开关稳压电源和线性稳压电源
直流稳压电源的分类及原理
直流稳压电源的分类及原理直流稳压电源是一种能够将交流电转换为稳定的直流电并提供给各种电器设备使用的装置。
它主要由变压器、整流电路、滤波电路和稳压电路等组成。
根据其输出方式和输出电压特点,可以将直流稳压电源分为线性稳压电源和开关稳压电源。
一、线性稳压电源线性稳压电源是利用线性元件(如二极管、三极管、场效应管等)将交流电转换为直流电,并通过稳压电路将输出电压维持在稳定的水平。
线性稳压电源的原理如下:1.变压器:将输入电源的电压变换为适合的电压,通常会降低电压。
2.整流电路:通过二极管或三极管将交流电转换为半波或全波的脉动直流电。
3.滤波电路:使用电容器对脉动电流进行滤波,使得输出电流平滑化。
4.稳压电路:通过负反馈机制控制输出电压,使其保持在稳定值。
线性稳压电源具有输出电压稳定性高、噪声和纹波小等优点,适用于对电压稳定性要求较高的场合,如科研实验、仪器设备等。
但由于采用了线性元件,效率较低,体积较大,无法满足高功率需求。
二、开关稳压电源开关稳压电源是利用开关管(如MOSFET、IGBT等)进行高频开关操作,实现输入交流电转换为稳定的直流电的一种电源。
开关稳压电源的原理如下:1.变压器:将输入电源的电压变换为适合的电压,通常会升降电压。
2.整流电路:通过开关管的高频开关操作,将输入电源转换为高频脉冲信号。
3.滤波电路:使用电感和电容对高频脉冲信号进行过滤,使输出电流平滑化。
4.稳压电路:通过负反馈机制控制开关管的开关频率和占空比,使输出电压稳定。
开关稳压电源具有体积小、效率高、功率大等优点,适用于工业控制、通信设备、变频器等大功率、高效率的应用场合。
但开关频率较高,容易产生高频噪声,需要进行精确的电磁干扰控制。
总结来说,直流稳压电源主要分为线性稳压电源和开关稳压电源两种类型。
线性稳压电源适用于对电压稳定性要求较高的场合,而开关稳压电源适用于功率较大、效率要求高的场合。
不同类型的稳压电源具有各自的特点和适用范围,根据实际需求选择合适的类型和规格的电源是非常重要的。
电路中的电源稳压与过压保护设计与分析
电路中的电源稳压与过压保护设计与分析电路中的电源稳压和过压保护是保证电子设备工作安全可靠的重要因素。
本文将从电源稳压和过压保护的设计原理、常见的实施方法以及分析电源稳压和过压保护的重要性三个方面进行论述。
一、电源稳压的设计原理电源稳压是指在电路运行过程中,保持电路输入电压稳定不变的一种设计措施。
电源稳压设计的原理是通过调整电源的输出电压,使其始终保持在设定的合理范围内。
常见的电源稳压方式有线性稳压和开关稳压两种。
线性稳压是通过使用线性电源稳压芯片,将输入电压通过消耗多余功率的方式,得到稳定的输出电压。
线性稳压在简单电路设计中应用较广,而且成本相对较低,但效率较低,并且受限于输入电压波动范围。
开关稳压则是通过开关功率调节器来实现。
它的工作原理是将输入电压经过开关频率高的开关管进行开关,通过周期性地开关和关闭,改变输出电压,从而达到稳压的目的。
开关稳压具有高效率、体积小等优点,广泛应用于高功率电路设计中。
二、过压保护的设计方法过压保护是指在电路中,当输入电压超过一定范围时,及时采取措施避免电子器件过载烧毁。
过压保护的实施方法多种多样,常见的有过压保护芯片、过压保护电路等几种方式。
过压保护芯片是一种专门用于检测和控制电路的电压的集成电路。
当输入电压超过设定值时,过压保护芯片会通过控制开关管或继电器等方式切断输入电压,从而保护后续电子器件的安全。
过压保护芯片具有反应快、精度高等特点,适用于对设备安全性要求较高的场合。
过压保护电路是一种通过元器件的相互配合,实现对电路过压的保护的方法。
常见的过压保护电路是采用快速响应二极管和稳压二极管等组合,当输入电压超过设定值时,快速响应二极管将多余电压导向大功率稳压二极管,从而保护电路中器件的安全。
三、电源稳压与过压保护的重要性电源稳压和过压保护在电子设备设计中具有重要的作用。
首先,电源稳压可以保证电子设备的正常工作,稳定的电源供给可以提高电路运行的精确性和稳定性,减少电子器件因电压波动带来的故障。
线性电源和开关电源
一、水声设备电源电源分为交流电源和直流电源,就水声设备而言,主要应用为直流稳压电源。
直流电源可分为线性稳压电源和开关稳压电源。
线性稳压电源就是它的功率器件调整管工作在线性区,靠调整管之间的电压降来稳定输出。
与线性稳压电源不同的一类稳电源就是开关型直流稳压电源,它的电路型式主要有单端反激式,单端正激式、半桥式、推挽式和全桥式。
它和线性电源的根本区别在于它变压器不工作在工频而是工作在几十千赫兹到几兆赫兹,功率管工作在饱或及截止区即开关状态。
线性电源和开关电源的区别:1、工作方式不同(1)线性电源的调整管工作在放大状态,因而发热量大,效率低(不高于50%),需要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。
(2)开关电源的调整管工作在饱和和截至状态,因而发热量小,效率高(75%以上)而且省掉了大体积的变压器。
但开关电源输出的直流上面会叠加较大的纹波,另外开关管工作时会产生很大的尖峰脉冲干扰,也需要在电路中串连磁珠加以改善。
2、内部结构不同(1)开关电源利用变占空比或变频的方法实现不同的电压,实现较为复杂,最大的优点是高效率,缺点是纹波和开关噪声较大,适用于对纹波和噪声要求不高的场合。
(2)线性电源没有开关动作,属于连续模拟控制,内部结构相对简单,芯片面积也较小,成本较低,优点是成本低,纹波噪声小,最大的缺点是效率低。
它们各有有缺点在应用上互补共存。
3、适用要求不一样效率和安装体积有要求的地方用开关电源为佳,对于电磁干扰和电源纯净性有要求的地方多选用线性电源。
稳压电路对整流后的直流电压采用负反馈技术进一步稳定直流电压。
二、直流电源主要参数1、源电压效应输入电压的变化引起输出量变化的效应,改变量是源电压,被测量是输出电压的稳态值。
%100max ⨯∆=oNU U U S其中 S U — 源电压效应系数(电压调整率),这个值越小越好,是衡量稳压电源性能的一个重要指标。
线性电源IC与开关电源IC简介
线性电源IC与开关电源IC简介类别:网文精粹1. 78XX(正电压型)与79XX(负电压型)系列的是常用的线性稳压电源芯片. 以7805为例, 输入电压在7.5~25V,输出电流1A,但是实际上超过12V芯片就已经非常烫手了,究其原因就在于它是线性稳压,超过5V的那部分电压完全被发热浪费掉了. 由于78XX系列需要输入电压比输出电压至少大2.5V,所以现在又出现了一些LDO(低压差)的线性稳压器,比如AS1117,TPS7333,等等.线性稳压器噪声小,反应速度快,输出纹波小,但是效率低点,而LDO正是为了解决效率问题而产生的.2. LM2575,LM2576系列的是常用的开关型稳压电源芯片.它内部的调整管工作在开与关状态,所以又称其为开关管,而线性稳压IC的就称为调整管了.至于在电路中的连接方式可以参考PDF文档,里面有官方推荐的电路图.常用的电源IC参数如下:型号器件简介79L05 负5V稳压器(100mA) 79L06 负6V稳压器(100mA) 79L08 负8V稳压器(100mA) 79L09 负9V稳压器(100mA) 79L12 负12V稳压器(100mA) 79L15 负15V稳压器(100mA) 79L18 负18V稳压器(100mA) 79L24 负24V稳压器(100mA)7805 正5V稳压器(1A) 7806 正6V稳压器(1A) 7808 正8V稳压器(1A) 7809 正9V 稳压器(1A) 7812 正12V稳压器(1A) 7815 正15V稳压器(1A) 7818 正18V稳压器(1A) 7824 正24V稳压器(1A)LM1575T-3.3 3.3V简易开关电源稳压器(1A) LM1575T-5.0 5V简易开关电源稳压器(1A) LM1575T-1212V简易开关电源稳压器(1A) LM1575T-15 15V简易开关电源稳压器(1A) LM1575T-ADJ简易开关电源稳压器(1A可调1.23 to 37) LM1575HVT-3.3 3.3V简易开关电源稳压器(1A) LM1575HVT-5.0 5V简易开关电源稳压器(1A) LM1575HVT-12 12V简易开关电源稳压器(1A) LM1575HVT-15 15V简易开关电源稳压器(1A)LM1575HVT-ADJ简易开关电源稳压器(1A可调1.23 to 37)LM2575T-3.3 3.3V简易开关电源稳压器(1A) LM2575T-5.0 5V简易开关电源稳压器(1A) LM2575T-12 12V简易开关电源稳压器(1A) LM2575T-15 15V简易开关电源稳压器(1A) LM2575T-ADJ 简易开关电源稳压器(1A可调1.23 to 37) LM2575HVT-3.3 3.3V简易开关电源稳压器(1A) LM2575HVT-5.0 5V简易开关电源稳压器(1A) LM2575HVT-12 12V简易开关电源稳压器(1A) LM2575HVT-15 15V简易开关电源稳压器(1A)LM2575HVT-ADJ 简易开关电源稳压器(1A可调1.23 to 37)LM2576T-3.3 3.3V简易开关电源稳压器(3A) LM2576T-5.0 5.0V简易开关电源稳压器(3A) LM2576T-12 12V简易开关电源稳压器(3A) LM2576T-15 15V简易开关电源稳压器(3A) LM2576T-ADJ 简易开关电源稳压器(3A可调1.23V to 37V) LM2576HVT-3.3 3.3V简易开关电源稳压器(3A) LM2576HVT-5.0 5.0V简易开关电源稳压器(3A) LM2576HVT-12 12V简易开关电源稳压器(3A) LM2576HVT-15 15V简易开关电源稳压器(3A)。
开关电源与线性电源的优缺点和区别
开关电源与线性电源的优缺点和区别电源是电路设计中的重要部分,电源的稳定性在很大程度上决定了电路的稳定性。
线性电源和开关电源是比较常见的两种电源,在原理上有很大的不同,原理上的不同决定了两者应用上的不同。
一、开关电源与线性电源原理上的区别线性电源的基本原理是市电经过一个工频变压器降压成低压交流电之后,通过整流和滤波形成直流电,最后通过稳压电路输出稳定的低压直流电。
电路中调整元件工作在线性状态。
线性电源原理图开关电源的基本原理是输入端直接将交流电整流变成直流电,再在高频震荡电路的作用下,用开关管控制电流的通断,形成高频脉冲电流。
在电感(高频变压器)的帮助下,输出稳定的低压直流电。
开关电源原理图二、开关电源与线性电源的优缺点1.开关电源的优缺点主要优点:体积小、重量轻(体积和重量只有线性电源的20~30%)、效率高(一般为60~70%,而线性电源只有30~40%)、自身抗干扰性强、输出电压范围宽、模块化。
主要缺点:由于逆变电路中会产生高频电压,对周围设备有一定的干扰。
需要良好的屏蔽及接地。
交流电经过整流,可以得到直流电。
但是,由于交流电压及负载电流的变化,整流后得到的直流电压通常会造成20%到40%的电压变化。
为了得到稳定的直流电压,必须采用稳压电路来实现稳压。
2.线性电源的优缺点优点:线性电源的优点是结构相对简单、输出纹波小、高频干扰小。
结构简单给我们带来的最大好处是维修方便,维修一台线性电源的难度往往远远低于开关电源,线性电源的维修成功率也大大高于开关电源。
纹波是叠加在直流稳定量上的交流分量。
输出纹波越小也就是说输出直流电纯净度越高,这也正是直流电源品质的重要标志。
过高纹波的直流电将影响收发信机的正常工作。
目前高档线性电源纹波可以达到0.5mV的水平,一般产品可以做到5mV水平。
线性电源没有工作在高频状态下的器件所以如果输入滤波做得好的话几乎没有高频干扰/高频噪声。
缺点:需要庞大而笨重的变压器,所需的滤波电容的体积和重量也相当大,而且电压反馈电路是工作在线性状态,调整管上有一定的电压降,在输出较大工作电流时,致使调整管的功耗太大,转换效率低,还要安装很大的散热片。
PMU(PMIC)线性电源,开关电源
PMU(power management unit)就是电源管理单元,一种高集成的、针对便携式应用的电源管理方案,即将传统分立的若干类电源管理芯片,如低压差线性稳压器(LDO)、直流直流转换器(DC/DC),但现在它们都被集成到手机的电源管理单元(PMU)中,这样可实现更高的电源转换效率和更低功耗,及更少的组件数以适应缩小的板级空间,成本更低。
PMU作为消费电子(手机、MP4、GPS、PDA等)特定主芯片配套的电源管理集成单元,能提供主芯片所需要的、所有的、多档次而各不相同电压的电源,同电压的能源供给不同的手机工作单元,像处理器、射频器件、相机模块等,使这些单元能够正常工作。
按主芯片需要而集成了电源管理,充电控制,开关机控制电路。
包括自适应的USB-Compatible的PWM充电器,多路直流直流转换器(BuckDC-DCConverter),多路线性稳压器(LDO),Charge Pump,RTC电路,马达驱动电路,LCD背光灯驱动电路,键盘背光灯驱动电路,键盘控制器,电压/电流/温度等多路12-BitADC,以及多路可配置的GPIO。
此外还整合了过/欠压(OVP/UVP)、过温(OTP)、过流(OCP)等保护电路。
高级的PMU可以在USB以及外部交流适配器、锂电池和应用系统负载之间安全透明的分配电能。
动态电源路径管理(DPPM)在系统和电池充电之间共享交流适配器电流,并在系统负载上升时自动减少充电电流。
调整充电电流和系统电流分配关系,最大程度保证系统的正常工作,当通过USB 端口充电时,如果输入电压降至防止USB 端口崩溃的阈值以下,则基于输入电压的动态电源管理(IDPM) 便减少输入电流。
当适配器无法提供峰值系统电流时,电源路径架构还允许电池补偿这类系统电流要求。
LDO是利用较低的工作压差,通过负反馈调整输出电压使之保持不变的稳压器件。
压差小的话用LDO,带可关断功能便于电源管理。
压差大的还是用DC-DC效率高。
试解释为什么开关电源的效率高于线性电源。
试解释为什么开关电源的效率高于线性电源。
开关电源的效率高于线性电源的主要原因有以下几点:
1.工作原理差异:开关电源和线性电源的工作原理不同。
开
关电源通过开关器件(如MOSFET、IGBT等)的开关操作,将输入电源以高频率开关进行转换,然后通过滤波器将转
换后的电源输出。
而线性电源则通过放大和稳压器件(如
晶体管、电阻、电容等)的线性调节方式,将输入电源降
压至输出电压。
开关电源的转换过程利用了高频开关操作
和电感储能机制,减少了能量损耗,从而提高了效率。
2.低功耗损耗:由于开关电源在转换过程中能量主要以高频
周期方式传递,存在在开关状态下能量损耗较小的优势。
而线性电源则通过线性调节方式调整电压,较大功率损耗
会产生在线性稳压器件上,导致效率较低。
3.小型化和轻量化:由于开关电源采用高频开关转换方式,
可以通过适当的设计和控制来实现小型化和轻量化。
相比
之下,线性电源多使用较大的线性稳压器件来调整电压,
造成体积较大且较重。
4.更广的输入电压范围:开关电源具有较宽的输入电压范围,
可以适应不同电源环境下的输入电压波动。
而线性电源通
常需要稳定的输入电压来保持稳定的输出,对于电源波动
要求较高。
综上所述,开关电源通过其工作原理、功耗损耗、小型化和轻
量化以及更广的输入电压范围等方面的优势,实现了比线性电源更高的效率。
这使得开关电源在许多应用领域,如计算机、通信设备、工业控制等,得到了广泛应用。
线性电源和开关电源原理区别及优缺点
线性电源和开关电源原理区别及优缺点一、线性电源的原理及优缺点:线性电源是利用变压器、整流滤波电路和稳压器等组成的电子电路,将交流电转换为稳定的直流电供给电子设备。
具体工作原理如下:1.变压器:变压器通过变压比将输入的交流电压降低或升高到所需的电源电压。
2.整流滤波:将变压器输出的交流电压通过整流电路转化为直流电压,并利用滤波电路去除直流电压中的波动。
3.稳压器:稳压器通过消耗过多的电能将直流电压稳定在所需的电压值上。
线性电源的优点:1.输出纹波小:由于线性电源只进行一次整流滤波,输出纹波较小,对于对输出纹波要求较高的设备,如音频设备,线性电源更为适用。
2.稳压能力强:线性电源采用反馈稳压技术,能够稳定输出以满足负载的要求。
3.输出电压准确:线性电源的输出电压精度较高,波动范围较小,能够满足对精度要求较高的设备。
线性电源的缺点:1.效率低:线性电源的效率较低,工作时会有较大的功耗,会导致能源浪费。
2.体积大、重量重:线性电源中的变压器和稳压器等部件决定了整个电源的体积较大、重量较重,限制了其在大型设备或移动设备中的应用。
3.散热困难:由于线性电源的效率不高,其内部会产生大量的热量,需要散热器来散热,但是由于体积限制,散热困难。
二、开关电源的原理及优缺点:开关电源是通过快速开关管将输入交流电转换为高频脉冲信号,再经过变压器变换、滤波和稳压途径得到所需稳定直流电压的电子电源。
具体工作原理如下:1.输入整流:将输入的交流电通过整流电路转换为直流电。
2.DC/DC变换:通过开关元件(如MOSFET或IGBT)将直流电转换为高频脉冲信号。
3.变压器:将高频脉冲信号通过变压器变换为合适的输出电压。
4.输出整流滤波:将变压器输出的信号通过整流滤波电路转换为稳定的直流电压。
5.稳压器:稳压器通过反馈控制将输出电压稳定在所需的电压值上。
开关电源的优点:1.高效率:开关电源采用高频开关技术,能够提高电源的工作效率,减少电源的功耗。
DC TO DC 和 LDO的区别是什么?
线性稳压电源及LDO 和DCDC文章来源:不详 作者:佚名该文章讲述了线性稳压电源及LDO 和DCDC.据调整管的工作状态,我们常把稳压电源分成两类:线性稳压电源和开关稳压电源。
此外,还有一种使用稳压管的小电源。
这里说的线性稳压电源,是指调整管工作在线性状态下的直流稳压电源。
调整管工作在线性状态下,可这么来理解:RW (见下面的分析)是连续可变的,亦即是线性的。
而在开关电源中则不一样,开关管(在开关电源中,我们一般把调整管叫做开关管)是工作在开、关两种状态下的:开——电阻很小;关——电阻很大。
工作在开关状态下的管子显然不是线性状态。
线性稳压直流电源的特点是:输出电压比输入电压低;反应速度快,输出纹波较小;工作产生的噪声低;效率较低(现在经常看的LDO 就是为了解决效率问题而出现的);发热量大(尤其是大功率电源),间接地给系统增加热噪声。
本文来自: 原文网址:/info/commonIC/0081539.html DC TO DC 和LDO的区别是什么?LDO是low dropout voltage regulator的缩写,整流器.DC-DC,其实内部是先把DC直流电源转变为交流电电源AC。
通常是一种自激震荡电路,所以外面需要电感等分立元件。
然后在输出端再通过积分滤波,又回到DC电源。
由于产生AC电源,所以可以很轻松的进行升压跟降压。
两次转换,必然会产生损耗,这就是大家都在努力研究的如何提高DC-DC 效率的问题。
1.DCtoDC包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC 转换器的外围电路仅需电感和滤波电容;但该类电源控制器的输出纹波和开关噪声较大、成本相对较高。
2.LDO:低压差线性稳压器的突出优点是具有最低的成本,最低的噪声和最低的静态电流。
它的外围器件也很少,通常只有一两个旁路电容。
线性稳压电源(LDO)与开关电源的区别
线性稳压电源(LDO)与开关电源的区别
线性稳压电源(LDO)是通过改变晶体管的导通程度来改变和控制其输出
的电压和电流,在线性稳压电源(LDO)中晶体管相当于一个可变电阻,串接
在供电回路中。
由于可变电阻与负载流过相同的电流,因此要消耗掉大量的能量并导致升温,电压转换效率低。
线性稳压电源(LDO)有一个共同的特点
就是它的功率器件调整管工作在线性区,靠调整管极间的电压降来稳定输出。
由于调整管静态损耗大,需要安装一个很大的散热器给它散热。
由于线性电源的变压器工作在工频(50Hz)上,所以质量较大。
线性稳压电源(LDO)常用于低压场合,像LDO需要满足一定的电压差。
输出电压调整率和纹波比较好,效率比较低,需要的外围元器件比较少,成本低。
电路比较简单。
线性稳压电源(LDO)优点是稳定性高,纹波小,可靠性高,易做成多路输
出连续可调的电源。
缺点是体积大、较笨重、效率相对较低。
这类稳压电源又有很多种,从输出性质可分为稳压电源、稳流电源和集稳压、稳流于一身的稳压稳流(双稳)电源。
从输出值来看可分固定输出电源、波段开关调整式
和电位器连续可调式几种。
从输出指示上可分指针指示型和数字显示式型等。
开关电源适用于全电压范围,不需要压差,可以采用不同的电路拓扑实现不同的输出要求。
调整率和输出纹波不如线性电源,效率高。
需要外围元件多,成本高。
电路相对复杂。
开关型直流稳压电源它的电路型式主要有单端。
常用三端稳压功能介绍
常用三端稳压功能介绍常用的三端稳压功能指的是在电源电压输入端、输出端和地端分别设置稳压功能,用于保持输出电压的稳定性。
这种设计主要用于电子设备和电路的稳压电源中,可以有效地防止电压的波动和干扰对电子设备的损坏,并确保设备的正常运行。
三端稳压功能可以分为线性稳压和开关稳压两种方式。
线性稳压通过可变电阻和电感器调整电流的大小,从而实现稳定输出电压。
开关稳压则通过开关管实现对输出电流的调整,更加高效而稳定。
三端稳压功能主要有以下几种:1.输出端稳压功能:这是稳压电源中最基本的功能之一、输出端稳压功能可以通过调整输出电流的大小来保持输出电压的稳定性。
它一般通过电流反馈来实现,将输出电流与参考电流进行比较,然后调整开关管的导通时间来控制输出电流。
这样就能够保持输出电流的稳定性,从而实现稳压功能。
2.输入端稳压功能:输入端稳压功能主要用于保护电源电压输入端不受功率因数、电压波动和电流涌入等因素的影响。
它一般通过电压反馈来实现,将输入电压与参考电压进行比较,然后调整开关管的导通时间来控制输入电压的大小。
这样就能够保持输入电压的稳定性,从而实现稳压功能。
3.地端稳压功能:地端稳压功能主要用于防止地线电压波动和干扰对电子设备的干扰。
地端稳压功能通过将地线与电源电压输入端和输出端相连,将地线电压与参考电压进行比较,然后调整开关管的导通时间来控制地线电压的大小。
这样就能够保持地线电压的稳定性,从而实现稳压功能。
除了以上三种常用的稳压功能,还有其他一些附加功能可以增强稳压电源的性能。
例如,过流保护功能可以保护电子设备免受电流过大的损害;过压保护功能可以保护电子设备免受电压过高的损害;短路保护功能可以保护电子设备免受电路短路的损害。
总之,常用的三端稳压功能是保持输出电压的稳定性,可以通过输出端稳压功能、输入端稳压功能和地端稳压功能来实现。
这种设计可以有效地防止电压的波动和干扰对电子设备的损坏,并确保设备的正常运行。
通过添加附加功能,还可以提供更全面的保护和稳定性,提高稳压电源的性能。
线性稳压电源和开关稳压电源详解
线性稳压电源和开关稳压电源详解根据调整管的工作状态,我们常把稳压电源分成两类:线性稳压电源和开关稳压电源。
线性稳压电源,是指调整管工作在线性状态下的稳压电源。
而在开关电源中则不一样,开关管(在开关电源中,我们一般把调整管叫做开关管)是工作在开、关两种状态下的:开——电阻很小;关——电阻很大。
开关电源是一种比较新型的电源。
它具有效率高,重量轻,可升、降压,输出功率大等优点。
但是由于电路工作在开关状态,所以噪声比较大。
?通过下图,我们来简单的说说降压型开关电源的工作原理。
如图所示,电路由开关K(实际电路中为三极管或者场效应管),续流二极管D,储能电感L,滤波电容C等构成。
当开关闭合时,电源通过开关K、电感L给负载供电,并将部分电能储存在电感L以及电容C中。
由于电感L的自感,在开关接通后,电流增大得比较缓慢,即输出不能立刻达到电源电压值。
一定时间后,开关断开,由于电感L的自感作用(可以比较形象的认为电感中的电流有惯性作用),将保持电路中的电流不变,即从左往右继续流。
这电流流过负载,从地线返回,流到续流二极管D的正极,经过二极管D,返回电感L的左端,从而形成了一个回路。
通过控制开关闭合跟断开的时间(即PWM——脉冲宽度调制),就可以控制输出电压。
如果通过检测输出电压来控制开、关的时间,以保持输出电压不变,这就实现了稳压的目的。
在开关闭合期间,电感存储能量;在开关断开期间,电感释放能量,所以电感L叫做储能电感。
二极管D在开关断开期间,负责给电感L提供电流通路,所以二极管D叫做续流二极管。
在实际的开关电源中,开关K由三极管或场效应管代替。
当开关断开时,电流很小;当开关闭合时,电压很小,所以发热功率U×I就会很小。
这就是开关电源效率高的原因。
什么是线性电源?线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。
直流稳压电源的种类及选用
直流稳压电源的种类及选用一、线性稳压电源:线性稳压电源是最基本、最常见的一种直流稳压电源。
其工作原理是通过调节电源输出级的放大倍数,使输入电压经过放大后得到稳定的输出电压。
线性稳压电源具有输出纹波小、响应速度快等特点,可以提供较为精确的稳定电压输出。
但是线性稳压电源的效率一般较低,而且对输入电压波动较敏感,适用于对电流精度要求较高的场合。
二、开关稳压电源:开关稳压电源是一种采用开关电源技术的稳压电源。
开关稳压电源通过将输入电压通过开关进行高频开关控制,进而输出稳定的直流电压。
相比于线性稳压电源,开关稳压电源具有体积小、效率高、稳压精度高等优点,适用于对功率密度要求较高的场合。
不过开关稳压电源的输出纹波较大,输出电流负载能力一般较差。
三、开关调谐稳压电源:开关调谐稳压电源是一种结合了开关稳压电源和线性稳压电源的特点的稳压电源。
开关调谐稳压电源在线性稳压电源的基础上增加了开关电源的调谐电路,能够通过调谐电路实现线性和开关两种工作状态的切换,从而在保持稳压性能的同时提高电源的效率。
开关调谐稳压电源适用于对电源效率和稳压性能要求兼顾的场合。
四、直流稳压电源选用的要点:在选择直流稳压电源时,需要根据具体的应用需求和电源参数来进行选择。
1.输出电压范围:根据实际需求确定所需的输出电压范围,选择具备输出范围符合要求的稳压电源。
2.输出电流能力:根据所需的最大输出电流来选择电源的输出电流能力。
一般来说,电源的额定输出电流要大于所需的最大输出电流,以保证电源正常工作。
3.稳压性能:稳压电源的稳压性能是选择的关键指标之一、要求电源能够在额定负载下保持较低的输出纹波和较高的稳压精度。
4.效率:效率是衡量电源能量转换效率的指标,一般来说,效率越高,能耗越低。
选择效率较高的电源可以减少能耗和热量散失。
5.其他特性:根据实际需要,还可以考虑电源的保护功能、响应速度、稳定性等特性。
综上所述,直流稳压电源的种类包括线性稳压电源、开关稳压电源和开关调谐稳压电源,根据实际需求和电源参数来选择适合的电源。
线性电源和开关电源的优缺点
线性电源和开关电源的优缺点都是直流电按要求不同使用不同,线性电源最好他输出的是线性直流电,可以用在要求高的场合,开关电源次之,他是由很高的开关速度的变压器和开关管,特点是重量小,容量大,输出质量高,相控电原用在要求不高,电流特大的场合线性电源,开关电源区别线性电源的调整管工作在放大状态,因而发热量大,效率低(35%左右),需要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。
开关电源的调整管工作在饱和和截至状态,因而发热量小,效率高(75%以上)而且省掉了大体积的变压器。
但开关电源输出的直流上面会叠加较大的纹波(50mV at 5V output typical),在输出端并接稳压二极管可以改善,另外由于开关管工作是会产生很大的尖峰脉冲干扰,也需要在电路中串连磁珠加以改善。
相对而言线性电源就没有以上缺陷,它的纹波可以做的很小(5mV以下)。
对于电源效率和安装体积有要求的地方用开关电源为佳,对于电磁干扰和电源纯净性有要求的地方(例如电容漏电检测)多选用线性电源。
另外当电路中需要作隔离的时候现在多数用DC-DC来做对隔离部分供电(DC-DC从其工作原理上来说就是开关电源)。
还有,开关电源中用到的高频变压器可能绕制起来比较麻烦。
开关电源和线性电源在内部结构上是完全不一样的,开关电源顾名思义有开关动作,它利用变占空比或变频的方法实现不同的电压,实现较为复杂,最大的优点是高效率,一般在90%以上,缺点是文波和开关噪声较大,适用于对文波和噪声要求不高的场合;而线性电源没有开关动作,属于连续模拟控制,内部结构相对简单,芯片面积也较小,成本较低,优点是成本低,文波噪声小,最大的缺点是效率低。
它们各有有缺点在应用上互补共存!一、线性电源的原理:线性电源主要包括工频变压器、输出整流滤波器、控制电路、保护电路等。
线性电源是先将交流电经过变压器变压,再经过整流电路整流滤波得到未稳定的直流电压,要达到高精度的直流电压,必须经过电压反馈调整输出电压,这种电源技术很成熟,可以达到很高的稳定度,波纹也很小,而且没有开关电源具有的干扰与噪音。
什么是直流电源
什么是直流电源直流电源是一种提供直流电能的电力源,它将交流电转换为恒定的电压或电流输出。
与交流电不同,直流电具有固定的电荷流向,且电压方向不会周期性地改变。
直流电源广泛应用于各个领域,如电子设备、通信系统、工业自动化等。
1. 直流电源分类根据输出特性和工作原理,直流电源可以分为以下几类:1.1 线性稳压电源线性稳压电源通过使用变压器、稳压管等元件来将输入的交流电转换为直流电。
它的主要特点是稳压性好,输出纹波小,但效率较低。
1.2 开关稳压电源开关稳压电源采用开关电路和控制电路,通过对开关器件的合、断控制,将交流电转换为直流电。
它具有高效率、小体积、成本低等优点,广泛应用于工业和通信领域。
1.3 反激式电源反激式电源结构简单,具有高效率和较小的尺寸。
它通过变压器和电容器等元件实现直流电的输出。
2. 直流电源的工作原理直流电源的基本工作原理是通过电源转换器将输入的交流电转换为直流电。
其中,电源转换器通常由整流、滤波和稳压三个部分组成。
2.1 整流整流是将交流电转换为直流电的过程。
常见的整流电路有单相全波整流电路、单相半波整流电路和三相全波整流电路等。
整流的主要目的是改变电流的方向,使其始终为正值。
2.2 滤波滤波是为了减小输出直流电的纹波电压,使其更加平稳。
通常使用电容器、电感等元件来滤除交流成分,使直流电的纹波电压降至最小。
2.3 稳压稳压是为了保持输出电压或电流的恒定不变。
通过采用稳压电路或反馈控制等方法,对输出电压进行调整和控制,使其保持在设定值范围内。
3. 直流电源的应用领域直流电源在各个领域广泛应用,具有以下几个主要应用领域:3.1 电子设备直流电源广泛应用于各类电子设备,如计算机、手机、平板等消费电子产品。
它为这些设备提供稳定的电压和电流,保证它们正常运行。
3.2 通信系统通信系统中的设备、传输线路等通常需要直流电源供电。
直流电源能够提供稳定的电能,保证通信设备的正常工作,如基站、通信终端等。
开关电源基础知识介绍
开关电源基础知识介绍开关电源基础知识介绍现在电器化中常用的稳压电源有两大类:线性稳压电源和形状型稳压电源。
线性稳压电源亦称串联调整式稳压电源。
它的优点是成本较低、稳压性能好、输出纹波小,它的缺点是工作效率较低,在中小功率应用场合用得较多。
形状型稳压电源是指开关电源中的调整管工作在截止区和饱和区。
它的工作状态就象普通机械开关一样,当调整管截止时相当开关断开,而调整管饱和导通时相当于开关接通。
这种起着开关作用的三极管我们就把它称为开关管,用开关管来稳定输出电源,我们就把它称为开关型稳压电源。
开关型稳压电源具有体积小、抗干扰能力强、损耗小、效率高、具有保护能力等优点。
计算机及其外部设备中,如计算机、打印机和显示器等都使用开关型稳压电源。
开关电源就其与负载联接的形式不同,可分为并联型和串联型两种。
并联型开关电源与串联型开关电源工作原理基本相同,电压调整范围也差不多。
它们主要区别在于:并联型开关电源,其电压输出端与电网间有开关变压器进行电路上的隔离,因此,机板上除与开关变压器初级相连的部分电路外,其余均不与市电相连,因此并联型号开关电源安全性好,容易与外界接口;而串联型号开关电源由于没有隔离变压器,整机的“地“有可能与电网火线相连,致使整机安全性差,不利于与外界接口。
并联型开关电源电路复杂,对开关管要求高,而串联型开关电源电路相对简单得多,成本也低。
开关电源就其开关管的被激励方式的不同,可分为自激式和他激式两种。
自激式开关电源由开关管、启动电路、反馈电路、稳压电路等组成,这种方式电路简单,稳压精度不高。
他激式开关电源中的开关管的工作状态是通过脉宽调制组件来完成的,这种方式虽然电路复杂,但具有稳压精度高、负载能力强等许多优点,现在电器设备中大多使用它源程序式开关电源。
在他激式开关电源中又可分为电压驱动型和电流驱动型两种。
电压驱动型是指通过电压驱动型脉宽调制组件驱动晶体开关管工作。
电流驱动型芯片有TL494、MC494等,在计算机电源中多使用电压驱动型脉宽调制组件。
电源的分类及知识
电源的分类及知识电源是指将一种形式的能量转化为另一种形式的设备或装置。
它广泛应用于各个领域,如家庭、工业、交通等,为其他电气设备和系统提供所需的电能。
根据不同的分类标准和工作原理,电源可以分为多种类型,包括直流电源、交流电源、开关电源、线性电源等。
本文将详细介绍这些电源的分类及相关知识。
一、直流电源直流电源是指输出电流为直流的电源。
它的主要特点是输出电流的方向恒定不变,一般用于对直流负载进行供电。
根据其工作原理和输出类型的不同,直流电源可以划分为以下几种类型。
1.1 稳压直流电源稳压直流电源的输出电压是恒定的,可以通过调节其输出电压来满足负载的需求。
在不同的应用场景中,稳压直流电源要求的性能参数也有所不同,如输出电压范围、精度、纹波等。
1.2 可变直流电源可变直流电源的输出电压可以根据需要进行调节。
它一般通过调节电压调节器或变压器来实现输出电压的变化,可用于多种不同的负载。
1.3 数字直流电源数字直流电源是使用数字控制技术和数字信号处理技术来实现直流电源的调节和控制的一种电源。
它具有高精度、高稳定性、高速度、高可靠性等特点,适用于需要精确控制和快速响应的应用场景。
二、交流电源交流电源是指输出电流为交流的电源。
与直流电源相比,交流电源在输出电流上具有频率和幅值的变化。
交流电源广泛应用于大部分电气设备和系统中,如家用电器、工厂设备、电动机等。
2.1 单相交流电源单相交流电源是指电压和电流均为单相的交流电源。
它的主要特点是电流呈正弦波形,并具有固定的频率和幅值。
单相交流电源常用于家庭、办公室等场所的家用电器供电。
2.2 三相交流电源三相交流电源是指电压和电流均为三相的交流电源。
它的主要特点是电压和电流之间的相位差为120度,能够提供更大的功率和更稳定的供电。
三相交流电源常用于工业、交通、建筑等领域的设备和系统。
三、开关电源开关电源是一种将输入的电能通过开关元件以高频开关工作方式进行转换的电源。
它的主要特点是输出电压和电流的波形近似于直流,且具有较高的效率和稳定性。
线性稳压电源和开关电源有什么区别_线性稳压电源和开关稳压电源对比分析
线性稳压电源和开关电源有什么区别_线性稳压电源和开关稳压电源对比分析稳压电源(stabilized voltage supply)是能为负载提供稳定的交流电或直流电的电子装置,包括交流稳压电源和直流稳压电源两大类。
当电网电压或负载出现瞬间波动时,稳压电源会以10-30ms的响应速度对电压幅值进行补偿,使其稳定在±2%以内。
知道了什么是稳压电源,接下来跟随小编一起来了解一下什么是线性稳压电源和开关电源,那么这两个之间有什么区别呢?线性稳压电源和开关稳压电源对比分析根据调整管的工作状态,我们常把稳压电源分成两类:线性稳压电源和开关稳压电源。
线性稳压电源,是指调整管工作在线性状态下的稳压电源。
而在开关电源中则不一样,开关管(在开关电源中,我们一般把调整管叫做开关管)是工作在开、关两种状态下的:开——电阻很小;关——电阻很大。
开关电源是一种比较新型的电源。
它具有效率高,重量轻,可升、降压,输出功率大等优点。
但是由于电路工作在开关状态,所以噪声比较大。
通过下图,我们来简单的说说降压型开关电源的工作原理。
如图所示,电路由开关K(实际电路中为三极管或者场效应管),续流二极管D,储能电感L,滤波电容C等构成。
当开关闭合时,电源通过开关K、电感L给负载供电,并将部分电能储存在电感L以及电容C中。
由于电感L的自感,在开关接通后,电流增大得比较缓慢,即输出不能立刻达到电源电压值。
一定时间后,开关断开,由于电感L的自感作用(可以比较形象的认为电感中的电流有惯性作用),将保持电路中的电流不变,即从左往右继续流。
这电流流过负载,从地线返回,流到续流二极管D的正极,经过二极管D,返回电感L的左端,从而形成了一个回路。
通过控制开关闭合跟断开的时间(即PWM——脉冲宽度调制),就可以控制输出电压。
如果通过检测输出电压来控制开、关的时间,以保持输出电压不变,这就实现了稳压的目的。
在开关闭合期间,电感存储能量;在开关断开期间,电感释放能量,所以电感L叫做储能。
开关电源和线性电源的优点和缺点对比
开关电源和线性电源的优点和缺点对比开关电源是相对线性电源而言的,线性电源是利用功率半导体器件的线性工作区,通过调节线性阻抗来达到调节输出的目的;而开关电源是利用功率半导体器件的饱和区通过调整他的开通时间或频率来达到调节输出的目的。
其优点是:1、效率较高,体积小。
由于开关电源的电压控制是利用功率半导体器件的饱和区通过调整他的开通时间或频率达到的,所以就不存在铁损和铜损,元器件的损耗可以忽略不计,比较变压器而言效率较高;由于它只有元器件和电路板,因而体积就会很小,重量也较轻。
2、电压输入范围宽。
一般可达到160V-270之间。
但它的缺点更是它致命的:1、开关电源看着小巧,功率和磁心变压器以及控制方式有关,电磁干扰大,纹波系数大。
尤其有音频、视频的范畴内,对电磁干扰非常敏感,在音频表现为音色不纯厚,可能会有丝丝声;在视频表现为,图像可能会有细小的纹波,不细腻。
2、设计复杂,维护维修不方便。
往往越是复杂的设备出现的问题的可能性就越大,而且开关电源一旦出现问题,一般非专业人士是维修不了的,找别人维修,费用又太高,还不如废弃掉。
3、体积小是开关电源的优点,但设计不好就成为它的缺点了。
为了追求更小,一大把元器件挤在一个小壳子里,散热不好,我们以前用的当中也出现过外壳变形的现象。
4、开关电源的元器件在选择上也不是很规范,这是国产开关电源的通病。
国家有关质检部门检验市场上的开关电源发现,有过半数的不合格,这其中还包括进口开关电源。
5、最大的一点就是抗雷击能力非常低。
在监控系统中,遭遇雷击的可能也非常大,主要表现为从电源串入,直接雷击的可能性非常小。
一旦220V的电压突然变高,开关电源在瞬间就被烧毁。
前段时间的一个监控系统中,在一个雷过后,监控总闸跳了,再合上闸后,大部分摄像机还正常工作,一部分监视器显示无视频信号。
经检查发现,无视频信号的全部都是开关电源(施工时有的地方安装不方便,就用了开关电源),最后又在摄像机杆上安装上了电源箱,换上了变压器电源。
开关电源和线性电源的优点和缺点对比
开关电源和线性电源的优点和缺点对⽐开关电源和线性电源的优点和缺点对⽐ 开关电源是相对线性电源⽽⾔的,线性电源是利⽤功率半导体器件的线性⼯作区,通过调节线性阻抗来达到调节输出的⽬的;⽽开关电源是利⽤功率半导体器件的饱和区通过调整他的开通时间或频率来达到调节输出的⽬的。
开关电源的优点: 1、效率较⾼,体积⼩。
由于开关电源的电压控制是利⽤功率半导体器件的饱和区通过调整他的开通时间或频率达到的,所以就不存在铁损和铜损,元器件的损耗可以忽略不计,⽐较变压器⽽⾔效率较⾼;由于它只有元器件和电路板,因⽽体积就会很⼩,重量也较轻。
2、电压输⼊范围宽。
⼀般可达到160V-270之间。
开关电源的缺点: 1、开关电源看着⼩巧,功率和磁⼼变压器以及控制⽅式有关,电磁⼲扰⼤,纹波系数⼤。
尤其有⾳频、视频的范畴内,对电磁⼲扰⾮常敏感,在⾳频表现为⾳⾊不纯厚,可能会有丝丝声;在视频表现为,图像可能会有细⼩的纹波,不细腻。
2、设计复杂,维护维修不⽅便。
往往越是复杂的设备出现的问题的可能性就越⼤,⽽且开关电源⼀旦出现问题,⼀般⾮专业⼈⼠是维修不了的,找别⼈维修,费⽤⼜太⾼,还不如废弃掉。
3、体积⼩是开关电源的优点,但设计不好就成为它的缺点了。
为了追求更⼩,⼀⼤把元器件挤在⼀个⼩壳⼦⾥,散热不好,我们以前⽤的当中也出现过外壳变形的现象。
4、开关电源的元器件在选择上也不是很规范,这是国产开关电源的通病。
国家有关质检部门检验市场上的开关电源发现,有过半数的不合格,这其中还包括进⼝开关电源。
5、最⼤的⼀点就是抗雷击能⼒⾮常低。
在监控系统中,遭遇雷击的可能也⾮常⼤,主要表 现为从电源串⼊,直接雷击的可能性⾮常⼩。
⼀旦220V的电压突然变⾼,开关电源在瞬间就被烧毁。
前段时间的⼀个监控系统中,在⼀个雷过后,监控总闸跳了,再合上闸后,⼤部分摄像机还正常⼯作,⼀部分监视器显⽰⽆视频信号。
经检查发现,⽆视频信号的全部都是开关电源(施⼯时有的地⽅安装不⽅便,就⽤了开关电源),最后⼜在摄像机杆上安装上了电源箱,换上了变压器电源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关稳压电源和线性稳压电源根据调整管的工作状态,我们常把稳压电源分成两类:线性稳压电源和开关稳压电源。
线性稳压电源,是指调整管工作在线性状态下的稳压电源。
而在开关电源中则不一样,开关管(在开关电源中,我们一般把调整管叫做开关管)是工作在开、关两种状态下的:开——电阻很小;关——电阻很大。
开关电源是一种比较新型的电源。
它具有效率高,重量轻,可升、降压,输出功率大等优点。
但是由于电路工作在开关状态,所以噪声比较大。
通过下图,我们来简单的说说降压型开关电源的工作原理。
如图所示,电路由开关K(实际电路中为三极管或者场效应管),续流二极管D,储能电感L,滤波电容C等构成。
当开关闭合时,电源通过开关K、电感L给负载供电,并将部分电能储存在电感L以及电容C中。
由于电感L的自感,在开关接通后,电流增大得比较缓慢,即输出不能立刻达到电源电压值。
一定时间后,开关断开,由于电感L的自感作用(可以比较形象的认为电感中的电流有惯性作用),将保持电路中的电流不变,即从左往右继续流。
这电流流过负载,从地线返回,流到续流二极管D的正极,经过二极管D,返回电感L的左端,从而形成了一个回路。
通过控制开关闭合跟断开的时间(即PWM——脉冲宽度调制),就可以控制输出电压。
如果通过检测输出电压来控制开、关的时间,以保持输出电压不变,这就实现了稳压的目的。
在开关闭合期间,电感存储能量;在开关断开期间,电感释放能量,所以电感L叫做储能电感。
二极管D在开关断开期间,负责给电感L提供电流通路,所以二极管D叫做续流二极管。
在实际的开关电源中,开关K由三极管或场效应管代替。
当开关断开时,电流很小;当开关闭合时,电压很小,所以发热功率U×I就会很小。
这就是开关电源效率高的原因。
看过完两个关于电源的FAQ后,大家可能对电源的效率计算还不了解。
在后面的FAQ中,我们将专门给大家介绍。
常见的用于开关电源的芯片有:TL494,LM2575,LM2673,34063,51414等等。
根据调整管的工作状态,我们常把稳压电源分成两类:线性稳压电源和开关稳压电源。
此外,还有一种使用稳压管的小电源。
这里说的线性稳压电源,是指调整管工作在线性状态下的直流稳压电源。
调整管工作在线性状态下,可这么来理解:RW(见下面的分析)是连续可变的,亦即是线性的。
而在开关电源中则不一样,开关管(在开关电源中,我们一般把调整管叫做开关管)是工作在开、关两种状态下的:开——电阻很小;关——电阻很大。
工作在开关状态下的管子显然不是线性状态。
线性稳压电源是比较早使用的一类直流稳压电源。
线性稳压直流电源的特点是:输出电压比输入电压低;反应速度快,输出纹波较小;工作产生的噪声低;效率较低(现在经常看的LDO就是为了解决效率问题而出现的);发热量大(尤其是大功率电源),间接地给系统增加热噪声。
工作原理:我们先用下图来说明线性稳压电源调节电压的原理。
如下图所示,可变电阻RW跟负载电阻RL组成一个分压电路,输出电压为:Uo=Ui×RL /(RW+RL),因此通过调节RW的大小,即可改变输出电压的大小。
请注意,在这个式子里,如果我们只看可调电阻RW的值变化,Uo的输出并不是线性的,但如果把RW 和RL一起看,则是线性的。
还要注意,我们这个图并没有将RW的引出端画成连到左边,而画在右边。
虽然这从公式上看并没有什么区别,但画在右边,却正好反映了“采样”和“反馈”的概念----实际中的电源,绝大部分都是工作在采样和反馈的模式下的,使用前馈方法很少,或就是用了,也只是辅助方法而已。
让我们继续:如果我们用一个三极管或者场效应管,来代替图中的可变阻器,并通过检测输出电压的大小,来控制这个“变阻器”阻值的大小,使输出电压保持恒定,这样我们就实现了稳压的目的。
这个三极管或者场效应管是用来调整电压输出大小的,所以叫做调整管。
像图1所示的那样,由于调整管串联在电源跟负载之间,所以叫做串联型稳压电源。
相应的,还有并联型稳压电源,就是将调整管跟负载并联来调节输出电压,典型的基准稳压器TL431就是一种并联型稳压器。
所谓并联的意思,就是象图2中的稳压管那样,通过分流来保证衰减放大管射极电压的“稳定”,也许这个图并不能让你一下子看出它是“并联”的,但细心一看,确实如此。
不过,大家在此还要注意一下:此处的稳压管,是利用它的非线性区工作的,因此,如果认为它是一个电源,它也是一个非线性电源。
为了便于大家理解,回头我们找一个理适合的图来看,直到可以简明地看懂为止。
由于调整管相当于一个电阻,电流流过电阻时会发热,所以工作在线性状态下的调整管,一般会产生大量的热,导致效率不高。
这是线性稳压电源的一个最主要的一个缺点。
想要更详细的了解线性稳压电源,请参看模拟电子线路教科书。
这里我们主要是帮助大家理清这些概念以及它们之间的关系。
图1一般来说,线性稳压电源由调整管、参考电压、取样电路、误差放大电路等几个基本部分组成。
另外还可能包括一些例如保护电路,启动电路等部分。
下图是一个比较简单的线性稳压电源原理图(示意图,省略了滤波电容等元件),取样电阻通过取样输出电压,并与参考电压比较,比较结果由误差放大电路放大后,控制调整管的导通程度,使输出电压保持稳定。
图2常用的线性串联型稳压电源芯片有:78XX系列(正电压型),79XX系列(负电压型)(实际产品中,XX用数字表示,XX是多少,输出电压就是多少。
例如7805,输出电压为5V);LM317(可调正电压型),LM337(可调负电压型);1117(低压差型,有多种型号,用尾数表示电压值。
如1117-3.3为3.3V,1117-ADJ 为可调型)。
1.DC to DC包括boost(升压)、buck(降压)、 Boost/buck(升/降压)和反相结构,具有高效率、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC 转换器的外围电路仅需电感和滤波电容;但该类电源控制器的输出纹波和开关噪声较大、成本相对较高。
2.LDO:低压差线性稳压器的突出优点是具有最低的成本,最低的噪声和最低的静态电流。
它的外围器件也很少,通常只有一两个旁路电容。
新型LDO 可达到以下指标:30μV 输出噪声、60dB PSRR、6μA 静态电流及100mV 的压差。
LDO 线性稳压器能够实现这些特性的主要原因在于内部调整管采用了P 沟道场效应管,而不是通常线性稳压器中的PNP 晶体管。
P 沟道的场效应管不需要基极电流驱动,所以大大降低了器件本身的电源电流;另一方面,在采用PNP 管的结构中,为了防止PNP 晶体管进入饱和状态降低输出能力,必须保证较大的输入输出压差;而P 沟道场效应管的压差大致等于输出电流与其导通电阻的乘积,极小的导通电阻使其压差非常低。
当系统中输入电压和输出电压接近时,LDO 是最好的选择,可达到很高的效率。
所以在将锂离子电池电压转换为3V 电压的应用中大多选用LDO,尽管电池最后放电能量的百分之十没有使用,但是LDO 仍然能够在低噪声结构中提供较长的电池寿命。
什么是开关稳压器?开关稳压器使用输出级,重复切换“开”和“关”状态,与能量存贮部件(电容器和感应器)一起产生输出电压。
它的调整是通过根据输出电压的反馈样本来调整切换定时来实现的。
在固定频率的稳压器中,通过调节开关电压的脉冲宽度来调节切换定时 ? 这就是所谓的 PWM 控制。
在门控振荡器或脉冲模式稳压器中,开关脉冲的宽度和频率保持恒定,但是,输出开关的“开”或“关”由反馈控制。
根据开关和能量存贮部件的排列,产生的输出电压可以大于或小于输入电压,并且可以用一个稳压器产生多个输出电压。
在大多数情况下,在同样的输入电压和输出电压要求下,脉冲(降压)开关稳压器比线性稳压器转换电源的效率更高。
什么是 LDO(低压降)稳压器?LDO 是一种线性稳压器。
线性稳压器使用在其线性区域内运行的晶体管或FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。
所谓压降电压,是指稳压器将输出电压维持在其额定值上下 100mV 之内所需的输入电压与输出电压差额的最小值。
正输出电压的 LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为 PNP。
这种晶体管允许饱和,所以稳压器可以有一个非常低的压降电压,通常为 200mV 左右;与之相比,使用 NPN 复合电源晶体管的传统线性稳压器的压降为 2V 左右。
负输出 LDO 使用 NPN 作为它的传递设备,其运行模式与正输出 LDO 的 PNP设备类似。
更新的发展使用 CMOS 功率晶体管,它能够提供最低的压降电压。
使用 CMOS,通过稳压器的唯一电压压降是电源设备负载电流的 ON 电阻造成的。
如果负载较小,这种方式产生的压降只有几十毫伏。
线性稳压器与开关稳压器的比较如何?线性电压稳压器开关电压稳压器优点:优点:简单输出纹波电压低出色的 line 和负载稳压对负载和 line 的变化响应迅速电磁干扰 (EMI) 低效率高(降低了冷却所需的源电源需求)能够处理较高的电源密度拓扑学结果可用于传递单个或多个输出电压,大于或小于生成的输出电压缺点:缺点:效率低如果需要冷却设备,则要求较大的空间输出纹波电压高瞬时恢复时间较慢产生电磁干扰(EMI)LDO是低压差的器件,因此,输出多为固定电压,否则失去了低压差的意义,尽管输入电压可以在一定的范围。
DCtoDC是电压转换,有升压、降压等,一般升压电路的输出电流不可能做大,而降压的电流可以做得较大。
TI公司有各种上述电路,可以到TI公司的网站查,数据多数是英文的。
其他公司的用得不多,不好说。
DC-DC,其实内部是先把DC直流电源转变为交流电电源AC。
通常是一种自激震荡电路,所以外面需要电感等分立元件。
然后在输出端再通过积分滤波,又回到DC电源。
由于产生AC 电源,所以可以很轻松的进行升压跟降压。
两次转换,必然会产生损耗,这就是大家都在努力研究的如何提高DC-DC效率的问题。
LDO是low dropout regulator,意为低压差线性稳压器,是相对于传统的线性稳压器来说的。
传统的线性稳压器,如78xx系列的芯片都要求输入电压要比输出电压高出 2v~3V以上,否则就不能正常工作。
但是在一些情况下,这样的条件显然是太苛刻了,如5v转3.3v,输入与输出的压差只有1.7v,显然是不满足条件的。
针对这种情况,才有了LDO类的电源转换芯片。
生产LDO 芯片的公司很多,常见的有ALPHA, Linear(LT), Micrel, National semiconductor,TI等。