}|{|lim =<-∞>-εa X P n n ,则称}{n X 依概率收敛于a 。
2.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t , ,则1592}6)5(,4)3(,2)1({-⨯⨯====e X X X P ,618}4)3(|6)5({-===e X X P1532623292!23!2)23(!23}2)3()5({}2)1()3({}2)0()1({}2)3()5(,2)1()3(,2)0()1({}6)5(,4)3(,2)1({----⨯⨯=⨯⨯⨯==-=-=-==-=-=-====e e e e X X P X X P X X P X X X X X X P X X X P66218!26}2)3()5({}4)3(|6)5({--===-===e e X X P X X P3.已知马尔可夫链的状态空间为},,{321=I ,初始分布为),,(412141,⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=43410313131043411)(P ,则167)2(12=P ,161}2,2,1{210====X X X P⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=4831481348436133616367164167165)1()2(2P P 167)2(12=P161314341}2|2{}1|2{}1{}2,1|2{}1|2{}1{}2,2,1{12010102010210=⨯⨯=================X X P X X P X P X X X P X X P X P X X X P4.强度λ的泊松过程的协方差函数),min(),(t s t s C λ= 5.已知平稳过程)(t X 的自相关函数为πττcos )(=X R ,)]()([)(πϖδπϖδπω-++=X S6. 对于平稳过程)(t X ,若)()()(ττX R t X t X >=+<,以概率1成立,则称)(t X 的自相关函数具有各态历经性。
随机过程试题带答案
随机过程试题带答案1 ?设随机变量X服从参数为■的泊松分布,则X的特征函数为 __________2 ?设随机过程X(t)⼆Acos( ? ? t+G),-::⽴的随机变量,且A和门服从在区间10,1 1上的均匀分布,贝U X(t)的数学期望为______________ 。
3?强度为⼊的泊松过程的点间间距是相互独⽴的随机变量,且服从均值为丄____ 的同⼀指数分布。
4?设:W n,n 是与泊松过程1X(t),t ⼀0?对应的⼀个等待时间序列,则W n服从-分布。
5?袋中放有⼀个⽩球,两个红球,每隔单位时间从袋中任取⼀球,取后放回,f t对每⼀个确定的t对应随机变量x(t)⼆3,如果t时取得红球,则这个随机过e t, 如果t时取得⽩球程的状态空间_________ 。
6?设马⽒链的⼀步转移概率矩阵P=(P j),n步转移矩阵P(n),⼆者之间的关系为—P(n) =P n—。
7?设:X n,n ⼀0?为马⽒链,状态空间I,初始概率P i⼆P(X。
⼆i),绝对概率P j(n) =P(X n⼆j?,n步转移概率p j n),三者之间的关系为P j(n)⼋P i p j n)。
8 .设{X(t),t - 0}是泊松过程,且对于任意t2t^ 0则1. 设A,B,C为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。
1.为e,(e -1)。
2. (sin(?t+1)-sin t)。
3. _ 2 ■1 24. - 5 . -1,—t,|l| ;e,e2"l 。
6 . P(n^ P n。
7 . P j(n) 7 P i p j n) <—13 3 J ------------ 阳6t a8. 18e 9。
K t i;=H t]⼇i0K t — sdM s 10.2. 设{X(t), t_0}是独⽴增量过程,且X(0)=0,证明{X(t), t_0}是⼀个马尔科夫过程。
期末随机过程试题及答案
《随机过程期末考试 卷》1设随机变量X 服从参数为的 泊松分布,贝U X 的特征函数为。
2 •设随机过程X(t)二Acos( t+ ),- <t< 其中为 率P j (n) P X n j , n 步转移概率 p j n ),三者之间的关系为。
8•设{X(t),t0}是泊松过程,且对于任意 t 2 t i 0 则P { X (5) 6|X (3) 4}—正常数,A 和是相互独立的随机变 量,且A 和服从在区间0,1上的 均匀分布,则X(t)的数学期望为。
3. 强度为入的泊松过程的点间间 距是相互独立的随机变量,且服从均 值为的同一指数分布。
9. 更新方程tK t H t K t sdF s 解的0 一般形式为。
10. 记EX n ,对一切a 0,当t 时,M。
4道小题,每题8分,共32分)列,则W n 服从分布5. 袋中放有一个白球,两个红球, 每隔单位时间从袋中任取一球,取后 放回,对每一个确定的t 对应随机变则这个随机过程的状态空间。
6. 设马氏链的一步转移概率矩阵P=(P ij ),n 步转移矩阵 P (n) (p (n)),二者之间的关系为。
7. 设X n ,n 0为马氏链,状态空1. 设A,B,C 为三个随机事件,证明 条件概率的乘法公式: P(BCA)=P(B A)P(C AB)。
2. 设{X(t), t 0}是独立增量过程,且X(0)=0,证明{X(t), t 0}是一个马尔 科夫过程。
3. 设X n ,n 0为马尔科夫链,状态 空间为I ,则对任意整数 n 0,1 l <n 和i, j I ,n 步转移概率4. 设N(t),t 0是强度为的泊松间I ,初始概率p i P(X 0=i),绝对概科尔莫哥洛夫方程,证明并说明其意 义。
4.X(t,n 1是与泊松过程评卷人 二、证明题(本大题共 ),t 0对应的一个等待时间序 t +a M t量 X(t)丄3 t e ,如果t 时取得红球 如果t 时取得白球(n)P ijp ik )p j ),称此式为切普曼一k I分布随机变量,且与 N(t),t 0独N(t)立,令X(t)= Y k ,t 0,证明:若k=1E(Y I 12V ),则 E X(t) tE Y i 。
随机过程期末考题(2018.1.9)
中国科学技术大学期末考试题考试科目:随机过程(B ) 得分: 学生所在系: 姓名: 学号:(2018年1月9日,半开卷)一、( 20分) 判断是非与填空: (1)(每空2分)设{,0}n X X =≥为一不可约、有限(N 个)状态的马氏链,且其转移概率矩阵P为双随机的(行和与列和均为1),则:.a X 的平稳分布不一定存在 ( ) ; .b X的平稳分布存在但不必唯一( ) ;Xc .的平稳分布为) (1)11N N N ,,,(( ); .d X的极限分布为:) (1)11N N N ,,,(( ) 。
(2)(每空3分)设公路上某观察站红、黄、蓝三种颜色的汽车到达数分别是强度为2、3和5(辆/分钟)的泊松过程。
则:.a 第一辆车到达的平均时间为( ) ; .b 红车首先到达的概率为 ( ) ;.c 在第一辆红车到达之前恰好到达k 辆非红车的概率为( )。
(3)(3分)有关某种商品的销售状况共有24个季度的连续数据 ( 1—畅销,0—滞销 ):,,1,1,1,0,1,0,1,1,0,0,1,10,1,0,1,1,1,0,0,1,0,1,1若该商品销售状况满足齐次马氏链,则据以上数据可估计出该马氏链的转移概率矩阵P 为( )。
二、(15分)设到达某计数器的脉冲数}0),({≥t t N 是一速率为λ的泊松过程,每个脉冲被记录的概率均为p ,且各脉冲是否被记录是相互独立的。
现以)(1t N 表示被记录的脉冲数,试求)(1t N 的矩母函数)()(1v g t N 以及)(1t EN ,)]([1t N Var 和))(),((11t N s N Cov 。
三、(20分)设马氏链}0,{≥n X n 的转移概率矩阵为:⎪⎪⎪⎭⎫ ⎝⎛=323132313231000321P(1)设30=X ,试求:)3,2,1(},{)2(},{121=====i i X P i X P i i ππ)(,并求: )(1X E 和)(2X E ;(2)试求该马氏链的极限分布:)3,2,1,(,)(,lim ==∞→j i p n j i n j π;(3)当初始分布)3,2,1(0=i i )(π为什么分布时,该马氏链为严格平稳过程?并求此时的)(n X E 。
(完整版)随机过程习题答案
随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。
解 因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的一维概率密度及),(),(21t t R t EX X 。
解 对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的一维概率密度xtt x f t x f Y 1)ln ();(-=,0>t均值函数⎰∞+--===0)(][)]([)(dy y f e eE t X E t m yt tY X相关函数⎰+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X2.3 若从0=t 开始每隔21秒抛掷一枚均匀的硬币做实验,定义随机过程⎩⎨⎧=时刻抛得反面时刻抛得正面t t t t t X ,2),cos()(π 试求:(1))(t X 的一维分布函数),1(),21(x F x F 和;(2))(t X 的二维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,方差 )1(),(22X Xt σσ。
随机过程试题带答案
随机过程试题带答案1 ?设随机变量X服从参数为■的泊松分布,则X的特征函数为 __________2 ?设随机过程X(t)⼆Acos( ? ? t+G),-::⽴的随机变量,且A和门服从在区间10,1 1上的均匀分布,贝U X(t)的数学期望为______________ 。
3?强度为⼊的泊松过程的点间间距是相互独⽴的随机变量,且服从均值为丄____ 的同⼀指数分布。
4?设:W n,n 是与泊松过程1X(t),t ⼀0?对应的⼀个等待时间序列,则W n服从-分布。
5?袋中放有⼀个⽩球,两个红球,每隔单位时间从袋中任取⼀球,取后放回,f t对每⼀个确定的t对应随机变量x(t)⼆3,如果t时取得红球,则这个随机过e t, 如果t时取得⽩球程的状态空间_________ 。
6?设马⽒链的⼀步转移概率矩阵P=(P j),n步转移矩阵P(n),⼆者之间的关系为—P(n) =P n—。
7?设:X n,n ⼀0?为马⽒链,状态空间I,初始概率P i⼆P(X。
⼆i),绝对概率P j(n) =P(X n⼆j?,n步转移概率p j n),三者之间的关系为P j(n)⼋P i p j n)。
8 .设{X(t),t - 0}是泊松过程,且对于任意t2t^ 0则1. 设A,B,C为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。
1.为e,(e -1)。
2. (sin(?t+1)-sin t)。
3. _ 2 ■1 24. - 5 . -1,—t,|l| ;e,e2"l 。
6 . P(n^ P n。
7 . P j(n) 7 P i p j n) <—13 3 J ------------ 阳6t a8. 18e 9。
K t i;=H t]⼇i0K t — sdM s 10.2. 设{X(t), t_0}是独⽴增量过程,且X(0)=0,证明{X(t), t_0}是⼀个马尔科夫过程。
(完整版)随机过程习题答案
(完整版)随机过程习题答案-CAL-FENGHAI.-(YICAI)-Company One1随机过程部分习题答案习题2 2.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。
解 因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数 )])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的一维概率密度及),(),(21t t R t EX X 。
解 对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的一维概率密度xtt x f t x f Y 1)ln ();(-=,0>t均值函数 ⎰∞+--===0)(][)]([)(dy y f e eE t X E t m yt tY X相关函数⎰+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X2.3 若从0=t 开始每隔21秒抛掷一枚均匀的硬币做实验,定义随机过程 ⎩⎨⎧=时刻抛得反面时刻抛得正面t t t t t X ,2),cos()(π 试求:(1))(t X 的一维分布函数),1(),21(x F x F 和;(2))(t X 的二维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,方差 )1(),(22X Xt σσ。
2017-2018期末随机过程试题及答案.docx
《随机过程期末考试卷》1 •设随机变量X服从参数为■的泊松分布,则X的特征函数为 _________ 。
2•设随机过程X(t)=Acos( t+G),rvt<::其中为正常数,A和门是相互独立的随机变量,且A和门服从在区间∣0,11上的均匀分布,则X(t)的数学期望为。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为_的同一指数分布。
4•设:W n)是与泊松过程fX(t),t 一0?对应的一个等待时间序列,则W n服从分布。
5•袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,Γ对每一个确定的t对应随机变量x(t)=」3,如果t时取得红球,则这个随机过(e t, 如果t时取得白球程的状态空间__________ 。
6 •设马氏链的一步转移概率矩阵P=(P i j),n步转移矩阵Pg=(P(;)),二者之间的关系为。
7•设CX n)n -0?为马氏链,状态空间I ,初始概率P i= P(X°=i),绝对概率P j(n) =P「X n =j?,n步转移概率P j n),三者之间的关系为________________ 。
8 .设{X(t),t 一0}是泊松过程,且对于任意t20则P{X ⑸= 6|X (3) = 4} = _______t9 •更新方程K t =H^O K^SdFS解的一般形式为___________________ C 10•记亠-EX n)对一切a—0,当t—:时,M t+a -M t > _____________3. 设]X n)n — 0为马尔科夫链,状态空间为I ,则对任意整数n — 0,仁I Vn和i,j I ,n步转移概率P j n)=V P fk)P k n-I),称此式为切普曼一科尔莫哥洛夫方程,底I证明并说明其意义、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB) C2.设{X(t), t_0}是独立增量过程,且X(0)=0,证明{X(t), t_0}是一个马尔科夫过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《随机过程期末考试卷》
1.设随机变量X 服从参数为的泊松分布,则X 的特征函数为 。
λ2.设随机过程 其中为正常数,和是相互X(t)=Acos( t+),-<t<ωΦ∞∞ωA Φ独立的随机变量,且和服从在区间上的均匀分布,则的数学期望A Φ[]0,1X(t)为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设是与泊松过程对应的一个等待时间序列,则服{}n W ,n 1≥{}X(t),t 0≥n W 从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,
对每一个确定的t 对应随机变量,则 这个随机
⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e t
t X ,
,
3)(过程的状态空间 。
6.设马氏链的一步转移概率矩阵,步转移矩阵,二者之ij P=(p )n (n)(n)ij P (p )=间的关系为 。
7.设为马氏链,状态空间,初始概率,绝对概率
{}n X ,n 0≥I i 0p P(X =i)=,步转移概率,三者之间的关系为 。
{}j n p (n)P X j ==n (n)ij p 8.设是泊松过程,且对于任意则
}),({0≥t t X 012≥>t t {(5)6|(3)4}______
P X X ===9.更新方程解的一般形式为 。
()()()()0t
K t H t K t s dF s =+-⎰10.记 。
()(),0n EX a t M M t μ=≥→∞
-→一一一一一一一t +a 得 分评卷 人
二、证明题(本大题共4道小题,每题8分,共32分)
1.设为三个随机事件,证明条件概率的乘法公式:
A,B,C 。
P(BC A )=P(B A )P(C AB)2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设为马尔科夫链,状态空间为,则对任意整数和
{}n X ,n 0≥I n 0,1<n l ≥≤,步转移概率 ,称此式为切普曼—科尔莫哥洛夫方程,i,j I ∈n (n)()(n-)
ij ik kj
k I
p p p l l ∈=∑证明并说明其意义。
4.设是强度为的泊松过程,是一列独立同分布随机{}N(t),t 0≥λ{}k Y ,k=1,2,L 变量,且与独立,令,证明:若,则
{}N(t),t 0≥N(t)
k k=1X(t)=Y ,t 0≥∑21E(Y <)∞。
[]{}1E X(t)tE Y λ=得 分评卷 人三、计算题(本大题共4道小题,每题8分,共32分)
1.设齐次马氏链的一步转移概率矩阵为,求其平稳分布。
⎪⎪⎪
⎭
⎫ ⎝⎛=3/23/103/203
/103/23/1P 2.设顾客以每分钟2人的速率到达,顾客流为泊松流,求在2分钟内到达的顾客不超过3人的概率。
3.设明天是否有雨仅与今天的天气有关,而与过去的天气无关。
又设今天下雨而明天也下雨的概率为,而今天无雨明天有雨的概率为;规定有雨天气为
αβ状态0,无雨天气为状态1。
设,求今天有雨且第四天仍有雨0.7,0.4αβ==的概率。
4.设有四个状态的马氏链,它的一步转移概率矩阵
{}I=0123一一一110022110022
P=111144
4
40
1⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
(1)画出状态转移图;(2)对状态进行分类;(3)对状态空间进行分解。
I 得 分评卷 人四、简答题(本题6分)
简述指数分布的无记忆性与马尔科夫链的无后效性的关系。
一.填空题1.为。
2. 。
3.
it
(e
-1)
e λ1(sin(t+1)-sin t)2ωω1
λ
4. 5. 。
6.。
Γ212t,t,;e,e 33⎧⎫
⎨⎬⎩⎭
L L (n)n P P =7.。
(n)j i ij i I
p (n)p p ∈=⋅∑8. 9。
10.
618e -()()()()0
t
K t H t K t s dM s =+-⎰a
μ
二.证明题1.
证明:左边==右边 P(ABC)P(ABC)P(AB)
P(C AB)P(B A )P(A)P(AB)P(A)
== 2.
证明:当时,=
12n 0t t t t <<<<<L 1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤L =
n n 1122n n P(X(t)-X(t )x-x X(t )-X(0)=x ,X(t )-X(0)=x ,X(t )-X(0)=x )≤L ,又因为n n P(X(t)-X(t )x-x )≤n n P(X(t)x X(t )=x )=≤=
n n n n P(X(t)-X(t )x-x X(t )=x )≤,故=n n P(X(t)-X(t )x-x )≤1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤L n n P(X(t)x X(t )=x )≤ 3.
证明:=
{}(n)ij k I
P P X(n)=j X(0)=i P X(n)=j,X(l)=k X(0)=i ∈⎧⎫
==⎨⎬⎩⎭U {}
k I
P X(n)=j,X(l)=k X(0)=i ∈∑ ==,其意义为步转{}{}k I
P X(l)=k X(0)=i P X(n)=j X(l)=k,X(0)=i ∈∑g (l)(n-l)
ik
kj P P ∑n 移概率可以用较低步数的转移概率来表示。
4.
证明:由条件期望的性质,而
[]{}
E X(t)E E X(t)N(t)=⎡⎤⎣⎦N(t)i i=1E X(t)N(t)n E Y N(t)n ⎡⎤
===⎡⎤⎢⎥⎣⎦
⎣⎦
∑===,所以。
n i i=1E Y N(t)n ⎡⎤=⎢⎥⎣⎦∑n i i=1E Y ⎡⎤
⎢⎥⎣⎦∑1nE(Y )[]{}1E X(t)tE Y λ= 三.计算题(每题10分,共50分)1. 解:
解方程组和,即P ππ
=1=∑
i π⎪
⎪⎪⎩⎪⎪⎪⎨⎧
=+++=+=+=1
323231323131321323
3
12211ππππππππππππ解得,故平稳分布为74,72,71321===πππ)
7
4
,72,71(=π2.解:设是顾客到达数的泊松过程,,故,则
{}N(t),t 0≥2λ={}k -4
(4)P N(2)=k e k!
={}{}{}{}{}-4-4-4-4-4
3271P N(2)3P N(2)=0+P N(2)=1+P N(2)=2+P N(2)=3e 4e 8e e e 33
≤==+++
= 3.解:由题设条件,得一步转移概率矩阵为,于是00
011011p p 0.70.3P=p p 0.40.6⎡⎤⎡⎤
=⎢
⎥⎢⎥⎣
⎦⎣⎦
,四步转移概率矩阵为,(2)0.610.39P PP=0.520.48⎡⎤=⎢⎥⎣⎦(4)(2)(2)
0.57490.4251P P P 0.56680.4332⎡⎤==⎢⎥⎣⎦
从而得到今天有雨且第四天仍有雨的概率为。
(4)
00P 0.5749=4.
解:(1)图略;
(2)均为零,所以状态3构成一个闭集,它是吸收33303132p 1,p p p =一一一态,记;0,1两个状态互通,且它们不能到达其它状态,它们构成一个{}1C =3闭集,记,且它们都是正常返非周期状态;由于状态2可达中{}2C =01一12C C 一的状态,而中的状态不可能达到它,故状态2为非常返态,记。
12C C 一{}D=2 (3)状态空间可分解为:I 12
E=D C C ⋃⋃四.简答题(6分) 答:(略)。