数列计算题
高中数学《数列》练习题(含答案解析)
高中数学《数列》练习题(含答案解析)一、单选题1.已知等差数列{an }的前n 项和为Sn ,且48S S =13,则816S S =( )A .310 B .37C .13D .122.已知等比数列{an }的前n 项和为Sn ,则“Sn +1>Sn ”是“{an }单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.现有下列说法:①元素有三个以上的数集就是一个数列; ①数列1,1,1,1,…是无穷数列; ①每个数列都有通项公式;①根据一个数列的前若干项,只能写出唯一的通项公式; ①数列可以看着是一个定义在正整数集上的函数. 其中正确的有( ). A .0个B .1个C .2个D .3个4.数列{}n a 的前n 项和为n S ,且1(1)(21)n n a n +=-⋅+,则2021S =( )A .2020B .2021C .2022D .20235.已知等差数列{}n a 中,6819,27a a ==,则数列{}n a 的公差为( ) A .2B .3C .4D .56.标准对数视力表(如图)采用的“五分记录法”是我国独创的视力记录方式.标准对数视力表各行为正方形“E ”字视标,且从视力5.1的视标所在行开始往上,每一行“E ”的边长都是下方一行“E ”的边长的视力4.0的视标边长为a ,则视力4.9的视标边长为( )A .4510aB .91010aC .4510a -D .91010a -7.已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a8.已知{}n a 是等差数列,公差0d >,其前n 项和为n S ,若2a 、52a+、172a +成等比数列,()12n n n a S +=,则不正确的是( ) A .1d= B .1020a = C .2n S n n =+ D .当2n ≥时,32n n S a ≥9.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .1010101110.等差数列{}n a 前n 项和为n S , 281112a a a ++=,则13S =( ) A .32B .42C .52D .62二、填空题11.已知a 是1,2的等差中项,b 是1-,16-的等比中项,则ab 等于___________. 12.已知等差数列{}n a 的前n 项和为n S ,若65210,6Sa a =+=,则d =_________.13.设n S 是等差数列{}n a 的前n 项和,若891715a a =,则1517S S =______.14.已知等差数列{}n a 的前n 项和为nS,且1516a a +=-,936S =-,则n S 的最小值是______.三、解答题15.已知数列{}n a 为等差数列,{}n b 是公比为2的等比数列,且满足11221,5a b b a ==+=(1)求数列{}n a 和{}n b 的通项公式; (2)令n n n c a b =+求数列{}n c 的前n 项和n S ;16.已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (1)求{}n a 的通项公式;(2)2n nb a =-+求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 17.某公司2021年年初花费25万元引进一种新的设备,设备投入后每年的收益均为21万元.若2021年为第1年,且该公司第()n n *∈N 年需要支付的设备维修和工人工资等费用总和n a (单位:万元)的情况如图所示.(1)求n a ;(2)引进这种设备后,第几年该公司开始获利? 18.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}nb 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.参考答案与解析:1.A【分析】运用等差数列前n 项和公式进行求解即可. 【详解】设等差数列{an }的公差为d , ①41181461582832a d a d a d S S +==⇒=+,显然0d ≠, ①8161182820283161204012010a d d d a d S d S d ++===++, 故选:A 2.D【分析】由110++>⇒>n n n S S a ,举反例102=>n na 和12nn a =-即可得出结果 【详解】110++>⇒>n n n S S a ,例如102=>n na ,但是数列{}n a 不单调递增,故不充分; 数列{}n a 单调递增,例如12n na =-,但是1n n S S +<,故不必要; 故选:D 3.B【分析】根据给定条件,利用数列的定义逐一分析各个命题,判断作答.【详解】对于①,数列是按一定次序排成的一列数,而数集的元素无顺序性,①不正确; 对于①,由无穷数列的意义知,数列1,1,1,1,…是无穷数列,①正确; 对于①0.1,0.01,0.001,0.0001,得到的不足近似值,依次排成一列得到的数列没有通项公式,①不正确;对于①,前4项为1,1,1,1的数列通项公式可以为1,N n a n =∈,cos 2π,N n b n n *=∈等,即根据一个数列的前若干项,写出的通项公式可以不唯一,①不正确;对于①,有些数列是有穷数列,不可以看着是一个定义在正整数集上的函数,①不正确, 所以说法正确的个数是1. 故选:B 4.D【分析】根据数列{}n a 的通项公式,可求得12342,2a aa a +=-+=-,依此类推,即可求解.【详解】①1(1)(21)n n a n +=-⋅+,故12343,5,7,9a a a a ==-==-故202112320202021S a a a a a =+++⋅⋅⋅++357940414043=-+-+⋅⋅⋅-+2101040432023=-⨯+=.故选:D. 5.C【分析】利用862d a a =-,直接计算公差即可. 【详解】等差数列{}n a 中,6819,27aa ==,设公差为d ,则86227198d a a =-=-=,即4d =.故选:C. 6.D【分析】由等比数列的通项公式计算.【详解】设第n 行视标边长为n a ,第n 1-行视标边长为()12n a n -≥,由题意可得()12n n a n -=≥,则()1101102nn a n a --=≥,则数列{}n a 为首项为a ,公比为11010-的等比数列, 所以101191010101010a a a ---⎛⎫== ⎪⎝⎭,则视力4.9的视标边长为91010a -,故选:D. 7.B【分析】令10t n =-≥,则1n t =+,22641411ttyt t t t ,然后利用函数的知识可得答案. 【详解】令10t n =-≥,则1n t =+,22,641411tty tt t t当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B . 8.A【分析】利用等差数列的求和公式可得出1n a na =,可得出10d a =>,根据已知条件求出1a 的值,可求得n a 、n S 的表达式,然后逐项判断可得出合适的选项.【详解】因为{}n a 是等差数列,则()()1122nn n n a n a a S ++==,所以,1n a na =, 所以,110n n d a a a +=-=>,因为()()2521722a a a +=+,可得()()2111522172a a a +=+,整理可得21191640a a --=,因为10a >,故12d a ==,A 错;12n a na n ==,则1020a =,B 对;()()112nn n a S n n +==+,C 对;当2n ≥时,()233202n n S a n n n n n -=+-=-≥,即32n n S a ≥,D 对.故选:A. 9.C【解析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=.故选:C【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和; (4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 10.C【分析】将2811a a a ++化成1a 和d 的形式,得到二者关系,求得7a ,利用13713S a =求得结果. 【详解】()()28111111()71031812a a a a d a d a d a d ++=+++++=+=164a d ∴+=,即74a = ()1131371313134522a a S a +∴===⨯= 故选:C.【点睛】思路点睛:该题考查的是有关数列的问题,解题思路如下:(1)根据题中所给的条件,结合等差数列通项公式,将其转化为关于首项与公差的式子; (2)化简求得数列的某一项;(3)结合等差数列求和公式,得到和与项的关系,求得结果. 11.6±【分析】根据等差和等比中项的定义求出,a b 得值,即可求解. 【详解】因为a 是1,2的等差中项,所以12322a +==, 因为b 是1-,16-的等比中项,所以2(1)(16)16b =-⨯-=,4b =±,所以6ab =±.故答案为:6±. 12.1【分析】由等差中项性质可求4a ,又510S =依据等差数列的前n 项和公式及通项公式列方程即可求得公差 【详解】由266a a +=有43a =,而510S = ①结合等差数列的前n 项和公式及通项公式113322a d a d +=⎧⎨+=⎩即可得1d = 故答案为:1【点睛】本题考查了等差数列,利用等差中项求项,结合已知条件、前n 项和公式、通项公式求公差13.1【分析】利用等差数列性质及前n 项和公式计算作答.【详解】在等差数列{}n a 中,891715a a =,所以1151511588117171179915(15(152152117(17)(1717)2))2a a S a a a a a a S a a a a ++⨯====⋅=++⨯. 故答案为:1 14.42-【分析】根据给定条件求出等差数列{}n a 的首项、公差,探求数列{}n a 的单调性即可计算作答.【详解】设等差数列{}n a 的公差为d ,由1591636a a S +=-⎧⎨=-⎩得112416989362a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得1122a d =-⎧⎨=⎩, 因此,()1212214n a n n =-+-⨯=-,令0n a =,解得7n =,于是得数列{}n a 是递增等差数列,其前6项为负,第7项为0,从第8项开始为正, 所以6S 或7S 最小,最小值为()656122422⨯⨯-+⨯=-. 故答案为:42-15.(1)21n a n =-,12n n b -=(2)221nn S n =+-【分析】(1)根据等差数列和等比数列的通项公式得到2d =,根据通项公式的求法得到结果;(2)1221n n n n c a b n -+=+=-分组求和即可.【详解】(1)设{}n a 的公差为d , 由已知,有215d ++=解得2d =,所以{}n a 的通项公式为21,n a n n *=-∈N , {}n b 的通项公式为12,n n b n -*=∈N .(2)1221n n n n c a b n -+=+=-,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:212(121)21122n n n n n S n -+-=+=+--.16.(1)2n a n =-;(2)1n nT n =+.【解析】(1)由30S =,55S =-,可得113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩求出1,a d ,从而可得{}n a 的通项公式;(2)由(1)可得n b n =,从而可得11111(1)1n n b b n n n n +==-++,然后利用裂项相消求和法可求得n T 【详解】解:(1)设等差数列{}n a 的公差为d , 因为30S =,55S =-.所以113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩,化简得11021a d a d +=⎧⎨+=-⎩,解得111a d =⎧⎨=-⎩,所以1(1)1(1)(1)2n a a n d n n =+-=+--=-, (2)由(1)可知2(2)2n n b a n n =-+=--+=, 所以11111(1)1n n b b n n n n +==-++, 所以111111(1)()()1223111n nT n n n n =-+-+⋅⋅⋅+-=-=+++ 【点睛】此题考查等差数列前n 项和的基本量计算,考查裂项相消求和法的应用,考查计算能力,属于基础题17.(1)2n a n =;(2)第2年该公司开始获利.【分析】(1)根据题意得出数列的首项和公差,进而求得通项公式 (2)根据题意算出总利润,进而令总利润大于0,解出不等式即可. 【详解】(1)由题意知,数列{}n a 是12a =,公差2d =的等差数列, 所以()()112122n a a n d n n =+-=+-⨯=.(2)设引进这种设备后,净利润与年数n 的关系为()F n ,则()()2121222520252n n F n n n n n -⎡⎤=-+⨯-=--⎢⎥⎣⎦. 令()0F n >得220250n n -+<,解得1010n -<+ 又因为n *∈N ,所以2n =,3,4,…,18, 即第2年该公司开始获利.18.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ① 则1231111012112222Γ33333-----=++++n nn . ①由①-①得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n n T --=++++,① 231112133333n n n n n T +-=++++,① ①-①得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n n n T =--⋅, 所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2n n S T <. [方法三]:构造裂项法由(①)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243n n c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭. 则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二. [方法四]:导函数法设()231()1-=++++=-n n x x f x x x x x x ,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nx x . 又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n n n n n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n nS T,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nnc n,使1+=-n n nb c c,求得nT的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.。
奥数等差数列
1、求1+2+3+4+……+24+25的和2、甲数=1+3+5+……+97+99,乙数=2+4+6+……+98+100,问:甲数和乙数谁大?大多少?3、从4到81所有自然数的和是多少?4、五个连续自然数的和是100,求这五个数各是多少?5、四个连续自然数的和是162,求这四个数。
6、比101小的所有双数的和是多少?7、7个连续自然数的和是105,其中最小的数是多少?最大的数是多少?8、39个连续奇数的和是1989,其中最大的一个奇数是多少?9、全部三位数的和是多少?10、三年级52名学生站成4排照相,每一排都要比前一排多2人,每排各站多少人?11、十五个连续自然数中,最大数是最小数的3倍。
这十五个数的和是多少?12、11至18八个连续自然数的和加上1992,所得结果恰巧等于另外八个连续自然数的和,这另外八个连续自然数中,最小的是多少?13、四个连续奇数,第一个是第四个数的19/21,那么这四个数的和是多少?14、从1到n的连续自然数n个,这些自然数中偶数和是90,奇数和是100,n 是多少?15、在从1992开始的100个连续自然数中,前50个数的和比后50个数的和小多少?16、3=1+2,1、2是连续自然数,10以内能用连续自然数的和表示出来的数有哪几个,请你写出来。
35能不能用几个连续自然数的和表示出来?如能,你能写出几种表示形式?请写出来。
17、有些数既能表示成3个连续自然数的和,又能表示成4个连续自然数的和,还能表示成5个连续自然数的和。
例如:30就满足上述要求。
因为30=9+10+11,30=6+7+8+9,30=4+5+6+7+8。
请你在700至1000之间找出所有满足上述要求的数,并简述理由。
18、有三个连续偶数,如果最大的一个偶数增加6之后,正好是原来三个偶数和的一半,最大的一个偶数是多少?19、1~1991这1991个自然数中,所有奇数之和与所有偶数之和的差是多少?20、1+2+3+4+…+1990+1991所得的和是奇数还是偶数?21、从100到200之间,所有奇数相加的和是多少?22、有100个连续自然数的和是8450,第一个自然数是多少?23、三个连续自然数,后两个数的积与前两个数的积之差是114,最小数是多少?24、五个连续奇数和的倒数是1/45,这五个奇数中最大的数是多少?25、在两位数10、11、……、98、99中,将每个被7除余2的数的个位与十位之间添加一个小数点,其余的数不变,问:经过这样改变之后,所有数的和是多少?1、1+2+3+…+19992、2+5+8+…+2993、求数列6,9,12,…前100个数的和。
数列简单练习题
数列简单练习题数列是数学中一个基础且重要的概念,它在各个领域中都有广泛的应用。
为了帮助大家更好地理解和掌握数列的概念及相关计算方法,本文将为大家提供一系列数列简单练习题。
通过这些练习题的训练,相信大家能够在数列方面得到更好的掌握。
练习题一:等差数列求和1. 求等差数列2, 5, 8, 11, 14, …的前10项之和。
解析:根据等差数列的求和公式,可知等差数列的前n项之和为Sn = n * (a1 + an) /2,其中a1为首项,an为末项,n为项数。
根据给定的数列可知,a1 = 2,an = 2 + (n-1) * 3 = 3n - 1。
代入公式,得到S10 = 10 * (2 + (10-1) * 3) / 2 = 10 * (2 + 27) / 2 = 10 * 29 / 2 = 145。
所以,等差数列2, 5, 8, 11, 14, …的前10项之和为145。
练习题二:等比数列求和2. 求等比数列1, 3, 9, 27, …的前5项之和。
解析:根据等比数列的求和公式,可知等比数列的前n项之和为Sn = a1 * (q^n - 1) / (q - 1),其中a1为首项,q为公比,n为项数。
根据给定的数列可知,a1 = 1,q = 3。
代入公式,得到S5 = 1 * (3^5 - 1) / (3 - 1) = 1 * (243 - 1) / 2 = 242 / 2 = 121。
所以,等比数列1, 3, 9, 27, …的前5项之和为121。
练习题三:斐波那契数列3. 斐波那契数列的定义是f(1) = 1,f(2) = 1,f(n) = f(n-1) + f(n-2)(n≥3)。
求斐波那契数列的前10项。
解析:根据斐波那契数列的定义可知,首先确定前两项f(1)和f(2)分别为1。
然后根据递推公式f(n) = f(n-1) + f(n-2),可以计算出后续的项。
利用递推公式,可以得到斐波那契数列的前10项依次为1, 1, 2, 3, 5, 8, 13, 21, 34, 55。
等差数列练习题
1、计算:18+19+20+2l+22+23.2、计算:100+102+104+106+108+110+112+114.3、计算:73+77+81+85+89+93.4、计算:995+996+997+998+999.5、计算:(1 999+1 997+1 995+…+13+11)-(12+14+16+…+1 996+1 998).6、计算:1+3+5+7+…+37+39.7、计算:2+6+10+14+…+210+214.8、计算:4+7+10+13+…+298+301.9、计算:1+11+21+31+…+101+111.10、求出所有的2位数的和.11、自1开始,每隔两个数写出一个数来,得到数列:1,4,7,10,13,…,求出这个数列前100项之和.12、影剧院有座位若干排,第一排有25个座位,以后每排比前一排多3个座位.最后一排有94个座位.问:这个影剧院共有多少个座位?1、求1至100内被4除余1的数的和.2、求1至100内既是3的倍数又是5的倍数的所有数的和.3、有10只盒子,44只乒乓球.把这44只乒乓球放到盒子中,每个盒子中至少要放一个球,能不能使每个盒中的球数都不相同?4、影剧院共有25排座位.第一排有20个座位,以后每排比前一排多2个座位.问:影剧院共有多少个座位?5、力学小学的礼堂里共有30排座位.从第一排开始,以后每排比前一排多2个座位,最后一排有75个座位.问:这个礼堂共有多少个座位?6、时钟在每个整点时敲这钟点数,每半点钟时敲1下.问:一昼夜该时钟总共敲了多少下?7、求所有三位数的和.8、求1至100(包括100在内)的所有5的倍数的和.9、50把锁的钥匙搞乱了.为了使每把锁都配上自己的钥匙,至多要试多少次就足够了?10、已知数列:2,5,3,3,7,2,5,3,3,7,2,5,3,3,7,….这个数列的第30项是哪个数?到第25项止,这些数的和是多少?11、在24个连续的自然数中,有一个自然数出现3次,另有2个自然数各出现2次。
奥数题库(四年级)数列规律计算(普通)
双重数列规律1.观察如下数列:10,1,10,2,10,3,10,4,……,10,9.这个数列一共有多少个数?2.观察如下数列:5,1,5,2,5,3,5,4,……,5,10.这个数列一共有多少个数?3.观察如下数列:8,1,8,2,8,3,8,4,……,8,7.这个数列一共有多少个数?4.观察如下数列:10,2,10,4,10,6,10,8,10,10,……,10,100.那么这个数列一共有多少个数?5.观察如下数列:5,3,5,6,5,9,5,12,……,5,99.那么这个数列一共有多少个数?6.观察如下数列:10,2,10,4,10,6,10,8,10,10,……,100,10.那么这个数列一共有多少个数?7.观察如下数列:1,100,2,99,3,98,2,97,1,96,2,95,3,94,2,93,1,92,……,2,2,1.这个数列的和是多少?8.观察如下数列:1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,1,84,……,0.这个数列的和是多少?9.观察如下数列:1,60,2,57,3,54,2,51,1,48,2,45,3,42,……,2,3.那么这个数列的和是多少?10.观察如下数列:1,100,2,99,3,98,2,97,1,96,2,95,3,94,2,93,1,92,……,2,1.这个数列中有多少个“2”?11.观察如下数列:1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,1,84,……,0.这个数列中有多少个“2”?12.观察如下数列:1,60,2,57,3,54,2,51,1,48,2,45,3,42,……,2,3.那么这个数列中有多少个“2”?数组规律1.观察如下数组:(1,2,3),(2,3,4),(3,4,5),……,那么第10组中的三个数是什么?2.观察如下数组:(2,3,4),(3,4,5),(4,5,6)……,那么第10组中的三个数是什么?3.观察如下数组:(2,4,6),(4,6,8),(6,8,10),……,那么第10组中的三个数是什么?4.观察如下数组:(1,2,3),(2,3,4),(3,4,5),……,那么前10组中所有数的和是多少?5.观察如下数组:(2,3,4),(3,4,5),(4,5,6)……,那么前10组中所有数的和是多少?6.观察如下数组:(2,4,6),(4,6,8),(6,8,10),……,那么前10组中所有数的和是多少?7.观察如下数列:1,2,3,4,4,5,6,7,7,8,9,10,……,那么这个数列的第24个数是什么?8.观察如下数列:3,4,5,6,6,7,8,9,9,10,11,12,……,那么这个数列的第24个数是什么?9.观察如下数列:2,4,6,8,8,10,12,14,14,16,18,20,……,那么这个数列的第24个数是什么?10.观察如下数列:1,2,3,4,4,5,6,7,7,8,9,10,……,97,98,99,100,那么这个数列一共有多少数?11.观察如下数列:3,4,5,6,6,7,8,9,9,10,11,12,……,99,100,101,102,那么这个数列一共有多少数?12.观察如下数列:2,4,6,8,8,10,12,14,14,16,18,20,……,194,196,198,200,那么这个数列一共有多少数?。
数列的大题
{
}
4、已知数列 {an } 的前 n 项和为 S n ,若 S n 2an n, 且bn n . a a n n 1 (1) 求证: {an 1} 为等比数列; (2) 求数列 b } 的前 n 项和 T
n
a 1
n
5 在数列{an}中,a1=1,an+1=2an+2 . (1)设 bn=
2a1 3a2 1, a32 9a2 a6
. (I)求数列
{an }
的通项公式.
(II)设 bn log 3 a1 log 3 a2 log 3 an ,求数列 { 1 } 的前 n 项和.
bn
an 4、已知等差数列{an}满足 a2=0,a6+a8=-10 (II)求数列 2 n 1 的前 n 项和. (I)求数列{an}的通项公式;
考点三:数列的求和 1、已知数列 an 的各项均是正数,其前 n 项和为 S n ,满足 S n 4 an . ( n N ) (Ⅰ)求数列 an 的通项公式; (Ⅱ)设 bn
3 1 (n N ), 数列 {bnbn 2 } 的前 n 项和为 Tn ,求证: Tn . 4 2 log 2 an
3
5、 已知数列 {an } 是公差为 2 的等差数列, 且 a3 +1 是 a1+1 与 a7+1 的等比中项;设数列 bn 的
n
前 n 项和为 S ,且 bn 2 S n ;(1)求数列 {a } 和 b 的通项公式; n n (2)若 cn (an -1) bn ( n N * ), Tn 为数列 cn 的前 n 项和,求 Tn .
考点四、数列的应用 13 1、已知等比数列{an}的公比 q=3,前 3 项和 S3= . (1)求数列{an}的通项公式; 3 π (2)若函数 f(x)=Asin(2x+φ)(A>0,0<φ<π)在 x= 处取得最大值, 且最大值为 a3, 求函数 f(x) 6 的解析式.
数列计算题及答案
数列计算题及答案数学中的数列是一种有趣的概念,简单来说就是一组按照特定规律排列的数字。
在学校里,我们经常会遇到一些数列计算题,这些题目能够帮助我们锻炼数学思维,提升解题能力。
下面,就让我来为大家介绍几道常见的数列计算题及答案。
一、等差数列计算题等差数列的特点就是数列中相邻两项之间的差值相等。
因此,在解等差数列计算题时,我们只需找出差值,然后就能轻松地推算出数列中的其它项。
下面,就让我们来看看一道简单的等差数列计算题:题目:已知等差数列的第1项为3,公差为4,求第10项的值。
解题:根据等差数列的定义,可以列出数列的通项公式:an = a1 + (n-1)d其中,an表示数列的第n项,a1为数列的第1项,d为数列的公差。
将给定的数据代入公式中,就可以求出第10项的值:a10 = 3 + (10-1)×4 = 39因此,该等差数列的第10项的值为39。
二、等比数列计算题等比数列的特点就是数列中相邻两项之间的比值相等。
在解等比数列计算题时,我们需要找到相邻两项之间的比值,然后用这个比值求出数列中的其它项。
下面,就让我们来看看一道简单的等比数列计算题:题目:已知等比数列的第1项为2,公比为3,求第5项的值。
解题:根据等比数列的定义,可以列出数列的通项公式:an = a1×q^(n-1)其中,an表示数列的第n项,a1为数列的第1项,q为数列的公比。
将给定的数据代入公式中,就可以求出第5项的值:a5 = 2×3^(5-1) = 162因此,该等比数列的第5项的值为162。
三、斐波那契数列计算题斐波那契数列是数学中的一个经典问题,其特点是数列中每一项的值都等于前两项的和。
在解斐波那契数列计算题时,我们只需要找到数列中前两项的值,然后就可以逐项计算出其它项。
下面,就让我们来看看一道简单的斐波那契数列计算题:题目:求斐波那契数列的第10项的值。
解题:由于斐波那契数列中每一项的值都等于前两项的和,因此,我们可以用循环的方式依次计算出数列中的各项。
数列基础大题20道练习
所以 .
(2)当 时, ,
而 ,
所以数列 是等比数列,且首项为3,公比为3.
(3)由(1)(2)得 ,
,
所以
①
②
由①-②得
,
所以 .
因为 ,
所以 .
【点睛】
本题考查了利用 和 的关系求通项,构造法证明等比数列,以及错位相减法求和,是数列基本方法的考查,属于基础题.
5.(1) ;(2) .
(2)由(1)得 ,然后利用裂项相消法可求得
【详解】
解:(1)设 的公差为d,因为 , , 成等比数列,所以 .
即 ,即 又 ,且 ,解得
所以有 .
(2)由(1)知:
则 .即 .
【点睛】
此题考查等差数列基本量计算,考查裂项相消法求和,考查计算能力,属于基础题
13.(1) ;(2)
【分析】
(1)利用递推关系式,根据 ,逐项代入即可求解.
(2)由(1)可知 ,根据裂项相消法即可求出结果.
【详解】
设等差数列 的公差为 ,
由 ,可得
解得 ,
所以等差数列 的通项公式可得 ;
(2)由(1)可得 ,
所以 .
【点睛】
本题主要考查了等差数列通项公式的求法,以及裂项相消法在数列求和中的应用,属于基础题.
18.(1) , ,或 , ,(2) 或
【分析】
4.数列 的前 项和为 ,且 ,数列 满足 , .
(1)求数列 的通项公式;
(2)求证:数列 是等比数列;
(3)设数列 满足 ,其前 项和为 ,证明: .
5.已知等差数列 的前 项和 满足 , .
(1)求 的通项公式;
(2) 求数列 的前 项和 .
数列极限计算练习题
数列极限计算练习题数列是数学中的一个重要概念,它是由一系列有序的数字组成。
而数列极限是指数列随着项数增加,逐渐趋向于某个确定的值。
在数学中,我们经常需要计算数列的极限,这是一个能够帮助我们深入理解数列性质的重要工具。
本文将为您提供一些数列极限计算的练习题,希望可以帮助您提升数列极限计算的能力。
练习一:求极限1. 设数列 $a_n = \frac{n+3}{n+1}$,求 $\lim_{n \to \infty} a_n$。
解析:为了求得该数列的极限,我们可以对数列进行简化,将其化简为一个更容易计算的形式。
通过观察数列,我们可以发现分子和分母的最高次数都为$n$,因此我们可以用$n$去除分子和分母,得到:$a_n = \frac{n+3}{n+1} = \frac{1+\frac{3}{n}}{1+\frac{1}{n}}$当$n$趋近于无穷大时,分数$\frac{3}{n}$和$\frac{1}{n}$的值都趋近于0,因此我们可以将它们忽略不计。
最后,我们得到:$\lim_{n \to \infty} a_n = \frac{1+0}{1+0} = 1$因此,数列 $a_n$ 的极限为1。
2. 设数列 $b_n = \frac{n^2 - 2n + 1}{n^2 + 1}$,求 $\lim_{n \to \infty} b_n$。
解析:我们可以将分子和分母进行因式分解,得到:$b_n = \frac{(n-1)^2}{n^2+1}$当$n$趋近于无穷大时,$(n-1)^2$和$n^2$的值都趋近于无穷大,因此我们可以将它们忽略不计。
最后,我们得到:$\lim_{n \to \infty} b_n = \frac{\infty}{\infty}$对于这种形式的极限计算,我们可以利用洛必达法则。
洛必达法则可以用于解决形式为$\frac{\infty}{\infty}$的不定型,即分子和分母都趋近于无穷大的情况。
小学数列题库及答案详解
小学数列题库及答案详解1. 题目:找出下列数列的规律,并求出第10项。
数列:2, 4, 6, 8, ...答案:这是一个等差数列,公差为2。
第10项可以通过公式 a_n = a_1 + (n-1)d 计算得出,其中a_1是首项,d是公差,n是项数。
所以第10项 a_10 = 2 + (10-1)*2 = 2 + 18 = 20。
2. 题目:下列数列中,哪一个数是第20项?数列:1, 3, 5, 7, ...答案:这是一个等差数列,首项为1,公差为2。
使用公式 a_n = a_1 + (n-1)d 计算第20项,a_20 = 1 + (20-1)*2 = 1 + 38 = 39。
3. 题目:如果一个数列的前三项为5, 7, 9,求第5项的值。
答案:这是一个等差数列,首项为5,公差为2。
第5项可以通过公式 a_n = a_1 + (n-1)d 计算得出,a_5 = 5 + (5-1)*2 = 5 + 8 = 13。
4. 题目:数列1, 4, 9, 16, ... 的第10项是多少?答案:这是一个平方数列,每一项都是其项数的平方。
第10项是10的平方,即 a_10 = 10^2 = 100。
5. 题目:如果一个数列的前四项为2, 5, 10, 17,求第5项的值。
答案:这是一个等差数列,首项为2,公差逐渐增加。
第二项与首项的差为3,第三项与第二项的差为5,第四项与第三项的差为7。
可以推断出公差是递增的,每次增加2。
因此,第五项与第四项的差应该是9,所以 a_5 = 17 + 9 = 26。
6. 题目:数列2, 6, 18, 54, ... 的第8项是多少?答案:这是一个等比数列,首项为2,公比为3。
第8项可以通过公式 a_n = a_1 * r^(n-1) 计算得出,其中a_1是首项,r是公比,n 是项数。
所以第8项 a_8 = 2 * 3^(8-1) = 2 * 3^7 = 4374。
7. 题目:找出下列数列的规律,并求出第15项。
数列的递推关系求解练习题
数列的递推关系求解练习题数列是数学中常见的概念,它由一系列有序的数字组成。
在数列中,每个数字都有一个位置,我们可以通过递推关系来找到数列中每个数字之间的规律。
本文将提供一些数列的递推关系求解练习题,帮助读者加深对数列的理解和运用。
一、斐波那契数列斐波那契数列是一种经典的数列,它的递推关系可以表示为:F(n)= F(n-1) + F(n-2),其中F(n)表示第n个数字。
题目1:求斐波那契数列的第10个数字。
解答:根据递推关系,我们可以依次计算得到斐波那契数列的前10个数字如下:F(1) = 1F(2) = 1F(3) = F(2) + F(1) = 1 + 1 = 2F(4) = F(3) + F(2) = 2 + 1 = 3F(5) = F(4) + F(3) = 3 + 2 = 5F(6) = F(5) + F(4) = 5 + 3 = 8F(7) = F(6) + F(5) = 8 + 5 = 13F(8) = F(7) + F(6) = 13 + 8 = 21F(9) = F(8) + F(7) = 21 + 13 = 34F(10) = F(9) + F(8) = 34 + 21 = 55所以斐波那契数列的第10个数字为55。
二、等差数列等差数列是指数列中任意两个相邻数字之间的差值都相等的数列。
题目2:已知等差数列的首项为a,公差为d,求该数列的前n项和Sn。
解答:根据等差数列的性质,我们可以得到数列的递推关系:an = a + (n-1)d,其中an表示第n个数字。
首先,我们可以计算数列的第n个数字:an = a + (n-1)d然后,我们可以计算数列的前n项和Sn:Sn = (a + an) * n / 2= (a + (a + (n-1)d)) * n / 2= (2a + (n-1)d) * n / 2题目3:已知等差数列的首项为3,公差为4,求该数列的前6项和Sn。
解答:根据题目给出的数据,代入等差数列的递推关系和前n项和的公式,我们可以得到:a = 3d = 4n = 6an = a + (n-1)d= 3 + (6-1)4= 3 + 20= 23Sn = (2a + (n-1)d) * n / 2= (2*3 + (6-1)*4) * 6 / 2= (6 + 20) * 3= 26 * 3= 78所以该等差数列的前6项和Sn为78。
高三数学练习题及答案:数列
【导语】以下是⽆忧考为⼤家推荐的有关⾼三数学练习题及答案:数列,如果觉得很不错,欢迎点评和分享~感谢你的阅读与⽀持! ⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分. 1.在等差数列{an}中,若a1+a2+a12+a13=24,则a7为()A.6B.7C.8D.9 解析:∵a1+a2+a12+a13=4a7=24,∴a7=6. 答案:A 2.若等差数列{an}的前n项和为Sn,且满⾜S33-S22=1,则数列{an}的公差是()A.12B.1C.2D.3 解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代⼊S33-S22=1,得d=2,故选C. 答案:C 3.已知数列a1=1,a2=5,an+2=an+1-an(n∈N*),则a2011等于()A.1B.-4C.4D.5 解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,… 故{an}是以6为周期的数列, ∴a2011=a6×335+1=a1=1. 答案:A 4.设{an}是等差数列,Sn是其前n项和,且S5A.d<0B.a7=0C.S9>S5D.S6与S7均为Sn的值 解析:∵S5 ⼜S7>S8,∴a8<0. 假设S9>S5,则a6+a7+a8+a9>0,即2(a7+a8)>0. ∵a7=0,a8<0,∴a7+a8<0.假设不成⽴,故S9 答案:C 5.设数列{an}是等⽐数列,其前n项和为Sn,若S3=3a3,则公⽐q的值为()A.-12B.12C.1或-12D.-2或12[ 解析:设⾸项为a1,公⽐为q, 则当q=1时,S3=3a1=3a3,适合题意. 当q≠1时,a1(1-q3)1-q=3•a1q2, ∴1-q3=3q2-3q3,即1+q+q2=3q2,2q2-q-1=0, 解得q=1(舍去),或q=-12. 综上,q=1,或q=-12. 答案:C 6.若数列{an}的通项公式an=5•252n-2-4•25n-1,数列{an}的项为第x项,最⼩项为第y项,则x+y等于() 解析:an=5•252n-2-4•25n-1=5•25n-1-252-45, ∴n=2时,an最⼩;n=1时,an. 此时x=1,y=2,∴x+y=3. 答案:A 7.数列{an}中,a1=15,3an+1=3an-2(n∈N*),则该数列中相邻两项的乘积是负数的是()A.a21a22B.a22a23C.a23a24D.a24a25 解析:∵3an+1=3an-2, ∴an+1-an=-23,即公差d=-23. ∴an=a1+(n-1)•d=15-23(n-1). 令an>0,即15-23(n-1)>0,解得n<23.5. ⼜n∈N*,∴n≤23,∴a23>0,⽽a24<0,∴a23a24<0. 答案:C 8.某⼯⼚去年产值为a,计划今后5年内每年⽐上年产值增加10%,则从今年起到第5年,这个⼚的总产值为()A.1.14aB.1.15aC.11×(1.15-1)aD.10×(1.16-1)a 解析:由已知,得每年产值构成等⽐数列a1=a,w an=a(1+10%)n-1(1≤n≤6). ∴总产值为S6-a1=11×(1.15-1)a. 答案:C 9.已知正数组成的等差数列{an}的前20项的和为100,那么a7•a14的值为()A.25B.50C.100D.不存在 解析:由S20=100,得a1+a20=10.∴a7+a14=10. ⼜a7>0,a14>0,∴a7•a14≤a7+a1422=25. 答案:A 10.设数列{an}是⾸项为m,公⽐为q(q≠0)的等⽐数列,Sn是它的前n项和,对任意的n∈N*,点an,S2nSn() A.在直线mx+qy-q=0上 B.在直线qx-my+m=0上 C.在直线qx+my-q=0上 D.不⼀定在⼀条直线上 解析:an=mqn-1=x,①S2nSn=m(1-q2n)1-qm(1-qn)1-q=1+qn=y,② 由②得qn=y-1,代⼊①得x=mq(y-1),即qx-my+m=0. 答案:B 11.将以2为⾸项的偶数数列,按下列⽅法分组:(2),(4,6),(8,10,12),…,第n组有n个数,则第n组的⾸项为()A.n2-nB.n2+n+2 解析:因为前n-1组占⽤了数列2,4,6,…的前1+2+3+…+(n-1)=(n-1)n2项,所以第n组的⾸项为数列2,4,6,…的第(n-1)n2+1项,等于2+(n-1)n2+1-1•2=n2-n+2. 答案:D 12.设m∈N*,log2m的整数部分⽤F(m)表⽰,则F(1)+F(2)+…+F(1024)的值是()A.8204B.8192C.9218D.以上都不对 解析:依题意,F(1)=0, F(2)=F(3)=1,有2个 F(4)=F(5)=F(6)=F(7)=2,有22个. F(8)=…=F(15)=3,有23个. F(16)=…=F(31)=4,有24个. … F(512)=…=F(1023)=9,有29个. F(1024)=10,有1个. 故F(1)+F(2)+…+F(1024)=0+1×2+2×22+3×23+…+9×29+10. 令T=1×2+2×22+3×23+…+9×29,① 则2T=1×22+2×23+…+8×29+9×210.② ①-②,得-T=2+22+23+…+29-9×210= 2(1-29)1-2-9×210=210-2-9×210=-8×210-2, ∴T=8×210+2=8194,m] ∴F(1)+F(2)+…+F(1024)=8194+10=8204. 答案:A 第Ⅱ卷(⾮选择共90分) ⼆、填空题:本⼤题共4个⼩题,每⼩题5分,共20分. 13.若数列{an}满⾜关系a1=2,an+1=3an+2,该数列的通项公式为__________. 解析:∵an+1=3an+2两边加上1得,an+1+1=3(an+1), ∴{an+1}是以a1+1=3为⾸项,以3为公⽐的等⽐数列, ∴an+1=3•3n-1=3n,∴an=3n-1. 答案:an=3n-1 14.已知公差不为零的等差数列{an}中,M=anan+3,N=an+1an+2,则M与N的⼤⼩关系是__________. 解析:设{an}的公差为d,则d≠0. M-N=an(an+3d)-[(an+d)(an+2d)] =an2+3dan-an2-3dan-2d2=-2d2<0,∴M 答案:M 15.在数列{an}中,a1=6,且对任意⼤于1的正整数n,点(an,an-1)在直线x-y=6上,则数列{ann3(n+1)}的前n项和Sn=__________. 解析:∵点(an,an-1)在直线x-y=6上, ∴an-an-1=6,即数列{an}为等差数列. ∴an=a1+6(n-1)=6+6(n-1)=6n, ∴an=6n2. ∴ann3(n+1)=6n2n3(n+1)=6n(n+1)=61n-1n+1 ∴Sn=61-12+12-13+…+1n-1n+1.=61-1n+1=6nn+1. 答案:6nn+1 16.观察下表: 1 234 34567 45678910 … 则第__________⾏的各数之和等于20092. 解析:设第n⾏的各数之和等于20092, 则此⾏是⼀个⾸项a1=n,项数为2n-1,公差为1的等差数列. 故S=n×(2n-1)+(2n-1)(2n-2)2=20092,解得n=1005. 答案:1005 三、解答题:本⼤题共6⼩题,共70分. 17.(10分)已知数列{an}中,a1=12,an+1=12an+1(n∈N*),令bn=an-2. (1)求证:{bn}是等⽐数列,并求bn; (2)求通项an并求{an}的前n项和Sn. 解析:(1)∵bn+1bn=an+1-2an-2=12an+1-2an-2=12an-1an-2=12, ∴{bn}是等⽐数列. ∵b1=a1-2=-32, ∴bn=b1qn-1=-32×12n-1=-32n. (2)an=bn+2=-32n+2, Sn=a1+a2+…+an =-32+2+-322+2+-323+2+…+-32n+2 =-3×12+122+…+12n+2n=-3×12×1-12n1-12+2n=32n+2n-3. 18.(12分)若数列{an}的前n项和Sn=2n. (1)求{an}的通项公式; (2)若数列{bn}满⾜b1=-1,bn+1=bn+(2n-1),且cn=an•bnn,求数列{cn}的通项公式及其前n项和Tn. 解析:(1)由题意Sn=2n, 得Sn-1=2n-1(n≥2), 两式相减,得an=2n-2n-1=2n-1(n≥2). 当n=1时,21-1=1≠S1=a1=2. ∴an=2(n=1),2n-1(n≥2). (2)∵bn+1=bn+(2n-1), ∴b2-b1=1, b3-b2=3, b4-b3=5, … bn-bn-1=2n-3. 以上各式相加,得 bn-b1=1+3+5+…+(2n-3) =(n-1)(1+2n-3)2=(n-1)2. ∵b1=-1,∴bn=n2-2n, ∴cn=-2(n=1),(n-2)×2n-1(n≥2), ∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1, ∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n. ∴-Tn=2+22+23+…+2n-1-(n-2)×2n =2(1-2n-1)1-2-(n-2)×2n =2n-2-(n-2)×2n =-2-(n-3)×2n. ∴Tn=2+(n-3)×2n. 19.(12分)已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等⽐数列. (1)求数列{an}的通项公式; (2)若从数列{an}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成⼀个新数列{bn},记该数列的前n 项和为Tn,求Tn的表达式. 解析:(1)依题意,得 3a1+3×22d+5a1+5×42d=50,(a1+3d)2=a1(a1+12d),解得a1=3,d=2. ∴an=a1+(n-1)d=3+2(n-1)=2n+1, 即an=2n+1. (2)由已知,得bn=a2n=2×2n+1=2n+1+1, ∴Tn=b1+b2+…+bn =(22+1)+(23+1)+…+(2n+1+1) =4(1-2n)1-2+n=2n+2-4+n. 20.(12分)设数列{an}的前n项和为Sn,且ban-2n=(b-1)Sn. (1)证明:当b=2时,{an-n•2n-1}是等⽐数列; (2)求通项an.新课标第⼀ 解析:由题意知,a1=2,且ban-2n=(b-1)Sn, ban+1-2n+1=(b-1)Sn+1, 两式相减,得b(an+1-an)-2n=(b-1)an+1, 即an+1=ban+2n.① (1)当b=2时,由①知,an+1=2an+2n. 于是an+1-(n+1)•2n=2an+2n-(n+1)•2n =2an-n•2n-1. ⼜a1-1•20=1≠0, ∴{an-n•2n-1}是⾸项为1,公⽐为2的等⽐数列. (2)当b=2时, 由(1)知,an-n•2n-1=2n-1,即an=(n+1)•2n-1 当b≠2时,由①得 an+1-12-b•2n+1=ban+2n-12-b•2n+1=ban-b2-b•2n =ban-12-b•2n, 因此an+1-12-b•2n+1=ban-12-b•2n=2(1-b)2-b•bn. 得an=2,n=1,12-b[2n+(2-2b)bn-1],n≥2. 21.(12分)某地在抗洪抢险中接到预报,24⼩时后⼜⼀个超历史⽔位的洪峰到达,为保证万⽆⼀失,抗洪指挥部决定在24⼩时内另筑起⼀道堤作为第⼆道防线.经计算,如果有20辆⼤型翻⽃车同时作业25⼩时,可以筑起第⼆道防线,但是除了现有的⼀辆车可以⽴即投⼊作业外,其余车辆需从各处紧急抽调,每隔20分钟就有⼀辆车到达并投⼊⼯作.问指挥部⾄少还需组织多少辆车这样陆续⼯作,才能保证24⼩时内完成第⼆道防线,请说明理由. 解析:设从现有这辆车投⼊⼯作算起,各车的⼯作时间依次组成数列{an},则an-an-1=-13. 所以各车的⼯作时间构成⾸项为24,公差为-13的等差数列,由题知,24⼩时内最多可抽调72辆车. 设还需组织(n-1)辆车,则 a1+a2+…+an=24n+n(n-1)2×-13≥20×25. 所以n2-145n+3000≤0, 解得25≤n≤120,且n≤73. 所以nmin=25,n-1=24. 故⾄少还需组织24辆车陆续⼯作,才能保证在24⼩时内完成第⼆道防线. 22.(12分)已知点集L={(x,y)|y=m•n},其中m=(2x-2b,1),n=(1,1+2b),点列Pn(an,bn)在点集L中,P1为L的轨迹与y轴的交点,已知数列{an}为等差数列,且公差为1,n∈N*. (1)求数列{an},{bn}的通项公式; (3)设cn=5n•an•|PnPn+1|(n≥2),求c2+c3+c4+…+cn的值. 解析:(1)由y=m•n,m=(2x-2b,1),n=(1,1+2b), 得y=2x+1,即L:y=2x+1. ∵P1为L的轨迹与y轴的交点, ∴P1(0,1),则a1=0,b1=1. ∵数列{an}为等差数列,且公差为1, ∴an=n-1(n∈N*). 代⼊y=2x+1,得bn=2n-1(n∈N*). (2)∵Pn(n-1,2n-1),∴Pn+1(n,2n+1). =5n2-n-1=5n-1102-2120. ∵n∈N*, (3)当n≥2时,Pn(n-1,2n-1), ∴c2+c3+…+cn =1-12+12-13+…+1n-1-1n=1-1n.。
数列基础练习题
数列基础练习题一、选择题1. 已知数列{an}是等差数列,且a1=2,a3=8,求a10。
A. 26B. 28C. 30D. 322. 一个等差数列的首项是5,公差是3,求这个数列的第8项。
A. 24B. 26C. 28D. 303. 数列{bn}是等比数列,首项为4,公比为2,求b5。
A. 64B. 128C. 256D. 5124. 已知数列{cn}的前n项和Sn=n^2,求c5。
A. 10B. 12C. 14D. 165. 数列{dn}的通项公式为dn=2n-1,求这个数列的前5项和。
A. 25B. 30C. 35D. 40二、填空题6. 等差数列{an}的首项a1=3,公差d=2,第10项a10=________。
7. 等比数列{bn}的首项b1=2,公比q=3,第4项b4=________。
8. 已知数列{cn}的前n项和Sn=2n+1,求c1=________。
9. 数列{dn}的通项公式为dn=3n+1,求这个数列的前4项和S4=________。
10. 已知数列{en}的前n项和Sn与第n项en的关系为Sn=2en-1,求e3=________。
三、解答题11. 已知数列{an}的前5项和S5=35,且an+1=an+5,求a1。
12. 证明:若数列{bn}是等差数列,其前n项和为Sn,若b1=b,bn+1=bn+d,则Sn=n(b1+bn)/2。
13. 已知等比数列{cn}的前3项和为S3=28,且c1=4,求c3。
14. 已知数列{dn}的前n项和Sn与第n项dn的关系为Sn=dn^2,求dn。
15. 证明:若数列{en}的通项公式为en=2^n,其前n项和Tn=(2^(n+1)-2)/2。
四、应用题16. 某工厂生产的产品数量构成等差数列,首年生产100件,每年增加50件,求第5年的生产量。
17. 某银行的存款利息按复利计算,首年存入100元,年利率为5%,求第3年的本息总额。
数列专项练习题大题
数列专项练习题大题1. 一个等差数列的首项是1,公差是3。
求数列的第10项是多少?解析:根据等差数列的通项公式an = a1 + (n-1)d,其中an表示数列的第n项,a1表示首项,d表示公差。
对于这个题目,a1=1,d=3,n=10。
代入公式计算,可得:a10 = 1 + (10-1) * 3 = 1 + 9 * 3 = 28所以数列的第10项是28。
2. 一个等比数列的首项是2,公比是5。
求数列的第6项是多少?解析:根据等比数列的通项公式an = a1 * r^(n-1),其中an表示数列的第n项,a1表示首项,r表示公比。
对于这个题目,a1=2,r=5,n=6。
代入公式计算,可得:a6 = 2 * 5^(6-1) = 2 * 5^5 = 2 * 3125 = 6250所以数列的第6项是6250。
3. 一个递推数列的首项是1,规律是每一项都是前一项的平方。
求数列的第5项是多少?解析:根据递推数列的规律,可以列出数列的前几项:1, 1^2,(1^2)^2, ((1^2)^2)^2, (((1^2)^2)^2)^2可以观察到规律,每项都是前一项的平方。
所以第5项就是前一项的平方的平方的平方的平方。
计算过程如下:1^2 = 1(1^2)^2 = 1^2 = 1((1^2)^2)^2 = (1^2)^2 = 1(((1^2)^2)^2)^2 = ((1^2)^2)^2 = 1所以数列的第5项是1。
4. 一个等差数列的首项是3,末项是11。
求数列的公差和项数。
解析:对于这个题目,已知数列的首项和末项,可以使用公式an = a1 + (n-1)d来求解。
代入已知的值,即3 = 3 + (n-1)d,然后化简得到:0 = (n-1)d由于等差数列的公差是非零的常数,所以只有当n-1=0时,等式才成立。
也就是n=1。
所以数列的公差是0,项数是1。
5. 一个等比数列的首项是2,前三项的和是14。
求数列的公比。
数列难题专题(含答案)
数列难题专题一.解答题(共50小题)1.已知数列{a n }的前n 项和为S n ,且S n =n (n+1)(n ∈N *). (Ⅰ)求数列{a n }的通项公式; (Ⅱ)若数列{b n }满足:,求数列{b n }的通项公式;(Ⅲ)令(n ∈N *),求数列{c n }的前n 项和T n .2.已知数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12. (1)求数列{a n }的通项公式;(2)令b n =a n •3n ,求数列{b n }的前n 项和S n .3.已知数列{a n }中,a 1=3,a 2=5,其前n 项和S n 满足S n +S n ﹣2=2S n ﹣1+2n ﹣1(n ≥3).令b n =.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若f (x )=2x ﹣1,求证:T n =b 1f (1)+b 2f (2)+…+b n f (n )<(n ≥1).4.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)令b n =(﹣1)n ﹣1,求数列{b n }的前n 项和T n .5.已知等差数列{a n }的公差d >0,设{a n }的前n 项和为S n ,a 1=1,S 2•S 3=36. (Ⅰ)求d 及S n ;(Ⅱ)求m ,k (m ,k ∈N *)的值,使得a m +a m+1+a m+2+…+a m+k =65.6.设数列{a n }的前n 项和为S n .已知a 1=a ,a n+1=S n +3n ,n ∈N *. (Ⅰ)设b n =S n ﹣3n ,求数列{b n }的通项公式; (Ⅱ)若a n+1≥a n ,n ∈N *,求a 的取值范围.7.已知数列{an }的前n项和为Sn,a1=1,an≠0,anan+1=λSn﹣1,其中λ为常数.(Ⅰ)证明:an+2﹣an=λ(Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.8.设数列{an }的首项a1∈(0,1),an=,n=2,3,4…(1)求{an}的通项公式;(2)设,求证bn <bn+1,其中n为正整数.9.设数列满足|an﹣|≤1,n∈N*.(Ⅰ)求证:|an |≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|an |≤()n,n∈N*,证明:|an|≤2,n∈N*.10.已知数列{an }的前n项和Sn=,n∈N*.(1)求数列{an}的通项公式;(2)证明:对任意的n>1,都存在m∈N*,使得a1,an,am成等比数列.11.给定常数c>0,定义函数f(x)=2|x+c+4|﹣|x+c|.数列a1,a2,a3,…满足an+1=f(an),n∈N*.(1)若a1=﹣c﹣2,求a2及a3;(2)求证:对任意n∈N*,an+1﹣an≥c;(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.12.数列{an }满足:a1+2a2+…nan=4﹣,n∈N+.(1)求a3的值;(2)求数列{an }的前 n项和Tn;(3)令b1=a1,bn=+(1+++…+)an(n≥2),证明:数列{bn}的前n项和Sn满足Sn<2+2lnn.13.设各项均为正数的数列{an }的前n项和为Sn满足Sn2﹣(n2+n﹣3)Sn﹣3(n2+n)=0,n∈N*.(1)求a1的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有++…+<.14.已知数列{an }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an}前n项和为Sn ,且满足S5=2a4+a5,a9=a3+a4.(1)求数列{an}的通项公式;(2)若am am+1=am+2,求正整数m的值;(3)是否存在正整数m,使得恰好为数列{an}中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由.15.已知等差数列{an }中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足,其前n项和为Sn.(1)求数列{an }的通项公式an;(2)若S2为S1,Sm(m∈N*)的等比中项,求m的值.16.已知数列{a n }满足a 1=且a n+1=a n ﹣a n 2(n ∈N *) (1)证明:1≤≤2(n ∈N *);(2)设数列{a n 2}的前n 项和为S n ,证明(n ∈N *).17.已知等差数列{a n }的首项a 1=1,公差d >0,且a 2,a 5,a 14分别是等比数列{b n }的b 2,b 3,b 4. (Ⅰ)求数列{a n }与{b n }的通项公式; (Ⅱ)设数列{c n }对任意自然数n 均有=a n+1成立,求c 1+c 2+…+c 2014的值.18.设数列{a n }的前n 项和为S n ,已知a 1=1,,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式; (3)证明:对一切正整数n ,有.19.数列{a n }的首项a 1=1,前n 项和S n 与a n 之间满足a n =(n ≥2).(1)求证:数列{}是等差数列;(2)设存在正数k ,使(1+S 1)(1+S 2)..(1+S n )对一切n ∈N ×都成立,求k 的最大值. 20.若数列{a n }的前n 项和为S n ,a 1=1,.(1)证明:数列{a n ﹣2}为等比数列; (2)求数列{S n }的前n 项和T n .21.已知数列{a n },{b n }满足b n =a n+1﹣a n ,其中n=1,2,3,…. (Ⅰ)若a 1=1,b n =n ,求数列{a n }的通项公式; (Ⅱ)若b n+1b n ﹣1=b n (n ≥2),且b 1=1,b 2=2.(ⅰ)记c n =a 6n ﹣1(n ≥1),求证:数列{c n }为等差数列; (ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次.求a 1应满足的条件.22.在数列{an }中,a1=3,an+1an+λan+1+μan2=0(n∈N+)(Ⅰ)若λ=0,μ=﹣2,求数列{an}的通项公式;(Ⅱ)若λ=(k0∈N+,k≥2),μ=﹣1,证明:2+<<2+.23.设数列{an }的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an }的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an }是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an },总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.24.已知数列{an }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an} 前n项和为Sn ,且满足S3=a4,a3+a5=2+a4(1)求数列{an}的通项公式;(2)求数列{an }前2k项和S2k;(3)在数列{an }中,是否存在连续的三项am,am+1,am+2,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数m的值;若不存在,说明理由.25.已知数列{an }满足a1=1,|an+1﹣an|=p n,n∈N*.(Ⅰ)若{an }是递增数列,且a1,2a2,3a3成等差数列,求p的值;(Ⅱ)若p=,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.26.已知数列{an }满足:a1∈N*,a1≤36,且an+1=(n=1,2,…),记集合M={an|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.27.设数列{an }的前n项和为Sn,满足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有.28.已知公比为q(q≠1)的无穷等比数列{an }的首项a1=1.(1)若q=,在a1与a2之间插入k个数b1,b2,…,bk,使得a1,b1,b2,…,bk,a2,a3成等差数列,求这k个数;(2)对于任意给定的正整数m,在a1,a2,a3的a1与a2和a2与a3之间共插入m个数,构成一个等差数列,求公比q的所有可能取值的集合(用m表示);(3)当且仅当q取何值时,在数列{an }的每相邻两项ak,ak+1之间插入ck(k∈N*,ck∈N)个数,使之成为一个等差数列?并求c1的所有可能值的集合及{cn}的通项公式(用q表示).29.已知数列{an }的各项均为正数,bn=n(1+)n an(n∈N+),e为自然对数的底数.(1)求函数f(x)=1+x﹣e x的单调区间,并比较(1+)n与e的大小;(2)计算,,,由此推测计算的公式,并给出证明;(3)令cn =(a1a2…an),数列{an},{cn}的前n项和分别记为Sn,Tn,证明:Tn<eSn.30.设等差数列{an }的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.31.正整数列{an },{bn}满足:a1≥b1,且对一切k≥2,k∈N*,ak是ak﹣1与bk﹣1的等差中项,bk是ak﹣1与bk﹣1的等比中项.(1)若a2=2,b2=1,求a1,b1的值;(2)求证:{an }是等差数列的充要条件是{an}为常数数列;(3)记cn =|an﹣bn|,当n≥2(n∈N*)时,指出c2+…+cn与c1的大小关系并说明理由.32.已知数列{an }是无穷数列,a1=a,a2=b(a,b是正整数),.(Ⅰ)若a1=2,a2=1,写出a4,a5的值;(Ⅱ)已知数列{an }中,求证:数列{an}中有无穷项为1;(Ⅲ)已知数列{an }中任何一项都不等于1,记bn=max{a2n﹣1,a2n}(n=1,2,3,…;max{m,n}为m,n较大者).求证:数列{bn}是单调递减数列.33.对于项数为m的有穷数列{an },记bk=max{a1,a2,…,ak}(k=1,2,…,m),即bk为a1,a2,…,a k 中的最大值,并称数列{bn}是{an}的控制数列,如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列{an }的控制数列为2,3,4,5,5,写出所有的{an}.(2)设{bn }是{an}的控制数列,满足ak+bm﹣k+1=C(C为常数,k=1,2,…,m),求证:bk=ak(k=1,2,…,m).(3)设m=100,常数a∈(,1),an =an2﹣n,{bn}是{an}的控制数列,求(b1﹣a1)+(b2﹣a2)+…+(b100﹣a100).34.已知数列{an }是等差数列,Sn为{an}的前n项和,且a10=19,S10=100;数列{bn}对任意n∈N*,总有b1•b2•b3…bn﹣1•bn=an+2成立.(Ⅰ)求数列{an }和{bn}的通项公式;(Ⅱ)记cn =(﹣1)n,求数列{cn}的前n项和Tn.35.已知f(x)=,数列{an }为首项是1,以f(1)为公比的等比数列;数列{bn}中b1=,且bn+1=f(bn),(1)求数列{an }和{bn}的通项公式(2)令,{cn }的前n项和为Tn,证明:对∀n∈N+有1≤Tn<4.36.已知数列{an }满足a1=,an=(n≥2,n∈N).(1)试判断数列是否为等比数列,并说明理由;(2)设bn =,求数列{bn}的前n项和Sn;(3)设cn =ansin,数列{cn}的前n项和为Tn.求证:对任意的n∈N*,Tn<.37.已知数列{an }满足an≤an+1≤3an,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{an }是公比为q的等比数列,Sn=a1+a2+…an,若Sn≤Sn+1≤3Sn,n∈N*,求q的取值范围.(3)若a1,a2,…ak成等差数列,且a1+a2+…ak=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…ak的公差.38.对于函数f(x),若存在x0∈R,使f(x)=x成立,则称x为f(x)的不动点.如果函数f(x)=有且仅有两个不动点0和2.(1)试求b、c满足的关系式.(2)若c=2时,各项不为零的数列{an }满足4Sn•f()=1,求证:<<.(3)设bn =﹣,Tn为数列{bn}的前n项和,求证:T2009﹣1<ln2009<T2008.39.在数列{an }中,a1=1,an+1=(1+)an+.(1)设bn =,求数列{bn}的通项公式;(2)求数列{an }的前n项和Sn.40.已知数列{an }的前n项和为Sn,且满足a1=2,nan+1=Sn+n(n+1).(Ⅰ)求数列{an }的通项公式an;(Ⅱ)设Tn 为数列{}的前n项和,求Tn;(Ⅲ)设bn =,证明:b1+b2+b3+…+bn<.41.已知数列an满足(1)求数列an 的通项公式an;(2)设,求数列bn 的前n项和Sn;(3)设,数列cn 的前n项和为Tn.求证:对任意的.42.如图,已知曲线C 1:y=(x >0)及曲线C 2:y=(x >0),C 1上的点P 1的横坐标为a 1(0<a 1<).从C 1上的点P n (n ∈N +)作直线平行于x 轴,交曲线C 2于点Q n ,再从点Q n 作直线平行于y 轴,交曲线C 1于点P n+1.点P n (n=1,2,3,…)的横坐标构成数列{a n } (Ⅰ)试求a n+1与a n 之间的关系,并证明:a 2n ﹣1<; (Ⅱ)若a 1=,求证:|a 2﹣a 1|+|a 3﹣a 2|+…+|a n+1﹣a n |<.43.已知数列{a n }中,a 1=1,a n+1=(n ∈N *).(1)求证:{+}是等比数列,并求{a n }的通项公式a n ;(2)数列{b n }满足b n =(3n ﹣1)••a n ,数列{b n }的前n 项和为T n ,若不等式(﹣1)n λ<T n +对一切n ∈N *恒成立,求λ的取值范围.44.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点(n ,)都在函数f (x )=x+的图象上.(1)计算a 1,a 2,a 3,并归纳出数列{a n }的通项公式;(2)将数列{a n }依次按1项、2项、3项、4项循环地分为(a 1),(a 2,a 3),(a 4,a 5,a 6),(a 7,a 8,a 9,a 10);(a 11),(a 12,a 13),(a 14,a 15,a 16),(a 17,a 18,a 19,a 20);(a 21)…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{b n },求b 5+b 100的值; (3)设A n 为数列的前n 项积,若不等式A n <f (a )﹣对一切n ∈N *都成立,求a的取值范围.45.数列{bn }的前n项和为Sn,且对任意正整数n,都有;(1)试证明数列{bn}是等差数列,并求其通项公式;(2)如果等比数列{an }共有2017项,其首项与公比均为2,在数列{an}的每相邻两项ai与ai+1之间插入i个(﹣1)i bi (i∈N*)后,得到一个新数列{cn},求数列{cn}中所有项的和;(3)如果存在n∈N*,使不等式成立,若存在,求实数λ的范围,若不存在,请说明理由.46.已知数列{an}的首项,,n=1,2,….(Ⅰ)求{an}的通项公式;(Ⅱ)证明:对任意的x>0,,n=1,2,…;(Ⅲ)证明:.47.已知数列{an }的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1﹣,(n+2)cn=﹣,其中n∈N*.(1)若数列{an }是公差为2的等差数列,求数列{cn}的通项公式;(2)若存在实数λ,使得对一切n∈N*,有bn ≤λ≤cn,求证:数列{an}是等差数列.48.已知数列{an }满足a1=1,an+1=2an+1(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn }滿足,证明:数列{bn}是等差数列;(Ⅲ)证明:.49.已知数列{an }的各项均为正数,且a1=1,对任意的n∈N*,均有an+12﹣1=4an(an+1),bn=2log2(1+an)﹣1.(1)求证:{1+an }是等比数列,并求出{an}的通项公式;(2)若数列{bn }中去掉{an}的项后,余下的项组成数列{cn},求c1+c2+…+c100;(3)设dn =,数列{dn}的前n项和为Tn,是否存在正整数m(1<m<n),使得T1、Tm、Tn成等比数列,若存在,求出m的值;若不存在,请说明理由.50.在数列{an }中,a1=2,an+1=an+2n+1(n∈N*)(1)求证:数列{an﹣2n}为等差数列;(2)设数列{bn }满足bn=log2(an+1﹣n),若…对一切n∈N*且n≥2恒成立,求实数k的取值范围.参考答案与试题解析一.解答题(共50小题)1.已知数列{an }的前n项和为Sn,且Sn=n(n+1)(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn }满足:,求数列{bn}的通项公式;(Ⅲ)令(n∈N*),求数列{cn }的前n项和Tn.【分析】(Ⅰ)当n=1时,a1=S1=2,当n≥2时,an=Sn﹣Sn﹣1=n(n+1)﹣(n﹣1)n=2n,由此能求出数列{an}的通项公式.(Ⅱ)由(n≥1),知,所以,由此能求出bn.(Ⅲ)=n(3n+1)=n•3n+n,所以Tn =c1+c2+c3+…+cn=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n),令Hn=1×3+2×32+3×33+…+n×3n,由错位相减法能求出,由此能求出数列{cn}的前n项和.【解答】解:(Ⅰ)当n=1时,a1=S1=2,当n≥2时,an =Sn﹣Sn﹣1=n(n+1)﹣(n﹣1)n=2n,知a1=2满足该式,∴数列{an }的通项公式为an=2n.(2分)(Ⅱ)∵(n≥1)①∴②(4分)②﹣①得:,bn+1=2(3n+1+1),故bn=2(3n+1)(n∈N*).(6分)(Ⅲ)=n(3n+1)=n•3n+n,∴Tn =c1+c2+c3+…+cn=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n)(8分)令Hn=1×3+2×32+3×33+…+n×3n,①则3Hn=1×32+2×33+3×34+…+n×3n+1②①﹣②得:﹣2Hn=3+32+33+…+3n﹣n×3n+1=∴,…(10分)∴数列{cn}的前n项和…(12分)【点评】本题首先考查等差数列、等比数列的基本量、通项,结合含两个变量的不等式的处理问题,对数学思维的要求比较高,要求学生理解“存在”、“恒成立”,以及运用一般与特殊的关系进行否定,本题有一定的探索性.综合性强,难度大,易出错.解题时要认真审题,注意错位相减法的灵活运用.2.已知数列{an }是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{an}的通项公式;(2)令bn =an•3n,求数列{bn}的前n项和Sn.【分析】(1)由数列{an }是等差数列,且a1=2,a1+a2+a3=12,利用等差数列的通项公式先求出d=2,由此能求出数列{an}的通项公式.(2)由an =2n,知bn=an•3n=2n•3n,所以Sn=2×3+4×32+6×33+…+2(n﹣1)×3n﹣1+2n×3n,再由错位相减法能够求出数列{bn }的前n项和Sn.【解答】解:(1)∵数列{an }是等差数列,且a1=2,a1+a2+a3=12,∴2+2+d+2+2d=12,解得d=2,∴an=2+(n﹣1)×2=2n.(2)∵an=2n,∴bn =an•3n=2n•3n,∴Sn=2×3+4×32+6×33+…+2(n﹣1)×3n﹣1+2n×3n,①3Sn=2×32+4×33+6×34+…+2(n﹣1)×3n+2n×3n+1,②①﹣②得﹣2Sn=6+2×32+2×33+2×34+…+2×3n﹣2n×3n+1=2×﹣2n×3n+1=3n+1﹣2n×3n+1﹣3=(1﹣2n)×3n+1﹣3∴Sn=+.【点评】本题考查数列的通项公式的求法和数列前n项和的求法,综合性强,难度大,易出错.解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用错位相减法进行求和.3.已知数列{an }中,a1=3,a2=5,其前n项和Sn满足Sn+Sn﹣2=2Sn﹣1+2n﹣1(n≥3).令bn=.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若f(x)=2x﹣1,求证:Tn =b1f(1)+b2f(2)+…+bnf(n)<(n≥1).【分析】(Ⅰ)由题意知an =an﹣1+2n﹣1(n≥3)(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a3﹣a2)+a2=2n+1.(Ⅱ)由于=.故Tn =b1f(1)+b2f(2)+…+bnf(n)=,由此可证明Tn=b1f(1)+b2f(2)+…+bnf(n)<(n≥1).【解答】解:(Ⅰ)由题意知Sn ﹣Sn﹣1=Sn﹣1﹣Sn﹣2+2n﹣1(n≥3)即an =an﹣1+2n﹣1(n≥3)∴an =(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a3﹣a2)+a2=2n﹣1+2n﹣2+…+22+5=2n+1(n≥3)检验知n=1、2时,结论也成立,故an=2n+1.(Ⅱ)由于bn=,f(x)=2x﹣1,∴=.故Tn =b1f(1)+b2f(2)+…+bnf(n)==.【点评】本题考查数列的性质和综合应用,解题时要认真审题.仔细解答.4.已知等差数列{an }的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)令bn =(﹣1)n﹣1,求数列{bn}的前n项和Tn.【分析】(Ⅰ)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(Ⅱ)由(Ⅰ)可得bn=.对n分类讨论“裂项求和”即可得出.【解答】解:(Ⅰ)∵等差数列{an }的公差为2,前n项和为Sn,∴Sn ==n2﹣n+na1,∵S1,S2,S4成等比数列,∴,∴,化为,解得a1=1.∴an =a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)由(Ⅰ)可得bn=(﹣1)n﹣1==.∴Tn=﹣++…+.当n为偶数时,Tn=﹣++…+﹣=1﹣=.当n为奇数时,Tn=﹣++…﹣+=1+=.∴Tn=.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“裂项求和”、分类讨论思想方法,属于难题.5.已知等差数列{an }的公差d>0,设{an}的前n项和为Sn,a1=1,S2•S3=36.(Ⅰ)求d及Sn;(Ⅱ)求m,k(m,k∈N*)的值,使得am +am+1+am+2+…+am+k=65.【分析】(Ⅰ)根据等差数列通项公式和前n项和公式,把条件转化为关于公差d的二次方程求解,注意d的范围对方程的根进行取舍;(Ⅱ)由(Ⅰ)求出等差数列{an }的通项公式,利用等差数列的前n项和公式,对am+am+1+am+2+…+am+k=65化简,列出关于m 、k 的方程,再由m ,k ∈N *进行分类讨论,求出符合条件的m 、k 的值. 【解答】解:(Ⅰ)由a 1=1,S 2•S 3=36得, (a 1+a 2)(a 1+a 2+a 3)=36,即(2+d )(3+3d )=36,化为d 2+3d ﹣10=0, 解得d=2或﹣5, 又公差d >0,则d=2, 所以S n =n=n 2(n ∈N *).(Ⅱ)由(Ⅰ)得,a n =1+2(n ﹣1)=2n ﹣1, 由a m +a m+1+a m+2+…+a m+k =65得,,即(k+1)(2m+k ﹣1)=65,又m ,k ∈N *,则(k+1)(2m+k ﹣1)=5×13,或(k+1)(2m+k ﹣1)=1×65, 下面分类求解:当k+1=5时,2m+k ﹣1=13,解得k=4,m=5;当k+1=13时,2m+k ﹣1=5,解得k=12,m=﹣3,故舍去; 当k+1=1时,2m+k ﹣1=65,解得k=0,故舍去;当k+1=65时,2m+k ﹣1=1,解得k=64,m=﹣31,故舍去; 综上得,k=4,m=5.【点评】本题考查了等差数列的通项公式、前n 项和公式,及分类讨论思想和方程思想,难度较大,考查了分析问题和解决问题的能力.6.设数列{a n }的前n 项和为S n .已知a 1=a ,a n+1=S n +3n ,n ∈N *. (Ⅰ)设b n =S n ﹣3n ,求数列{b n }的通项公式; (Ⅱ)若a n+1≥a n ,n ∈N *,求a 的取值范围.【分析】(Ⅰ)依题意得S n+1=2S n +3n ,由此可知S n+1﹣3n+1=2(S n ﹣3n ).所以b n =S n ﹣3n =(a ﹣3)2n ﹣1,n ∈N *.(Ⅱ)由题设条件知S n =3n +(a ﹣3)2n ﹣1,n ∈N *,于是,a n =S n ﹣S n ﹣1=,由此可以求得a 的取值范围是[﹣9,+∞).【解答】解:(Ⅰ)依题意,S n+1﹣S n =a n+1=S n +3n ,即S n+1=2S n +3n , 由此得S n+1﹣3n+1=2S n +3n ﹣3n+1=2(S n ﹣3n ).(4分)因此,所求通项公式为bn =Sn﹣3n=(a﹣3)2n﹣1,n∈N*.①(6分)(Ⅱ)由①知Sn=3n+(a﹣3)2n﹣1,n∈N*,于是,当n≥2时,a n =Sn﹣Sn﹣1=3n+(a﹣3)×2n﹣1﹣3n﹣1﹣(a﹣3)×2n﹣2=2×3n﹣1+(a﹣3)2n﹣2,a n+1﹣an=4×3n﹣1+(a﹣3)2n﹣2=,当n≥2时,⇔a≥﹣9.又a2=a1+3>a1.综上,所求的a的取值范围是[﹣9,+∞).(12分)【点评】本题考查数列的综合运用,解题时要仔细审题,注意挖掘题设中的隐含条件.7.已知数列{an }的前n项和为Sn,a1=1,an≠0,anan+1=λSn﹣1,其中λ为常数.(Ⅰ)证明:an+2﹣an=λ(Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.【分析】(Ⅰ)利用an an+1=λSn﹣1,an+1an+2=λSn+1﹣1,相减即可得出;(Ⅱ)对λ分类讨论:λ=0直接验证即可;λ≠0,假设存在λ,使得{an}为等差数列,设公差为d.可得λ=an+2﹣an=(an+2﹣an+1)+(an+1﹣an)=2d,.得到λSn=,根据{an}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵an an+1=λSn﹣1,an+1an+2=λSn+1﹣1,∴an+1(an+2﹣an)=λan+1∵an+1≠0,∴an+2﹣an=λ.(Ⅱ)解:①当λ=0时,an an+1=﹣1,假设{an}为等差数列,设公差为d.则an+2﹣an=0,∴2d=0,解得d=0,∴an =an+1=1,∴12=﹣1,矛盾,因此λ=0时{an}不为等差数列.②当λ≠0时,假设存在λ,使得{an}为等差数列,设公差为d.则λ=an+2﹣an=(an+2﹣an+1)+(an+1﹣an)=2d,∴.∴,,∴λSn=1+=,根据{an}为等差数列的充要条件是,解得λ=4.此时可得,an=2n﹣1.因此存在λ=4,使得{an}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.8.设数列{an }的首项a1∈(0,1),an=,n=2,3,4…(1)求{an}的通项公式;(2)设,求证bn <bn+1,其中n为正整数.【分析】(1)由题条件知,所以{1﹣an }是首项为1﹣a1,公比为的等比数列,由此可知(2)方法一:由题设条件知,故bn >0.那么,bn+12﹣bn2=an+12(3﹣2an+1)﹣an2(3﹣2an)=由此可知bn <bn+1,n为正整数.方法二:由题设条件知,所以.由此可知bn<bn+1,n为正整数.【解答】解:(1)由,整理得.又1﹣a1≠0,所以{1﹣an}是首项为1﹣a1,公比为的等比数列,得(2)方法一:由(1)可知,故bn>0.那么,bn+12﹣bn2=an+12(3﹣2an+1)﹣an2(3﹣2an)= =又由(1)知an >0且an≠1,故bn+12﹣bn2>0,因此bn <bn+1,n为正整数.方法二:由(1)可知,因为,所以.由an≠1可得,即两边开平方得.即bn <bn+1,n为正整数.【点评】本题考查数列的综合应用,难度较大,解题时要认真审题,注意挖掘题设中的隐含条件.9.设数列满足|an﹣|≤1,n∈N*.(Ⅰ)求证:|an |≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|an |≤()n,n∈N*,证明:|an|≤2,n∈N*.【分析】(I)使用三角不等式得出|an |﹣|an+1|≤1,变形得﹣≤,使用累加法可求得<1,即结论成立;(II)利用(I)的结论得出﹣<,进而得出|an|<2+()m•2n,利用m的任意性可证|an|≤2.【解答】解:(I)∵|an ﹣|≤1,∴|an|﹣|an+1|≤1,∴﹣≤,n∈N*,∴=(﹣)+(﹣)+…+(﹣)≤+++…+==1﹣<1.∴|an |≥2n﹣1(|a1|﹣2)(n∈N*).(II)任取n∈N*,由(I)知,对于任意m>n,﹣=(﹣)+(﹣)+…+(﹣)≤++…+=<.∴|an|<(+)•2n≤[+•()m]•2n=2+()m•2n.①由m的任意性可知|an|≤2.否则,存在n∈N*,使得|a|>2,取正整数m0>log且m>n,则2•()<2•()=|a|﹣2,与①式矛盾.综上,对于任意n∈N*,都有|an|≤2.【点评】本题考查了不等式的应用与证明,等比数列的求和公式,放缩法证明不等式,难度较大.10.已知数列{an }的前n项和Sn=,n∈N*.(1)求数列{an}的通项公式;(2)证明:对任意的n>1,都存在m∈N*,使得a1,an,am成等比数列.【分析】(1)利用“当n≥2时,an =Sn﹣Sn﹣1;当n=1时,a1=S1”即可得出;(2)对任意的n>1,假设都存在m∈N*,使得a1,an,am成等比数列.利用等比数列的定义可得,即(3n﹣2)2=1×(3m﹣2),解出m为正整数即可.【解答】(1)解:∵Sn=,n∈N*.∴当n≥2时,an =Sn﹣Sn﹣1=﹣=3n﹣2,(*)当n=1时,a1=S1==1.因此当n=1时,(*)也成立.∴数列{an }的通项公式an=3n﹣2.(2)证明:对任意的n>1,假设都存在m∈N*,使得a1,an,am成等比数列.则,∴(3n﹣2)2=1×(3m﹣2),化为m=3n2﹣4n+2,∵n>1,∴m=3n2﹣4n+2=>1,因此对任意的n>1,都存在m=3n2﹣4n+2∈N*,使得a1,an,am成等比数列.【点评】本题考查了递推式的意义、等差数列与等比数列的通项公式、二次函数的单调性等基础知识与基本技能方法,考查了恒成立问题的等价转化方法,考查了反证法,考查了推理能力和计算能力,属于难题.11.给定常数c>0,定义函数f(x)=2|x+c+4|﹣|x+c|.数列a1,a2,a3,…满足an+1=f(an),n∈N*.(1)若a1=﹣c﹣2,求a2及a3;(2)求证:对任意n∈N*,an+1﹣an≥c;(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.【分析】(1)对于分别取n=1,2,an+1=f(an),n∈N*.去掉绝对值符合即可得出;(2)由已知可得f(x)=,分三种情况讨论即可证明;(3)由(2)及c>0,得an+1≥an,即{an}为无穷递增数列.分以下三种情况讨论:当a1<﹣c﹣4时,当﹣c﹣4≤a1<﹣c时,当a1≥﹣c时.即可得出a1的取值范围.【解答】解:(1)a2=f(a1)=f(﹣c﹣2)=2|﹣c﹣2+c+4|﹣|﹣c﹣2+c|=4﹣2=2,a 3=f(a2)=f(2)=2|2+c+4|﹣|2+c|=2(6+c)﹣(c+2)=10+c.(2)由已知可得f(x)=当an ≥﹣c时,an+1﹣an=c+8>c;当﹣c﹣4≤an <﹣c时,an+1﹣an=2an+3c+8≥2(﹣c﹣4)+3c+8=c;当an <﹣c﹣4时,an+1﹣an=﹣2an﹣c﹣8>﹣2(﹣c﹣4)﹣c﹣8=c.∴对任意n∈N*,an+1﹣an≥c;(3)假设存在a1,使得a1,a2,…,an,…成等差数列.由(2)及c>0,得an+1≥an,即{an}为无穷递增数列.又{an }为等差数列,所以存在正数M,当n>M时,an≥﹣c,从而an+1=f(an)=an+c+8,由于{an}为等差数列,因此公差d=c+8.①当a1<﹣c﹣4时,则a2=f(a1)=﹣a1﹣c﹣8,又a2=a1+d=a1+c+8,故﹣a1﹣c﹣8=a1+c+8,即a1=﹣c﹣8,从而a2=0,当n≥2时,由于{an }为递增数列,故an≥a2=0>﹣c,∴an+1=f(an)=an+c+8,而a2=a1+c+8,故当a1=﹣c﹣8时,{an}为无穷等差数列,符合要求;②若﹣c﹣4≤a1<﹣c,则a2=f(a1)=3a1+3c+8,又a2=a1+d=a1+c+8,∴3a1+3c+8=a1+c+8,得a1=﹣c,应舍去;③若a1≥﹣c,则由an≥a1得到an+1=f(an)=an+c+8,从而{an}为无穷等差数列,符合要求.综上可知:a1的取值范围为{﹣c﹣8}∪[﹣c,+∞).【点评】本题综合考查了分类讨论的思方法、如何绝对值符号、递增数列、等差数列等基础知识与方法,考查了推理能力和计算能力.12.数列{an }满足:a1+2a2+…nan=4﹣,n∈N+.(1)求a3的值;(2)求数列{an }的前 n项和Tn;(3)令b1=a1,bn=+(1+++…+)an(n≥2),证明:数列{bn}的前n项和Sn满足Sn<2+2lnn.【分析】(1)利用数列的递推关系即可求a3的值;(2)利用作差法求出数列{an }的通项公式,利用等比数列的前n项和公式即可求数列{an}的前 n项和Tn;(3)利用构造法,结合裂项法进行求解即可证明不等式.【解答】解:(1)∵a1+2a2+…nan=4﹣,n∈N+.∴a1=4﹣3=1,1+2a2=4﹣=2,解得a2=,∵a1+2a2+…+nan=4﹣,n∈N+.∴a1+2a2+…+(n﹣1)an﹣1=4﹣,n∈N+.两式相减得nan=4﹣﹣(4﹣)=,n≥2,则an=,n≥2,当n=1时,a1=1也满足,∴an=,n≥1,则a3=;(2)∵an=,n≥1,∴数列{an}是公比q=,则数列{an }的前 n项和Tn==2﹣21﹣n.(3)bn =+(1+++…+)an,∴b1=a1,b2=+(1+)a2,b3=(1++)a3,∴bn =+(1+++…+)an,∴Sn =b1+b2+…+bn=(1+++…+)a1+(1+++…+)a2+…+(1+++…+)an=(1+++…+)(a1+a2+…+an)=(1+++…+)Tn=(1+++…+)(2﹣21﹣n)<2×(1+++…+),设f(x)=lnx+﹣1,x>1,则f′(x)=﹣.即f(x)在(1,+∞)上为增函数,∵f(1)=0,即f(x)>0,∵k≥2,且k∈N•时,,∴f()=ln+﹣1>0,即ln>,∴ln,,…,即=lnn,∴2×(1+++…+)=2+2×(++…+)<2+2lnn,即Sn<2(1+lnn)=2+2lnn.【点评】本题主要考查数列通项公式以及前n项和的计算,以及数列和不等式的综合,利用作差法求出数列的通项公式是解决本题的关键.考查学生的计算能力,综合性较强,难度较大.13.设各项均为正数的数列{an }的前n项和为Sn满足Sn2﹣(n2+n﹣3)Sn﹣3(n2+n)=0,n∈N*.(1)求a1的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有++…+<.【分析】(1)本题可以用n=1代入题中条件,利用S1=a1求出a1的值;(2)利用an 与Sn的关系,将条件转化为an的方程,从而求出an;(3)利用放缩法,将所求的每一个因式进行裂项求和,即可得到本题结论.【解答】解:(1)令n=1得:,即.∴(S1+3)(S1﹣2)=0.∵S1>0,∴S1=2,即a1=2.(2)由得:.∵an>0(n∈N*),∴Sn>0.∴.∴当n≥2时,,又∵a1=2=2×1,∴.(3)由(2)可知=,∀n∈N*,=<=(),当n=1时,显然有=<;当n≥2时,<+=﹣•<所以,对一切正整数n,有.【点评】本题考查了数列的通项与前n项和的关系、裂项求和法,还用到了放缩法,计算量较大,有一定的思维难度,属于难题.14.已知数列{an }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an}前n项和为Sn ,且满足S5=2a4+a5,a9=a3+a4.(1)求数列{an}的通项公式;(2)若am am+1=am+2,求正整数m的值;(3)是否存在正整数m,使得恰好为数列{an}中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由.【分析】(1)设等差数列的公差为d,等比数列的公比为q由题意列式求出公差和公比,则等差数列和等比数列的通项公式即可得出;(2)分am =2k和am=2k﹣1,利用amam+1=am+2即可求出满足该等式的正整数m的值;(3)对于k∈N*,有..假设存在正整数m,使得恰好为数列{an}中的一项,设=L(L∈N*),则,变形得到(3﹣L)3m﹣1=(L﹣1)(m2﹣1),由此式得到L的可能取值,然后依次分类讨论求解.【解答】解:(1)设等差数列的公差为d,等比数列的公比为q,则a1=1,a2=2,a3=1+d,a4=2q,a9=1+4d.∵S5=2a4+a5,∴a1+a2+a3=a4,即4+d=2q,又a9=a3+a4.∴1+4d=1+d+2q.解得:d=2,q=3.∴对于k∈N*,有.故;(2)若am =2k,则由amam+1=am+2,得2•3k﹣1(2k+1)=2•3k,解得:k=1,则m=2;若am=2k﹣1,则由(2k﹣1)•2•3k﹣1=2k+1,此时左边为偶数,右边为奇数,不成立.故满足条件的正数为2;(3)对于k∈N*,有..假设存在正整数m,使得恰好为数列{an}中的一项,又由(1)知,数列中的每一项都为正数,故可设=L(L∈N*),则,变形得到(3﹣L)3m﹣1=(L﹣1)(m2﹣1)①.∵m≥1,L≥1,3m﹣1>0,∴L≤3.又L∈N*,故L可能取1,2,3.当L=1时,(3﹣L)3m﹣1>0,(L﹣1)(m2﹣1)=0,∴①不成立;当L=2时,(3﹣2)3m﹣1=(2﹣1)(m2﹣1),即3m﹣1=m2﹣1.若m=1,3m﹣1≠m2﹣1,令,则=.因此,1=T2>T3>…,故只有T2=1,此时m=2,L=2=a2.当L=3时,(3﹣3)3m﹣1=(3﹣1)(m2﹣1).∴m=1,L=3=a3.综上,存在正整数m=1,使得恰好为数列{an}中的第三项,存在正整数m=2,使得恰好为数列{an}中的第二项.【点评】本题考查了等差数列和等比数列的性质,训练了分类讨论的数学思想方法,考查了学生综合分析问题和解决问题的能力,考查了学生的逻辑思维能力,是压轴题.15.已知等差数列{an }中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足,其前n项和为Sn.(1)求数列{an }的通项公式an;(2)若S2为S1,Sm(m∈N*)的等比中项,求m的值.【分析】(1)由题意,得,由此可解得an=1+(n﹣1)•2=2n﹣1.(2)由=,知=.由此可求出m的值.【解答】解:(1)由题意,得解得<d<.又d∈Z,∴d=2.∴an=1+(n﹣1)•2=2n﹣1.(2)∵=,∴=.∵,,,S2为S1,Sm(m∈N*)的等比中项,∴S22=SmS1,即,解得m=12.【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答.16.已知数列{an }满足a1=且an+1=an﹣an2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{an 2}的前n项和为Sn,证明(n∈N*).【分析】(1)通过题意易得0<an ≤(n∈N*),利用an﹣an+1=可得>1,利用==≤2,即得结论;(2)通过=an ﹣an+1累加得Sn=a1﹣an+1,对an+1=an﹣an2两边同除以an+1an采用累积法可求出an+1的范围,从而得出结论.【解答】证明:(1)由题意可知:an+1﹣an=﹣an2≤0,即an+1≤an,故an≤,1≤.由an =(1﹣an﹣1)an﹣1得an=(1﹣an﹣1)(1﹣an﹣2)…(1﹣a1)a1>0.所以0<an≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵an ﹣an+1=,∴an>an+1,∴>1,∴==≤2,∴1≤≤2(n∈N*),综上所述,1<≤2(n∈N*);(2)由已知,=an ﹣an+1,=an﹣1﹣an,…,=a1﹣a2,累加,得Sn =++…+=a1﹣an+1,①由an+1=an﹣an2两边同除以an+1an得,和1≤≤2,得1≤≤2,累加得1+1+...1≤+﹣+...+﹣≤2+2+ (2)所以n≤﹣≤2n,因此≤an+1≤(n∈N*)②,由①②得≤(n∈N*).【点评】本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.17.已知等差数列{an }的首项a1=1,公差d>0,且a2,a5,a14分别是等比数列{bn}的b2,b3,b4.(Ⅰ)求数列{an }与{bn}的通项公式;(Ⅱ)设数列{cn }对任意自然数n均有=an+1成立,求c1+c2+…+c2014的值.【分析】(Ⅰ)依题意,a2,a5,a14成等比数列⇒(1+4d)2=(1+d)(1+13d),可求得d,继而可求得数列{an }的通项公式;由b2=a2=3,b3=a5=9,可求得q与其首项,从而可得数列{bn}的通项公式;(Ⅱ)由(Ⅰ)知an =2n﹣1,bn=3n﹣1,由++…+=an+1,可求得c1=b1a2=3,=an+1﹣an=2(n≥2),于是可求得数列{cn }的通项公式,继而可求得c1+c2+…+c2014的值.【解答】解:(Ⅰ)∵a2=1+d,a5=1+4d,a14=1+13d,∵a2,a5,a14成等比数列,∴(1+4d)2=(1+d)(1+13d),解得d=2,∴an=1+(n﹣1)×2=2n﹣1;又b2=a2=3,b3=a5=9,∴q=3,b1=1,∴bn=3n﹣1.(Ⅱ)∵++…+=an+1,∴=a2,即c1=b1a2=3,又++…+=an(n≥2),∴=an+1﹣an=2(n≥2),∴cn =2bn=2•3n﹣1(n≥2),∴cn=.∴c1+c2+…+c2014=3+2×3+2×32+…+2×32013=3+2×(3+32+ (32013)=3+2×。
奥数题库(四年级)数列规律计算(普通)
双重数列规律1.观察如下数列:10,1,10,2,10,3,10,4,……,10,9.这个数列一共有多少个数?2.观察如下数列:5,1,5,2,5,3,5,4,……,5,10.这个数列一共有多少个数?3.观察如下数列:8,1,8,2,8,3,8,4,……,8,7.这个数列一共有多少个数?4.观察如下数列:10,2,10,4,10,6,10,8,10,10,……,10,100.那么这个数列一共有多少个数?5.观察如下数列:5,3,5,6,5,9,5,12,……,5,99.那么这个数列一共有多少个数?6.观察如下数列:10,2,10,4,10,6,10,8,10,10,……,100,10.那么这个数列一共有多少个数?7.观察如下数列:1,100,2,99,3,98,2,97,1,96,2,95,3,94,2,93,1,92,……,2,2,1.这个数列的和是多少?8.观察如下数列:1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,1,84, 0这个数列的和是多少?9.观察如下数列:1,60,2,57,3,54,2,51,1,48,2,45,3,42,……,2,3.那么这个数列的和是多少?10.观察如下数列:1,100,2,99,3,98,2,97,1,96,2,95,3,94,2,93,1,92,……,2,1.这个数列中有多少个“2”?11.观察如下数列:1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,1,84,……,0.这个数列中有多少个“2”?12.观察如下数列:1,60,2,57,3,54,2,51,1,48,2,45,3,42,……,2,3.那么这个数列中有多少个“2”?数组规律1.观察如下数组:(1,2,3),(2,3,4),(3,4,5),……,那么第10组中的三个数是什么?2.观察如下数组:(2,3,4),(3,4,5),(4,5,6)……,那么第10组中的三个数是什么?3.观察如下数组:(2,4,6),(4,6,8),(6,8,10),……,那么第10组中的三个数是什么?4.观察如下数组:(1,2,3),(2,3,4),(3,4,5),……,那么前10组中所有数的和是多少?5.观察如下数组:(2,3,4),(3,4,5),(4,5,6)……,那么前10组中所有数的和是多少?6.观察如下数组:(2,4,6),(4,6,8),(6,8,10),……,那么前10组中所有数的和是多少?7.观察如下数列:1,2,3,4,4,5,6,7,7,8,9,10,……,那么这个数列的第24个数是什么?8.观察如下数列:3,4,5,6,6,7,8,9,9,10,11,12,……,那么这个数列的第24个数是什么?9.观察如下数列:2,4,6,8,8,10,12,14,14,16,18,20,……,那么这个数列的第24个数是什么?10.观察如下数列:1,2,3,4,4,5,6,7,7,8,9,10,……,97,98,99,100,那么这个数列一共有多少数?11.观察如下数列:3,4,5,6,6,7,8,9,9,10,11,12,……,99,100,101,102,那么这个数列一共有多少数?12.观察如下数列:2,4,6,8,8,10,12,14,14,16,18,20,……,194,196,198,200,那么这个数列一共有多少数?。
数列练习题小学
数列练习题小学在小学数学中,数列是一个重要的概念。
数列由一系列按照特定规律排列的数所组成,通过对数列的研究和练习,可以培养学生的逻辑思维和问题解决能力。
本篇文章将为小学生提供一些数列练习题,旨在帮助他们巩固对数列的理解,并提升他们的数学能力。
练习题一:等差数列1. 请列出前五项等差数列:3, 6, 9, 12, 15。
2. 请列出等差数列:2, 4, 6, 8, 10的通项公式,并计算该数列的第10项是多少。
3. 若一个等差数列的首项为3,公差为4,求该数列的前6项之和。
练习题二:等比数列1. 请列出前五项等比数列:2, 6, 18, 54, 162。
2. 请列出等比数列:10, 5, 2.5, 1.25的通项公式,并计算该数列的第8项是多少。
3. 若一个等比数列的首项为2,公比为3,求该数列的前4项之和。
练习题三:斐波那契数列1. 请列出前八项斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21。
2. 已知一个斐波那契数列的第四项是3,第五项是5,求该数列的通项公式。
3. 若一个斐波那契数列的首项为1,第三项为4,求该数列的前六项之和。
练习题四:垒砖块小明在垒砖块,他第一层放了1块长方形砖块,第二层放了3块砖块,第三层放了5块砖块,以此类推。
请回答以下问题:1. 第10层共有多少块砖块?2. 第15层共有多少块砖块?3. 前n层共有多少块砖块?练习题五:汽车行驶一辆汽车以每小时60公里的速度行驶。
请回答以下问题:1. 该汽车行驶1小时可以行驶多少公里?2. 该汽车行驶3小时可以行驶多少公里?3. 该汽车行驶n小时可以行驶多少公里?回答这些练习题可以帮助小学生更好地理解数列的概念,并提升他们的数学能力。
通过这些练习,学生可以培养逻辑思维和问题解决能力,同时巩固和应用他们在课堂上学到的知识。
希望这些练习题对小学生的数学学习有所帮助,让他们能够更加轻松地掌握数列的概念和运用。
数列练习题错位相减
数列练习题错位相减一、基本概念题1. 已知数列{an},求证:数列{an+1 an}是等差数列。
2. 已知数列{an}的通项公式为an = n^2 + n,求证:数列{an+2 an}是等差数列。
3. 已知数列{an}的通项公式为an = 2^n,求证:数列{an+1 an}是等比数列。
4. 已知数列{an}和{bn},其中{an}为等差数列,{bn}为等比数列,求证:数列{an bn}不是等差数列也不是等比数列。
二、计算题1. 已知数列{an}的前n项和为Sn = n^2 + n,求{an+1 an}的前n项和。
2. 已知数列{an}的通项公式为an = 3n 2,求{an+2 an}的前10项和。
3. 已知数列{an}的通项公式为an = 2^n,求{an+1 an}的前5项。
4. 已知数列{an}和{bn},其中an = 2n + 1,bn = 3^n,求{an bn}的前5项。
三、应用题1. 某公司今年每月销售额依次为120万元、130万元、140万元、150万元,求该公司相邻两个月销售额之差组成的数列的前4项。
2. 一等差数列的前5项和为35,前10项和为110,求该数列的通项公式,并计算{an+2 an}的前5项和。
3. 一等比数列的前3项分别为2、6、18,求该数列的通项公式,并计算{an+1 an}的前3项。
4. 某班级有50名学生,第一次考试及格人数为40人,第二次考试及格人数为45人,第三次考试及格人数为50人。
若每次考试及格人数组成的数列为等差数列,求该数列的公差,并计算{an+1 an}的前3项。
四、综合题1. 已知数列{an}的通项公式为an = n^3 3n^2 + 2n,求{an+2 an}的通项公式。
2. 已知数列{an}的通项公式为an = 2^n + 3^n,求{an+1 an}的通项公式,并判断其是否为等差数列或等比数列。
3. 已知数列{an}和{bn},其中an = n^2,bn = 2^n,求{an bn}的前n项和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列计算题
1、已知数列{}n a 满足关系式:
a 1 = 1 , a n+1 = 2a n + 1 ( n = 1 , 2 , 3 , …) , 试求出此数列的前4项 , 并猜想通项.
2、求和:)0,0)(1()1()1(22≠≠++++++y x x
x x x x x n n 3、在等比数列}{n a 中,S n 为其前n 项的和。
设28,4,0142=-=>a S a a n .求n
n a a 3+的值。
4、某公司有甲、乙两个企业,甲企业有员工150人,98年人均利税1.2万元,乙企业有员工50人,98年人均利税1.6万元.(1)求98年全公司人均利税是多少万元.(2)若乙企业人均利税不变,要使该公司2000年比98年人均利税的增长率不低于20%,问甲企业从99年起人均利税的年平均增长率不能低于百分之几?(精确到0.001,其中41.36.11≈)
5、某地现有耕地10000公顷。
规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%。
如果人口年增长率为1%,那么 耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=总人口数
总产量,人均粮食占有量=耕地面积总产量) 6、某企业经过调整后,第一年的资金增长率为300%,以后每年的资金增长率都是前一年增长率的3
1.(1)经过4年后,企业资金是原来资金的多少倍?(2)如果由于某种原因,每年损失资金的5%,那么经过多少年后企业的资金开始下降? 7、求数列,813,412
,21
1 … , )21(n n +, … 前n 项的和Sn . 8、在等比数列中, 已知第1项与第3项的和是-20 , 第2项与第4项的和是40 , 求该数列的第11项.
9、设a ≠0 , a ≠1 , 求数列 a , 2a 2 , 3a 3 , … , na n , …前n 项的和S n .
10、已知f(x)=b(x)+1为x 的一次函数,b 为不等于1的常量,且 g(n)=⎩⎨⎧
≥-=)1)(1([)0(1n n g f n (1)若a n =g(n)-g(n-1)(n ∈N),求证{a n }为等比数列.(2)设S n =a 1+a 2+…+a n ,求s n (用n,b 表示)。
答案提示
1、a 1 = 1 , a 2 = 3 , a 3 = 7 , a 4 = 15 , a n = 2n -1 .
2、分四种情形分别求和
⎩
⎨⎧=≠11y x ⎩⎨⎧≠=11y x ⎩⎨⎧==11y x ⎩⎨⎧≠≠11y x 3、解:由⎩⎨⎧=++=,28,44322a a a a 得⎩⎨⎧=+=.24)1(,4211q q a q a 由0>n a 解出⎩⎨⎧==.2,21q a。