bipt概率论第一章试题含答案
概率论第一章习题参考解答
概论论与数理统计习题参考解答习题一8. 掷3枚硬币, 求出现3个正面的概率.解: 设事件A ={出现3个正面}基本事件总数n =23, 有利于A 的基本事件数n A =1, 即A 为一基本事件, 则125.08121)(3====n n A P A . 9. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率.解: 设事件A ={能打开门}, 则A 为不能打开门基本事件总数210C n =, 有利于A 的基本事件数27C n A =,467.0157910212167)(21027==⨯⨯⋅⨯⨯==C C A P 因此, 533.0467.01)(1)(=-=-=A P A P .10. 一部四卷的文集随便放在书架上, 问恰好各卷自左向右或自右向左的卷号为1,2,3,4的概率是多少?解: 设A ={能打开门},基本事件总数2412344=⨯⨯⨯==P n ,有利于A 的基本事件数为2=A n ,因此, 0833.0121)(===n n A P A . 11. 100个产品中有3个次品,任取5个, 求其次品数分别为0,1,2,3的概率.解: 设A i 为取到i 个次品, i =0,1,2,3,基本事件总数5100C n =, 有利于A i 的基本事件数为3,2,1,0,5973==-i C C n i i i则00006.09833512196979697989910054321)(006.0983359532195969739697989910054321)(138.09833209495432194959697396979899100543213)(856.0334920314719969798991009394959697)(51002973351003972322510049711510059700=⨯⨯==⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯=⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯=⨯===⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C C n n A P C C n n A P C C n n A P12. N 个产品中有N 1个次品, 从中任取n 个(1≤n ≤N 1≤N ), 求其中有k (k ≤n )个次品的概率. 解: 设A k 为有k 个次品的概率, k =0,1,2,…,n ,基本事件总数n N C m =, 有利于事件A k 的基本事件数kn N N k N k C C m --=11,k =0,1,2,…,n ,因此, n k C C C m m A P n N k n N N k N k k ,,1,0,)(11 ===-- 13. 一个袋内有5个红球, 3个白球, 2个黑球, 计算任取3个球恰为一红, 一白, 一黑的概率. 解: 设A 为任取三个球恰为一红一白一黑的事件,则基本事件总数310C n =, 有利于A 的基本事件数为121315C C C n A =, 则25.0412358910321)(310121315==⨯⨯⨯⨯⨯⨯⨯===C C C C n n A P A 14. 两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解: 设A 为前两个邮筒没有信的事件, B 为第一个邮筒内只有一封信的事件,则基本事件总数1644=⨯=n ,有利于A 的基本事件数422=⨯=A n ,有利于B 的基本事件数632=⨯=B n , 则25.041164)(====n n A P A 375.083166)(====n n B P B .15. 一批产品中, 一, 二, 三等品率分别为0.8, 0.16, 0.04, 若规定一, 二等品为合格品, 求产品的合格率.解: 设事件A 1为一等品, A 2为二等品, B 为合格品, 则P (A 1)=0.8, P (A 2)=0.16,B =A 1+A 2, 且A 1与A 2互不相容, 根据加法法则有P (B )=P (A 1)+P (A 2)=0.8+0.16=0.9616. 袋内装有两个5分, 三个2分, 五个一分的硬币, 任意取出5个, 求总数超过一角的概率. 解: 假设B 为总数超过一角,A 1为5个中有两个5分, A 2为5个中有一个5分三个2分一个1分,A 3为5个中有一个5分两个2分两个1分, 则B =A 1+A 2+A 3, 而A 1,A 2,A 3互不相容, 基本事件总数252762354321678910510=⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯==C n 设有利于A 1,A 2,A 3的基本事件数为n 1,n 2,n 3,则5.0252126252601056)(,60214532,1052,563216782523123153312238221==++==⨯⨯⨯⨯===⨯===⨯⨯⨯⨯==B P C C C n C C C n C C n 17. 求习题11中次品数不超过一个的概率.解: 设A i 为取到i 个次品, i =0,1,2,3, B 为次品数不超过一个,则B =A 0+A 1, A 0与A 1互不相容, 则根据11题的计算结果有P (B )=P (A 0)+P (A 1)=0.856+0.138=0.99419. 由长期统计资料得知, 某一地区在4月份下雨(记作事件A )的概率为4/15, 刮风(用B 表示)的概率为7/15, 既刮风又下雨的概率为1/10, 求P (A |B ), P (B |A ), P (A +B ).解: 根据题意有P (A )=4/15, P (B )=7/15, P (AB )=1/10, 则633.03019303814101154157)()()()(275.08315/410/1)())|(214.014315/710/1)()()|(==-+=-+=-+=+========AB P B P A P B A P A P PAB A B P B P AB P B A P 20. 为防止意外, 在矿内同时设有两种报警系统A 与B , 每种系统单独使用时, 其有效的概率系统A 为0.92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85, 求(1) 发生意外时, 这两个报警系统至少有一个有效的概率(2) B 失灵的条件下, A 有效的概率解: 设A 为系统A 有效, B 为系统B 有效, 则根据题意有P (A )=0.92, P (B )=0.93, 85.0)|(=A B P(1) 两个系统至少一个有效的事件为A +B , 其对立事件为两个系统都失效, 即B A B A =+, 而15.085.01)|(1)|(=-=-=A B P A B P , 则988.0012.01)(1)(012.015.008.015.0)92.01()|()()(=-=-=+=⨯=⨯-==B A P B A P A B P A P B A P(2) B 失灵条件下A 有效的概率为)|(B A P , 则 829.093.01012.01)()(1)|(1)|(=--=-=-=B P B A P B A P B A P 21. 10个考签中有4个难签, 3人参加抽签考试, 不重复地抽取, 每人一次, 甲先, 乙次, 丙最后, 证明3人抽到难签的概率相等.证: 设事件A ,B ,C 表示甲,乙,丙各抽到难签, 显然P (A )=4/10,而由903095106)|()()(902496104)|()()(902494106)|()()(901293104)|()()(=⨯===⨯===⨯===⨯==A B P A P B A P A B P A P B A P A B P A P B A P A B P A P AB P 由于A 与A 互不相容,且构成完备事件组, 因此B A AB B +=可分解为两个互不相容事件的并, 则有1049036902412)()()(==+=+=B A P AB P B P 又因B A B A B A AB ,,,之间两两互不相容且构成完备事件组, 因此有C B A C B A BC A ABC C +++=分解为四个互不相容的事件的并,且720120849030)|()()(72072839024)|()()(72072839024)|()()(72024829012)|()()(=⨯===⨯===⨯===⨯==B A C P B A P C B A P B A C P B A P C B A P B A C P B A P BC A P AB C P AB P ABC P则104720288720120727224()()()()(==+++=+++=CB A PC B A P BC A P ABC P C P 因此有P (A )=P (B )=P (C ), 证毕.22. 用3个机床加工同一种零件, 零件由各机床加工的概率分别为0.5, 0.3, 0.2, 各机床加工的零件为合格品的概率分别等于0.94, 0.9, 0.95, 求全部产品中的合格率.解: 设A 1,A 2,A 3零件由第1,2,3个机床加工, B 为产品合格,A 1,A 2,A 3构成完备事件组.则根据题意有P (A 1)=0.5, P (A 2)=0.3, P (A 3)=0.2,P (B |A 1)=0.94, P (B |A 2)=0.9, P (B |A 3)=0.95,由全概率公式得全部产品的合格率P (B )为93.095.02.09.03.094.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P23. 12个乒乓球中有9个新的3个旧的, 第一次比赛取出了3个, 用完后放回去, 第二次比赛又取出3个, 求第二次取到的3个球中有2个新球的概率.解: 设A 0,A 1,A 2,A 3为第一次比赛取到了0,1,2,3个新球, A 0,A 1,A 2,A 3构成完备事件组. 设B 为第二次取到的3个球中有2个新球. 则有22962156101112321)|(,552132101112789321)(,442152167101112321)|(,55272101112389321)(,552842178101112321)|(,2202710111239321)(,552732189101112321)|(,2201101112321)(3121626331239331215272312132923121428131223191312132********=⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯==C C C A B P C C A P C C C A B P C C C A P C C C A B P C C C A P C C C A B P C C A P 根据全概率公式有455.01562.02341.00625.00022.022955214421552755282202755272201)|()()(30=+++=⋅+⋅+⋅+⋅==∑=i i i A B P A P B P 24. 某商店收进甲厂生产的产品30箱, 乙厂生产的同种产品20箱, 甲厂每箱100个, 废品率为0.06, 乙厂每箱装120个, 废品率是0.05, 求:(1)任取一箱, 从中任取一个为废品的概率;(2)若将所有产品开箱混放, 求任取一个为废品的概率.解: (1) 设B 为任取一箱, 从中任取一个为废品的事件.设A 为取到甲厂的箱, 则A 与A 构成完备事件组056.005.04.006.06.0)|()()|()()(05.0)|(,06.0)|(4.05020)(,6.05030)(=⨯+⨯=+=======A B P A P A B P A P B P A B P A B P A P A P(2) 设B 为开箱混放后任取一个为废品的事件.则甲厂产品的总数为30×100=3000个, 其中废品总数为3000×0.06=180个,乙厂产品的总数为20×120=2400个, 其中废品总数为2400×0.05=120个,因此...055555555.0540030024003000120180)(==++=B P 25. 一个机床有1/3的时间加工零件A , 其余时间加工零件B , 加工零件A 时, 停机的概率是0.3, 加工零件B 时, 停机的概率是0.4, 求这个机床停机的概率.解: 设C 为加工零件A 的事件, 则C 为加工零件B 的事件, C 与C 构成完备事件组. 设D 为停机事件, 则根据题意有P (C )=1/3, P (C )=2/3,P (D |C )=0.3, P (D |C )=0.4,根据全概率公司有367.04.0323.031)|()()|()()(=⨯+⨯=+=C D P C P C D P C P D P 26. 甲, 乙两部机器制造大量的同一种机器零件, 根据长期资料总结, 甲机器制造出的零件废品率为1%, 乙机器制造出的废品率为2%, 现有同一机器制造的一批零件, 估计这一批零件是乙机器制造的可能性比它们是甲机器制造的可能性大一倍, 今从该批零件中任意取出一件, 经检查恰好是废品, 试由此检查结果计算这批零件为甲机器制造的概率.解: 设A 为零件由甲机器制造, 则A 为零件由乙机器制造, A 与A 构成完备事件组. 由P (A +A )=P (A )+P (A )=1并由题意知P (A )=2P (A ),得P (A )=1/3, P (A )=2/3.设B 为零件为废品, 则由题意知P (B |A )=0.01, P (B |A )=0.02,则根据贝叶斯公式, 任抽一件检查为废品条件下零件由甲机器制造的概率为2.005.001.002.03201.03101.031)|()()|()()|()()|(==⨯+⨯⨯==+=A B P A P A B P A P A B P A P B A P 27. 有两个口袋, 甲袋中盛有两个白球, 一个黑球, 乙袋中盛有一个白球两个黑球. 由甲袋中任取一个球放入乙袋, 再从乙袋中取出一个球, 求取到白球的概率.解: 设事件A 为从甲袋中取出的是白球, 则A 为从甲袋中取出的是黑球, A 与A 构成完备事件组. 设事件B 为从乙袋中取到的是白球.则P (A )=2/3, P (A )=1/3,P (B |A )=2/4=1/2, P (B |A )=1/4,则根据全概率公式有417.012541312132)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P28. 上题中若发现从乙袋中取出的是白球, 问从甲袋中取出放入乙袋的球, 黑白哪种颜色可能性大?解: 事件假设如上题, 而现在要求的是在事件B 已经发生条件下, 事件A 和A 发生的条件概率P (A |B )和P (A |B )哪个大, 可以套用贝叶斯公式进行计算, 而计算时分母为P (B )已上题算出为0.417, 因此2.0417.04131)()|()()|(8.0417.02132)()|()()|(=⨯===⨯==B P A B P A P B A P B P A B P A P B A PP (A |B )>P (A |B ), 因此在乙袋取出的是白球的情况下, 甲袋放入乙袋的球是白球的可能性大.29. 假设有3箱同种型号的零件, 里面分别装有50件, 30件和40件, 而一等品分别有20件, 12件及24件. 现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回). 试求先取出的零件是一等品的概率; 并计算两次都取出一等品的概率.解: 称这三箱分别为甲,乙,丙箱, 假设A 1,A 2,A 3分别为取到甲,乙,丙箱的事件, 则A 1,A 2,A 3构成完备事件组.易知P (A 1)=P (A 2)=P (A 3)=1/3.设B 为先取出的是一等品的事件. 则6.04024)|(,4.03012)|(,4.05020)|(321======A B P A B P A B P 根据全概率公式有 467.036.04.04.0)|()()(31=++==∑=i i i A B P A P B P 设C 为两次都取到一等品的事件, 则38.039402324)|(1517.029301112)|(1551.049501920)|(240224323021222502201=⨯⨯===⨯⨯===⨯⨯==C C A C P C C A C P C C A C P 根据全概率公式有22.033538.01517.01551.0)|()()(31=++==∑=i i i A C P A P C P 30. 发报台分别以概率0.6和0.4发出信号“·”和“—”。
《概率论》第一章习题(A)参考答案
第一章习题(A )参考答案(注:有些题可能存在多种解法,希望同学能够多动脑思考,不要将思维局限于参考答案。
)4.解:(1)()1()0.7P B P B =-= ,()()()()0.4P AB P A P B P A B ∴=+-⋃=;(2)()()()()0.3P B A P B AB P B P AB -=-=-= ; (3)()()1()0.2P AB P A B P A B =⋃=-⋃= 。
5.解:从8个球中任取2个,共有2887282!n C ⨯===种取法。
设事件A 表示取到的两个球颜色相同,可分成两种情况:取到白球;取到黑球。
完成事件A 共有22535432132!2!m C C ⨯⨯=+=+=种取法,则根据古典概型的概率计算公式,可求得13()28m P A n ==。
6.解:考虑将两组分别记为甲组和乙组,则分配球队的时候,先将10支球队分到甲组,再将剩下的10支球队分到乙组,共有101010201020n C C C ==种分法。
对于最强的两队,先取一支强队分到甲组,接着再从其余18支稍弱的球队中取9支分到甲组,这样甲组就有一支最强队及9支稍弱的队,最后将剩下的10支球队分到乙组,这样共有19218m C C =种分法。
则最强的两队被分到不同组内的概率为192181020100.526319===≈C C m p n C 。
7.解:将12个球随意放入3个盒子中,对于每个球,都可以从3个盒子中选一个盒子放球进去,因此共有123n =种放法。
设事件A 表示第一个盒子中有3个球,先从12个球中取出3个球放进第一个盒子,剩下的9个球随意放进其余两个盒子中,对于这9个球,每个都可以从其余两个盒子中选一个盒子放球进去,因此完成事件A 共有39122m C =⨯种方法,则第一个盒子中有3个球的概率为3912122()0.2123C m P A n ⨯==≈。
8.解:由于每颗骰子有6个不同的点数,因此同时掷4颗均匀骰子共有46n =种不同的结果。
概率论与数理统计第一章课后习题详解
概率论与数理统计习题第一章习题1-1(P 7)1.解:(1)}18,4,3{,⋯=Ω (2)}1|),{22<+=Ωy x y x ( (3) {=Ωt |t},10N t ∈≥(本题答案由经济1101班童婷婷提供) 2.AB 表示只有一件次品,-A 表示没有次品,-B 表示至少有一件次品。
(本题答案由经济1101班童婷婷提供) 3.解:(1)A 1∪A 2=“前两次至少有一次击中目标”;(2)2A =“第二次未击中目标”; (3)A 1A 2A 3=“前三次均击中目标”;(4)A 1⋃A 2⋃A 3=“前三次射击中至少有一次击中目标”; (5)A 3-A 2=“第三次击中但第二次未击中”; (6)A 32A =“第三次击中但第二次未击中”; (7)12A A =“前两次均未击中”; (8)12A A =“前两次均未击中”;(9)(A 1A 2)⋃(A 2A 3)⋃(A 3A 1)=“三次射击中至少有两次击中目标”.(本题答案由陈丽娜同学提供)4.解: (1)ABC(2)ABC(3) ABC (4) A B C(5) ABC (6) AB BC AC (7) A B C (8) (AB) (AC) (BC)(本题答案由丁汉同学提供)5.解: (1)A=BC(2)A =B C(本题答案由房晋同学提供)习题1-2(P 11)6.解:设A=“从中任取两只球为颜色不同的球”,则:112538P(A)=/15/28C C C =(本题答案由顾夏玲同学提供)7.解: (1)组成实验的样本点总数为340C ,组成事件(1)所包含的样本点数为 12337C C ,所以P 1=12337340C C C ⋅ ≈0.2022 (2)组成事件(2)所包含的样本点数为33C ,所以P 2=33340C C ≈0.0001(3)组成事件(3)所包含的样本点数为337C ,所以 P 3=337340C C ≈0.7864 (4)事件(4)的对立事件,即事件A=“三件全为正品”所包含的样本点数为337C ,所以P 4=1-P(A)=1-337340C C ≈0.2136(5)组成事件(5)所包含的样本点数为2133373C C C ⋅+,所以P 5=2133373340+C C C C ⋅ ≈0.01134 (本题答案由金向男同学提供)8.解:(1)组成实验的样本点总数为410A ,末位先考虑有五种选择,首位除去0,有8种选择。
概率论习题第一章(答案)
第一章一、填空题1、设事件A,B 满足AB AB =,则()P A B = 1 ,()P AB = 0 。
2、已知P(A)0.5,P(B )0.6,P(B A)0.8,===则()P A B = 。
3、已知()()()1P A P B P C 4===,()P AB 0=,()()1P AC P BC 6==,则事件A,B,C 都不发生的概率为712。
4、把10本书随意放在书架上,其中指定的3本书放在一起的概率为115。
5、一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为16。
二、选择题1、下列命题成立的是( B )A :()()ABC A B C --=- B :若AB ≠∅且A C ⊂,则BC ≠∅ C :A B B A -=D :()A B B A -= 2、设A,B 为两个事件,则( C )A :()()()P AB P A P B ≥+ B : ()()()P AB P A P B ≥C :()()()P A B P A P B -≥-D :()()()()P A P A B P B0P B ≥>3、设A,B 为任意两个事件,且A B ⊂,P(B )0>,则下列选项必然成立的是( D )A :P(A)P(AB )< B :P(A)P(A B )>C :P(A)P(A B )≥D :P(A)P(A B )≤4、袋中装有2个五分,3个贰分,5个壹分的硬币,任取其中5个,则总币值超过壹角的概率( B )A :14B :12C :23D :34三、解答题1、某班有50名同学,其中正、副班长各1名,现从中任意选派5名同学参加假期社会实践活动,试求正、副班长至少有一个被选派上的概率。
()248248142347P A 502455⎛⎫⎛⎫⎛⎫⎛⎫+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭==⎛⎫ ⎪⎝⎭或者()()48547P A 1P A 1502455⎛⎫ ⎪⎝⎭=-=-=⎛⎫ ⎪⎝⎭2、一批产品共200个,有6个废品。
概率论~第一章习题参考答案与提示
第一章 随机事件与概率习题参考答案与提示1. 设为三个事件,试用表示下列事件,并指出其中哪两个事件是互逆事件:C B A 、、C B A 、、(1)仅有一个事件发生; (2)至少有两个事件发生;(3)三个事件都发生; (4)至多有两个事件发生;(5)三个事件都不发生; (6)恰好两个事件发生。
分析:依题意,即利用事件之间的运算关系,将所给事件通过事件表示出来。
C B A 、、 解:(1)仅有一个事件发生相当于事件C B A C B A C B A 、、有一个发生,即可表示成C B A C B A C B A ∪∪;类似地其余事件可分别表为(2)或AC BC AB ∪∪ABC B A BC A C AB ∪∪∪;(3);(4)ABC ABC 或C B A ∪∪;(5)C B A ;(6)B A BC A C AB ∪∪或。
ABC AC BC AB −∪∪ 由上讨论知,(3)与(4)所表示的事件是互逆的。
2.如果表示一个沿着数轴随机运动的质点位置,试说明下列事件的包含、互不相容等关系:x {}20|≤=x x A {}3|>=x x B {}9|<=x x C{}5|−<=x x D{}9|≥=x x E 解:(1)包含关系: 、 A C D ⊂⊂B E ⊂ 。
(2)互不相容关系:C 与E (也互逆)、B 与、D E 与。
D 3.写出下列随机事件的样本空间:(1)将一枚硬币掷三次,观察出现H (正面)和T (反面)的情况;(2)连续掷三颗骰子,直到6点出现时停止, 记录掷骰子的次数;(3)连续掷三颗骰子,记录三颗骰子点数之和;(4)生产产品直到有10件正品时停止,记录生产产品的总数。
提示与答案:(1);{}TTT TTH THT HTT THH HTH HHT HHH ,,,,,,,=Ω(2); {,2,1=Ω}(3);{}18,,4,3 =Ω(4)。
{} ,11,10=Ω4.设对于事件有C B A 、、=)(A P 4/1)()(==C P B P , ,8/1)(=AC P0)()(==BC P AB P ,求至少出现一个的概率。
概率论与数理统计第一章习题及答案
概率论与数理统计习题 第一章 概率论的基本概念习题1-1 设C B A ,,为三事件,用C B A ,,的运算关系表示下列各事件.(1)A 发生,B 与C 不发生, (2)A 与B 都发生,而C 不发生,(3)C B A ,,中至少有一个发生,(4)C B A ,,都发生,(5)C B A ,,都不发生, (6)C B A ,,中不多于一个发生, (7)C B A ,,中不多于两个发生, (8)C B A ,,中至少有两个发生,解(1)A 发生,B 与C 不发生表示为C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生表示为C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生表示为A+B+C (4)A ,B ,C 都发生,表示为ABC(5)A ,B ,C 都不发生,表示为C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生,相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生相当于C B A ,,中至少有一个发生。
故表示为ABC C B A 或++(8)A ,B ,C 中至少有二个发生。
相当于AB ,BC ,AC 中至少有一个发生。
故表示为AB +BC +AC习题1-2 设B A ,为两事件且6.0)(=A P ,7.0)(=B P ,问(1)在什么条件下)(AB P 取得最大值,最大值是多少?(2)在什么条件下)(AB P 取得最小值,最小值是多少?解 由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。
概率统计第一章概率论的基础知识习题与答案
概率统计第一章概率论的基础知识习题与答案概率论与数理统计概率论的基础知识习题一、选择题1、下列关系正确的是( )。
A、0∈∅B、{0}∅=∅⊂D、{0}∅∈C、{0}答案:C2、设{}{}2222=+==+=,则( )。
P x y x y Q x y x y(,)1,(,)4A、P Q⊂B、P Q<C、P Q⊂与P Q⊃都不对D、4P Q=答案:C二、填空1、6个学生和一个老师并排照相,让老师在正中间共有________种排法。
答案:6!720=2、5个教师分配教5门课,每人教一门,但教师甲只能教其中三门课,则不同的分配方法有____________种。
答案:723、编号为1,2,3,4,5的5个小球任意地放到编号为A、B、C、D、E、F的六个小盒子中,概率论的基础知识第 1 页(共 19 页)每一个盒至多可放一球,则不同的放法有_________种。
答案:()65432720⨯⨯⨯⨯=4、设由十个数字0,1,2,3, ,9的任意七个数字都可以组成电话号码,则所有可能组成的电话号码的总数是_______________。
答案:710个5、九名战士排成一队,正班长必须排在前头,副班长必须排在后头,共有_______________种不同的排法。
答案:77!5040P==6、平面上有10个点,其中任何三点都不在一直线上,这些点可以确定_____个三角形。
答案:1207、5个篮球队员,分工打右前锋,左前锋,中锋,左后卫右后卫5个位置共有_____________种分工方法?答案:5!120=8、6个毕业生,两个留校,另4人分配到4个概率论的基础知识第 2 页(共 19 页)不同单位,每单位1人。
则分配方法有______种。
答案:(6543)360⨯⨯⨯=9、平面上有12个点,其中任意三点都不在一条直线上,这些点可以确定_____________条不同的直线。
答案:6610、编号为1,2,3,4,5的5个小球,任意地放到编号为A,B,C,D,E,F,的六个小箱子中,每个箱子中可放0至5个球,则不同的放法有___________种。
概率论第一章习题答案
概率论11、甲、乙两艘轮船驶向一个不能同时停泊两艘船的码头停泊.它们在一昼夜内到达码头的时刻是等可能的.如果甲船停泊的时间是一小时,乙船停泊的时间是两小时,求这两艘船都不等候码头的概率. 解:分别用x、y表示甲、乙船到达时刻,在直角坐标系下作直线x=24、y=24,它们与x轴及y轴围成一个正方形,点(x,y)总是落入这个正方形的;作直线y=x+1与y=x-2,如果点(x,y)落入两直线所夹以外区域就不需要等待,所以不需要等待的概率为:p=(22*22/2+23*23/2)/(24*24)=1013/1152≈0.87934027777777825、已知男人中5%是色盲患者,女人中有0.25%;今从男女人数相等的人群中随机挑选一人,恰好是色盲患者,问此人是男人的概率是多少?解:可以算出色盲的人占总人数的比率是5%x50%+0.25%x50%=2.625%,而在2.625%的人中,男的占5%x50%,所以是男的几率为5%x50%除以2.625%=20/21第一章随机事件与概率1.设A,B,C为三个事件,试用A、B、C表示下列事件,并指出其中哪俩个事件是互逆事件:1)仅有一个事件发生;2)至少有一个事件发生;3)三个事件都发生;4)至多有两个事件发生;5)三个事件都不发生;6)恰好两个事件发生。
用a,b,c分别表示A,B,C的补事件,那么有1)abC∪aBc∪Abc2)1-abc3)ABC4)1-ABC5)abc6)ABc∪AbC∪aBC其中(2)和(5) (3)和(4) 是互逆事件2.设对于事件A,B,C,有P(A)=P(B)=P(C)=1/4,P(AC)=1/8,P(AB)=P(BC)=0,求A、B、C至少出现一个的概率。
因为P(AB)=0,所以P(ABC)=0,所以P(A+B+C)=PA+PB+PC-PAB-PAC-PBC+PABC=5/83.设A,B为随机事件,P(A)=0.7,P(A-B)=0.3,求P(AB(—))。
概率论第一章习题答案
习 题 一(A ) 1. 写出下列事件的样本空间:)1(把一枚硬币连续抛掷两次; )2(掷两颗骰子;)3(连续抛一枚硬币,直至出现正面为止; )4(在某十字路口,一小时内通过的机动车辆数; )5(某城市一天内的用电量.解 )1(1{(,),(,),(,)}H H H T T T Ω=,其中H 表示正面,T 表示反面. )2()}6,6(),5,6(),4,6(),3,6(),2,6(),1,6(),6,5(),5,5(),4,5(),3,5(),2,5(),1,5(),6,4(),5,4(),4,4(),3,4(),2,4(),1,4(),6,3(),5,3(),4,3(),3,3(),2,3(),1,3(),6,2(),5,2(),4,2(),3,2(),2,2(),1,2(),6,1(),5,1(),4,1(),3,1(),2,1(),1,1{(2=Ω)3(}),,,,(),,,(),,(),{(3 H T T T H T T H T H =Ω)4(},2,1,0{4 =Ω )5(}0,{5≥=Ωt t2.C B A ,,为三个事件,试将下列事件用C B A ,,表示出来: )1(仅A 发生;)2(均发生;)3(均不发生; )4(A 发生而C B ,至少有一个不发生; )5(A 不发生而C B ,至少有一个发生;)6(不全发生;)7(最多有2个发生;)8(至少有2个发生; )9(最多有一个发生;)10(恰有2个发生.解 )1(C B A ; )2(ABC ; )3(C B A 或C B A ++; )4(BC A ; )5(A C B -+)(; )6(ABC 或C B A ++;)7(ABC 或C B A ++;)8(AC BC AB ++; )9(C B A C B A C B A C B A +++; )10(BC A C B A C AB ++;3.掷一颗骰子的试验,观察其出现的点数,事件=A "偶数点",=B "奇数点",=C "点数小于5",=D "小于5的偶数点",讨论上述各事件间的关系.解 }6,5,4,3,2,1{=Ω,}6,4,2{=A ,}5,3,1{=B ,}4,3,2,1{=C ,}4,2{=D .A 与B 为对立事件,即A B =;B 与D 互不相容;DCD A ⊃⊃,.4.事件i A 表示某个生产单位第i 车间完成生产任务,3,2,1=i ,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及C B -的含义,并且用i A )3,2,1(=i 表示出来.解 B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务.323121A A A A A A B ++=321A A A C B =-表示三个车间均完成生产任务.5.抛两枚硬币,求至少出现一个正面的概率.解 设事件A 表示"两枚硬币中至少出现一个正面".若用"H "表示正面,"T "表示反面,其出现是等可能的.则样本空间含有四个等可能样本点:},,,{HH HT TH TT =Ω,由于事件A 含有其中3个样本点.故43)(=A P .6.抛掷一枚硬币,连续3次,求既有正面又有反面出现的概率. 解 设事件A 表示"三次中既有正面又有反面出现", 则A 表示"三次均为正面或三次均为反面出现",其所包含的样本点数为2.而抛掷三次硬币共有8种不同的等可能结果,故样本空间的样本点总数为8,因此43821)(1)(=-=-=A P A P .7.掷两颗骰子,求下列事件的概率: )1(点数之和为7; )2(点数之和不超过5;)3(两个点数中一个恰是另一个的两倍. 解)}6,6(),5,6(),4,6(),3,6(),2,6(),1,6(),6,5(),5,5(),4,5(),3,5(),2,5(),1,5(),6,4(),5,4(),4,4(),3,4(),2,4(),1,4(),6,3(),5,3(),4,3(),3,3(),2,3(),1,3(),6,2(),5,2(),4,2(),3,2(),2,2(),1,2(),6,1(),5,1(),4,1(),3,1(),2,1(),1,1{(=Ω=A "点数之和为7")}1,6(),2,5(),3,4(),4,3(),5,2(),6,1{(=, =B "点数之和不超过5")}1,4(),2,3(),1,3(),3,2(),2,2(),1,2(),4,1(),3,1(),2,1(),1,1{(=,=C "两个点数中一个恰是另一个的两倍")}3,6(),6,3(),2,4(),4,2(),1,2(),2,1{(=.所以)1(61)(=A P ; )2(185)(=B P ; )3(61)(=C P .8.10把钥匙中有3把能打开一个门锁,今任取两把,求能打开门锁的概率.解 设事件A 表示"门锁能被打开".则事件A 发生就是取的两把钥匙都不能打开门锁.1581)(1)(21027=-=-=C C A P A P .9.袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率及两个球中有黑球的概率.解 记事件A 表示"取到的两个球颜色不同".则有利于事件A 的样本点数为1315C C .而组成试验的样本点总数为235+C ,由古典概型概率公式有2815)(281315==C C C A P .设事件B 表示"取到的两个球中有黑球",则有利于事件B 的样本点数为25C .1491)(1)(2825=-=-=C C B P B P .10. 从一副52张的扑克牌中任取4张,求下列事件的概率:)1(全是黑桃; )2(同花; )3(没有两张同一花色; )4(同色.解 52张牌中任取4张,共有452C 种等可能的取法.)1(用事件A 表示"任取4张全是黑桃",由于4张黑桃只能从13张黑桃中取出共有413C 种取法,所以 002641.0)(452413==C C A P . )2(用事件B 表示"取出的4张牌同花",由于共有4种花色,而"4张同花"只能从同一花色的13张牌中取出,所以共有4134C 种取法,于是010564.04)(452413==CC B P . )3(用事件C 表示"取出的4张牌没有两张同一花色",4张牌只能从各种花色(13张牌)中各取1张,共有413种取法,于是 105498.013)(4524==CC P . )4(用事件D 表示"取出的4张牌同色",共有2种颜色,而每种颜色只能从同一颜色的26张牌中任取4张,共有4262C 种取法,于是 110444.02)(452426==CC D P .11. 口袋内装有2个伍分、3个贰分、5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率.解 设事件A 表示"取出的5枚硬币总值超过壹角".则样本点总数为252510=C ,事件A 所包含的样本点数为126)(25231533123822=++C C C C C C C .21252126)(==A P . 12. 袋中有红、白、黑色球各一个,每次任取一球,有放回地抽取三次,求下列事件的概率:=A "三次都是红球"即"全红",=B "全白",=C "全黑",=D "无红",=E "无白",=F "无黑",=G "三次颜色全相同",=H "颜色全不相同",=I "颜色不全相同".解 样本点总数为2733=;事件A 、事件B 、事件C 所包含的样本点数为1;事件D 、事件E 、事件F 所包含的样本点数为823=;事件G 所包含的样本点数为事件A 、事件B 、事件C 样本点数之和3;事件H 所包含的样本点数为6!3=;事件I 所包含的样本点数为总样本点数减去事件G 所包含的样本点数24327=-. 所以有 271)()()(===C P B P A P ; 278)()()(===F P E P D P ;91273)(==G P ;92276)(==H P ;982724)(==I P .13.一间宿舍内住有6位同学,求他们中有4个人的生日在同一个月份的概率.解 设事件A 表示"有4个人的生日在同一个月份".样本点总数为612,C事件A 所包含的样本点数2178011211246=C C ,0073.01221780)(6==A P .14. 从6,5,4,3,2,1,0,七个数字中任取4个排成一列,求下列事件的概率:(按不重复和可重复取分别计算) )1(可构成四位数; )2(可构成四位偶数; )3(可被5整除的四位数;)4(2不在千位、4在十位的四位数; )5(数字各不相同的四位数.解 设)1(,)2(,)3(,)4(,)5(分别为事件A ,B ,C ,D ,E . 不重复选取时总的样本点数为840456747=⨯⨯⨯=A .)1(A 包含的样本点数为72045663616=⨯⨯⨯=A A (先在六个非零数字中任取1个排在千位,再在六个数字中任取三个排在百位、十位和个位).所以 857.0840720)(473616≈==A A A A P .)2(B 包含的样本点数为420300120345545613251536=+=⨯⨯⨯+⨯⨯=+A A A A (将偶数分为两类:一类0作个位的有36A 个,另一类是2、4或6作个位的有132515A A A 个).所以 5.0840420)(4713251536==+=AA A A AB P .)3(C 包含的样本点数为220100120455456251536=+=⨯⨯+⨯⨯=+A A A (将能被5整除的数分为两类:一类是以0作个位的有36A 个,另一类是5作个位的有2515A A 个).所以 262.0840220)(47251536≈=+=AA A A C P .)4(D 包含的样本点数为804542514=⨯⨯=A A (4在十位,千位不能取2和0,共14A 个取法,剩下的百位和个位共有25A 个取法).所以 095.084080)(472514≈==AA A D P .)5(同)1(.857.0840720)(473616≈==A A A E P .重复选取时总的样本点数为240174=.)1(A 包含的样本点数为20587673316=⨯=A (先在六个非零数字中任取1个排在千位,其余三位可在7个数字中重复选取).所以 857.02401205877)(4316≈==A A P .)2(B 包含的样本点数为117688229437767767713216216=+=⨯⨯⨯+⨯⨯=+A A A (将偶数分成两类:一类是以0作个位的,在六个非零数字中选取一个排在千位,百位和十位的数字在七个数字中重复选取).所以 49.024011176777)(413216216≈=+=A A AB P .)3(C 包含的样本点数为588776272216=⨯⨯⨯=A (将能被5整除的数分为两类,一类是以0作个位,一类是以5作个位,都是共有2167A 个).所以 245.02401588772)(4216≈==A C P .)4(D 包含的样本点数为2457757215=⨯⨯=A (4在十位,千位不能取2和0,共15A 个取法,剩下的百位和个位共有27个取法).所以 102.0240124577)(4215≈==A D P .)5(E 包含的样本点数为72045663616=⨯⨯⨯=A A .所以 2999.024017207)(43616≈==A A E P .15. 有两本外语书,3本数学书,4本政治书,放到书架上排成一排,求下列事件的概率:)1(两本外语书恰排在两侧(一侧一本); )2(3本数学书排在一起; )3(某指定一本书恰好排在中间; )4(4本政治书一侧两本.解 设)1(,)2(,)3(,)4(分别为事件A ,B ,C ,D . 总样本点数为99A .)1(A 包含的样本点数为7722A A (两本外语书在两侧有22A 种排法,其余7本书在中间有77A 种排法).所以 0278.0722)(997722≈==AA A A P .)2(B 包含的样本点数为7733A A (把3本数学书看成一本,与其余6本书共有77A 种排法.3本数学书共有33A 种排法).所以 083.0726)(997733≈==A A AB P .)3(C 包含的样本点数为88A (指定书排在中间,其余8本书在8个位置上共有88A 种排法).所以 111.091)(9988≈==A A C P .)4(D 包含的样本点数为225524A A A (4本政治书中先取2本排在一侧有24A种排法,剩余人两本排在另一侧有22A 种排法,其余5本书在中间共有55A 种排法).所以 008.0302424)(99225524≈==A A A A D P .16. 5封信随机地投到3个信筒中,求下列事件的概率: )1(第一个信筒恰有两封信; )2(第一个信筒至少有两封信; )3(第一个信筒最多有两封信.解 设)1(,)2(,)3(分别为事件A ,B ,C . 总样本点数为24335=.)1(A 包含的样本点数为802325=C (5封信中取两封信投入第一个信筒,共有25C 种投法,剩下3封信投入两个信筒中有32种投法).所以 329.02438032)(5325≈==C A P .)2(B 包含的样本点数为3122341555=--C (总样本点数减去第一个信筒中没有信有52种投法,再减去第一个信筒中有一封信有4152C 种投法).所以 539.0243313223)(541555≈=--=C B P .)3(C 包含的样本点数为1922223254155=++C C (第一个信筒中没有信有52种投法,第一个信筒中有一封信有4152C 种投法,第一个信筒中有两封信有3252C 种投法).所以 79.02431923222)(53254155≈=++=C C C P .17. 将5个人等可能地分配到十个房间去住,求下列事件的概率: )1(某指定5个房间各住1人; )2(5人被分配到5个不同的房间; )3(5人被分配到同一个房间; )4(某个指定房间恰住2人.解 设)1(,)2(,)3(,)4(分别为事件A ,B ,C ,D . 总样本点数为510.)1(A 包含的样本点数为55A .所以 0012.01012010)(5555===A A P .)2(B 包含的样本点数为55510A C (先选出5个房间共510C 种选法,这5个房间各住一人有55A 种住法).所以 3024.010302410)(4555510===A C B P .)3(C 包含的样本点数为1.所以 5510101)(-==C P .)4(D 包含的样本点数为3259C (先选出两人住指定房间有25C 种住法,其余3人分配到剩下的9个房间,有39种分配方法).所以 0729.010729109)(45325===C D P .18. 在区间)1,0(中随机地取两个数,求事件“两数之和小于5/6”的概率. 解 这个概率可用几何方法确定.在区间)1,0(中随机地取两个数分别记为x 和y ,则),(y x 的可能取值形成如下单位正方形Ω,其面积为1=ΩS .而事件A "两数之和小于5/6"可表示为}5/6{<+=y x A ,其区域为图1.1中的阴影部分.图1.1 所以由几何方法得 68.02517)54(211)(2==-==ΩS S A P A . 19. 甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的.如果甲船停泊时间是1小时,乙船停泊时间是2小时,求它们中任何一艘都不需要等候码头的概率.解 这个概率可用几何方法确定.记x 和y 分别为甲乙两艘轮船到达码头的时间,则),(y x 的可能取值形成边长为24的正方形Ω,其面积为224=ΩS .而事件A "不需要等候码头空出"有两种可能情况:一种情况是甲船先到,则乙船在一小时之后到达,即满足1≥-x y ;另一种情况是乙船先到,则甲船在两小时之后到达,即满足2≥-y x .所以事件A 可表示为}21:),{(≥--≤-=y x y x y x A 或.所以事件A 的区域形成了图1.2中的阴影部分,其面积为)2223(2122+=A S ,所以由几何方法得879.024)2223(21)(222=+==ΩS S A P A .图1.220. 事件A 与B 互不相容,计算)(B A P +. 解 由于A 与B 互不相容,有Φ=AB ,0)(=AB P1)(1)()(=-==+AB P AB P B A P .21. 已知a A P =)(,b B P =)(,)3.0(0a b ab >≠,a B A P 7.0)(=-,求)(A B P +,)(A B P -,)(A B P +.解 由于B A -与AB 互不相容,且AB B A A +-=)(,因此有 a B A P A P AB P 3.0)()()(=--=b a AB P B P A P B A P +=-+=+7.0)()()()( a b AB P B P A B P 3.0)()()(-=-=- a AB P A B P 3.01)(1)(-=-=+22. 50个产品中有46个合格品与4个废品,从中一次抽取三个,计算取到废品的概率.解 记事件A 为"取到废品".总样本点数为350C ,事件A 包含的样本点数为346C .所以2255.07745.011176009108011)(1)(350346=-≈-=-=-=C C A P A P .23. 一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算).解 设事件A 表示"100名学生的生日都不在元旦",则有利于A 的样本点数目为100364,而样本空间中样本点数总数为100365,所求概率为2399.03653641)(1)(100100≈-=-=A P A P .24. 有5副规格不同的手套,现从中任取4只,求至少能配成一副的概率. 解 设事件A 表示"取出的四只手套至少有两只配成一副",则A 表示"四只手套中任何两只均不能配成一副".21080)(4101212121245==C C C C C C A P ,62.0)(1)(=-=A P A P .25. 设事件B A ,至少有一个发生的概率为31,A 发生而B 不发生的概率为91,求)(B P .解 由已知条件知31)(=+B A P ,91)()(])[()(=-+=+=B P B A P B B A P B A P ,则 929131)()()(=-=-+=B A P B A P B P .26. 某单位有%92的职工订阅报纸,%93的人订阅杂志,在不订阅报纸的人中仍有%85的职工订阅杂志,从单位中任找一名职工求下列事件的概率:)1(该职工至少订阅一种报纸或期刊; )2(该职工不订阅杂志,但是订阅报纸.解 设事件A 表示"任找一名职工订阅报纸",B 表示"订阅杂志",依题意92.0)(=A P , 93.0)(=B P , 85.0)|(=A B P .则 )1()|()()()()()(A B P A P A P B A P A P B A P +=+=+988.085.008.092.0=⨯+=.)2(058.093.0988.0)()()(=-=-+=B P B A P B A P .27. 分析学生们的数学与外语两科考试成绩,抽查一名学生,记事件A 表示数学成绩优秀,B 表示外语成绩优秀,若4.0)()(==B P A P ,28.0)(=AB P ,求)|(B A P ,)|(A B P ,)(B A P +.解 7.04.028.0)()()|(===B P AB P B A P ,7.0)()()|(==A P AB P A B P ,52.0)()()()(=-+=+AB P B P A P B A P .28. 为了防止意外,在矿内同时设有两种报警系统A 与B ,各系统单独使用时,其有效的概率系统A 为92.0,系统B 为93.0,在A 失灵条件下,B 有效的概率为85.0,求)1(发生意外时,至少有一个系统有效的概率; )2(在B 失灵的条件下,A 有效的概率.解 用事件A 表示"报警系统A 有效",用事件B 表示"报警系统B 有效",依题意 92.0)(=A P ,93.0)(=B P ,85.0)|(=A B P .)1(068.085.008.0)|()()(=⨯==A B P A P B A P ,988.092.0068.0)()()(=+=+=+A P B A P B A P .)2(058.093.0988.0)()()(=-=-+=B P B A P B A P .829.093.01058.0)()()|(≈-==B P B A P B A P .29. 袋中装有8个球,其中3个红球,5个白球,3个人依次摸球(不返样).证明3人摸到红球的概率相等.证明 用事件A 表示"第一个人摸到红球",事件B 表示"第二个人摸到红球",事件C 表示"第三个人摸到红球". 83)(1813==CC A P ,)|()()|()()()()(A B P A P A B P A P B A P AB P B P +=+=8373857283=⨯+⨯=,)|()()|()()(B A C P B A P AB C P AB P C P +=)|()()|()(B A C P B A P B A C P B A P ++而5667283)|()()(=⨯==A B P A P AB P , 56157385)|()()(=⨯==A B P A P B A P , 56157583)|()()(=⨯==A B P A P B A P , 56207485)|()()(=⨯==A B P A P B A P ,61)|(=AB C P , 62)|(=B A C P , 62)|(=B A C P ,63)|(=B AC P ,所以 8363562062561562561561566)(=⨯+⨯+⨯+⨯=C P .30. 设B A ,为二事件,4.0)(=A P ,7.0)(=+B A P ,当B A ,互不相容时,求)(B P .当B A ,独立时,求)(B P . 解 当B A ,互不相容时)()()(B P A P B A P +=+,所以 3.0)()()(=-+=A P B A P B P . 当B A ,独立时,)()()()()()()()(B P A P B P A P AB P B P A P B A P -+=-+=+, )(4.0)(4.07.0B P B P -+=,5.0)(=B P .31. 某种电子元件的寿命在1000小时以上的概率为8.0,求3个这种元件使用1000小时后,最多只坏了一个的概率.解 设事件i A 表示"使用1000小时后第i 个元件没有坏",3,2,1=i ,显然321,,A A A 相互独立,事件A 表示"三个元件中最多只坏了一个",则321321321321A A A A A A A A A A A A A +++=.上式右边是四个两两互不相容的事件的和,且8.0)()()(321===A P A P A P)()]([3)]([)(12131A P A P A P A P +=896.02.08.038.023=⨯⨯+=.32. 加工某种零件,需经过三道工序,假定第一、二、三道工序的废品率分别为3.0,2.0,2.0,并且任何一道工序是否出废品与其他各道工序无关,求零件的合格率.解 设事件A 表示"任取一个零件为合格品",依题意A 表示三道工序都合格.448.0)2.01)(2.01)(3.01()(=---=A P .33. 某单位电话总机的占线率为4.0,其中某车间分机的占线率为3.0,假定二者独立,现在从外部打电话给该车间,求一次能打通的概率;第二次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数). 解 设事件i A 表示"第i 次能打通",m i ,,2,1 =,则42.0)3.01)(4.01()(1=--=A P , 2436.042.058.0)(2=⨯=A P ,42.058.0)(1⨯=-m m A P .34. 在一定条件下,每发射一发炮弹击中飞机的概率是6.0,现有若干门这样的炮独立地同时发射一发炮弹,问欲以%99的把握击中飞机,至少需要配置多少门这样的炮?解 设需配置n 门这样的炮,用i A 表示"第i 门炮击中飞机",n i ,,2,1 =.则击中飞机的概率为nn n A P A P A P A A A P 4.01)()()(1)(12121-=-=- 由 99.04.01≥-n可得 026.5≥n所有至少需要配置6门这样的炮.35. 一间宿舍中有4位同学的眼镜都放在书架上,去上课时,每人任取一副眼镜,求每个人都没有拿到自己眼镜的概率.解 设i A 表示"第i 人拿到自己眼镜",4,3,2,1=i .41)(=i A P ,设事件B 表示"每个人都没有拿到自己的眼镜".显然B 则表示"至少有一个拿到自己眼镜".且4321A A A A B +++=. )()(4321A A A A P B P +++=)()()()(4321414141A A A A P A A AP A AP A P k j i k j ij i j ii i-+-=∑∑∑≤<<≤≤<≤=)41(1213141)|()()(≤<≤=⨯==j i A A P A P A A P i j i j i ,)|()|()()(j i k i j i k j i A A A P A A P A P A A A P = )41(241213141≤<<≤=⨯⨯=k j i ,)|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =2411213141=⨯⨯⨯=,85241241121414)(3424=-⨯+⨯-⨯=C C B P ,83)(1)(=-=B P B P .36. 甲、乙、丙三人在同一时间内独立地破一份密码,如果这三人能译出的概率依次为2.0,35.0,25.0,求该密码能译出的概率.解 用事件C B A ,,分别表示甲、乙、丙三人能译出密码,事件E 表示"该密码能被译出",则)()()(1)(1)(C P B P A P C B A P E P -=-=61.039.0175.065.08.01=-=⨯⨯-=.37. 甲乙两射手,每次射击命中目标的概率分别为8.0和7.0,射击是独立进行的,求)1(各射击1次,恰有1人命中目标的概率; )2(各射击1次,至少有1人命中目标的概率; )3(各射击2次,恰有2次命中目标的概率.解 用事件B A ,分别表示一次射击中甲、乙击中目标,则8.0)(=A P ,7.0)(=B P .用事件F E D ,,分别表示)1(,)2(,)3()1(38.07.02.03.08.0)()()(=⨯+⨯=+=B A P B A P D P . )2(94.038.07.08.0)()()(=+⨯=+=D P AB P E P . )3(用事件i A 表示"甲第i 次击中目标",2,1=i .用事件i B 表示"乙第i 次击中目标",2,1=i . 则8.0)()()(21===A P A P A P , 7.0)()()(21===B P B P B P ,所以)()()()(212121212121B B A A P B B A A P B B A A P F P ++=)()()(212121212121B B A A P B B A A P B B A A P +++ 7.07.02.02.03.03.08.08.0⨯⨯⨯+⨯⨯⨯= 7.03.02.08.04⨯⨯⨯⨯+2116.01344.00196.00576.0=++=.38. 设C B A ,,三事件独立,试证B A -与C 独立. 证明 )()(])[(ABC AC P BC AC P C B A P -=-=-)()()()()()()(C P B P A P C P A P ABC P AC P -=-= )()]()([)()]()()([C P AB P A P C P B P A P A P -=-= )()()()(C P B A P C P AB A P -=-=所以B A -与C 独立.39. 四重伯努利试验中,事件A 至少发生一次的概率为8704.0,求下列事件的概率:)1(一次试验中A 发生的概率;)2(4次试验A 恰好发生2次的概率.解 )1(设一次试验中A 发生的概率为p ,则依题意可得 8704.0)1(14=--p , 1296.0)1(4=-p ,6.01=-p , 4.0=p .)2(用事件B 表示"4次试验中事件A 恰好发生2次", 3456.0)6.0()4.0()(2224==C B P .40. 有8门炮,每门炮命中目标的概率均为2.0,各射一炮,求下列事件的概率)1(目标被命中3弹; )2(目标至少被命中2弹; )3(目标至多被命中2弹;解 设)1(,)2(,)3(分别为事件A ,B ,C .)1(1468.032768.0008.056)8.0()2.0()(5338≈⨯⨯==C A P ;)2(4967.0)8.0)(2.0()8.0(1)(7188≈--=C B P ;)3(7969.0)8.0()2.0()8.0)(2.0()8.0()(62287188≈++=C C C P .41. 甲、乙二人轮流投篮,甲先开始,假定他们的命中率分别为4.0及5.0,问谁先投中的概率较大,为什么?解 设事件n n B A 212,-分别表示"甲在第12-n 次投中"与"乙在第n 2次投中",显然 ,,,,4321B A B A 相互独立.设事件A 表示"甲先投中". +++=)()()()(543213211A B A B A P A B A P A P A P 743.014.04.0)5.06.0(4.05.06.04.02=-=+⨯⨯+⨯⨯+= .计算得知5.0)(>A P ,5.0)(<A P ,因此甲先投中的概率较大. 42. 某高校新生中,北京考生占%30,京外其他各地考生占%70,已知在北京学生中,以英语为第一外语的占%80,而京外学生以英语为第一外语的占%95,今从全校新生中任选一名学生,求该生以英语为第一外语的概率.解 设事件A 表示"任选一名学生为北京考生",B 表示"任选一名学生以英语为第一外语".依题意3.0)(=A P ,7.0)(=A P ,8.0)|(=A B P ,95.0)|(=A B P .由全概率公式有)|()()|()()(A B P A P A B P A P B P +=905.095.07.08.03.0=⨯+⨯=.43. A 地为甲种疾病多发区,该地共有南、北、中三个行政小区,其人口比为4:7:9,据统计资料,甲种疾病在该地三个小区内发病率依次为004.0,002.0,005.0,求A 地的甲种疾病的发病率.解 设事件321,,A A A 分别表示从A 地任选一名居民其为南、北、中行政小区,易见321,,A A A 两两互不下容,其和为Ω.设事件B 表示"任选一名居民其患有甲种疾病",依题意:,45.0)(1=A P 35.0)(2=A P ,2.0)(3=A P ,004.0)|(1=A B P , 002.0)|(2=A B P , 005.0)|(3=A B P005.02.0002.035.0004.045.0)|()()(31⨯+⨯+⨯==∑=ii iA B P A P B P0035.0=.44. 一个机床有三分之一的时间加工零件A ,其余时间加工零件B ,加工零件A 时,停机的概率为3.0,加工零件B 时的停机的概率为4.0,求这个机床停机的概率.解 设事件A 表示"机床加工零件A ",则A 表示"机床加工零件B ",设事件B 表示"机床停工".37.0324.0313.0)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P .45. 市场供应的灯泡中有%40是甲厂生产的,%60是乙厂生产的,若甲、乙两厂生产的灯泡次品率分别为02.0和03.0,求 )1(顾客不加选择的买一个灯泡为正品的概率;)2(已知顾客买的一个灯泡为正品,它是甲厂生产的概率.解 设事件A 表示"顾客买一个灯泡是甲厂生产的",则A 表示"顾客买一个灯泡是乙厂生产的",设事件B 表示"顾客买一个灯泡是正品". )1()|()()|()()(A B P A P A B P A P B P += 974.097.06.098.04.0=⨯+⨯=. )2()|()()|()()|()()|(A B P A P A B P A P A B P A P B A P +=4025.0974.0392.097.06.098.04.098.04.0≈=⨯+⨯⨯=.46. 甲袋中装有4个红球,2个白球;乙袋中装有2个红球,4个白球,求下列事件的概率:)1(从甲袋任取1球放入乙袋,再从乙袋中任取1球,该球为红球; )2(从甲袋任取2球放入乙袋,再从乙袋中任取1球,该球为红球; )3(从甲袋中任取1球放入乙袋,再从乙袋中任取1球放回甲袋,最后从甲袋中任取一球,该球为红球.解 )1(设事件A 表示"第一次取出红球",事件A 表示"第一次取出白球",事件B 表示"第二次取出红球".381.021872627364)|()()|()()(≈=⨯+⨯=+=A B P A P A B P A P B P .)2(设事件1A 表示"第一次取出的两球都是红球",2A 表示"第二次取出的两球都是白球",3A 表示"第一次取出的两球一红一白",事件B 表示"第二次取出红球".)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++= 18132614121812262218142624C C C C C C C C C C C C C ⋅+⋅+⋅=4167.0831588215184156≈⨯+⨯+⨯=.)3(设事件A 表示"第一次取出的是红球",A 表示"第一次取出的是白球",事件B 表示"第二次取出的是红球",B 表示"第二次取出的是白球",事件C 表示"第三次取出的是红球".)|()()|()()(B A C P B A P AB C P AB P C P +=)|()()|()(B A C P B A P B A C P B A P ++)|()()|()|()()|(A B P A P B A C P A B P A P AB C P += )|()()|()|()()|(A B P A P B A C P A B P A P B A C P ++ 756264646463726265736464⨯⨯+⨯⨯+⨯⨯+⨯⨯=619.02113≈=. 47. 有编号为)1(、)2(、)3(的3个口袋,其中)1(号袋内装有两个1号球,1个2号球和1个3号球,)2(号袋内装有两个1号球和1个3号球,)3(号袋内装有3个1号球和两个2号球,现在先从)1(号袋内随机地抽取一个球,放入与球上号数相同的口袋中,第二次从该口袋中任取一个球,计算第二次取到几号球的概率最大?为什么?解 设事件i A 表示"第一次取到i 号球",i B 表示"第二次取到i 号球",3,2,1=i .依题意,321,,A A A 构成一个完全事件组.21)(1=A P , 41)()(32==A P A P ,21)|(11=A B P ,41)|()|(1312==A B P A B P , 21)|(21=A B P ,41)|()|(2322==A B P A B P ,21)|(31=A B P ,31)|(32=A B P ,61)|(33=A B P ,应用全概率公式)|()()(31i j i i j A B P A P B P ∑==可依次计算出21)(1=B P ,4813)(2=B P ,4811)(3=B P ,因此第二次取到1号球的概率最大.48. 甲、乙、丙三个机床加工一批同一种零件,其各机床加工的零件数量之比为2:3:5,各机床所加工的零件合格率,依次为%94,%90,%95,现在从加工好的整批零件中检查出一个废品,判断它不是甲机床加工的概率.解 设事件321,,A A A 分别表示"受检零件为甲机床加工","乙机床加工","丙机床加工".B 表示"废品",应用贝叶斯公式有 ∑==31111)|()()|()()|(i iiA B P A P A B P A P B A P7305.02.01.03.006.05.006.05.0=⨯+⨯+⨯⨯=,74)|(1)|(11=-=B A P B A P .49. 某人外出可以乘坐飞机、火车、轮船、汽车4种交通工具,其概率分别为%5,%15,%30,%50,乘坐这几种交通工具能如期到达的概率依次为%100,%70,%60与%90,已知该旅行者误期到达,求他是乘坐火车的概率.解 设事件4321,,,A A A A 分别表示外出人"乘坐飞机","乘坐火车","乘坐轮船",乘坐汽车",B 表示"外出人如期到达".∑==41222)|()()|()()|(i iiA B P A P A B P A P B A P21.01.05.04.03.03.015.0005.03.015.0≈⨯+⨯+⨯+⨯⨯=.50. 设发报台分别以6.0和4.0的概率发出"-"和"∙"信号.由于干扰作用,发"-"信号时,收报台以9.0的概率收到"-",以1.0的概率收到"∙";发"∙"信号时,收报台收到"∙""-""不清"的概率分别为8.0,1.0和1.0,求下列事件的概率. )1(收报台收到"-"信号; )2(收报台收到"∙"信号;)3(收报台收到"-"信号,确系发的"-"; )4(收报台收到"∙"信号,确系发的"∙".解 设事件21,A A 分别表示"发出"-""和"发出"∙"",事件321,,B B B 分别表示"收到"-"","收到"∙"","收到"不清"".依题意 6.0)(1=A P ,4.0)(2=A P ; 9.0)|(11=A B P ,1.0)|(12=A B P ;1.0)|(21=A B P ,8.0)|(22=A B P ,1.0)|(23=A B P . )1()|()()|()()(2121111A B P A P A B P A P B P += 58.01.04.09.06.0=⨯+⨯=.)2()|()()|()()(2221212A B P A P A B P A P B P += 38.08.04.01.06.0=⨯+⨯=.)3(58.054.0)|()()|()()|()()|(11211111111=+=A B P A P A B P A P A B P A P B A P931.0≈. )4()|()()|()()|()()|(22212122222A B P A P A B P A P A B P A P B A P +=842.038.032.08.04.01.06.08.04.0==⨯+⨯⨯=.51. 某企业采取三项深化改革措施,预计各项改革措施成功的可能性分别为6.0,7.0和8.0,设三项措施中有一项、两项、三项成功可取得明显经济效益的概率分别为4.0,7.0和9.0,若各项措施成功与否相互独立,求 )1(企业可取得明显经济效益的概率;)2(企业已取得经济效益,是由于有两项措施成功而引起的概率.(假定三项均不成功不会取得明显经济效益)解 设企业采取甲、乙、丙三项改革措施,用事件C B A ,,分别表示甲、乙、丙三项改革措施成功,则6.0)(=A P ,7.0)(=B P ,8.0)(=C P ,用事件D 表示“企业可取得明显经济效益”,用事件G F E ,,分别表示有一项、二项、三项措施成功,则 )()(C AB C B A BC A P E P ++=)()()()()()()()()(C P B P A P C P B P A P C P B P A P ++= 188.08.03.04.02.07.04.02.03.06.0=⨯⨯+⨯⨯+⨯⨯=, )()(C AB BC A C AB P F P ++=)()()()()()()()()(C P B P A P C P B P A P C P B P A P ++= 452.08.03.06.08.07.04.02.07.06.0=⨯⨯+⨯⨯+⨯⨯=, 336.08.07.06.0)()()()()(=⨯⨯===C P B P A P ABC P G P ,4.0)|(=E D P ,7.0)|(=F D P ,9.0)|(=G D P . )1()|()()|()()|()()(G D P G P F D P F P E D P E P D P ++=694.09.0336.07.0452.04.0188.0=⨯+⨯+⨯=. )2()|()()|()()|()()|()()|(G D P G P F D P F P E D P E P F D P F P D F P ++=456.0694.03164.0≈=.52. 一条生产线正常生产的时间为%95,不正常生产的时间为%5.正常运转时,产品%90为合格品,%10为不合格品;不正常运转时,产品合格品只占%40,从产品中任取1件检查,求下列事件的概率: )1(取出的产品为合格品;)2(取出的是合格品,它是正常运转时生产的; )3(取出的是合格品,它是不正常运转时生产的.解 用事件21,A A 分别表示生产线正常生产与不正常生产,用事件21,B B 分别表示取出一件产品为合格品与不合格品.依题意 95.0)(1=A P ,05.0)(2=A P ; 9.0)|(11=A B P ,1.0)|(12=A B P ; 4.0)|(21=A B P ,6.0)|(22=A B P .)1()|()()|()()(2121111A B P A P A B P A P B P +=875.04.005.09.095.0=⨯+⨯=;)2(977.0875.0855.0)()()|()()|()()|(21211111111≈=+=A B P A P A B P A P A B P A P B A P .53. 某种零件可以用两种工艺方法加工制造,第一种方法需三道工序,其中各道工序出现废品的概率分别是1.0,2.0和3.0;第二种方法需两道工序,每道工序出现废品的概率均为3.0.设在合格品中得到优等品的概率分别为9.0和8.0.比较哪种方法得到优等品的概率较大?解 用事件A 表示"用第一种方法生产出合格品",用事件B 表示"用第二种方法生产出合格品".用事件21,C C 分别表示用第一、第二种方法生产出优等品.依题意504.07.08.09.0)(=⨯⨯=A P , 49.07.07.0)(=⨯=B P , 9.0)|(1=A C P , 8.0)|(2=B C P .4536.09.0504.0)|()()(11=⨯==A C P A P C P , 392.08.049.0)|()()(22=⨯==B C P B P C P . 所以第一种方法得到优等品的概率较大. 54. 设一条昆虫生产n 个卵的概率为 λλ-=en p nn !, ,2,1,0=n ,其中0>λ.又设一个虫卵能孵化成昆虫的概率等于)10(<<p p .如果卵的孵化是互相独立的.问此虫的下一代有k 条的概率是多少? 解 设事件=n A "一个虫产下几个卵", ,2,1,0=n .=R B "该虫下一代有k 条虫", ,2,1,0=k .依题意λλ-==en p A P nn n !)(,⎩⎨⎧≤≤>=-nk qp C n k A B P kn k k n n k 00)|(其中p q -=1.应用全概率公式有)|()()|()()(0n k kn nn k n nk A B P AP A B P AP B P ∑∑∞=∞===∑∑∞=----∞=-=-=kn kn k kn k kn nk n q ek p qp k n k n en )!()(!)()!(!!!λλλλλ由于qk n kn kn kn ek n q k n q λλλ=-=-∑∑∞=--∞=-0)!()()!()(,所以有ppqkk ekp eek p B P λλλλλ--==)(!)()(, ,2,1,0=k .(B )1. 对于任意二事件A 和B ,与B B A =⋃不等价的是:)(a B A ⊂ )(b A B ⊂ )(c Φ=B A )(d Φ=B A解 )(dΦ=⇔⊂⇔⊂⇔=⋃B A A B B A B B A ,而B A B A ⊃⇔Φ=.2. 设B A ,为两个随机事件,且1)|(,0)(=>B A P B P ,则必有: )(a )()(A P B A P >⋃ )(b )()(B P B A P >⋃ )(c )()(A P B A P =⋃ )(d )()(B P B A P =⋃ 解 )(c由题设条件可得1)()()|(==B P AB P B A P ,所以)()(B P AB P =,即B A ⊃,于是 A B A =⋃,故有)()(A P B A P =⋃.3. 当事件A 与B 同时发生时,事件C 必发生,则必有: )(a )()(AB P C P = )(b )()(B A P C P ⋃=)(c 1)()()(-+≤B P A P C P )(d 1)()()(-+≥B P A P C P 解 )(d当事件A 与B 同时发生时,事件C 发生AB C ⊃⇔,所有,)(a 非正确答案.虽然AB C ⊃,但可能有C B A ⊃⋃,所以,)(b 非正确答案. 显然,01)()(<-+B P A P 可能成立,所有,)(c 非正确答案. 4. 设a A P =)(,b B P =)(,c B A P =+)(,则_______)(=B A P . )(a b a - )(b b c - )(c )1(b a - )(d )1(c a - 解 )(b)()()()]([)(AB P A P AB A P B A P B A P -=-=-Ω=,c AB P B P A P B A P =-+=+)()()()(,即c AB P b a =-+)(,所以c b a AB P -+=)(,于是得 b c c b a a AB P A P B A P -=-+-=-=)()()()(.5. 设C B A ,,三个事件两两独立,则C B A ,,相互独立的充分必要条件是: )(a A 与BC 独立 )(b AB 与C A ⋃独立 )(c AB 与AC 独立 )(d B A ⋃与C A ⋃独立 解 )(aC B A ,,相互独立C B A ,,⇔两两独立且)()()()(C P B P A P ABC P =.由题设条件已经知道了C B A ,,两两独立,因此C B A ,,相互独立)()()()(C P B P A P ABC P =⇔.对于)(a ,因为B 与C 已经相互独立,所以A 与BC 独立 )()()()()()()(C P B P A P ABC P BC P A P ABC P =⇔=⇔, 故应选)(a .6. 将一枚硬币独立地掷两次,引进事件:=1A {掷第一次出现正面}, =2A {掷第二次出现正面}, =3A {正、反面各出现一次}, =4A {正面出现两次} 则事件( ))(a 321,,A A A 相互独立 )(b 432,,A A A 相互独立 )(c 321,,A A A 两两独立 )(d 432,,A A A 两两独立 解 )(c21)(1=A P , 21)(2=A P , 21)(3=A P , 41)(4=A P .Φ=321A A A , Φ=432A A A , Φ=43A A ,所以)(a ,)(b ,)(d 非正确答案.)()(41)()(21421A P A P A P A A P ===,)()(31二次出现反面掷第一次出现正面,第P A A P =)()(4131A P A P ==,)()(32二次出现正面掷第一次出现反面,第P A A P =)()(4132A P A P ==,所以)(c 正确.7. 某人向同一目标独立重复射击,每次射击命中目标的概率为)10(<<p p ,则此人第4次射击恰好第2次命中目标的概率为( ). )(a 2)1(3p p - )(b 2)1(6p p - )(c 22)1(3p p - )(d 22)1(6p p -解 )(c前3次射击恰好1次命中目标的概率为2213)1(3)1(p p p p C -=-,第4次命中目标的概率为p ,再由独立性可得第4次射击恰好第2次命中目标的概率为22)1(3p p -.8. 把n 个"0"与n 个"1"随机地排列,求没有两个"1"连在一起的概率.解 考虑n 个"1"的放法:n 2个位置上"1"占有n 个位置,所有共有nn C 2种放法.而"没有两个1连在一起",相当于在n 个"0"之间及两头(共1+n 个位置)去放"1",这共有nn C 1+种放法. 所以没有两个"1"连在一起的概率为n nn nnn Cn CC 2211+=+.9. 从数字9,,2,1 中可重复地任取n 次,求n 次所取数字的乘积能被10整除的概率.解 记事件A 为"至少取到一次5",事件B 为"至少取到一次偶数",则所求概率为)(AB P .因为nn A P 98)(=, nn B P 95)(=, nn B A P 94)(=⋂,所以)()()(1)(1)(B A P B P A P B A P AB P ⋂+--=⋃-=nnn n 94581-+-=.10. 考虑一元二次方程02=++C Bx x ,其中C B ,分别是将一枚骰子接连掷两次先后出现的点数,求该方程有实根的概率p 和有重根的概率q . 解 C B ,均可取值6,5,4,3,2,1,而且取每一个值的概率均为61.一枚骰子接连掷两次,其基本事件总数为36=n ,且这36个基本事件是等可能的,所以,这是一个古典概型问题.当C B 42≥时方程有实根;C B 42=时方程有重根.关键的问题是求出满足C B 42≥和C B 42=的基本事件数.用表格列出分析结果:由此可得,使方程有实根的基本事件数为1966421=++++, 所以3619=p .使方程有重根的基本事件数为2个,所有181362==q .11. 已知事件B A ,满足)()(B A P AB P ⋂=,记p A P =)(,试求)(B P . 解 因为)(1)()()(B A P B A P B A P AB P ⋃-=⋃=⋂=)()()(1AB P B P A P ---=, 由此得 0)()(1=--B P A P , 所以 p A P B P -=-=1)(1)(.。
(完整版)概率论与数理统计课程第一章练习题及解答
概率论与数理统计课程第一章练习题及解答一、判断题(在每题后的括号中 对的打“√”错的打“×” )1、若1()P A =,则A 与任一事件B 一定独立。
(√)2、概率论与数理统计是研究和揭示随机现象统计规律性的一门数学学科。
(√)3、样本空间是随机现象的数学模型。
(√)4、试验中每个基本事件发生的可能性相同的试验称为等可能概型。
(×)5、试验的样本空间只包含有限个元素的试验称为古典概型。
(×)6、实际推断原理就是“概率很小的事件在一次试验中实际上几乎是不发生的”。
(√)7、若S 为试验E 的样本空间,12,,,n B B B L 为E 的一组两两互不相容的事件,则称12,,,n B B B L 为样本空间S 的一个划分。
(×)8、若事件A 的发生对事件B 的发生的概率没有影响,即()()P B A P B =,称事件A 、B 独立。
(√) 9、若事件12,,,(2)n B B B n ≥L 相互独立,则其中任意(2)k k n ≤≤个事件也是相互独立的。
(√)10、若事件12,,,(2)n B B B n ≥L 相互独立,则将12,,,n B B B L 中任意多个事件换成它们的对立事件,所得的n 个事件仍相互独立。
(√)二、单选题1.设事件A 和B 相互独立,则()P A B =U ( C )A 、()()P A PB + B 、()()P A P B +C 、1()()P A P B -D 、1()()P A P B -2、设事件A 与B 相互独立,且0()1,0()1P A P B <<<<,则正确的是( A )A 、A 与AB +一定不独立 B 、A 与A B -一定不独立C 、A 与B A -一定独立D 、A 与AB 一定独立3、设当事件A 与B 同时发生时,事件C 必发生,则( B )A 、1()()()P C P A PB ≤+- B 、1()()()PC P A P B ≥+-C 、()()P C P AB =D 、()()P C P A B =U4、在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电,以E 表示事件“电炉断电”,而(1)(2)(3)(4)T T T T ≤≤≤为4个温控器显示的按递增顺序排列的温度值,则事件E 等于( )A 、(1)0{}T t ≥B 、(2)0{}T t ≥C 、(3)0{}T t ≥D 、(4)0{}T t ≥分析 事件(4)0{}T t ≥表示至少有一个温控器显示的温度不低于临界温度0t ;事件(3)0{}T t ≥表示至少有两个温控器显示的温度不低于临界温度0t ,即(3)0{}E T t =≥,选C 。
概率论第一章随机事件及其概率答案
概率论第一章随机事件及其概率答案2(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2概率论与数理统计练习题系 专业 班 姓名 学号第一章 随机事件及其概率(一)一.选择题1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件2.下面各组事件中,互为对立事件的有 [ B ](A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品}(B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品}(C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个}(D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品}3.下列事件与事件A B -不等价的是 [ C ](A )A AB - (B )()A B B ⋃- (C )AB (D )AB4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ⋃表示 [ C ](A )二人都没射中 (B )二人都射中(C )二人没有都射着 (D )至少一个射中5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D ](A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A ]3(A ){|01}x x ≤< (B ){|01}x x <<(C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<<⋃≤<+∞7.在事件A ,B ,C 中,A 和B 至少有一个发生而C 不发生的事件可表示为[ A ](A )C A C B ; (B )C AB ;(C )C AB C B A BC A ; (D )A B C .8、设随机事件,A B 满足()0P AB =,则 [ D ](A ),A B 互为对立事件 (B) ,A B 互不相容(C) AB 一定为不可能事件 (D) AB 不一定为不可能事件二、填空题1.若事件A ,B 满足AB φ=,则称A 与B 互斥或互不相容 。
最新《概率论与数理统计》第一章-习题及答案
1. 将一枚均匀的硬币抛两次,事件代B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件A,B,C中的样本点。
解:(正,正),(正,反),(反,正),(反,反) / A =〔(正,正),(正,反) ?;B—(正,正),(反,反) / C 一(正,正),(正,反),(反,正) I2. 在掷两颗骰子的试验中,事件代B,C,D分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件AB,A • B,AC,BC,A-B-C-D中的样本点。
解:11二⑴),(1,2), ,(1,6), (2,1),(2,2), ,(2,6), ,(6,1),(6,2), ,(6,6)1 ;AB「(1,1),(1,3),(2,2),(3,小;A B 斗1,1),(1,3),(1,5), ,(6,2), (6,4), (6,6), (1,2), (2,1^?;Ac =:' ;BC 十,1), (2,2)?;A-B -C -D「(1,5),(2,4),(2,6),(4,2),(4,6),(5,1),(6,2),(6,4)13. 以A,B,C分别表示某城市居民订阅日报、晚报和体育报。
试用A, B, C表示以下事件:(1)只订阅日报; (2)只订日报和晚报;(3)只订一种报; (5)至少订阅一种报; (7)至多订阅一种报; (9)三种报纸不全订阅。
解:(1) ABC ; (2) ABC ;(3) ABC ABC ABC ; (4) ABC ABC ABC ; (5) ABC ;(6)ABC ; (7)(8) ABC ; (9) ABC4. 甲、乙、丙三人各射击一次,事件 A I ,A 2,A 3分别表示甲、乙、丙 射中。
试说明下列事件所表示的结果: A 2,A 2 A 3, AA 2 , A A 2 , A ] A 2 A 3, A i A 2 ' A 2 A 3 A i A 3.解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲 和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中; 甲、乙、丙三人至少有两人击中。
概率论第一章习题解答(全)
10 9 8 120 ; 3 2 1
事件 A 所包含基本事件数(即 5 固定,再从 6,7,8,9,10 这 5 个数中任选 2 个) :
C52
5 4 10 2
事件 B 所包含的基本事件数(即 5 固定,再从 1,2,3,4 这 4 个数中任选 2 个) :
故
43 6 2 10 1 6 1 P ( A) ; P( B) 120 12 120 20
1 1 1 1 1 1 1 17 ; 2 3 5 10 15 20 30 20 17 3 (ⅳ) P ( ABC ) P ( A B C ) 1 P ( A B C ) 1 ; 20 20
(ⅴ) 且 因为 ABC ( A B )C ( s ( A B ))C C ( AC BC )
P ( ABC ) P (( A B )C ) P (C ) P ( AC ) P ( BC ) 1 1 1 7 5 15 20 60
(ⅵ)
因为
P ( AB C ) P ( AB ) P (C ) P ( ABC )
已知 P ( AB )
4 7 , P ( ABC ) ,故 15 60
而 故
ABC AB , P ( AB ) 0 ,所以
P ( ABC ) 0
P ( A B C ) P ( A) P ( B ) P (C ) P ( AB ) P ( AC ) P ( BC ) P ( ABC ) 1 1 1 1 5互不相容,所以 AB , AB A , P ( AB ) P ( A) (ⅱ)因为 A A( B B ) AB AB ,且 AB AB , 所以
概率论第一张习题及答案
概率论第一张习题及答案1.设a,b是任意两个随机事件,则p[(+b)(a+b)(+)(a+)]=.2.设p(a)=0.4,p(a+b)=0.7,若事件a与b互斥,则p(b)=p(b);若事件a与b单一制,则=.3.未知随机事件a的概率p(a)=0.5,随机事件b的概率p(b)=0.6及条件概率p(b|a)=0.8,则p(a∪b)=.则表示b的矛盾事件,4.设随机事件a,b及其和事件a∪b的概率分别是0.4,0.3和0.6,若那么积事件a的概率p(a)=.)=.5.设a,b为随机事件,p(a)=0.7,p(a-b)=0.3,则p(6.未知a,b两个事件满足条件p(ab)=p(),且p(a)=p,则p(b)=.7.设三次独立试验中,事件a出现的概率相等,若已知a至少出现一次的概率等于19/27,则事件a在一次试验中出现的概率为.8.设立两个相互单一制的事件a,b和c满足条件:abc=φ,p(a)=p(b)=p(c)<1/2,且未知p(a∪b∪c)=9/16,则p(a)=.9.设两个相互独立的事件a和b都不发生的概率为1/9,a发生b不发生的概率与b发生a不发生的概率成正比,则p(a)=a=.11.设a,b就是两个随机事件,未知p(a|b)=0.3,p(b|a)=0.4,p(|)=0.7,则p(a+b)=.12.一射手对同一目标单一制地展开四次射击,若至少击中一次的概率为80/81,则该射手的命中率为.13.已知p(a)=p(b)=p(c)=1/4,p(ab)=0,p(ac)=p(bc)=1/8,则事件a,b,c全不发生的概率为.,则p(a||)+p(|b)=..14.设a,b就是两个随机事件,0〈p(b)〈1,且ab=,p(a+b)=.)=p(|)则10.设立随机事件a与b互不兼容,未知p(a)=p(b)=a(015.设a,b是两个随机事件,p(a)+(b)=0.9,p(ab)=0.2,则p(b)+p(a)=16.设a,b是两个随机事件,p(a)=0.4,p(ab)=0.2,p(a|b)+p()=1,则p(a+b)=.17.一批产品共计10个正品和2个次品,任一提取两次,每次扣一个,取出后无此摆回去,则第二次抽出的是次品的概率是.18.袋中存有50个乒乓球,其中20个就是黄球,30个就是白球,今存有两人依次随机的从袋中挑一球挑后不放回,则第二人取得黄球的概率是.19.若在区间(0,1)内任取两个数,则事件“两数之和小于6/5”的概率为.20.将c,c,e,e,i,n,s等7个字母随机地排列成一行,那么,恰好排列成英文单词science的概率为.21.设立工厂a和工厂b的产品的次品率仅1%和2%,现丛由a和b的产品分别占到60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属a产品的概率是.22.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也就是不合格品的概率为.23.甲,乙两人独立地对同一目标射击依次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率是.24.假设一批产品中一,二,三等品各占到60%,30%。
概率论与数理统计第一章习题参考答案
1第一章 随机事件及其概率1.解:(1){}67,5,4,3,2=S (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S = 2.解:81)(,21)(,41)(===AB P B P A P\)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -==838121=-= 87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB Ì 218185=-=3.解:用A 表示事件“取到的三位数不包含数字1” 2518900998900)(191918=´´==C C C A P4、解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330330””(1)455443)(2515141413´´´´==A C C C C A P =0.482)455421452)(251514122512´´´´+´´=+=A C C C A C B P =0.485、解:用A 表示事件“表示事件“44只中恰有2只白球,只白球,11只红球,只红球,11只黑球”, 用B 表示事件“表示事件“44只中至少有2只红球”, 用C 表示事件“表示事件“44只中没有只白球”只中没有只白球” (1)412131425)(C C C C A P ==495120=338(2)4124838141)(C C C C B P +-==16567495201= 或16567)(4124418342824=++=C C C C C C B P(3)99749535)(41247===CC C P6.解:用A 表示事件“某一特定的销售点得到k 张提货单”张提货单” nkn k n MM C A P --=)1()(7、解:用A 表示事件“表示事件“33只球至少有1只配对”,用B 表示事件“没有配对”表示事件“没有配对” (1)3212313)(=´´+=A P 或321231121)(=´´´´-=A P(2)31123112)(=´´´´=B P8、解、解 1.0)(,3.0)(,5.0)(===AB P B P A P(1)313.01.0)()()(===B P AB P B A P ,515.01.0)()()(===A P AB P A B P7.01.03.05.0)()()()(=-+=-+=AB P B P A P B A P)()()()()()]([)(B A P AB P B A P AB A P B A P B A A P B A A P ===757.05.0==717.01.0)()()()])([()(====B A P AB P B A P B A AB P B A AB P1)()()()]([)(===AB P AB P AB P AB A P AB A P(2)设{}次取到白球第i A i = 4,3,2,1=i则)()()()()(32142131214321A A A A P A A A P A A P A P A A A A P =0408.020592840124135127116==´´´=9、解: 用A 表示事件表示事件“取到的两只球中至少有“取到的两只球中至少有1只红球”,用B 表示事件表示事件“两只都是红球”“两只都是红球”方法1651)(2422=-=C C A P ,61)(2422==C C B P ,61)()(==B P AB P516561)()()(===A P AB P A B P方法2 在减缩样本空间中计算在减缩样本空间中计算在减缩样本空间中计算 51)(=A B P1010、解:、解:A 表示事件“一病人以为自己得了癌症”,用B 表示事件“病人确实得了癌症”表示事件“病人确实得了癌症” 由已知得,%40)(%,10)(%,45)(%,5)(====B A P B A P B A P AB P (1)B A AB B A AB A 与,=互斥互斥5.045.005.0)()()()(=+=+==\B A P AB P B A AB P A P同理同理15.01.005.0)()()()(=+=+==B A P AB P B A AB P B P (2)1.05.005.0)()()(===A P AB P A B P(3)2.05.01.0)()()(,5.05.01)(1)(====-=-=A P B A P A B P A P A P(4)17985.045.0)()()(,85.015.01)(1)(====-=-=B P B A P B A P B P B P(5)3115.005.0)()()(===B P AB P B A P1111、解:用、解:用A 表示事件“任取6张,排列结果为ginger ginger””92401)(61113131222==A A A A A A P1212、、解:用A 表示事件“A 该种疾病具有症状”,用B 表示事件“B 该种疾病具有症状”由已知2.0)(=B A P3.0)(=B A P 1.0)(=AB P (1),B A AB B A B A S=且B A AB B A B A ,,,互斥互斥()6.01.03.02.0)()()(=++=++=\AB P B A P B A P B A P4.06.01)(1)()(=-=-==B A P B A P B A P ()()()4.0)(1=---=AB P B A P B A P B A P(2)()()()6.01.03.02.0)(=++=++=AB P B A P B A P AB B A B A P(3)B A AB B =, B A AB ,互斥互斥4.03.01.0)()()()(=+=+==B A P AB P B A AB P B P )()()(])[()(B P AB P B P B AB P B AB P ==414.01.0==1313、解:用、解:用i A 表示事件“讯号由第i 条通讯线输入”,,4,3,2,1=i B 表示“讯号无误差地被接受”接受”;2.0)(,1.0)(,3.0)(,4.0)(4321====A P A P A P A P9998.0)(1=A B P ,9999.0)(2=A B P ,,9997.0)(3=A B P 9996.0)(4=A B P 由全概率公式得由全概率公式得9996.02.09997.01.09999.03.09998.04.0)()()(41´+´+´+´==å=ii iA B P A P B P99978.0=1414、、解:用A 表示事件“确实患有关节炎的人”,用B 表示事件“检验患有关节炎的人”由已知由已知1.0)(=A P ,85.0)(=A B P ,04.0)(=A B P , 则9.0)(=A P ,85.0)(=A B P ,96.0)(=A B P , 由贝叶斯公式得由贝叶斯公式得 017.096.09.015.01.015.01.0)()()()()()()(=´+´´=+=A B P A P A B P A P A B P A P B A P1515、解:用、解:用A 表示事件“程序交与打字机A 打字”,B 表示事件“程序交与打字机B 打字”, C 表示事件“程序交与打字机C 打字”;D 表示事件“程序因计算机发生故障被打坏”坏”由已知得由已知得6.0)(=A P ,3.0)(=B P ,1.0)(=C P ; 01.0)(=A D P ,05.0)(=B D P ,04.0)(=C D P由贝叶斯公式得由贝叶斯公式得)()()()()()()()()(C D P C P B D P B P A D P A P A D P A P D A P ++=24.025604.01.005.03.001.06.001.06.0==´+´+´´=)()()()()()()()()(C D P C P B D P B P A D P A P B D P B P D B P ++=6.05304.01.005.03.001.06.005030==´+´+´´=)()()()()()()()()(C D P C P B D P B P A D P A P C D P C P D A P ++=16.025604.01.005.03.001.06.004.01.0==´+´+´´=1616、解:用、解:用A 表示事件“收到可信讯息”,B 表示事件“由密码钥匙传送讯息”表示事件“由密码钥匙传送讯息”由已知得由已知得 95.0)(=A P ,05.0)(=A P ,1)(=A B P ,001.0)(=A B P由贝叶斯公式得由贝叶斯公式得999947.0001.005.0195.0195.0)()()()()()()(»´+´´=+=A B P A P A B P A P A B P A P B A P1717、解:用、解:用A 表示事件“第一次得H ”,B 表示事件“第二次得H ”, C 表示事件“两次得同一面”表示事件“两次得同一面”则,21)(,21)(==B P A P ,21211)(2=+=C P ,4121)(2==AB P ,4121)(2==BC P ,4121)(2==AC P )()()(),()()(),()()(C P A P AC P C P B P BC P B P A P AB P ===\C B A ,,\两两独立两两独立而41)(=ABC P ,)()()()(C P B P A P ABC P ¹C B A ,,\不是相互独立的不是相互独立的1818、解:用、解:用A 表示事件“运动员A 进球”,B 表示事件“运动员B 进球”, C 表示事件“运动员C 进球”,由已知得由已知得5.0)(=A P ,7.0)(=B P ,6.0)(=C P 则5.0)(=A P ,3.0)(=B P ,4.0)(=C P (1){})(C B A C B A C B A P P =恰有一人进球)()()(C B A P C B A P C B A P ++= (C B A C B A C B A ,,互斥)互斥) )()()()()()()()()(C P B P A P C P B P A P C P B P A P ++=相互独立)C B A ,,(29.06.03.05.04.07.05.04.03.05.0=´´+´´+´´=(2){})(C B A BC A C AB P P =恰有二人进球)()()(C B A P BC A P C AB P ++= (C B A BC A C AB ,,互斥)互斥) )()()()()()()()()(C P B P A P C P B P A P C P B P A P ++= 相互独立)C B A ,,(44.06.03.05.06.07.05.04.07.05.0=´´+´´+´´= (3){})(C B A P P =至少有一人进球)(1C B A P -= )(1C B A P -=)()()(1C P B P A P -=相互独立)C B A ,,( 4.03.05.01´´-=94.0= 1919、解:用、解:用i A 表示事件“第i 个供血者具有+-RHA 血型”, ,3,2,1=iB 表示事件“病人得救”表示事件“病人得救”,4321321211A A A A A A A A A A B=4321321211,,,A A A A A A A A A A 互斥,i A ( ,3,2,1=i )相互独立)相互独立 ()()(1P A P B P +=\+)21A A )()(4321321A A A A P A A A P +8704.04.06.04.06.04.06.04.032=´+´+´+=2020、解:设、解:设i A 表示事件“可靠元件i ” i=1,2,3,4,5 ,B 表示事件“系统可靠”由已知得p A P i =)(1,2,3,4,5)(i = 54321,,,,A A A A A 相互独立相互独立法1:54321A A A A A B =)()(54321A A A A A P B P =\()()()()()()542154332154321A A A A P A A A P A A A P A A P A P A A P ---++=()54321A A A A A P +543322p p p p p p p +---++= ()相互独立54321,,,,A A A A A543222p p p p p +--+=法2:)(1)(54321A A A A A P B P -=)()()(154321A A P A P A A P -= ()相互独立54321,,,,A A A A A()()]1][1)][(1[154321A A P A P A A P ----=()()()]1][1)][()(1[154321A P A P A P A P A P ----=()相互独立54321,,,,A A A A A()()()221111pp p----=543222p p p p p +--+=2121、解:令、解:令A :“产品真含杂质”,A :“产品真不含杂质”“产品真不含杂质” 则4.0)(=A P ,6.0)(=A P2.08.0)|(223´´=C A B P 9.01.0)|(223´´=C A B P \)()|()()|()(A P A B P A P A B P B P +=6.09.01.04.02.08.0223223´´´+´´´=C C\)()|()()|()()|()()()|(A P A B P A P A B P A P A B P B P AB P B A P +==905.028325660901********.02.08.0223223223»=´´´+´´´´´´=C C C第二章习题答案 1、{}()4.04.011´-==-k k Y Pk=1,2,… 2、用个阀门开表示第i A i))()()()()(())((}0{32321321A P A P A P A P A P A A A P X P -+=== 072.0)2.02.02.02.0(2.0=´-+=23213218.02.0)04.02.02.0(8.0])([}1{´+-+===A A A A A A P X P416.0=512.08.0)(}2{3321====A A A P X P 3、()2.0,15~b X{}kkk C k X P -´==15158.02.0 k=0,1,2,……,15(1){}2501.08.02.03123315=´==C X P(2){}8329.08.02.08.02.01214115150015=´-´-=³C C X P(3){}6129.08.02.08.02.08.02.031123315132215141115=´+´+´=££C C C X P(4){}0611.08.02.01551515=´-=>å=-k kkk C X P4、用X 表示5个元件中正常工作的个数个元件中正常工作的个数9914.09.01.09.01.09.0)3(54452335=+´+´=³C C X P5、设X={}件产品的次品数8000 则X~b(8000,0.001)由于n 很大,P 很小,所以利用)8(p 近似地~X {}3134.0!8768==<å=-k k k eX P6、(1)X~p (10){}{}0487.09513.01!101151151510=-=-=£-=>\å=-k k k eX P X P (2)∵ X~p ( l ) {}{}!01010210ll --==-=>=\e X P X P{}210==\X P21=\-le7.02ln ==\l {}{}1558.08442.01!7.0111217.0=-=-=£-=³\å=-k k k eX P X P或{}{}{}2ln 2121!12ln 21110122ln -=--==-=-=³-e X P X P X P 7、)1( )2(~p X 1353.0!02}0{22====--e e X P )2( 00145.0)1()(24245=-=--eeC p)3( 52)!2(å¥=-=k kk e p8、(1) 由33)(11312k x k dx kx dx x f ====òò¥+¥- 3=\k(2){}()2713331331231====£òò¥-xdx x dx x f X P(3)64764181321412141321412=-===þýüîí죣òxdx x X P(4)271927813)(321323132232=-====þýüîíì>òò¥+xdx x dx x f X P9、方程有实根04522=-++X Xt t ,则,则 0)45(4)2(2³--=D X X 得.14£³X X 或 有实根的概率有实根的概率937.0003.0003.0}14{104212=+=£³òòdx x dx x X X P10、)1( 005.01|100}1{200110200200122»-=-==<---òeedx ex X P x x)2(=>}52{X P 0|100200525220020052222»-=-=-¥--¥òeedx exx x)3( 25158.0}20{}26{}20|26{200202002622==>>=>>--ee X P X P X X P 11、解:、解: (1){}()275271942789827194491)(12132121=+--=÷øöçèæ-=-==>òò¥+x x dx x dx x f X P(2)Y~b(10,275){}kk kC k Y P -÷øöçèæ´÷øöçèæ==10102722275k=0,1,2,……,10(3){}2998.027*******2210=÷øöçèæ´÷øöçèæ==C Y P{}{}{}1012=-=-=³Y P Y P Y P 5778.027222752722275191110100210=÷øöçèæ÷øöçèæ-÷øöçèæ´÷øöçèæ-=C C 12(1)由()()òòò++==-+¥¥-10012.02.01dy cy dy dy y f24.0)22.0(2.01201c y c y y +=++=-2.1=\c ()ïîïíì£<+£<-=\其它102.12.0012.0y yy y f ()()ïïïïîïïïïíì³+<£++<£--<==òòòòòò--¥-¥-12.12.0102.12.02.0012.010)()(100011y dyy y dy y dy y dt y dtdt t f y F y yyyYïïîïïíì³<£++<£-+-<=11102.02.06.0012.02.0102y y y y y y y{}()()25.02.05.06.05.02.02.005.05.002=-´+´+=-=££F F Y P {}()774.01.06.01.02.02.011.011.02=´-´--=-=>F Y P {}()55.05.06.05.02.02.015.015.02=´-´+-=-=>F Y P{}{}{}{}{}7106.0774.055.01.05.01.01.0,5.01.05.0==>>=>>>=>>\Y P Y P Y P Y Y P Y Y P(2) ()()ïïïîïïïíì³<£+<£<==òòòò¥-41428812081002200x x dtt dt x dt x dt t f x F xxxïïïîïïïíì³<£<£<=4142162081002x x x x xx{}()()167811691331=-=-=££F F X P{}()16933==£F X P{}{}{}9716916733131==£££=£³\X P X P X X P 13、解:{}111,-´===n nj Y i X Pn j i j i ,¼¼=¹,2,1,,{}0,===i Y i X P 当n=3时,(X ,Y )联合分布律为)联合分布律为14、)1(2.0}1,1{===Y X P ,}1,1{}0,1{}1,0{}0,0{}1,1{==+==+==+===££Y X P Y X P Y X P Y X P Y X P42.020.004.008.010.0=+++= )2( 90.010.01}0,0{1=-===-Y X P)3(}2,2{}1,1{}0,0{}{==+==+====Y X P Y X P Y X P Y X P60.030.020.010.0=++= }0,2{}1,1{}2,0{}2{==+==+====+Y X P Y X P Y X P Y X P28.002.020.006.0=++= 15、()()()88104242c ee cdxdy ce dx x f yx y x =-×-===+¥-+¥-+¥+¥+-+¥¥-òòò8=\c{}()()()4402042228,2-+¥-+¥-+¥+-+¥>=-×-===>òòòòe ee dy edxdxdy y x f X P yyxx y x xY X 1 2 31 0 1/6 1/62 1/6 0 1/6 31/6 1/6 0D :xy x ££¥<£00{}()òò>=>yx dxdy y x f Y X P ,()()dx e e dy edxx yx xy x 0402042028-+¥-+-+¥-×==òòò()ò¥++¥----=÷øöçèæ-=+-=2626323122x x xxe e dx eeD :xy x -££££101{}()dy edxY X P xyx òò-+-=<+10421081 ()()òò------=-=1422101042222dx eedx eex xx yx()()22104221----=--=e e ex x16、(1)61)2(122=-=òdx x x s , îíìÎ=其他,0),(,6),(G y x y x f(2)îíì<<==ò其他,010,36)(2222x x dy x f x xXïïïîïïíì<£-=<<-==òò其他,0121),1(66210),2(66),(12y y yY y y dx y y y dx y x f17、(1)Y X0 1 2 P{X=x i } 0 0.10 0.08 0.06 0.24 1 0.04 0.20 0.14 0.38 20.02 0.06 0.300.38 P{Y=y i } 0.16 0.34 0.501(2)D :+¥<£+¥<£y x x 0或:yx y <£+¥<£00()()ïîïíì£>==\òò+¥-¥+¥-00,x x dye dy y xf x f xy Xîíì£>=-00x x e x()()ïîïíì£>==òò-¥+¥-00,0y y dxe dx y xf y f yy Yîíì£>=--00y y ye y22、(1)Y 1 Y 2 -11-14222qq q =×()q q-124222qq q =×()q q-12()21q -()q q-1214222qq q =×()q q-124222qq q =×且{}{}{}{}1,10,01,121212121==+==+-=-===Y Y P Y Y P Y Y P Y YP()12234142222+-=+-+=q qqqq(2){}10.00,0===Y X P{}{}0384.000==×=Y P X P 又 {}0,0==Y X P {}{}00=×=¹Y P X P∴X 与Y 不相互独立不相互独立23、()1,0~U X ()ïîïíì<<=其它2108y yy f Y且X 与Y 相互独立相互独立则()()()ïîïíì<<<<=×=其它0210,108,y x yy f x f y x f Y XD :1210<£<£x y y32|)384()8(8}{21032212=-=-==>òòò>y y dy y y ydxdy Y X P yx24X-2-11 3 k p51 61 51151301112+=X Y 52 1 2 10Y 12 510k p5115161+513011即Y 12 5 10 k p5130751301125、U=|X|,当0)|(|)()(0=£=£=<y X P y Y P y F y U时,1)(2)()()()|(|)()(0-F =--=££-=£=£=³y y F y F y X y P y X P y Y P y F y X X U 时,当故ïîïíì<³==-0,00,2)(||22y y e y f X U y U p的概率概率密度函数为26、(1)X Y =,当0)()()(0=£=£=<y X P y Y P y F y Y 时,)()()()()(022y F y X P y X P y Y P y F y X Y =£=£=£=³时,当故 ïîïíì<³==-0,00,2)(2y y ye y f X Y y Y 的概率概率密度函数为(2))21(+=X Y ,当0)21()()(0=£+=£=£y X P y Y P y F y Y 时,1)(1)12()12()21()()(01=³-=-£=£+=£=>>y F y y F y X P y X P y Y P y F y Y X Y 时,当时,当故 ïîïíì>>=+=其他的概率概率密度函数为,001,21)(21y y f X Y Y(3)2X Y =,当0)()()(02=£=£=£y X P y Y P y F y Y 时,)()()()()()(02y F y F y X y P y XP y Y P y F y X X Y --=££-=£=£=>时,当故 ïîïíì£>==-0,00,21)(22y y e yy f X Y y Y p 的概率概率密度函数为27、()()ïîïíì<<+=其它201381x x x f X()()p p 4,02,02Î=ÞÎx y x 当y 0£时,()0=y F Yp 40<<y (){}þýüîí죣-=£=p p p y X yP y X P y F Y2()()òò+==-pppyyyx dx x dx x f 01381p 4³y()()113812=+=þýüîí죣-=òdx x y X yP y F Y p p时当p 4,0¹¹\y y ()()ïîïíì><<<×÷÷øöççèæ+×==pp p p 4,0040211381'y y y y yy F y f Y Y()ïîïíì<<+=\其它40161163p p p y yy f Y28、因为X 与 Y 相互独立,且服从正态分布),0(2s N2222221)()(),(sp sy x Y X ey f x f y x f +-==由知,22Y XZ+=0)(0=£z f z Z 时,当时,当0>z òò----=xxx z x z Z z F 2222)(2222221spsy x e+-dydx=2222220202121sspq p sz r zedr rd e---=òòïîïíì³=-其他,0,)()2(222z ez z f z Z ss29、ïîïíì<<-=其他,011,21)(x x f X))1arctan()1(arctan(21)1(21)()()(112--+=+=-=òò+-¥¥-z z dy y dy y f y z f z f z z Y X Z pp30、0)(0=£z f z Z时,当时当0>z2)()()(2302)(z e dy ye edy y f y z f z f zyzyz YX Zll l l l l ----¥¥-==-=òò31、îíì<<=其他,010,1)(x x f X , íì<<=其他,010,1)(y y f Y ,ïïîïïí죣-=<£==-=òòò-¥¥-其他,021,210,)()()(110z zY X Z z z dy z z dy dy y f y z f z f32 解(1)()()îíì£>=ïîïíì£>==---¥+¥-òò00030023,3203x x e x x dye dy y xf x fxxX()()ïîïí죣=ïîïí죣==òò¥+-¥+¥-其它其它20212023,03y y dx e dx y x f y f xY(2)()()îíì>-£=ïîïíì>£==--¥-òò100030303x e x x dt e x dt t f x F xx txX X()()ïïîïïíì³<£<=ïïîïïíì³<£<==òò¥-21202121202100y y yy y y dt y dt t f y F y yY Y ()(){}()()Z F Z F Z Y X P Z FY X ×=£=\,max max ()ïïîïïíì³-<£-<=--21201210033z e z z ez Z z(3)()÷øöçèæ-=þýüîíìì£<211121max max F F Z P ()21121121233×÷÷øöççèæ---=--e e 233412141--+-=ee33、(1)ïîïíì<<=其他率密度为)上服从均匀分布,概,在(,00,1)(10l x lx f X X(2)两个小段均服从上的均匀分布),0(l ,ïîïíì<<=其他,010,1)(1x lx f X),m i n (21X X Y =, 2)1(1)(ly y F Y --=ïîïíì<<-=其他,00,)(2)(2l y l y l y f Y 34、(1)U 的可能取值是0,1,2,31201}2,3{}1,3{}0,3{}3{12029}2,1{}2,0{}2,2{}1,2{}0,2{}2{32}1,1{}0,1{}1,0{}1{121}0,0{}0{===+==+=======+==+==+==+=======+==+=========Y X P Y X P Y X P U P Y X P Y X P Y X P Y X P Y X P U P Y X P Y X P y X P U P Y X P U P U 0 1 2 3 P12132120291201(2) V 的可能取值为0,1,2}2{4013}1,3{}1,2{}2,1{}1,1{}1{4027}0,3{}0,2{}0,1{}2,0{}1,0{}0,0{}0{=====+==+==+=======+==+==+==+==+====V P Y X P Y X P Y X P Y X P V P Y X P Y X P Y X P Y X P Y X P Y X P V PV 0 1 2 P40274013(3) W 的可能取值是0,1,2,3,4,5 0}5{}4{121}2,1{}1,2{}0,3{}3{125}2,0{}1,1{}0,2{}2{125}1,0{}0,1{}1{121}0,0{}0{=======+==+=======+==+=======+=========W P W P Y X P Y X P Y X P W P Y X P Y X P Y X P W P Y X P Y X P W P Y X P W PW 0 1 2 3 P121125125121概率统计第三章习题解答1、52}7{,51}6{}5{}4{========X P X P X P X P529)(=X E2、2914}7{,296}6{,295}5{,294}4{========Y P Y P Y P Y P29175)(=Y E 3、设X 为取到的电视机中包含的次品数,为取到的电视机中包含的次品数, 2,1,0,}{3123102===-k CC C k X P kkX 0 1 2 p k 221222922121)(=X E4、设X 为所得分数为所得分数 5,4,3,2,1,61}{===k k X P 12,11,10,9,8,7,361}{===k k X P1249)(=X E5、(1)由}6{}5{===X P X P ,则,则l l l l --=e e !6!565 解出6=l ,故6)(==l X E(2)由于åå¥=-¥=--=-11212211)1(66)1(k k k k kkkpp 不是绝对收敛,则)(X E 不存在。
《概率论与数理统计》第一章-习题及答案
《概率论与数理统计》第一章习题及答案习题1.11. 将一枚匀整的硬币抛两次,事务C,分别表示“第一次出现A,B正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事务C,中的样本点。
A,B解:{=Ω(正,正),〔正,反〕,〔反,正〕,〔反,反〕} {=A(正,正),〔正,反〕};{=B〔正,正〕,〔反,反〕} {=C(正,正),〔正,反〕,〔反,正〕}2. 在掷两颗骰子的试验中,事务D,,分别表示“点数之和为A,BC偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事务D-+,-,,中AB-,ABCABCBCA的样本点。
解:{})6,6(,=Ω;),2,6(),1,6(,),2,1(),1,1(),6,2(,),2,2(),1,2(),6,1(,{})1,3(),2,2(),3,1(),1,1(AB;={})1,2(),2,1(),6,6(),4,6(),2,6(,+BA;=),5,1(),3,1(),1,1(A;C=Φ{})2,2(),1,1(BC;={})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(BA-DC-=-3. 以C,分别表示某城市居民订阅日报、晚报和体育报。
试用A,B,表示以下事务:A,BC〔1〕只订阅日报;〔2〕只订日报和晚报;〔3〕只订一种报; 〔4〕正好订两种报; 〔5〕至少订阅一种报; 〔6〕不订阅任何报; 〔7〕至多订阅一种报; 〔8〕三种报纸都订阅; 〔9〕三种报纸不全订阅。
解:〔1〕C B A ; 〔2〕C AB ;〔3〕C B A C B A C B A ++; 〔4〕BC A C B A C AB ++;〔5〕C B A ++; 〔6〕C B A ;〔7〕C B A C B A C B A C B A +++或C B C A B A ++ 〔8〕ABC ; 〔9〕C B A ++4. 甲、乙、丙三人各射击一次,事务321,,A A A 分别表示甲、乙、丙射中。
概率论与数理统计答案_北邮版_(第一章)
概率论与数理统计习题及答案习题 一1.写出下列随机试验的样本空间及下列事件包含的样本点. (1) 掷一颗骰子,出现奇数点. (2) 掷二颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点.”B =“出现点数之和为偶数,但没有一颗骰子出现1点.” (3)将一枚硬币抛两次, A =“第一次出现正面.”B =“至少有一次出现正面.”C =“两次出现同一面.” 【解】{}{}1123456135A Ω==(),,,,,,,,;{}{}{}{}{}(2)(,)|,1,2,,6,(12),(14),(16),(2,1),(4,1),(6,1),(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),(,),(,),(,),(,),(i j i j A B A B ΩΩ======= ,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),C =正正正反反2.设A ,B ,C 为三个事件,试用A ,B ,C 的运算关系式表示下列事件: (1) A 发生,B ,C 都不发生; (2) A 与B 发生,C 不发生; (3) A ,B ,C 都发生;(4) A ,B ,C 至少有一个发生; (5) A ,B ,C 都不发生; (6) A ,B ,C 不都发生;(7) A ,B ,C 至多有2个发生; (8) A ,B ,C 至少有2个发生. 【解】(1) A BC (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A BC ∪A BC ∪A B C ∪AB C ∪ABC =ABC(6) ABC(5) ABC=A B C(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.指出下列等式命题是否成立,并说明理由:(1) A∪B=(AB)∪B;(2) A B=A∪B;A ∩C=AB C;(3) B(4) (AB)( AB)= ∅;(5) 若A⊂B,则A=AB;(6) 若AB=∅,且C⊂A,则BC=∅;(7) 若A⊂B,则B⊃A;(8) 若B⊂A,则A∪B=A.【解】(1)不成立.特例:若Α∩B=φ,则ΑB∪B=B.所以,事件Α发生,事件B必不发生,即Α∪B发生,ΑB∪B不发生.故不成立.(2)不成立.若事件Α发生,则A不发生,Α∪B发生,所以A B不发生,从而不成立.A ,AB画文氏图如下:(3)不成立.B不发生,所以,若Α-B发生,则AB发生, A B故不成立.(4)成立.因为ΑB与AB为互斥事件.(5)成立.若事件Α发生,则事件B发生,所以ΑB发生.若事件ΑB发生,则事件Α发生,事件B发生.故成立.(6)成立.若事件C发生,则事件Α发生,所以事件B不发生,故BC=φ.⊂.(7)不成立.画文氏图,可知B A(8)成立.若事件Α发生,由()A A B ⊂ ,则事件Α∪B 发生. 若事件Α∪B 发生,则事件Α,事件B 发生. 若事件Α发生,则成立.若事件B 发生,由B A ⊂,则事件Α发生.4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )]=1-[0.7-0.3]=0.65.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7,求: (1) 在什么条件下P (AB )取到最大值? (2) 在什么条件下P (AB )取到最小值? 【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=347. 从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8. 对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59. 从一批由45件正品,5件次品组成的产品中任取3件,求其中恰有一件次品的概率.【解】与次序无关,是组合问题.从50个产品中取3个,有350C 种取法.因只有一件次品,所以从45个正品中取2个,共245C 种取法;从5个次品中取1个,共15C 种取法,由乘法原理,恰有一件次品的取法为245C 15C种,所以所求概率为21455350C C P C =.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果: (1) n 件是同时取出的;(2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P P P m m n mn M N MnN-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n m nnP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 在电话号码簿中任取一电话号码,求后面4个数全不相同的概率(设后面4个数中的每一个数都是等可能地取自0,1,…,9). 【解】这是又重复排列问题.个数有10种选择,4个数共有104种选择.4个数全不相同,是排列问题.用10个数去排4个位置,有410P 种排法,故所求概率为4410/10P P =.12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13. 一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14. 有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯= (3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15. 掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p == *16. 甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+ 22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076*17.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18. 某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=?19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P ==22. 从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1. (1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+⎪⎝⎭⎰⎰ 题22图23. 设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B ) 【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-24. 在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(颜色只有黑、白两种,箱中原有什么颜色的球是等可能的)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28. 某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30. 加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==- 12341()()()()P A P A P A P A =-10.980.970.950.97=-⨯⨯⨯= 31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.则1(0.8)0.9n-≥即为 (0.8)0.1n≤故n ≥1lg8=11.07,至少必须进行11次独立射击. 32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦()()()()P AB P B P AB P B =,即()[1()][()()]()P AB P B P A P AB P B -=- 因此 ()()()P AB P A P B =,故A 与B 相互独立. 33.三人独立地破译一个密码,他们能破译的概率分别为151314,求将此密码破译出的概率. 【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=- 42310.6534=-⨯⨯=34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)×0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)×0.6+0.4×0.5×0.7×1=0.458。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)0.6=B ,则___
()P AB 个是黄球,30球,取后不放回,求第二个人取得黄球的概率为,且事件,A B 互不相容,则)=B 个产品,其中有3个正品,按不放回抽样抽产品两次,每次抽为“第一次取到正品”,事件为“第二次取到的是正品”,则条件概率
,现从甲乙两人中任选一人,由此2
1
,则能将此密码译出的概率)0.7=B )1/4=AB ,
)0,(=AB P AC D.9
20 3
4. )=B D.
5. )0.84=P B ()=P B B. D.
1. 在的整数中任意抽取一个数,设表示抽取的数能被2整除的数,能被表示抽取的数能被()P ABC )B C .
2. 在的整数中任取1个数,求此数即不能被
3. 将
4个,用后放回,新球用过一次即算旧球. 设A={第一5. ,每次从中取一个零件,取出的零件不再放回去,求第三6. P {7. (1)8. 以C 9. (1
(2)若从市场上的商品中随机抽取一件,发现是次品,求它是甲厂生产的概率.
10. 设甲袋中有6只红球,4只白球,乙袋中有7只红球,3只白球,现在从甲袋中随机取一球放入乙袋,再从乙袋中随机取一球,试求
(1)两次都取到红球的概率;(2)从乙袋中取到红球的概率.
11. 设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的产品中随机抽取一件,发现是次品,求该次品属A 工厂生产的概率.
12. 有两箱同种类的零件,第一箱装50只,其中10只一等品,第二箱装30只,其中18只一等品.今从两箱中任意挑出一箱,然后从该箱中取零件两次,每次任取一只,不放回.求 (1)第一次取到的零件是一等品的概率;
(2)第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率.
13. 一学生接连参加同一课程的两次考试. 第一次及格的概率为p ,若第一次及格则第二次及格的概率也为p ;若第一次不及格则第二次及格的概率为
2
p . (1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率. (2)若已知他第二次已经及格,求他第一次及格的概率.
14. 有两种花籽,发芽率分别为0.8,0.9,从中各取一颗,设花籽是否发芽相互独立,求(1)这两颗花籽都能发芽的概率;(2)至少有一颗发芽的概率;(3)恰有一颗发芽的概率.
15. 根据报道美国人血型的分布近似地为:A 型37%,O 型为44%,B 型为13%,AB 型为6%.
夫妻拥有的血型是相互独立的.
(1)B 型的人只有输入B 和O 两种血型才安全. 若妻为B 型,夫为何种血型未知,求夫是妻的安全输血者的概率.
(2)随机地取一对夫妇,求妻为A 型,夫为B 型的概率.
(3)随机地取一对夫妇,求其中一人为A 型,另一人为B 型的概率. (4)随机地取一对夫妇,求其中至少有一人为O 型的概率.
16. 设第一只盒子中装有3只蓝球,2只绿球,2只白球;第二只盒子中装有2只蓝球,3只绿球,4只白球. 独立地分别在两只盒子中各取一只球. (1)求至少有一只蓝球的概率. (2)求有一蓝球一只白球的概率.
(3)已知至少有一只蓝球,求有一只蓝球一只白球的概率.。