数据结构《线性表的应用》实验报告
数据结构线性表的基本操作及应用实验报告
实验日期2010.4.19 教师签字成绩实验报告【实验名称】第二章线性表的基本操作及应用【实验目的】(1)熟练掌握线性表的基本操作的实现;(2)以线性表的各种操作(建立、插入、删除等)的实现为重点;(3)通过本次实验加深对C语言的使用(特别是函数的参数调用、指针类型的应用和链表的建立等各种基本操作)。
【实验内容】1.顺序表的基本操作(顺序表的插入、访问、删除操作)#include <stdio.h>#include <stdlib.h>#define OK 1#define ERROR 0#define OVERFLOW -1typedef int ElemType;typedef int Status;#define LIST_INIT_SIZE 100#define LISTINCREMENT 10typedef struct{ElemType *elem;int length;int listsize;}SqList;Status InitList_Sq(SqList *L){int i,n;L->elem = (ElemType * )malloc(LIST_INIT_SIZE*sizeof(ElemType));if (! L->elem) exit (OVERFLOW);printf("您希望您的顺序表有几个元素: ");scanf("%d",&n);printf("\n");printf("输入您的%d个元素,以构建顺序表: \n",n);for(i=1;i<=n;i++)scanf("%d",&L->elem[i-1]);L->length = n;L->listsize = LIST_INIT_SIZE;return OK;}//InitList_SqStatus PrintList_Sq(SqList L){int i;printf("顺序表中的元素为:");for (i=1;i<=L.length;i++)printf("%d ",L.elem[i-1]);printf("\n");return OK;}//PrintList_Sqint ListInsert_Sq(SqList* L,int i,ElemType x) //对顺序表进行插入操作{int j;if (L->length==L->listsize){printf("\t\t\t顺序表已满");return 0;}else{if (i<1||i>L->length){printf("\t\t\t位置不合法");return 0;}else{for(j=L->length-1;j>=i-1;--j)L->elem[j+1]=L->elem[j];L->elem[i-1]=x;L->length++;return 1;}}}int ListDelete_Sq(SqList* L,int i) //对顺序表进行删除操作{int j;if (i<1||i>L->length){printf("\t\t\t不存在第i个元素");return 0;}else{for (j=i-1;j<L->length;j++){L->elem[j]=L->elem[j+1];}L->length--;return 1;}}int LocateElem(SqList *L, int i) {if(i<1||i>L->length)return ERROR;else return L->elem[i-1];}int scan(){int choose;printf("选择要执行的基本操作:\n1.插入元素;2.删除元素;3.访问元素.\n");printf("输入其他值退出程序……\n");scanf("%d",&choose);return(choose);}void main(){SqList L;ElemType e;int i;int quit=0;if (InitList_Sq(&L)==OVERFLOW)printf("分配失败,退出程序!");printf("输出程序中的元素\n");PrintList_Sq(L);while(!quit)switch(scan()){case 1:printf("\n请输入你所需要插入的位置和你要插入的元素:");printf("\n请输入i和e的值:");scanf("%d%d",&i,&e);if (ListInsert_Sq(&L,i,e)==OK) PrintList_Sq(L);break;case 2:printf("\n请输入你所需要删除元素的位置:");scanf("%d",&i);if(ListDelete_Sq(&L,i)==OK) PrintList_Sq(L);break;case 3:printf("请输入所要查找元素的位置:\n");scanf("%d",&i);if(LocateElem(&L,i))printf("该位置元素的值为:%d!\n",LocateElem(&L,i));else printf("该位置的元素不存在!\n");break;default:quit=1;printf("操作结束!");printf("\n");}}2.单向链表的基本操作(单向链表的插入、删除、查找以及并表操作)#include<stdio.h>#include<malloc.h>typedef int ElemType;#define OK 1#define ERROR 0#define flag 0typedef struct LNode{ElemType data;struct LNode *next;} LNode,*LinkList;LinkList InitLinkList(){LinkList L;L=(LinkList)malloc(sizeof(LNode));L->next=NULL;return L;}LinkList LocateLinkList(LinkList L,int i){LinkList p;int j;p=L->next;j=1;while(p!=NULL&&j<i){p=p->next; j++;}if (j==i)return p;else return NULL;}void LinkListInsert(LinkList L, int i, ElemType e)//插入元素{LinkList p,s;int j;j=1;p=L;while(p&&j<i){p=p->next;j++;}if(p==NULL||j>i)printf("插入位置不正确\n");else {s=(LNode *)malloc(sizeof(LNode));s->data=e;s->next=p->next;p->next=s;printf("%d已插入到链表中\n",e);}}void LinkListDelete(LinkList L,int i) //删除元素{LinkList p,q;int j;j=1;p=L;while(p->next&&j<i){p=p->next;j++;}if(p->next==NULL)printf("删除位置不正确\n");else{q=p->next;p->next=q->next;free(q);printf("第%d个元素已从链表中删除\n",i);}}LinkList CreatLinkList( )//建立单向链表{LinkList L=InitLinkList(),p,r;ElemType e;r=L;printf("请依次输入链表中的元素,输入0结束\n"); scanf("%d",&e);while (e!=flag){p=(LinkList)malloc(sizeof(LNode));p->data=e;r->next=p;r=p;scanf("%d",&e);}r->next=NULL;return L;}int LinkListLength(LinkList L){LinkList p;int j;p=L->next;j=0;while(p!=NULL){j++;p=p->next;}return j;}void LinkListPrint(LinkList L){LinkList p;p=L->next;if(p==NULL) printf("单链表为空表\n");else{printf("链表中的元素为:\n");while(p!=NULL){printf("%d ",p->data);p=p->next;}}printf("\n");}void Mergelist_L(LinkList La,LinkList Lb,LinkList Lc) {LNode *pa,*pb,*pc,*p;pa=La->next;pb=Lb->next;Lc=La;pc=Lc;while(pa&&pb){if(pa->data<=pb->data){pc->next=pa;pc=pa;pa=pa->next;}else {pc->next=pb;pc=pb;pb=pb->next;}}pc->next=pa?pa:pb;p=Lc->next;printf("合并结果:");while(p) {printf("%4d",p->data);p=p->next;}free(Lb);}int scan(){int d;printf("请选择你所要执行的单向链表的基本操作:\n1.插入元素;2.删除元素;3.访问元素;4.两个单向链表的合并.\n");printf("其他键退出程序……");printf("\n");scanf("%d",&d);return(d);}void main(){ LinkList La,Lb,Lc;int quit=0;int i,locate;ElemType e;LinkList L,p;L=CreatLinkList();while(!quit)switch(scan()){case 1:printf("请输入插入元素的位置和值(中间以空格或回车分隔):\n");scanf("%d%d",&i,&e);LinkListInsert(L,i,e);LinkListPrint(L);break;case 2:if(LinkListLength(L)==0)printf("链表已经为空,不能删除\n\n");else{printf("请输入待删除元素的位置:\n");scanf("%d",&i);LinkListDelete(L,i);}LinkListPrint(L);break;case 3:printf("请输入待查询元素在链表中的位置:");scanf("%d",&i);p=LocateLinkList(L,i);if(p)printf("链表中第%d个元素的值为:%d\n",i,p->data);elseprintf("查询位置不正确\n\n");break;case 4:La=CreatLinkList();Lb=CreatLinkList();Mergelist_L( La, Lb, Lc);printf("\n");break;default:quit=1;printf("操作结束!");printf("\n");}}3.单向循环链表的基本操作(单向链表的插入、删除、查找操作)#include<stdio.h>#include<malloc.h>typedef int ElemType;#define OK 1#define ERROR 0#define flag 0typedef struct LNode{ElemType data;struct LNode *next;} LNode,*LinkList;LinkList InitLinkList(){LinkList L;L=(LinkList)malloc(sizeof(LNode));L->next=L;return L;}LinkList LocateLinkList(LinkList L,int i){LinkList p;int j;p=L->next;j=1;while(p!=L&&j<i){p=p->next; j++;}if (j==i)return p;else return NULL;}void LinkListInsert(LinkList L, int i, ElemType e)//插入元素{LinkList p,s;int j;j=1;p=L;while(p->next!=L&&j<i){p=p->next;j++;}if(p==L||j>i)printf("插入位置不正确\n");else {s=(LNode *)malloc(sizeof(LNode));s->data=e;s->next=p->next;p->next=s;printf("%d已插入到链表中\n",e);}}void LinkListDelete(LinkList L,int i) //删除元素{LinkList p,q;int j;j=1;p=L;while(p->next!=L&&j<i){p=p->next;j++;}if(p->next==L)printf("删除位置不正确\n");else{q=p->next;p->next=q->next;free(q);printf("第%d个元素已从链表中删除\n",i);}}LinkList CreatLinkList( )//建立单向链表{LinkList L=InitLinkList(),p,r;ElemType e;r=L;printf("请依次输入链表中的元素,输入0结束\n"); scanf("%d",&e);while (e!=flag){p=(LinkList)malloc(sizeof(LNode));p->data=e;r->next=p;r=p;scanf("%d",&e);}r->next=L;return L;}int LinkListLength(LinkList L){LinkList p;int j;p=L->next;j=0;while(p!=L){j++;p=p->next;}return j;}void LinkListPrint(LinkList L){LinkList p;p=L->next;printf("链表中的元素为:\n");while(p!=L){printf("%d ",p->data);p=p->next;}printf("\n");}int scan(){int d;printf("请选择你所要执行的单向链表的基本操作:\n1.插入元素;2.删除元素;3.访问元素.\n");printf("其他键退出程序……");printf("\n");scanf("%d",&d);return(d);}void main(){int quit=0;int i;ElemType e;LinkList L,p;L=CreatLinkList();while(!quit)switch(scan()){case 1:printf("请输入插入元素的位置和值(中间以空格或回车分隔):\n");scanf("%d%d",&i,&e);LinkListInsert(L,i,e);LinkListPrint(L);break;case 2:if(LinkListLength(L)==0)printf("链表已经为空,不能删除\n\n");else{printf("请输入待删除元素的位置:\n");scanf("%d",&i);LinkListDelete(L,i);}LinkListPrint(L);break;case 3:printf("请输入待查询元素在链表中的位置:");scanf("%d",&i);p=LocateLinkList(L,i);if(p)printf("链表中第%d个元素的值为:%d\n",i,p->data);elseprintf("查询位置不正确\n\n");break;default:quit=1;printf("操作结束!");printf("\n");}}4.双向链表的基本操作(双向链表的插入、删除、查找以及并表操作)#include<stdio.h>#include<malloc.h>#define flag 0typedef int status;typedef int ElemType;typedef struct DuLNode{ElemType data;struct DuLNode *prior;struct DuLNode *next;}DuLNode,*DuLinkList;DuLinkList InitDuLinkList(){DuLinkList L;L=(DuLinkList)malloc(sizeof(DuLNode));L->next=L->prior=NULL;return L;}DuLinkList CreatDuLinkList(){DuLinkList L=InitDuLinkList(),p,r;ElemType e;r=L;printf("请依次输入链表中的元素,输入0结束\n");scanf("%d",&e);while (e!=flag){p=(DuLinkList)malloc(sizeof(DuLNode));p->data=e;r->next=p;p->prior=r->next;r=p;scanf("%d",&e);}r->next=NULL;return L;}void ListInsert_DuL(DuLinkList L, int i, ElemType e){ DuLinkList p,s;int j;j=1;p=L;while(p&&j<i){p=p->next;j++;}if(p==NULL||j>i)printf("插入位置不正确\n");else {s=(DuLinkList)malloc(sizeof(DuLNode));s->data=e;s->next=p->next; p->next->prior=s;s->prior=p; p->next=s;printf("%d已插入到双向链表中\n",e); }}void ListDelete_DuL(DuLinkList L,int i) //删除元素{DuLinkList p,q;int j;j=1;p=L;while(p->next&&j<i){p=p->next;j++;}if(p->next==NULL)printf("删除位置不正确\n");else{q=p->next;p->next=q->next;q->next->prior=p;free(q);printf("第%d个元素已从链表中删除\n",i); }}void LinkListPrint_DuL(DuLinkList L){DuLinkList p;p=L->next;if(p==NULL) printf("双链表为空表\n");else{printf("链表中的元素为:\n");while(p!=NULL){printf("%d ",p->data);p=p->next;}}printf("\n");}int DuLinkListLength(DuLinkList L){DuLinkList p;int j;p=L->next;j=0;while(p!=NULL){j++;p=p->next;}return j;}DuLinkList LocateDuLinkList(DuLinkList L,int i) {DuLinkList p;int j;p=L->next;j=1;while(p!=NULL&&j<i)p=p->next; j++;}if (j==i)return p;else return NULL;}void Mergelist_L(DuLinkList La,DuLinkList Lb,DuLinkList Lc){DuLNode *pa,*pb,*pc,*p;pa=La->next;pb=Lb->next;Lc=La;pc=Lc;while(pa&&pb){if(pa->data<=pb->data){pc->next=pa;pc=pa;pa=pa->next;}else {pc->next=pb;pc=pb;pb=pb->next;}}pc->next=pa?pa:pb;p=Lc->next;printf("合并结果:");while(p) {printf("%4d",p->data);p=p->next;}free(Lb);}int scan(){int d;printf("请选择你所要执行的双向链表的基本操作:\n1.插入元素;2.删除元素;3.访问元素;4.两个双向链表的合并.\n");printf("其他键退出程序……");printf("\n");scanf("%d",&d);return(d);}void main(){int quit=0;int i;ElemType e;DuLinkList L,p;DuLinkList La,Lb,Lc;L=CreatDuLinkList();while(!quit){switch(scan())case 1:printf("请输入插入元素的位置和值(中间以空格或回车分隔):\n");scanf("%d%d",&i,&e);ListInsert_DuL(L,i,e);LinkListPrint_DuL(L);break;case 2:if(DuLinkListLength(L)==0)printf("链表已经为空,不能删除\n\n");else{printf("请输入待删除元素的位置:\n");scanf("%d",&i);ListDelete_DuL(L,i);}LinkListPrint_DuL(L);break;case 3:printf("请输入待查询元素在链表中的位置:");scanf("%d",&i);p=LocateDuLinkList(L,i);if(p)printf("链表中第%d个元素的值为:%d\n",i,p->data);elseprintf("查询位置不正确\n\n");break;case 4:La=CreatDuLinkList();Lb=CreatDuLinkList();Mergelist_L( La, Lb, Lc);printf("\n");break;default:quit=1;printf("操作结束!");printf("\n");}}5.双向循环链表的基本操作(双向循环链表的插入、删除以及访问操作)#include<stdio.h>#include<malloc.h>#define flag 0typedef int status;typedef int ElemType;typedef struct DuLNode{ElemType data;struct DuLNode *prior;struct DuLNode *next;}DuLNode,*DuLinkList;DuLinkList InitDuLinkList(){DuLinkList L;L=(DuLinkList)malloc(sizeof(DuLNode));L->next=L; L->prior=L;return L;}DuLinkList CreatDuLinkList(){DuLinkList L=InitDuLinkList(),p,r;ElemType e;r=L;printf("请依次输入链表中的元素,输入0结束\n"); scanf("%d",&e);while (e!=flag){p=(DuLinkList)malloc(sizeof(DuLNode));p->data=e;r->next=p;p->prior=r->next;r=p;scanf("%d",&e);}r->next=L; L->prior=r;return L;}void ListInsert_DuL(DuLinkList L, int i, ElemType e){ DuLinkList p,s;int j;j=1;p=L;while(j<i){p=p->next;j++;}if(j>i)printf("插入位置不正确\n");else {s=(DuLinkList)malloc(sizeof(DuLNode));s->data=e;s->next=p->next; p->next->prior=s;s->prior=p; p->next=s;printf("%d已插入到双向循环链表中\n",e); }}void ListDelete_DuL(DuLinkList L,int i) //删除元素{DuLinkList p,q;int j;j=1;p=L;while(p->next!=L&&j<i){p=p->next;j++;}if(p->next==L)printf("删除位置不正确\n");else{q=p->next;p->next=q->next;q->next->prior=p;free(q);printf("第%d个元素已从双向循环链表中删除\n",i); }}void LinkListPrint_DuL(DuLinkList L){DuLinkList p;p=L->next;if(p->next==L) printf("双链表为空表\n");else{printf("链表中的元素为:\n");while(p!=L){printf("%d ",p->data);p=p->next;}}printf("\n");}int DuLinkListLength(DuLinkList L){DuLinkList p;int j;p=L->next;j=0;while(p->next!=L){j++;p=p->next;}return j;}DuLinkList LocateDuLinkList(DuLinkList L,int i){DuLinkList p;int j=1;p=L->next;while(p->next!=L&&j<i){p=p->next; j++;}if (j==i)return p;else return NULL;}int scan(){int d;printf("请选择你所要执行的双向链表的基本操作:\n1.插入元素;2.删除元素;3.访问元素.\n");printf("其他键退出程序……");printf("\n");scanf("%d",&d);return(d);}void main(){ int quit=0;int i,locate;ElemType e;DuLinkList L,p;L=CreatDuLinkList();while(!quit)switch(scan()){case 1:printf("请输入插入元素的位置和值(中间以空格或回车分隔):\n");scanf("%d%d",&i,&e);ListInsert_DuL(L,i,e);LinkListPrint_DuL(L);break;case 2:if(DuLinkListLength(L)==0)printf("链表已经为空,不能删除\n\n");else{printf("请输入待删除元素的位置:\n");scanf("%d",&i);ListDelete_DuL(L,i);}LinkListPrint_DuL(L);break;case 3:printf("请输入待查询元素在链表中的位置:");scanf("%d",&i);p=LocateDuLinkList(L,i);if(p)printf("链表中第%d个元素的值为:%d\n",i,p->data);elseprintf("查询位置不正确\n\n");break;default:quit=1;printf("操作结束!");printf("\n");}}【小结讨论】1.通过实验,我加深了对C的工作环境及其基本操作,进一步掌握了基本函数的调用以及使用方法。
数据结构实验 线性表的应用
课程题目:数据结构试验学院:班级:姓名:学号:实验题目:线性表的应用实验内容:分数统计实验目的:掌握线性表的概念及原理,运用线性表的原理完成实验题目中的内容。
实验要求:为了使学生更好的掌握与理解课堂上老师所讲的概念与原理,实验前每个学生要认真预习所做的实验内容及编写源程序代码(写在纸上与盘中均可),以便在实验课中完成老师所布置的实验内容。
实验学时:4学时设计原理:本实验的核心部分为对学生成绩从两个角度进行分析,既对学生的成绩进行了排名、求出学生成绩的平均分和分出学生成绩的数值段。
为了处理学生成绩这些数据,首先必须建立一个新的线性表,新表为空,然后经由input函数程序的执行使得学生的成绩可以输入到计算机中,从键盘输入程序所提示的学生人数后,新线性表的长度得以确定,再通过循环命令语句的调用将全部学生的成绩输入。
输入后,调用output函数处理线性表中的数据,通过调用条件语句和设置变量存储次次数的累加,从而在屏幕上输出各个分数段的人数。
这之后,通过冒泡排序法处理学生成绩这些数据,得出结果后,在调用循环语句命令将结果按顺序输出。
然后再对这些数据进行求平均值的运算,处理后输出。
详细程序清单及注释说明:#include<stdio.h>#include<malloc.h>#define list_init_size 100#define listincrement 10typedef struct{int *elem; //存储空间基址int length; //当前长度int listsize; //当前分配的存储空间(以sizeof(ElemType)为单位) }sqlist;void initlist_sq(sqlist &l) //创建一个空的线性表{l.elem=(int *)malloc(list_init_size*sizeof(int));l.length=0; //空表长度为0l.listsize=list_init_size; //初始存储容量}void input(sqlist &l){//输入学生的总人数和每个人的成绩int a,b,c;loop1:printf("输入学生人数:");scanf("%d",&b);if(b<=0){printf("输入错误,请重新输入!!\n");goto loop1; //输入错误时,重新输入}printf("\n");l.length=l.length+b; //由输入的值确定线性表的长度for(a=0;a<b;a++){loop:printf("输入第%d名学生的成绩:",a+1);scanf("%d",&c);l.elem[a]=c;if(c<0 || c>100){printf("输入错误,请重新输入!!\n");goto loop; //输入错误时,重新输入}}}void output(sqlist &l){//输出学生的成绩信息printf("\n");int i,a=0,q=0,w=0,e=0,r=0,t=0,y=0;for(i=0;i<l.length;i++){a=l.elem[i]/10;switch(a) //对成绩分段{case 10:q++;break;case 9:w++;break;case 8:e++;break;case 7:r++;break;case 6:t++;break;default:y++;break;}}printf("成绩为100有%d人\n",q);printf("成绩为90~99有%d人\n",w);printf("成绩为80~89有%d人\n",e);printf("成绩为70~79有%d人\n",r);printf("成绩为60~69有%d人\n",t);printf("不及格的有%d人\n\n",y);}void order(sqlist &l){//对成绩进行排序int i,j,k;for(i=0;i<l.length;i++)for(j=0;j<l.length-i;j++)if(l.elem[j]<l.elem[j+1]){k=l.elem[j];l.elem[j]=l.elem[j+1];l.elem[j+1]=k;}printf("经过排序:\n");for(i=0;i<l.length;i++){printf("第%d名成绩为:%d\n",i+1,l.elem[i]);}}void average(sqlist &l){//求出平均成绩int i;float k=0,j=0;for(i=0;i<l.length;i++){j=j+l.elem[i];}k=j/l.length;printf("平均分为:%5.5f\n",k); }void main(){printf("分数统计\n\n");sqlist l;initlist_sq(l);input(l);output(l);order(l);average(l);}运行与测试及结果:在输入错误情况下:试验中所遇到的问题及解决办法:①、实验当中曾经出现数据结果为乱码的现象,后经查找,原因是两个for循环当中的变量i,j顺序颠倒,从而出现了指针没有指向相应的数据结果,而是指向了未知位置的数据。
数据结构线性表实验报告
实验报告实验一线性表实验目的:1. 理解线性表的逻辑结构特性;2. 熟练掌握线性表的顺序存储结构的描述方法,以及在该存储结构下的基本操作;并能灵活运用;3. 熟练掌握线性表的链表存储结构的描述方法,以及在该存储结构下的基本操作;并能灵活运用;4•掌握双向链表和循环链表的的描述方法,以及在该存储结构下的基本操作。
实验原理:线性表顺序存储结构下的基本算法;线性表链式存储结构下的基本算法;实验内容:2 - 21设计单循环链表,要求:(1 ) 单循环链表抽象数据类型包括初始化操作、求数据元素个数操作、插入操作、删除操作、取消数据元素操作和判非空操作。
(2 ) 设计一个测试主函数,实际运行验证所设计单循环链表的正确性。
2 — 22 .设计一个有序顺序表,要求:(1 ) 有序顺序表的操作集合有如下操作:初始化、求数据元素个数、插入、删除和取数据元素。
有序顺序表与顺序表的主要区别是:有序顺序表中的数据元素按数据元素值非递减有序。
(2 ) 设计一个测试主函数,实际运行验证所设计有序顺序表的正确性。
(3) 设计合并函数ListMerge ( L1,L2,L3 ),功能是把有序顺序表 L1和L2中的数据元素合并到L3,要求L3中的数据元素依然保持有序。
并设计一个主函数,验证该合并函数的正确性。
程序代码:2-21 (1)头文件 LinList.h 如下:typedef struct node{DataType data;struct node *next;}SLNode;/* ( 1 )初始化 ListInitiate(SLNode * * head)*/void ListInitiate(SLNode * * head){ /* 如果有内存空间,申请头结点空间并使头指针 head 指向头结点 */if((*head=(SLNode *)malloc(sizeof(SLNode)))==NULL)exit(1);(*head)->next=NULL; /* 置结束标记 NULL*/}/*(2) 求当前数据元素个数 ListLength(SLNode * head)*/int ListLength(SLNode * head){SLNode *p=head;int size=0;while(p->next!=head){p=p->next;size++;}return size;}/*(3) 插入 ListInsert(SLNode * head , int i , DataType x)*//* 在带头结点的单链表的第 i(0<=i<=size) 个结点前 *//* 插入一个存放数据元素 x 的结点。
数据结构线性表试验报告(最终定稿)
数据结构线性表试验报告(最终定稿)第一篇:数据结构线性表试验报告线性表上机实习1、实验目的(1)熟悉将算法转换为程序代码的过程。
(2)了解顺序表的逻辑结构特性,熟练掌握顺序表存储结构的C 语言描述方法。
(3)熟练掌握顺序表的基本运算:查找、插入、删除等,掌握顺序表的随机存取特性。
(4)了解线性表的链式存储结构,熟练掌握线性表的链式存储结构的C语言描述方法。
(5)熟练掌握线性链表(单链表)的基本运算:查找、插入、删除等,能在实际应用中灵活选择适当的链表结构。
2、实验要求(1)熟悉顺序表的插入、删除和查找。
(2)熟悉单链表的插入、删除和查找。
3、实验内容: ① 顺序表(1)抽象数据类型定义typedef struct {TypeData data[maxsize];//容量为maxsize的静态顺手表int n;//顺序表中的实际元素个数}SeqList;//静态顺序表的定义在本次实验中,首先建立一个空的静态顺序表,然后键盘输入数据存入表中,然后进入菜单选择界面,通过不同的数字输入,实现对顺序表,删除,插入,查找,显示等操作。
(2)存储结构定义及算法思想在顺序表结构体的定义中,typedef int TypeData 为整型,存储结构如下:for(n=0;ncout<<“请输入线性表数据”<cin>>L.data[n];//顺序将数据存入顺序表}//其他存储与此类似,都是直接赋值与数组的某一位插入版块子函数:void insert(SeqList &L)//插入数据 {int a,b,c,k;cout<<“请输入插入的数及其插入的位置”<cin>>a>>b;if(b<=0||b>(L.n+1)){cout<<“不能在该位置插入”<k=L.data[b-1];L.data[b-1]=a;c=L.n;L.n=L.n+1;while(c>b){L.data[c]=L.data[c-1];c--;//通过循环,实现插入位置后的数据挨个往后移动一位}L.data[b]=k;} 顺序表的插入与删除操作类似,在插入与删除后,都要循环调整后面数组的每一位元素,同时记录数据元素的长度的标示符也要跟着改变。
数据结构线性表实验报告
数据结构线性表实验报告数据结构线性表实验报告1.简介本实验报告旨在介绍数据结构中线性表的实现和应用。
线性表是一种重要的数据结构,它的特点是数据元素之间存在一对一的前后关系,且具有唯一的起点和终点。
本实验通过实现线性表的基本操作,加深对线性表的理解,并通过实例应用展示线性表在实际问题中的应用。
2.实验环境本次实验采用的是编程语言C,并搭配使用一些常用的开发工具和库。
具体环境如下:________●操作系统:________Windows 10●编程语言:________C●开发工具:________Visual Studio Code●辅助库:________Stdio.h、stdlib.h、conio.h3.实验内容3.1 线性表的定义和基本操作3.1.1 线性表的定义线性表是由n(n ≥ 0)个数据元素组成的有限序列,数据元素之间存在一对一的前后关系。
3.1.2 线性表的基本操作●初始化线性表:________创建一个空的线性表。
●插入元素:________在指定位置插入一个新的元素。
●删除元素:________删除指定位置的元素。
●查找元素:________根据值或位置查找指定元素。
●修改元素:________根据位置修改指定元素的值。
●清空线性表:________将线性表中的所有元素清空。
3.2 线性表的顺序存储结构3.2.1 顺序存储结构的定义顺序存储结构是指使用一段连续的存储空间,依次存储线性表中的元素。
3.2.2 顺序存储结构的实现●初始化顺序表:________创建一个空的顺序表,并指定最大容量。
续元素依次后移。
●删除元素:________删除指定位置的元素,并将后续元素依次前移。
●查找元素:________根据值或位置查找指定元素,并返回其位置或值。
●修改元素:________根据位置修改指定元素的值。
●清空顺序表:________将顺序表中的所有元素清空。
●扩容:________当顺序表容量不足时,自动进行扩容。
(完整版)数据结构线性表的应用实验报告
实验报告课程名称____数据结构上机实验__________ 实验项目______线性表的应用 ____________实验仪器________PC机___________________系别_____电子信息与通信学院___专业________ ___班级/学号______ __学生姓名______ ___________实验日期_______________________成绩_______________________指导教师_______________________实验一.线性表的应用1.实验目的:掌握线性链表的存储、运算及应用。
利用链表实现一元多项式计算。
2.实验内容:1)编写函数,实现用链表结构建立多项式;2)编写函数,实现多项式的加法运算;3)编写函数,实现多项式的显示;4)测试:编写主函数,它定义并建立两个多项式,显示两个多项式,然后将它们相加并显示结果。
变换测试用的多项式,检查程序的执行结果。
选做内容:修改程序,选择实现以下功能:5)多项式求值:编写一个函数,根据给定的x值计算并返回多项式f(x)的值。
测试该函数(从终端输入一个x的值,调用该函数并显示返回结果)。
6)多项式相减:编写一个函数,求两个多项式相减的多项式。
7)多项式相乘:编写一个函数,求两个多项式的乘积多项式。
3.算法说明:1)多项式的建立、显示和相加算法见讲义。
可修改显示函数,使输出的多项式更符合表达规范。
2)多项式减法:同次项的系数相减(缺项的系数是0)。
例如a(x)=-5x2+2x+3,b(x)= -4x3+3x,则a(x)-b(x)=4x3-5x2-x+3。
提示:a(x)-b(x) = a(x)+(-b(x))。
3)多项式乘法:两个多项式的相乘是“系数相乘,指数相加”。
算法思想是用一个多项式中的各项分别与另一个多项式相乘,形成多个多项式,再将它们累加在一起。
例如,a(x)=-5x2+2x+3,b(x)=-4x3+3x,则a(x)*b(x) = (-4x3)*(-5x2+2x+3)+(3x)*(-5x2+2x+3)= (20x5-8x4-12x3) + (-15x3+6x2+9x) =20x5-8x4-27x3+6x2+9x。
数据结构《线性表的应用》实验报告
实验报告——线性表应用一、实验目的用单链表储存一元多项式,并实现两个多项式的相加运算。
二、实验内容1.先创建链表,存储多项式;2.输出多项式;3.两个多项式相加;4.输出多项式。
三、程序代码#include <stdio.h>#include <stdlib.h>#include <math.h>//一元多项式链式储存的节点结构typedef struct Polynode{float coef;int exp;struct Polynode * next;} Polynode , * Polylist;//建立一元多项式的链表Polylist polycreate(){Polynode * head,* rear,* s;float c;int e;head=(Polynode* )malloc(sizeof(Polynode));rear=head;scanf("%f,%d",&c,&e);while(c!=0){s=(Polynode * )malloc(sizeof(Polynode));s->coef=c;s->exp=e;rear->next=s;rear=s;scanf("%f,%d",&c,&e);}rear->next=NULL;return(head);}//输出多项式void print(Polynode*L){Polynode*p;p=L->next;printf("a=");if(p&&p->coef!=0)printf("%.2f*x^%d",p->coef,p->exp);while(p->next!=NULL){if((p->next->coef)>0&&p)printf("+");elseprintf("-");p=p->next;printf("%.2f*x^%d",fabs(p->coef),p->exp);}}//多项式相加void polyadd(Polylist polya,Polylist polyb){Polynode*p,*q,*tail,*temp;int sum;p=polya->next;q=polyb->next;tail=polya;while (p!=NULL&&q!=NULL){if(p->exp<q->exp){tail ->next=p; tail=p;p=p->next;}else if (p->exp==q->exp);{sum=p->coef+q->coef;if(sum!=0){p->coef=sum;tail->next=p;tail=p;p=p->next;temp=q;q=q->next;free(temp);}else{temp=p;p=p->next;free(temp);temp=q;q=q->next;free(temp);}}{tail ->next=q;tail=q;q=q->next;}}if(p!=NULL)tail->next=p;elsetail->next=q;}void main(){Polynode*a,*b;printf("输入a的系数和指数:\n");a = polycreate();print(a);printf("\n");printf("输入b的系数和指数:\n");b = polycreate();print(b);printf("\n");polyadd(a,b);printf("两个多项式的和为:\n");print(a);}四、实验结果五、实验过程中遇到的问题及处理方法程序运行时,在中文状态下输入“,”回车后就不能再输入了,应在英文状态下输入“,”。
数据结构实验报告线性表
数据结构实验报告线性表数据结构实验报告:线性表引言:数据结构是计算机科学中的重要概念,它涉及到如何组织和存储数据,以及如何有效地操作和管理这些数据。
线性表是数据结构中最基本的一种,它是一种有序的数据元素集合,其中的元素之间存在着一对一的关系。
一、线性表的定义和特点线性表是由n个数据元素组成的有限序列,其中n为表的长度。
这些数据元素可以是相同类型的,也可以是不同类型的。
线性表中的数据元素按照一定的顺序排列,并且每个数据元素都有唯一的前驱和后继。
线性表的特点有以下几个方面:1. 数据元素之间是一对一的关系,即每个数据元素只有一个直接前驱和一个直接后继。
2. 线性表中的元素是有序的,每个元素都有一个确定的位置。
3. 线性表的长度是有限的,它的长度可以是0,也可以是任意正整数。
二、线性表的实现方式线性表可以使用不同的数据结构来实现,常见的实现方式有数组和链表。
1. 数组实现线性表:数组是一种连续存储的数据结构,它可以用来存储线性表中的元素。
数组的优点是可以快速访问任意位置的元素,但是插入和删除操作需要移动其他元素,效率较低。
2. 链表实现线性表:链表是一种非连续存储的数据结构,它通过指针将线性表中的元素链接起来。
链表的优点是插入和删除操作简单高效,但是访问任意位置的元素需要遍历链表,效率较低。
三、线性表的基本操作线性表的基本操作包括插入、删除、查找和修改等。
1. 插入操作:插入操作用于向线性表中插入一个新元素。
具体步骤是先将插入位置后面的元素依次后移,然后将新元素插入到指定位置。
2. 删除操作:删除操作用于从线性表中删除一个元素。
具体步骤是先将删除位置后面的元素依次前移,然后将最后一个元素删除。
3. 查找操作:查找操作用于在线性表中查找指定元素。
具体步骤是从线性表的第一个元素开始逐个比较,直到找到匹配的元素或者到达线性表的末尾。
4. 修改操作:修改操作用于修改线性表中的某个元素的值。
具体步骤是先查找到要修改的元素,然后将其值更新为新值。
数据结构线性表实验报告
数据结构线性表实验报告数据结构线性表实验报告实验目的:本次实验主要是为了学习和掌握线性表的基本操作和实现方式。
通过实验,我们可以加深对线性表的理解,并能够熟悉线性表的基本操作。
实验设备与环境:本次实验所需的设备包括计算机和编程环境。
我们选择使用C语言来实现线性表的操作,并在Visual Studio Code编程软件中进行编写和调试。
实验内容:1.线性表的定义和基本操作1.1 线性表的定义:线性表是一种有序的数据结构,其中的元素按照一定的顺序存储,可以插入、删除和访问元素。
1.2 线性表的基本操作:1.2.1 初始化线性表:创建一个空的线性表。
1.2.2 判断线性表是否为空:判断线性表是否不含有任何元素。
1.2.3 获取线性表的长度:返回线性表中元素的个数。
1.2.4 在线性表的指定位置插入元素:在线性表的第i个位置插入元素x,原第i个及其之后的元素依次后移。
1.2.5 删除线性表中指定位置的元素:删除线性表中第i个位置的元素,原第i+1个及其之后的元素依次前移。
1.2.6 获取线性表中指定位置的元素:返回线性表中第i个位置的元素的值。
1.2.7 清空线性表:将线性表中的元素全部删除,使其变为空表。
2.线性表的顺序存储结构实现2.1 线性表的顺序存储结构:使用数组来实现线性表的存储方式。
2.2 线性表的顺序存储结构的基本操作:2.2.1 初始化线性表:创建一个指定长度的数组,并将数组中的每个元素初始化为空值。
2.2.2 判断线性表是否为空:判断线性表的长度是否为0。
2.2.3 获取线性表的长度:返回线性表数组的长度。
2.2.4 在线性表的指定位置插入元素:将要插入的元素放入指定位置,并将原位置及其之后的元素依次后移。
2.2.5 删除线性表中指定位置的元素:将指定位置的元素删除,并将原位置之后的元素依次前移。
2.2.6 获取线性表中指定位置的元素:返回指定位置的元素的值。
2.2.7 清空线性表:将线性表数组中的每个元素赋空值。
数据结构线性表实验报告
数据结构线性表实验报告数据结构线性表实验报告引言:数据结构是计算机科学中的一个重要概念,它研究如何组织和存储数据,以便能够高效地访问和操作。
线性表是数据结构中最基本的一种,它是一种有序的数据元素集合,其中的元素之间存在一对一的关系。
本次实验旨在通过实际操作线性表,加深对数据结构的理解,并掌握基本的线性表操作。
实验目的:1. 理解线性表的概念和特点;2. 掌握线性表的基本操作,如插入、删除、查找等;3. 熟悉线性表的顺序存储结构和链式存储结构;4. 分析不同存储结构的优缺点。
实验内容:1. 实现线性表的顺序存储结构顺序存储结构是将线性表的元素按照其逻辑顺序依次存放在一块连续的存储空间中。
我们可以使用数组来实现顺序存储结构。
首先,定义一个固定大小的数组作为线性表的存储空间,然后通过数组的下标来访问和操作线性表中的元素。
在插入和删除元素时,需要移动其他元素的位置,以保持线性表的有序性。
2. 实现线性表的链式存储结构链式存储结构是将线性表的元素存储在一系列的结点中,每个结点包含一个数据元素和一个指向下一个结点的指针。
通过将各个结点用指针连接起来,形成一个链表。
在插入和删除元素时,只需要修改相邻结点之间的指针,而不需要移动其他元素的位置。
实验步骤:1. 实现顺序存储结构的线性表首先,定义一个固定大小的数组,用于存储线性表的元素。
然后,实现插入、删除、查找等基本操作。
在插入元素时,需要判断线性表是否已满,如果已满则需要扩容。
在删除元素时,需要判断线性表是否为空,如果为空则无法删除元素。
通过实现这些基本操作,可以对线性表进行增删查改等操作。
2. 实现链式存储结构的线性表首先,定义一个结点类,包含一个数据元素和一个指向下一个结点的指针。
然后,通过将各个结点用指针连接起来,形成一个链表。
实现插入、删除、查找等基本操作。
在插入元素时,需要找到插入位置,并修改相邻结点之间的指针。
在删除元素时,需要找到待删除元素的前一个结点,并修改前一个结点的指针。
数据结构实验一:线性表的应用
数据结构实验报告实验一线性表的应用一、实验目的:1.掌握线性表的两种存储结构及实现方式;2.熟练掌握顺序表和链表的建立、插入和删除的算法。
二、实验要求:1.C完成算法设计和程序设计并上机调试通过。
2.撰写实验报告,提供实验结果和数据。
3.写出算法设计小结和心得。
三、实验内容:1.用顺序表表示集合,编写程序以实现集合的交、并、差运算。
2.设带头结点的单链表ha和hb中结点数据域值按从小到大顺序排列,且各自链表内无重复的结点,要求:(1)建立两个按升序排列的单链表ha和hb。
(2)将单链表ha合并到单链表hb中,且归并后的hb链表内无重复的结点,结点值仍保持从小到大顺序排列。
(3)输出合并后单链表hb中每个结点的数据域值。
四、程序源代码:1.#include<stdio.h>#include<stdlib.h>#define LIST_INIT_CAPACITY 100 typedef int ElementType;typedef struct List{ElementType elem[LIST_INIT_CAPACITY]; int nLength;}SqList;void init(struct List*L)//初始化顺序表{if(L)L->nLength=0;}int visit(SqList*L,ElementType e)//遍历顺序表{for(int i=0;i<L->nLength;i++){if(L->elem[i]==e){return 0;break;}elsecontinue;return 1;}}SqList*jiao(SqList*L1,SqList*L2,SqList*L3)//求两个集合的交集{int n=0;for(int i=0;i<L1->nLength;i++){for(int j=0;j<L2->nLength;i++){if(L1->elem[i]==L2->elem[j]){L3->elem[n]=L1->elem[i];n++;}elsecontinue;}}printf("集合的交集:\n");return L3;}SqList*bing(SqList*L1,SqList*L2,SqList*L3)//求两个集合的并集{int j=0;for (int i=0;i<L1->nLength;i++){if (visit(L2,L1->elem[i])){L3->elem[j]=L1->elem[i];L3->nLength++;j++;}elsecontinue;}printf("集合的并集:\n");return L3;}SqList*cha(SqList*L1,SqList*L2,SqList*L3)//求两个集合的差集{int j=0;for(int i=0;i<L1->nLength;i++){if(visit (L2,L1->elem[i])){L3->elem[j]=L1->elem[i];j++;L3->nLength++;}elsecontinue;}printf("集合的差集:\n");return L3;}void show(SqList *list)//显示线性表元素{for (int i=0;i<list->nLength;i++){printf(" %d",list->elem[i]);}printf("\n");}void main(){SqList*list1,*list2,*list3;list1=(SqList*)malloc(sizeof(SqList));list2=(SqList*)malloc(sizeof(SqList));list3=(SqList*)malloc(sizeof(SqList));init(list1);init(list2);init(list3);intstr1[6]={1,2,3,4,5,6},str2[7]={1,3,4,5,7,9,10};for(int i=0;i<6;i++){list1->elem[i]=str1[i];list1->nLength=i+1;}for(i=0;i<7;i++){list2->elem[i]=str2[i];list2->nLength++;}printf("初始集合:\n");show(list1);show(list2);list3=jiao(list1,list2,list3);show(list3);init(list3);list3=bing(list1,list2,list3);show(list3);init(list3);list3=cha(list1,list2,list3);show(list3);}2.#include <stdio.h>#include<stdlib.h>typedef int ElementType;typedef struct ListNode{ElementType data;struct ListNode *next;}sLinkList;sLinkList*create(ElementType i)//创建接点{sLinkList *p;p=(sLinkList*)malloc(sizeof(sLinkList));if(!p)exit(0);elsep->data=i;return p;}void anotherorder(sLinkList*head){sLinkList*P;P=head->next;if(head!=NULL)//头指针不为空{while (P->next!=NULL){sLinkList*q;//p的后继指针sLinkList*t;q=P->next;t=P->next->next;q->next=head->next;head->next=q;P->next=t;}}}void print(sLinkList*head)//输出链表{if(head==NULL){exit(0);}sLinkList*p=head->next;while(p!=NULL){printf("%4d",p->data);p=p->next;}printf("\n");}void hebing(sLinkList *p,sLinkList *q,sLinkList *l)//将两个链表合并{ sLinkList*z;q=q->next;l=l->next;while(q!=NULL&&l!=NULL){if(q->data>l->data){z=create(l->data);p->next=z;z->next=NULL;p=z;l=l->next;}elseif(q->data<l->data){z=create(q->data);p->next=z;z->next=NULL;p=z;q=q->next;}elseif(q->data==l->data){for(int i=0;i<2;i++){z=create(q->data);p->next=z;z->next=NULL;p=z;}q=q->next;l=l->next;}}if(q==NULL){while (l!=NULL){z=create(l->data);p->next=z;z->next=NULL;p=z;l=l->next;}}if(l==NULL){while (q!=NULL){z=create(q->data);p->next=z;z->next=NULL;p=z;q=q->next;}}printf("合并后:\n");}void deletelist(sLinkList*p)//删除多余元素节点{if(p!=NULL)p=p->next;sLinkList*q;//中间指针while (p!=NULL){int i=p->data;sLinkList*head=p;while (head->next!=NULL){if(i==head->next->data){q=head->next;head->next=q->next;free(q);}elsehead=head->next;}p=p->next;}printf("最终结果:\n");}void main(){sLinkList *ha; ha=(sLinkList*)malloc(sizeof(ListNode)); if(ha!=NULL)//判空{ha->next=NULL;ha->data=-1;}sLinkList *p;sLinkList *q=ha;int a[5]={2,4,6,8,10};for (int i=0;i<5;i++){p=create(a[i]);q->next=p;p->next=NULL;q=p;}printf("初始:\n");print(ha);sLinkList *hb;hb=(sLinkList*)malloc(sizeof(ListNode)); if(hb!=NULL)//判空{hb->next=NULL;hb->data=-1;}q=hb;int b[6]={1,4,5,8,9,10};for (i=0;i<6;i++){p=create(b[i]);q->next=p;p->next=NULL;q=p;}print(hb);//构建ha,hbsLinkList *hc;hc=(sLinkList*)malloc(sizeof(ListNode)); hebing(hc,ha,hb);print(hc);deletelist(hc);print(hc);}五、测试结果:1.2.六、小结(包括收获、心得体会、存在的问题及解决问题的方法、建议等)经过这次实验,我对线性表的两种形式顺序表和链表有了进一步的了解,对线性表之间的运算及线性表的简单应用有了更深的体会。
数据结构实验报告(一)线性表的应用
数据结构实验报告(⼀)线性表的应⽤实验说明数据结构实验⼀ 线性表的实验——线性表的应⽤⼀、实验⽬的通过本实验使学⽣了解线性表的⼀种简单应⽤,熟悉线性表顺序存储与链式存储的特性,特别训练学⽣编程灵活控制链表的能⼒,为今后编程控制更为复杂的数据结构奠定基础。
⼆、实验内容1.⽤顺序表和链表分别分别编程实现教材中例⼦2-1与2-2。
要求:(1)只能⽤C语⾔编程实现;(2)完全保持书中算法2.1与算法2.2形式,不允许有任何变化,除⾮语法上不允许;所调⽤各函数参照书中19页的功能描述,其中函数名、参数个数及性质、函数功能必须与书中完全⼀致,不能有变化。
2.利⽤线性表表⽰⼀元多项式完成多项式的加、减、乘、求导、求值运算。
要求:(1)输⼊的⼀元多项式可以采⽤只输⼊各项的系数与指数这种简化的⽅式。
如对于多项式2x2+6x5,输⼊可为: 2,2 6,5 这样的简单形式。
(2)遇到有消项时应当处理,如2x2+6x5与3x2-6x5进⾏相加时,结果为5*x^2。
(3)当给定x的值时,能计算表达式相加或相减的结果。
(4)操作的结果放⼊⼀个新线性表中,原来的两个表达式存储表⽰不变,也可以不是产⽣新的线性表,⽽是将两上线性表合并为⼀个。
(5)要求程序功能模块划分合理(每个函数功能单⼀、可重⽤性好),使⽤空间尽可能少,算法尽可能⾼效。
实验报告1.实现功能描述使⽤线性表表⽰⼀元多项式完成多项式的加、减,乘,求导、求值运算。
2.⽅案⽐较与选择(1)因为使⽤的是线性表,所以主要⽅案有数组法和链表法。
(2)从时间复杂度来说,使⽤数组法更优;从空间复杂度来说,链表法更优。
因为数组法是指定好空间的,若式⼦⼤⼩超出设置⼤⼩,那程序必然出错;若式⼦⼤⼩⼩于设置⼤⼩,那就意味着有多余的空间被浪费了。
综合来讲,若计算式⼦较为庞⼤,使⽤链表法更佳;相反,若计算式⼦较⼩,数组法更佳。
3.设计算法描述(1)单个项式的数据存储使⽤了结构体,数组法是在⼀个结构体中定义两个⼀维数组;链表法是通过⼀个结构体作为⼀个节点,通过next指针连接起来。
数据结构线性表实验报告
数据结构线性表实验报告数据结构线性表实验报告1.实验目的1.1 理解线性表的概念和操作方法1.2 学习线性表的顺序存储结构和链式存储结构1.3 掌握线性表的各种基本操作算法2.实验内容2.1 实现线性表的顺序存储结构a. 定义顺序存储结构的数据类型和长度b. 实现线性表的初始化操作c. 实现线性表的插入操作d. 实现线性表的删除操作e. 实现线性表的查找操作2.1.6 实现线性表的更新操作2.1.7 实现线性表的打印操作2.2 实现线性表的链式存储结构a. 定义链式存储结构的数据类型和长度b. 实现线性表的初始化操作c. 实现线性表的插入操作d. 实现线性表的删除操作e. 实现线性表的查找操作2.2.6 实现线性表的更新操作2.2.7 实现线性表的打印操作2.3 实现线性表的其他操作a. 实现线性表的长度计算b. 实现线性表的合并操作c. 实现线性表的排序操作3.实验步骤3.1 初始化线性表a. 选择合适的存储结构b. 设置线性表的初始状态c. 完成线性表的初始化工作3.2 插入操作a. 根据线性表的存储结构选择插入点b. 将要插入的元素放入插入点位置c. 调整线性表的长度和位置3.3 删除操作a. 根据线性表的存储结构选择删除点b. 删除指定位置的元素c. 调整线性表的长度和位置3.4 查找操作a. 根据线性表的存储结构选择查找方法b. 实现线性表的按值查找3.4.3 实现线性表的按位置查找3.5 更新操作a. 根据线性表的存储结构选择更新点b. 更新指定位置的元素c. 调整线性表的长度和位置3.6 打印操作a. 根据线性表的存储结构选择打印方法b. 实现线性表的打印功能4.实验结果4.1 实现了线性表的顺序存储结构,包括初始化、插入、删除、查找、更新和打印功能4.2 实现了线性表的链式存储结构,包括初始化、插入、删除、查找、更新和打印功能4.3 实现了线性表的其他操作,包括长度计算、合并和排序操作5.实验总结5.1 通过本次实验,掌握了线性表的基本概念和操作方法5.2 熟悉了线性表的顺序存储结构和链式存储结构的实现方式5.3 熟练使用了线性表的各种基本操作算法附件:●附件1:代码实现●附件2:实验数据法律名词及注释:1.著作权:著作权是指作者对其创作的文学、艺术和科学等作品享有的法律权利。
数据结构实验报告-线性表
1 线性表1. 实验题目与环境1.1实验题目及要求(1)顺序表的操作利用顺序存储方式实现下列功能:根据键盘输入数据建立一个线性表,并输出该线性表;对该线性表进行数据的插入、删除、查找操作,并在插入和删除数据后,再输出线性表。
(2)单链表的操作利用链式存储方式实现下列功能:根据键盘输入数据建立一个线性表,并输出该线性表;对该线性表进行数据的插入、删除、查找操作,并在插入和删除数据后,再输出线性表。
(3)线性表的应用约瑟夫环问题。
有n个人围坐一圈,现从某个人开始报数,数到M的人出列,接着从出列的下一个人开始重新报数,数到M的人又出列,如此下去,直到所有人都出列为止。
要求依次输出出列人的编码。
2.问题分析(1)顺序表的操作利用一位数组来描述顺序表,即将所有元素一词储存在数组的连续单元中,要在表头或中间插入一个新元素时,需要将其后的所有元素都向后移动一个位置来为新元素腾出空间。
同理,删除开头或中间的元素时,则将其后的所有元素向前移动一个位置以填补空位。
查找元素时,则需要利用循环语句,一一判断直到找出所要查找的元素(或元素的位置),输出相关内容即可(2)单链表的操作利用若干个结点建立一个链表,每个节点有两个域,即存放元素的数据域和存放指向下一个结点的指针域。
设定一个头指针。
在带头结点的单链表中的第i个元素之前插入一新元素,需要计数找到第i-1个结点并由一指针p指向它,再造一个由一指针s指向的结点,数据为x,并使x的指针域指向第i个结点,最后修改第i-1个结点的指针域,指向x结点。
删除第i个元素时,需要计数寻找到第i个结点,并使指针p指向其前驱结点,然后删除第i个结点并释放被删除结点的空间。
查找第i个元素,需从第一个结点开始计数找到第i个结点,然后输出该结点的数据元素。
(3)线性表的应用程序运行之后,首先要求用户指定初始报数的上限值,可以n<=30,此题中循环链表可不设头结点,而且必须注意空表和"非空表"的界限。
数据结构线性表实验报告五篇
数据结构线性表实验报告五篇第一篇:数据结构线性表实验报告实验报告课程名:数据结构实验名:线性表及其操作姓名:班级:学号:撰写时间:2014.09.24一实验目的与要求1.掌握线性表的实现2.掌握线性表的基本操作的实现二实验内容• 分别完成线性表的顺序表示及链式表示• 在两种表示上, 分别实现一些线性表的操作, 至少应该包括–在第i个位置插入一个元素–删除第i个元素–返回线性表长–返回第i个元素的值三实验结果与分析#include #include //---------线性表链式表示-----------struct V//声明一个结构体类型struct V { int value;struct V * next;//定义结构体变量};void PrintLink(struct V*p)//定义一个结构体指针{ while(p!=NULL)//只要指针指向的变量不为NULL;就会一直循环链表指向下一个结构体{printf(“%d, ”,(*p).value);p=(*p).next;//指针指向下一个结构体} printf(“n”);} void Link(){struct V*head;head=(struct V*)malloc(sizeof(struct V));//开辟一个长度为size的内存(*head).value=-100;//表头为-100(*head).next=NULL;printf(“------------线性表链式表示------------n”);int i,n=10;struct V*p=head;printf(“10个数据:n”);for(i=0;i(*p).next=(struct V*)malloc(sizeof(struct V));p=(*p).next;(*p).value=2*i;(*p).next=NULL;} PrintLink(head);//调用PrintLink函数printf(“删除第四个数据:n”);int k=4;p=head;for(i=1;ip=(*p).next;} struct V*temp=(*p).next;//k表示插入和删除的位置(*p).next=(*temp).next;free(temp);PrintLink(head);printf(“插入第十个数据:n”);k=10;p=head;for(i=1;ip=(*p).next;} temp=(*p).next;(*p).next=(struct V*)malloc(sizeof(struct V));(*(*p).next).value=-99;(*(*p).next).next=temp;PrintLink(head);}//---------线性表顺序表示-----------void seq1(){ int i,n=10,k=4;int a[10];//---------输出数组元素------------printf(“-------------线性表顺序表示---------n”);for(i=0;ia[i]=i;} printf(“数组元素为:n”);for(i=0;iprintf(“%3d”,a[i]);} printf(“n”);//--------插入一个数组元素---------int m=n+1,j=12;//插入元素12 int b[20];for(i=0;i if(i{b[i]=a[i];}else if(i==k){b[i]=j;}else{b[i]=a[i-1];} } printf(“输出插入一个元素的数组:n”);for(i=0;i{if(i{c[i]=a[i];}else{c[i]=a[i+1];} } printf(“输出删除一个元素的数组:n”);for(i=0;i printf(“数组元素为:n”);for(i=1;i<=a[0];i++){a[i]=i;} for(i=0;i<2*a[0];i++){printf(“%d,”,a[i]);} printf(“n”);//-----在k 位置插入一个元素------------for(i=a[0];i>=k;i--){a[i+1]=a[i];} a[k]=-100;++a[0];for(i=0;i<2*a[0];i++){printf(“%d,”,a[i]);} printf(“n”);//-------在k---------------for(i=0;i>k;i++){a[i]=a[i+1];} a[k]=-1;a[0]=n;--a[0];for(i=0;i<2*a[0];i++){printf(“%d,”,a[i]);} printf(“n”);} int main(int argc,char *argv[]){ seq1();seq2();Link();return 0;} 图1:实验结果截图实验分析:已在程序中按规定格式标注。
西安邮电大学计算机学院数据结构课内实验报告(线性表的应用)
西安邮电大学(计算机学院)数据结构课内实验报告实验名称:线性表的应用专业名称:电子商务班级:学生姓名:学号(8位):指导教师:实验日期:2014年10 月15 日一. 实验目的及实验环境1.实验目的熟悉并掌握线性表如何构建,并学会线性表的基本应用和两种存储结构的实现2.实验环境VC++6.0二. 实验内容约瑟夫问题:编号为1、2、3…..,按顺时针坐在一张圆桌周围,每人持有一个密码,一个人选任意正整数为报数上限m,从第一个人开始报数报到m时停止报数,这个人出列,直到所有的人都出列,游戏结束。
用线性表的内容来实现这个程序。
三.方案设计第一步:建立n个节点的无头循环链表。
第二步:从链表的第一个节点开始计数,直到寻找到第m个节点第三步:输出该节点的id值,并将其password值,作为新的m值第四步:根据新的m值,继续删除节点,直到循环链表为空,程序结束四.测试数据及运行结果1.正常测试数据(3组)及运行结果;第一组:测试数据:9、5、2、3、4、1运行结果截图为:第二组:测试数据:5、2、6、1、2、3、4运行结果截图:运行结果截图:2.非正常测试数据(2组)及运行结果。
第一组:测试数据:1、0、2、0运行结果截图为:第二组:测试数据:0、0、0、0、0运行结果截图为:五.总结六.附录:源代码(电子版)#include<stdio.h>#include<stdlib.h>typedef struct node{int id;int password;struct node *next;}lnode,*list;list creat2(){lnode *head,*p,*q;int m,n=2;head=(lnode *)malloc(sizeof(lnode));head->next=NULL;q=head;printf("please input the initial password:");scanf("%d",&m);head->password=m;head->id=1;printf("please input(password):");scanf("%d",&m);while(m!=-1){p=(list)malloc(sizeof(lnode));p->password=m;p->id=n;q->next=p;q=p;printf("please input(password):");scanf("%d",&m);n++;}p->next=head;return head;}void print(lnode *q){lnode *p;printf("%4d,%4d\n",q->id,q->password);p=q->next;while(p!=q){printf("%4d,%4d\n",p->id,p->password);p=p->next;}printf("\n");}list front(list q){list p;p=q->next;while(p->next!=q)p=p->next;return p;}void deletee(list q){list p,r;int i,m=q->password;p=q;while(p->next!=p){i=1;while(i!=m){p=p->next;i++;}printf("%4d,%4d\n",p->id,p->password);p=front(p);r=p->next;p->next=r->next;m=r->password;free(r);p=p->next;}printf("%4d,%4d\n",p->id,p->password);}void main(){list head;head=creat2();printf("========打印队列原有情况==========\n");print(head);printf("==========打印出队情况==========\n");deletee(head);}西安邮电大学(计算机学院)数据结构课内实验报告实验名称:栈和队列的应用专业名称:电子商务班级:学生姓名:学号(8位):指导教师:衡霞实验日期:2014年11 月10 日一. 实验目的及实验环境1、实验目的掌握栈和队列的基本操作,实现栈或队列的基本应用2、实验环境VC++6.0二. 实验内容判断输入的一个字符串是否为回文三.方案设计第一步:建立一个顺序栈第二步:输入字符串的时候入栈第三步:出栈时也保存到一个数组中第四步:比较两个数组是否完全相同四.测试数据及运行结果1.正常测试数据(3组)及运行结果;第一组:测试数据:1、2、3运行结果:第二组:测试数据:a、b、c运行结果:第三组:测试数据:1、2、a、2、1运行结果:2.非正常测试数据(2组)及运行结果。
数据结构 实验1 线性表应用
void Init_SeqList(SeqList &L);//创建空顺序表算法 void Show_SeqList(SeqList L);//顺序表输出算法 void Create_SeqList(SeqList &L);//顺序表的创建算法 int Insert_SeqList(SeqList &L,DataType x,int i);//顺序表的插入算法 int Delete_SeqList(SeqList &L,int i);//顺序表的删除算法 void Sort_SeqList(SeqList &L);//顺序表的排序算法 int Insert_SeqList_sort(SeqList &L,DataType x);//有序表的插入算法 void menu(); //菜单算法
cin>>i; cout<<endl<<"请输入插入元素值:"; cin>>x;
cout<<endl; m=Insert_SeqList(L,x,i); if (m==1)
{ cout<<"插入操作后:"<<endl;
Show_SeqList(L); } else if (m==0) cout<<"插入位置不合法!"<<endl; else cout<<"发生溢出!"<<endl; break; }
int main() { menu(); }
void menu()
{
SeqList L;
Init_SeqList(L);
int m;
数据结构线性表实验报告
数据结构线性表实验报告一、实验目的本次实验的主要目的是深入理解和掌握数据结构中线性表的基本概念、存储结构和操作算法,并通过实际编程实现来提高对线性表的应用能力和编程技能。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
三、实验内容(一)线性表的顺序存储结构顺序表是用一组地址连续的存储单元依次存储线性表的数据元素。
其特点是逻辑上相邻的元素在物理位置上也相邻,便于随机存取,但插入和删除操作需要移动大量元素,效率较低。
(二)线性表的链式存储结构链表是通过指针将一组零散的存储单元链接成一个线性序列。
常见的链表有单链表、双向链表和循环链表。
链表的插入和删除操作只需修改指针,无需移动元素,但随机存取效率较低。
(三)线性表的基本操作实现1、初始化线性表2、销毁线性表3、清空线性表4、判断线性表是否为空5、获取线性表的长度6、获取指定位置的元素7、查找指定元素在线性表中的位置8、在线性表指定位置插入元素9、删除线性表指定位置的元素四、实验步骤(一)顺序表的实现1、定义顺序表的结构体,包括数据存储数组和表的长度。
2、实现顺序表的初始化函数,分配初始存储空间并设置表长度为0。
3、销毁顺序表函数,释放存储空间。
4、清空顺序表函数,将表长度置为 0。
5、判断顺序表是否为空,根据表长度判断。
6、获取顺序表长度,直接返回表长度。
7、获取指定位置元素,检查位置合法性后返回对应元素。
8、查找指定元素位置,遍历表进行比较。
9、插入元素函数,检查插入位置合法性,若合法则移动后续元素,插入新元素并更新表长度。
10、删除元素函数,检查删除位置合法性,若合法则移动后续元素,更新表长度。
(二)链表的实现1、定义链表节点结构体,包含数据域和指针域。
2、实现链表的初始化函数,创建头节点。
3、销毁链表函数,遍历链表释放节点内存。
4、清空链表函数,遍历链表删除节点但保留头节点。
5、判断链表是否为空,检查头节点的指针域是否为空。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告——线性表应用一、实验目的
用单链表储存一元多项式,并实现两个多项式的相加运算。
二、实验内容
1.先创建链表,存储多项式;
2.输出多项式;
3.两个多项式相加;
4.输出多项式。
三、程序代码
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
//一元多项式链式储存的节点结构
typedef struct Polynode
{
float coef;
int exp;
struct Polynode * next;
} Polynode , * Polylist;
//建立一元多项式的链表
Polylist polycreate()
{
Polynode * head,* rear,* s;
float c;
int e;
head=(Polynode* )malloc(sizeof(Polynode));
rear=head;
scanf("%f,%d",&c,&e);
while(c!=0)
{
s=(Polynode * )malloc(sizeof(Polynode));
s->coef=c;
s->exp=e;
rear->next=s;
rear=s;
scanf("%f,%d",&c,&e);
}
rear->next=NULL;
return(head);
}
//输出多项式
void print(Polynode*L)
{
Polynode*p;
p=L->next;
printf("a=");
if(p&&p->coef!=0)
printf("%.2f*x^%d",p->coef,p->exp);
while(p->next!=NULL)
{
if((p->next->coef)>0&&p)
printf("+");
else
printf("-");
p=p->next;
printf("%.2f*x^%d",fabs(p->coef),p->exp);
}
}
//多项式相加
void polyadd(Polylist polya,Polylist polyb)
{
Polynode*p,*q,*tail,*temp;
int sum;
p=polya->next;
q=polyb->next;
tail=polya;
while (p!=NULL&&q!=NULL)
{
if(p->exp<q->exp)
{tail ->next=p; tail=p;p=p->next;}
else if (p->exp==q->exp);
{sum=p->coef+q->coef;
if(sum!=0)
{p->coef=sum;
tail->next=p;tail=p;
p=p->next;
temp=q;q=q->next;free(temp);
}
else
{
temp=p;p=p->next;free(temp);
temp=q;q=q->next;free(temp);
}
}
{tail ->next=q;tail=q;
q=q->next;}
}
if(p!=NULL)
tail->next=p;
else
tail->next=q;
}
void main()
{
Polynode*a,*b;
printf("输入a的系数和指数:\n");
a = polycreate();
print(a);
printf("\n");
printf("输入b的系数和指数:\n");
b = polycreate();
print(b);
printf("\n");
polyadd(a,b);
printf("两个多项式的和为:\n");
print(a);
}
四、实验结果
五、实验过程中遇到的问题及处理方法
程序运行时,在中文状态下输入“,”回车后就不能再输入了,应在英文状态下输入“,”。