一次函数应用题 (讲义及答案)
一次函数应用题含答案
一次函数应用题含答案一次函数应用题含答案一、方案优化问题我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别为yA元和yB元.(1)请填写下表,并求出yA,yB与x之间的函数关系式;(2)试讨论A、B两村中,哪个村花的运费较少;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问该怎样调运才能使两村运费之和最小?求出这个最小值.解:(1)yA=-5x+5000(0≤x≤200),yB=3x+4680(0≤x≤200).(2)当yA=yB时,-5x+5000=3x+4680,x=40;当yA>yB时,-5x+5000>3x+4680,x<40;当yA<yb时,-5x+5000<3x+4680,x style="padding: 0px; margin: 0px; font-family: Arial, 宋体; font-size: 14px; white-space: normal; background-color: rgb(255, 255, 255);">40.当x=40时,yA=yB即两村运费相等;当0≤x<40时,ya>yB即B村运费较少;当40<x≤200时,ya<yb即a村费用较少.(3)由yB≤4830得3x+4680≤4830∴x≤50设两村的运费之和为y,∴y=yA+yB.即:y=-2x+9680.又∵0≤x≤50时,y随x增大而减小,∴当x=50时,y有最小值,y最小值=9580(元).答:当由A村调往C仓库的柑桔重量为50吨、调往D仓库为150吨,由B村调往C仓库为190吨、调往D仓库110吨的时候,两村的运费之和最小,最小费用为9580元.要点提示:解答方案比较问题,求函数式时,对有图象的,多用待定系数法求;对没有给出图象的,直接依题意列式子;方案比较问题通常与不等式、方程相联系;比较方案,即比较同一自变量所对应的函数值,要将函数问题转化为方程、不等式问题;解答方案比较问题尤其要注意:不同的区间,对应的大小关系也多不同.二、利润最大化问题某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.解:(1)设购进甲种T恤x件,则购进乙种T恤(100-x)件.可得,6195≤35x+70(100-x)≤6299.解得,20■≤x≤23.∵x为解集内的正整数,∴x=21,22,23.∴有三种进货方案:方案一:购进甲种T恤21件,购进乙种T恤79件;方案二:购进甲种T恤22件,购进乙种T恤78件;方案三:购进甲种T恤23件,购进乙种T恤77件.(2)设所获得利润为W元.W=30x+40(100-x)=-10x+4000.∵k=-10<0,∴W随x的增大而减小.∴当x=21时,W=3790.该店购进甲种T恤21件,购进乙种T恤79件时获利最大,最大利润为3790元.(3)购进甲种T恤9件、乙种T恤1件.要点提示:在一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.求一次函数的最大值、最小值,一般都是采用“极端值法”,即用自变量的端点值,根据函数的增减性,对应求出函数的端点值(最值).三、行程问题从甲地到乙地,先是一段平路,然后是一段上坡路.小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间.假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图1中的折线OABCDE表示x与y之间的函数关系.(1)小明骑车在平路上的速度为 km/h;他途中休息了 h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15-5=10,小明骑车在下坡路的速度为:15+5=20.∴小明返回的时间为:(6.5-4.5)÷20+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1-0.5-0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意得4.5=0.3k1+b16.5=0.5k1+b1,解得:k1=10b1=1.5,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2x+b2,由题意得6.5=0.5k2+b24.5=0.6k2+b2,解得:k2=-20b2=16.5,∴y=-20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在坡路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意得10t+1.5=-20(t+0.15)+16.5,解得:t= 0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.要点提示:行程类一次函数试题以图象、点坐标相组合的形式呈现,灵活性强,对学生分析问题、解决问题的能力要求较高,重在考查学生的识图能力和创新意识.解决图象中的行程问题除了要掌握好路程、速度和时间三者之间的基本关系外,最重要的'是要学会从图象中获取信息,理清各变量之间的关系,然后根据题意选择适当的解题方法.四、分段计费问题已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为实施省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定若企业的月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收■元.若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴50k+b=20060k+b=260解得k=6b=-100∴y关于x的函数关系式是y=6x-100(x≥50);(2)由可知,当y=620时,x>50∴6x-100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x-100+■(x-80)=600,化简得x2+40x-14000=0解得:x1=100,x2=-140(不合题意,舍去).答:这家企业2014年3月份的用水量是100吨.要点提示:分段函数的特征是不同的自变量区间所对应的函数式不同,其函数图象是一个折线.解决分段计费问题,关键是要与所在的区间相对应.分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上,在求解析式时要用好“折点”坐标,同时在分析图象时还要注意“折点”所表示的实际意义,“折点”的纵坐标通常是不同区间的最值.2015年第3期《锐角三角函数》参考答案1.D;2.A;3.B;4.■;5.9■;6.2■;7.120;8. 解:(1)■-3tan30°+(π-4)0-(■)-1=2■-3×■+1-2=■-1(2)■(2cos45°-sin60°)+■=■(2×■-■)+■=2-■+■=29. 解:过点A作直线BC的垂线,垂足为D.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=240米,在Rt△ACD中,tan∠CAD=■,∴AD=■=■=80■,在Rt△ABD中,tan∠BAD=■,∴BD=ADtan30°=80■×■=80,∴BC=CD-BD=240-80=160. 答:这栋大楼的高为160米. 10.解:在Rt△CDB中,∠C=90°,BC=■=■=4,∴tan∠CBD=■.在Rt△ABC中,∠C=90°,AB=■=4■,∴sinA=■.。
一次函数应用题(讲义及答案). (1)
一次函数应用题(讲义)➢课前预习1. 一条公路旁依次有A,B,C三个村庄,甲、乙两人骑自行车分别从A村、B村同时出发前往C村,甲、乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B 两村相距10 km;②出发1.25 h 后两人相遇;③出发2 h 后甲到达C 村庄;④甲每小时比乙多骑行8km.其中正确的个数是()A.1 个B.2 个C.3 个D.4 个➢知识点睛一次函数应用题的处理思路:1.理解题意,梳理信息结合图象、文字信息理解题意,将实际场景与图象中轴、点、线对应起来理解分析.①看轴,明确横轴和纵轴表示的实际意义.②看点,明确起点、终点、状态转折点表示的具体意义,还原实际情景,提取每个点对应的数据.③看线,观察每段线的变化趋势(增长或下降等),分析每段数据的变化情况.2.辨识类型,建立模型①将所求目标转化为函数元素,借助图象特征,利用表达式进行求解;②将图象中的点坐标还原成实际场景中的数据,借助实际场景中的等量关系列方程求解.3.求解验证,回归实际1➢精讲精练1.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400 米,先到终点的人原地休息.已知甲先出发4 分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60 米/分;②甲走完全程用了40 分钟;③乙用16 分钟追上甲;④乙走完全程用了30 分钟;⑤乙到达终点时,甲离终点还有300 米.其中正确的结论是.(填序号)2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地的过程中y 与x 之间的函数关系,结合图象解答下列问题:(1)求线段AB 所在直线的函数解析式以及甲、乙两地之间的距离;(2)求a 的值;(3)出发多长时间,两车相距140 千米?3.甲、乙两台机器共同加工一批零件,一共用了6 小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲的加工时间x(h)之间的函数图象为折线OA-AB-BC,如图所示,结合图象解答下列问题:(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)求y 与x 之间的函数关系式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?4.在一条笔直的公路上依次有A,C,B 三地,甲、乙两人同时出发,甲从A 地骑自行车去B 地,途经C 地休息1 分钟,继续按原速骑行至B 地,甲到达B 地后,立即按原路原速返回A 地;乙步行从B 地前往A 地.甲、乙两人距A 地的路程y(米)与时间x(分)之间的函数关系如图所示,结合图象解答下列问题:(1)甲的骑行速度为米/分,点M 的坐标为;(2)求甲返回时距A 地的路程y 与时间x 之间的函数关系式(不需要写出自变量的取值范围);(3)甲从A 地出发,经过多长时间在返回途中追上乙?5.某工厂安排甲、乙两个运输队各从仓库调运物资300 吨,两队同时开始工作,甲运输队工作3 天后因故停止,2天后重新开始工作,由于工厂调离了部分工人,甲运输队的工作效率1降低到原来的;乙运输队在整个运输过程中工作效率保持2不变.甲、乙运输队调运物资的数量y(吨)与甲的工作时间x(天)的函数图象如图所示,结合图象解答下列问题:(1)a= ,b= .(2)求甲运输队重新开始工作后,甲运输队调运物资的数量y(吨)与工作时间x(天)的函数关系式;(3)直接写出乙运输队比甲运输队多运50 吨物资时x 的值.6.快、慢两车分别从相距480 千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1 小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,结合图象解答下列问题:(1)慢车的行驶速度为千米/时,a= ;(2)求快车的速度和B 点坐标;(3)两车出发后几小时相距的路程为200 千米?请直接写出答案.⎨ ⎩【参考答案】➢ 课前预习1. D➢ 精讲精练1. ①②④2. (1)线段 AB 所在直线的函数解析式为 y = -140x + 280 ;甲乙两地之间的距离为 280 千米;(2)a 的值为 210;(3)出发 1 h 或 3 h 时,两车相距 140 千米.3. (1)270,20,40;⎧50x (0 < x ≤1) (2) y = ⎪20x + 30(1 < x ≤3);⎪60x - 90(3 < x ≤ 6) (3)在整个加工过程中,甲加工 1.5 小时或 4.5 小时时, 甲与乙加工的零件个数相等.4. (1)240,(6,1200);(2) y = -240x + 2640 ;(3)甲从 A 地出发,经过 8 分钟在返回途中追上乙;5. (1)5,11;(2) y = 25x + 25 (5 ≤ x ≤11) ;(3)乙运输队比甲运输队多运 50 吨物资时,x 的值为 6 或 9.6. (1)60,360;(2) 快车的速度为 120km/h ,B 点的坐标为(4,0);(3) 两车出发14 h , 34 h 或14 h 时,相距的路程为 2009 9 3千米.。
一次函数的表达式、图象、性质(讲义及答案).
5. 若 y (k 3)xk28 5 是一次函数,则 k=_______.
6. 一次函数 y=kx+b 中,若 k<0,b>0,则它的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
18. 如图,在同一直角坐标系中,一次函数 y=k1x,y=k2x,y=k3x, y=k4x 的图象分别为 l1,l2,l3,l4,将 k1,k2,k3,k4 从大到小 排列并用“>”连接为___________.
19. 直线 y=-x 与 y=-x+5 的位置关系是_______,直线 y=-x 可以 看作是由直线 y=-x+5__________________.
致是( )
A.
B.
C.
D.
12. 一次函数 y=kx-k 的图象可能是( )
A.
B.
C.
D.
13. 下列一次函数: ①y=5x-6;②y=-0.3x+3;③ y 5x 3 ;④ y ( 5 6)x . 其中 y 的值随 x 值的增大而减小的是_____.(填序号)
14. 若一次函数 y=kx+b 的函数值 y 随 x 的增大而减小,且图象与
3
9. 已知一次函数 y=kx+b 的图象经过第一、二、三象限,则 b 的
值可以是( )
A.-2
B.-1
C.0
D.2
10. 直线 y=kx+b 经过第一、三、四象限,则直线 y=bx-k 只能是
图中的( )
一次函数完美讲义
一次函数(一)函数1、变量:在一个变化过程中可以取不同数值的量;常量:在一个变化过程中只能取同一数值的量;s=中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是例题:在匀速运动公式vt________,常量是_______.在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数;判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应例题:下列函数1y=πx 2y=2x-1 3y=错误! 4y=2-1-3x 5y=x2-1中,是一次函数的有A4个 B3个 C2个 D1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域;4、确定函数定义域的方法:1关系式为整式时,函数定义域为全体实数;2关系式含有分式时,分式的分母不等于零;3关系式含有二次根式时,被开放方数大于等于零;4关系式中含有指数为零的式子时,底数不等于零;5实际问题中,函数定义域还要和实际情况相符合,使之有意义;例题:下列函数中,自变量x的取值范围是x≥2的是. D.A..函数y=x的取值范围是___________.5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤第一步:列表表中给出一些自变量的值及其对应的函数值;第二步:描点在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;第三步:连线按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来;8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律;解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示;图象法:形象直观,但只能近似地表达两个变量之间的函数关系;1.判定一次函数的方法:1)从表达式角度考虑:有三条件:自变量x为一次;因变量为一次,系数k≠0.三、考点知识梳理一一次函数的定义一般地,如果y=kx+bk、b是常数,k≠0,那么y叫做x的一次函数.特别地,当b=0时,一次函数y=kx+b就成为y=kxk是常数,k≠0,这时,y叫做x的正比例函数.1.由定义知:y是x的一次函数它的解析式是y=kx+b,其中k、b是常数,且k≠0.2.一次函数解析式y=kx+bk≠0的结构特征:1k ≠0;2x 的次数是1;3常数项b 可为任意实数.它可以看作由直线y=kx 平移|b|个单位长度得到.当b>0时,向上平移;当b<0时,向下平移3.正比例函数解析式y =kxk ≠0的结构特征:1k ≠0;2x 的次数是1;3没有常数项或者说常数项为0.温馨提示:正比例函数是一次函数,但一次函数(0)y kx b k =+≠不一定是正比例函数,只有当b=0时,它才是正比例函数;例1 已知y-3与x 成正比例,且x=2时,y=7.1写出y 与x 之间的函数关系式; 2当x=4时,求y 的值;3当y=4时,求x 的值.二一次函数的图象1.一次函数y =kx +bk ≠0的图象是经过点0,b 和-错误!,0的一条直线.2.正比例函数y =kxk ≠0的图象是经过点0,0和1,k 的一条直线.3.一次函数y =kx +bk ≠0的图象与k 、b 符号的关系:1k >0,b >0图象经过第一、二、三象限.2k >0,b <0图象经过第一、三、四象限.3k <0,b >0图象经过第一、二、四象限.4k <0,b <0图象经过第二、三、四象限.温馨提示:画一次函数的图像,只需过图像上两点作直线即可,一般取(0,)b ,(,0)b k-两点; 三一次函数图象的性质一次函数y =kx +b,当k >0时,y 随x 的增大而增大,1) 图象一定经过第一、三象限;当k <0时,y 随x 的增大而减小,图象一定经过第二、四象限.k 的正负决定直线的倾斜方向:● 两直线k 相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.|k|=x y ∆∆● 增减性:当k>0时,y 随x 值的增加而增加,当k<0时,y 随x 值的增加而减小,● |k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大直线陡,|k|越小,直线与x 轴相交的锐角度数越小直线缓;增加的快慢由两点的纵坐标之差和横坐标之差的比值来决定,即由k 值的大小决定;点和直线的关系:点Px 0,y 0与直线y=kx+b 的图象的关系1如果点Px 0,y 0在直线y=kx+b 的图象上,那么x 0,y 0的值必满足表达式y=kx+b ;2如果x 0,y 0是满足函数解析式的一对对应值,那么以x 0,y 0为坐标的点Px 0,y 0必在函数的图象上. 2) 直线和直线的关系:当平面直角坐标系中两直线平行时,这两个函数解析式中k 1=k 2,且b 1≠b 2.当平面直角坐标系中两直线重合时,这两个函数解析式中k 1=k 2,且b 1=b 2.当平面直角坐标系中两直线相时,这两个函数解析式中k 1≠k 2,.当平面直角坐标系中两直线垂直时,其函数解析式中K 值互为负倒数即两个K 值的乘积为-1● 直线b 1=k 1x+b 1与直线y 2=k 2x+b 2k 1≠0 ,k 2≠0的位置关系:① k 1≠k 2⇔y 1与y 2相交;其交点的横纵坐标分别是两直线表达式所联立的方程组的解; ② ⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点0,b 1或0,b 2; ③ ⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④ ⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合四一次函数的应用1.求一次函数解析式求一次函数解析式,一般是已知两个条件,设出一次函数解析式,然后列出方程,解方程组便可确定一次函数解析式.2.利用一次函数性质解决实际问题用一次函数解决实际问题的一般步骤为:①设定实际问题中的变量;②建立一次函数关系式;③确定自变量的取值范围;④利用函数性质解决问题;⑤答.温馨提示:1.题目中的条件在列等式、不等式时不能重复使用,要仔细寻找题目中的隐含条件;2.正确理解题目中的关键词语:盈、亏、涨、跌、收益、利润、赚、赔、打折、不大于、不小于;3.设未知数相关量要有依据,而代数式为多项式时要加括号,带上单位,列方程时相关量的单位要保持一致;类型一一次函数的图象与性质1已知一次函数y=-3x+2,它的图象不经过第________象限.2若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值A.增加4 B.减小4 C.增加2 D.减小23若一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么对k和b的符号判断正确的是A.k>0,b>0 B.k>0,b<0C.k<0,b>0 D.k<0,b<04如图,一次函数y=-错误!x+2的图象上有两点A、B,A点的横坐标为2,B点的横坐标为a0<a<4且a≠2,过点A、B分别作x轴的垂线,垂足为C、D,△AOC、△BOD的面积分别为S1、S2,则S1、S2的大小关系是A.S1>S2B.S1=S2C.S1<S2D.无法确定点拨准确掌握一次函数的图象与性质是做对此类题的关键.答案1三2A3D4A类型二一次函数的解析式及应用1将直线y=错误!x向下平移3个单位所得直线的解析式为________.2我们知道,海拔高度每上升1千米,温度下降6 ℃,某时刻,益阳地面温度为20 ℃,设高出地面x千米处的温度为y ℃.①写出y与x之间的函数关系式;②已知益阳碧云峰高出地面约500米,求这时山顶的温度大约是多少℃③此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求飞机离地面的高度为多少千米点拨一次函数解析式的确定需要明确两个点的坐标,从而求出系数k、b的值,一次函数的应用题需从题意中获取有用的信息.答案1y=错误!x-3.2①y=20-6xx>0;②500米=千米,y=20-60×=17℃;③令-34=20-6x,得x=9千米.五、易错题探究一次函数y=kx+bk为常数且k≠0的图象如图所示,则使y>0成立的x的取值范围为________.解析当y>0时,函数图象在x轴上方,此时x<-2.易错警示不清楚y>0指的是哪部分图象.一、选择题1.若正比例函数的图象经过点-1,2,则这个图象必经过点A.1,2 B.-1,-2 C.2,-1 D.1,-2解析:设y=kxk≠0把-1,2代入得k=-2,∴y=-2x,再把被选项代入验证,选D.2.若一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的正半轴相交,那么对k和b的符号判断正确的是A.k>0,b<0 B.k>0,b<0C.k<0,b>0 D.k<0,b<03.若直线y=3x+b与两坐标轴围成的三角形面积为6,则b为A.6 B.-6 C.±6 D.±7二、填空题11.已知一次函数y=2x-6与y=-x+3的图象交于点P,则点P的坐标为________.12.已知一次函数y=kx+b的图象如图所示,当x<1时,y的取值范围是________.三、解答题13.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P1,b.1求b的值;2不解关于x、y的方程组错误!请你直接写出它的解;3直线l3:y=nx+m是否也经过点P请说明理由.。
一次函数图像应用题(带解析版答案)
一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元D.0.5元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x 轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n 的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为解得故答案为:(n+,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A30250.05B50500.05C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。
一次函数计算(讲义)
一次函数计算(讲义)➢课前预习1.要画出一次函数y kx b=+的图象,需要______个点的坐标,通常找________,________;正比例函数图象经过坐标原点,因此只需再确定____点即可,通常找________.2.解方程组:(1)204k bb-+=⎧⎨=⎩(2)235y xy x=-+⎧⎨=-+⎩3.x轴上的点____坐标等于0;y轴上的点____坐标等于0.4.一次函数y=3x+4与y轴的交点坐标是__________;若一次函数y=3x+b与y轴的交点为(0,4),则b=______,一次函数的表达式为_______________.➢知识点睛一、数形结合看函数从“数”的角度看从“形”的角度看平面内一点代入一次函数的表达式(二元一次方程)一条直线(一次函数的图象)联立交点坐标(二元一次方程组的解)二、一次函数计算的特征及操作:①已知两点坐标求一次函数表达式,利用待定系数法;②函数图象经过一点(即点在直线上),坐标代入表达式;③求交点坐标,联立两个函数的表达式,解方程组.三、两个一次函数图象的位置关系与相应的二元一次方程组的解的联系:①图象相交(12k k≠)二元一次方程组有唯一解;②图象平行(1212k k b b=≠,)二元一次方程组无解;③图象重合(1212k k b b==,)二元一次方程组有无穷多解.➢精讲精练1.已知一次函数的图象经过点A(-2,0),B(0,4),求这个函数的表达式.2.已知一次函数的图象经过点A(-2,3),B(2,1),求这个函数的表达式,并在右边的坐标系中画出其函数图象.的交点)3. 若直线y =2x +1经过点(m +2,1-m ),则m =______.4. 一次函数y =-2x +3的图象与x 轴交于点_______,与y 轴交于点__________.5. 在一次函数1122y x =+的图象上,到y 轴的距离为1的点的坐标为__________________.6. 若点(3,-4)在正比例函数y =kx 的图象上,那么这个函数的解析式为( )A .43y x =B .43y x =-C .34y x =D .34y x =-7. 若正比例函数的图象经过点(-1,2),则这个图象必经过点( ) A .(1,2) B .(-1,-2) C .(2,-1) D .(1,-2)8. 若一次函数y=2x+b 的图象经过点A (-1,1),则b =______,该函数图象经过点B (1,_____ )和点C ( _____,0).9. 已知直线y =kx +b 与直线y =-x +1平行,且过点(8,2),则一次函数的表达式是_______________.10. 已知y 是x 的一次函数,下表给出了部分对应值:11. 已知y -2与x 成正比,且当x =1时,y =-6.(1)y 与x 之间的函数关系式为____________;(2)若点(a ,2)在这个函数图象上,则a =_______.12. 以方程2x -y =3的解为坐标的点(x ,y )都在一次函数________的图象上;一次函数y =2x -3的图象上的点(x ,y )都满足方程____________.13. 已知直线y =x -3与y =2x +2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是____________;一次函数1y x =+的图象与25y x =--的图象的交点坐标是____________.14. 若直线y =2x+b 经过直线y=x -2与直线y =3x +4的交点,则b 的值为( ) A .-11 B .-1 C .1 D .615. 当b=______时,直线y =2x +b 与y =3x -4的交点在x 轴上.16. 如图,直线l 1,l 2相交于点A .求A 的坐标.17. (1)两直线111l y k x b =+:,222l y k x b =+:的位置关系与关于x ,y 的二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩的解的联系:(其中4个常数均不为零.每小题第一个空选填“相交”、“平行”或“重合”;其余空选填“唯一”、“无”或“无穷多组”) ①当12k k ≠时,1l 与2l _____,方程组有________解. ②当1212k k b b =≠,时,1l 与2l _____,方程组________解. ③当1212k k b b ==,时,1l 与2l _____,方程组有________解.(2)若将两直线写成1111l a x b y c +=:,2222l a x b y c +=:的形式;则该二元一次方程组为⎩⎨⎧=+=+222111c y b x a c y b x a ,从二元一次方程组的角度考虑解的情况:(其中6个常数均不为零.每小题第一个空选填“唯一”、“无”或“无穷多组”;其余空选填“相交”、“平行”或“重合”)①当1122a b a b ≠时,方程组有__________解,1l 与2l _____. ②当111222a b c a b c =≠时,方程组______解,1l 与2l _____. ③当1122a b a b ==12c c 时,方程组有________解,1l 与2l _____.18. 如果方程组2524x y x y k +=⎧⎨+=⎩有无穷多组解,那么方程组27548kx y x y +=⎧⎨+=⎩的解的情况是( )A .唯一解B .无穷多组解C .无解D .都有可能【参考答案】 ➢ 课前预习1. 两,(0,b ),(bk-,0),一,(1,k )2. (1)k =2,b =4; (2)x =-2,y =73. 纵,横4. (0,4),4,y =3x +4➢ 精讲精练1. y =2x +42. 122y x =-+3. 43-4. (32,0),(0,3)5. (1,1),(-1,0)6. B7. D8. 3,5,32-9.y=-x+1010.-1311.(1)y=-8x+2;(2)012.y=2x-3,2x-y=313.58xy=-⎧⎨=-⎩,(-2,-1)14.C15.8 3 -16.A(53,53)17.(1)①相交,唯一;②平行,无;③重合,无穷多组(2)①唯一,相交;②无,平行;③无穷多组,重合18.A。
(完整版)一次函数应用题(含答案).doc
一次函数应用题初一()班姓名:学号:.1、一次时装表演会预算中票价定位每张100 元,容纳观众人数不超过2000 人,毛利润 y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000 人时,表演会组织者需向保险公司交纳定额平安保险费5000 元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过 1000 人时,毛利润 y(百元)关于观众人数 x(百人)的函数解析式和成本费用 s(百元)关于观众人数 x(百人)的函数解析式;⑵若要使这次表演会获得36000 元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000 人时,表演会的毛利润=门票收入—成本费用;当观众人数超过 1000 人时,表演会的毛利润=门票收入—成本费用—平安保险费)2、转炉炼钢产生的棕红色烟尘会污染大气,某装置可通过回收棕红色烟尘中的氧化铁从而降低污染,该装置的氧化铁回收率与其通过的电流有关,现经过试验得到下列数据:通过电流强度(单位: A) 1 1.7 1.9 2.1 2.4 氧化铁回收率( %)75 79 88 87 78 如图建立直角坐标系,用横坐标表示通过的电流强度,纵坐标表示氧化铁的回收率.(1) 将试验所得数据在如图所示的直角坐标系中用点表示;(注:该图中坐标轴的交点代表点( 1,70))(2) 用线段将题( 1)中所画的点从左到右顺次连接,若用此图象来模拟氧化铁回收率y 关于通过电流 x 的函数关系,试写出该函数在 1.7 y(% )≤x≤2.4时的表达式;(3)利用( 2)所得函数关系,求氧化铁回收率大于85%时,该装置通过的电流应该控制的范围(精确到 0.1 A) . 858075O ( 1, 70)(2,70)x(A )3、如图( 1),在矩形中, = 10 cm , = 8 cm. 点 P 从 A 点出发,沿 → → →ABCDABBCA B C D路线运动,到 D 停止;点 Q 从 D 出发,沿 D →C → B → A 路线运动,到 A 停止 . 若点 P 、点 Q 同时 出发,点 P 的速度为每秒 1 cm ,点 Q 的速度为每秒 2 cm , a 秒时,点 P 、点 Q 同时改变 .. .. 速度,点 P 的速度变为每秒 b cm ,点 Q 的速度变为每秒 d cm. 图( 2)是点 P 出发 x 秒后△APD 的面积2)与 x (秒)的函数关系图象;图(3)是点 Q 出发 x 秒后△ AQD 的面积..S1 ( cm..2S 2 ( cm )与 x (秒)的函数关系图象 .22DQ →C40 S 1(cm )40 S 2(cm )24A P→ B Oa 8 c x (秒) O22x (秒)( 1)( 2)( 3)( 1)参照图( 2),求 a 、 b 及图( 2)中 c 的值; ( 2)求 d 的值;( 3)设点 P 离开点 A 的路程为 y 1( cm ),点 Q 到点 A 还需要走的路程为 y 2 ( cm ),请分别写出改变速度后 y 1 、 y 2 与出发后的运动时间 x (秒)的函数关系式,并求出 P 、 Q 相遇时 x 的值;( 4)当点 Q 出发 _________秒时,点 、点 Q 在运动路线上相距的路程为25cm.P4、教室里放有一台饮水机,饮水机上有两个放水管。
第14讲 一次函数的应用]讲义(教师版)
一次函数的应用1.使学生巩固一次函数的概念和性质。
2.使学生能够将实际问题转化为一次函数的问题。
3.能够根据实际意义准确地列出解析式并画出函数图像。
1.使学生能够将实际问题转化为一次函数的问题。
2.能够根据实际意义准确地列出解析式并画出函数图像。
一次函数与实际问题一次函数与正比例函数是我们接触到的最简单的函数,它们的图像和性质在生活中有着广泛的应用,利用一次函数和正比例函数的图像解决实际问题是本章的一个重点,这部分内容在中考中占有非常重要的地位,常与方程组、不等式等联系在一起考查。
例 1.如图,反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回家.其中x表示时间,y表示小明离家的距离,小明家、食堂、图书馆在同一直线上.根据图中提供的信息,有下列说法:(1)食堂离小明家0.4km;(2)小明从食堂到图书馆用了3min;(3)图书馆在小明家和食堂之间;(4)小明从图书馆回家的平均速度是0.04km/min.其中正确的有()A、4个B、3个C、2个D、1个【解析】根据观察图象,可得从家到食堂,食堂到图书馆的距离,从食堂到图书馆的时间,根据路程与时间的关系,可得答案.解:由纵坐标看出:家到食堂的距离是0.6km,故①错误;由横坐标看出:小明从食堂到图书馆用了28-25=3(min),故②正确;∵家到食堂的距离是0.6km,家到图书馆的距离是0.4km,0.6km>0.4km,∴图书馆在小明家和食堂之间,故③正确;小明从图书馆回家所用的时间为:68-58=10(min),∴小明从图书馆回家的平均速度是:0.4÷10=0.04(km/min),故④正确;正确的有3个,故选:B.练习1在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t (秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A、甲的速度随时间的增加而增大B、乙的平均速度比甲的平均速度大C、在起跑后第180秒时,两人相遇D、在起跑后第50秒时,乙在甲的前面【答案】D【解析】A、由于线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定乙是否在甲的前面.解:A、∵线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴甲的速度是没有变化的,故选项错误;B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴乙是在甲的前面,故选项正确.故选D.练习2甲乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③当x=4时,甲乙两队所挖管道长度相同;④甲队比乙队提前2天完成任务.正确的个数有()A、1个B、2个C、3个D、4个【解析】①根据图象可知:甲队挖掘600米,需要6天,故可求得甲队的挖掘速度;②由函数图象可知乙队开挖两天后,用4天时间,挖掘200米;③求得4天两队各自挖掘的长度即可;④求得乙队完成任务需要的天数即可.解:①600÷6=100,故①正确;②(500-300)÷(6-2)=200÷4=50,故②正确;③甲队4天挖掘400米,乙队4天挖掘300+2×50=400米,故③正确;④(600-300)÷50=6天,所以乙队共需要8天完成任务,甲队需要6天完成任务,故④正确.故选:D.这道题的文字比较多,容易造成视觉厌倦,所以要解决此类问题,必须先耐心把题耐心细致地读三遍以上,搞清楚有哪些条件,要求什么,做到心中有数。
一次函数应用题答案
一次函数应用题答案一、解答题1.【答案】(1)10 30(2)解:当0≤x<2时,y=15x,当x≥2时,y=30+10×3(x-2)=30x-30,当y=30x-30=300时,x=11,∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=.(3)解:甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100-(30x-30)=70时,解得:x=3;当30x-30-(10x+100)=70时,解得:x=10;当300-(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.【解析】(1)甲登山上升的速度是:(300-100)÷20=10(米/分钟);b=15÷1×2=30.故答案为:10;30.(2)分0≤x<2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系.(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者作差等于70得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=70,得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.2.【答案】(1)解:设生产一件甲种产品需x分,生产一件乙种产品需y分,由题意得:,即解这个方程组得:x=20,y=30,即生产一件甲产品需要20分,生产一件乙产品需要30分.(2)解:设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,则生产甲种产品件,生产乙种产品件,所以W总额=6×+10×=-x+4000,∵≥45,∴x≥900,由一次函数的增减性,当,x=900时,W取得最大值,此时W=-×900+4000=3970(元),此时甲有:=45(件),乙有:=370(件),所以小王该月最多能得3970元,此时生产甲种产品45件,上产乙种产品370件.【解析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,根据表中数据得出方程组,求出方程组的解即可;(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,则生产甲种产品件,生产乙种产品件,根据题意得出W总额=6×+10×,即可求出答案.3.【答案】(1)解:设这前五个月小明家网店销售这种规格的红枣x袋.由题意:(60-40)x+×(54-38)=42000解得x=1500.答:这前五个月小明家网店销售这种规格的红枣1500袋.(2)解:由题意:y=20x+×16=12x+16000,∵600≤x≤2000,当x=600时,y有最小值,最小值为23200元.答:这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润23200元.【解析】(1)设这前五个月小明家网店销售这种规格的红枣x袋.根据总利润=42000,构建方程即可;(2)构建一次函数,利用一次函数的性质即可解决问题.4.【答案】(1)60(2)解:当1≤x≤5时,设y乙=kx+b,把(1,0)与(5,360)代入得:,解得:k=90,b=-90,则y乙=90x-90.(3)220【解析】(1)根据图象得:360÷6=60(km/h);(2)利用待定系数法确定出y乙关于x的函数解析式即可;(3)∵乙与A地相距240 km,且乙的速度为360÷(5-1)=90(km/h),∴乙用的时间是240÷90=(h),则甲与A地相距(km).5.【答案】(1)解:设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=-96x+192(0≤x≤2).(2)解:12+3-(7+6.6)=15-13.6=1.4(小时))112÷1.4=80(千米/时),(192-112)÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.【解析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.6.【答案】(1)解:从小刚家到该景区乘车一共用了4h时间.(2)解:设AB段图象的函数表达式为y=kx+b.∵A(1,80),B(3,320)在AB上,∴ ,解得.∴y=120x-40(1≤x≤3).(3)解:当x=2.5时,y=120×2.5-40=260,380-260=120(km).故小刚一家出发2.5小时时离目的地120km远.【解析】(1)观察图形即可得出结论;(2)设AB段图象的函数表达式为y=kx+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=2.5代入AB段图象的函数表达式,求出对应的y值,进一步即可求解.7.【答案】(1)解:每分钟向储存罐内注入的水泥量为15÷3=5立方米.(2)解:设y=kx+b(k≠0),把(3,15),(5.5,25)代入,得,解得.∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3.(3)1 11【解析】(1)体积变化量除以时间变化量求出注入速度;(2)根据题目数据利用待定系数法求解;(3)由(1)可知,每分钟向储存罐内注入的水泥量为5立方米,3分钟到5.5分钟这段时间注入5×2.5=12.5立方米,储存罐实际增加10立方米,则这段时间输出12.5-10=2.5立方米,所以储存罐每分钟向运输车输出的水泥量是2.5÷2.5=1立方米;关闭输出口时还输出8-2.5=5.5立方米,用时5.5÷1=5.5分钟,则从打开输入口到关闭输出口共用的时间为5.5+5.5=11分钟.故答案为:1;11.8.【答案】(1)解:由题意可得:y=120x+200(100-x)=-80x+20000,,解得:24≤x≤86.(2)解:∵y=-80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=-80×86+20000=13120(元).【解析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.9.【答案】(1)解:依题意得:=,整理得:900(m-30)=750m,解得:m=180,经检验m=180是原方程的解并符合题意,∴m=180.(2)解:设购进甲种服装y件,购进乙中服装(200-y)件,依题意得:26800≥(320-180)y+(280-150)(200-y)≥26700,解得:80≥y≥70.答:该专卖店有11种进货方案.(3)解:设总利润为w,则w=(140-a)y+130(200-y)=(10-a)y+26000(70≤y≤80),①当0<a<10时,10-a>0,w随着y的增大而增大,∴当y=80时,w有最大值,即此时应购进甲种服装80件,购进乙种服装120件;②当a=10时,w=26000,(2)中所有方案获利都一样;③当10<a<20时,10-a<0,w随着y的增大而减小,∴当y=70时,w有最大值,即此时应购进甲种服装70件,购进乙种服装130件.【解析】(1)用总价除以单价表示出购进服装的数量,根据两种服装的数量相等列出方程求解即可;(2)设购进甲种服装y件,表示出乙种服装(200-y)件,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据服装的件数是正整数解答;(3)设总利润为w,根据总利润等于两种服装的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.10.【答案】(1)解:由图可知,A、B两城相距300千米.(2)解:设甲对应的函数解析式为:y=kx,300=5k,解得,k=60,即甲对应的函数解析式为:y=60x;设乙对应的函数解析式为y=mx+n,,解得,,即乙对应的函数解析式为y=100x-100.(3)解:解,解得,2.5-1=1.5,即乙车出发后1.5小时追上甲车.(4)解:由题意可得,当乙出发前甲、乙两车相距50千米,则50=60x,得x=;当乙出发后到乙到达终点的过程中,则60x-(100x-100)=±50,解得,x=1.25或x=3.75;当乙到达终点后甲、乙两车相距50千米,则300-50=60x,得x=.即小时、1.25小时、3.75小时、小时时,甲、乙两车相距50千米.【解析】(1)根据函数图象可以解答本题;(2)根据图象中的信息分别求出甲乙两车对应的函数解析式;(3)根据(2)甲、乙两车对应的函数解析式,然后令它们相等即可解答本题;(4)根据(2)中的函数解析式,分为乙出发前,行驶中,到达后,三种情况相距50千米,从而可以解答本题.11.【答案】(1)解:设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元.由题意得:x+5x+20≤200,解得:x≤30.依题意可知:W=x·(500-150-4×40)+x·(270-150)+(5x+20-x·4)·(70-40)=245x+600,∵k=245>0,∴W关于x的函数单调递增,∴当x=30时,W取最大值,最大值为7950.答:购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.(2)解:涨价后每张餐桌的进价为160元,每张餐椅的进价为50元,设本次成套销售量为m套.依题意得:(500-160-4×50)m+(30-m)×(270-160)+(170-4m)×(70-50)=7950-2250,即6700-50m=5700,解得:m=20.答:本次成套的销售量为20套.【解析】(1)设购进餐桌x张,餐椅(5x+20)张,销售利润为W元,根据购进总数量不超过200张,得出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据“总利润=成套销售的利润+零售餐桌的利润+零售餐椅的利润”即可得出W关于x的一次函数,根据一次函数的性质即可解决最值问题;(2)设本次成套销售量为m套,先算出涨价后每张餐桌及餐椅的进价,再根据利润间的关系找出关于m的一元一次方程,解方程即可得出结论.12.【答案】(1)设小明家共有x人.∴方案一:有一人买全票,其余各人按5折优惠,则Y1=30+15(x-1)=15x+15;方案二:全部按全票的6折优惠,则∴Y2=30×0.6x=18x;(2)当两家旅游景点收费相等时,15x+15=18x,求得x=5;当方案一更优惠时:15x+15<18x,得出:x>5;当方案二更优惠时:x<5.故当x=5时,两种方案一样;当x>5时,方案一更优惠;当x<5时,方案二更优惠.【解析】(1)可以设小明家共有x人,分别表示出方案一、方案二小明一家人的门票费Y1、Y2与他们去的人数x之间的函数关系式;(2)利用不等式分别比较两种方案收费,分情况讨论,选择哪种方案更优惠.13.【答案】解:(Ⅰ)从图上可知行驶6千米的路程后甲超过了乙.(Ⅱ)设函数式为:s=kt,过(3,6)点,∴k=2,∴s=2t(t≥0).(Ⅲ)从图上可知,甲的速度为:6÷3=2km/h,一个小时内乙的速度为:3÷1=3km/h,一个小时后乙的速度为:(6-3)÷(3-1)=1.5km/h.所以第一个小时前甲的行驶速度小于乙的行驶速度;一个小时后甲的行驶速度大于乙的行驶速度.【解析】(Ⅰ)从图上可知行驶6千米的路程后甲超过了乙.(Ⅱ)从图上可看出甲是正比例函数,设出函数式,根据上面的点可求出.(Ⅲ)根据图象求不同阶段的速度,比较大小即可.14.【答案】(1)设A型衬衣进x件,B型衬衣进(80-x)件,则:4288≤50x+56(80-x)≤4300,解得:30≤x≤32.∵x为整数,∴x为30,31,32,∴有3种进货方案:A型30件,B型50件;A型31件,B型49件;A型32件,B型48件.(2)设该商场获得利润为w元,w=(60-50)x+(68-56)(80-x)=-2x+960,∵k=-2<0,∴w随x增大而减小.∴当x=30时w最大=900,即A型30件,B型50件时获得利润最大,最大利润为900元.【解析】(1)本题的不等式关系为:购买A型衬衣的价钱+购买B型衬衣的价钱应该在4288-4300元之间,据此列出不等式组,得出自变量的取值范围,判断出符合条件的进货方案;(2)可根据利润=A衬衣的利润+B衬衣的利润,列出函数式,根据函数的性质和(1)得出的自变量的取值范围,判断出利润最大的方案.15.【答案】(1)先填表(2)∵在一次函数y=-3x+3920中,k=-3<0∴y随x的增大而减小∵0≤x≤70∴当x=70时,y有最小值∴当甲仓库往A、B两工地各运70吨和30吨水泥,乙仓库往A、B两工地各运0吨和80吨水泥时,总运费最省.最省总运费为y=-3×70+3920=3710元.【解析】(1)由甲库运往A地水泥x吨,根据题意首先求得甲库运往B地水泥(100-x)吨,乙库运往A地水泥(70-x)吨,乙库运往B地水泥(10+x)吨,然后根据表格求得总运费y(元)关于x(吨)的函数关系式;(2)根据(1)中的一次函数解析式的增减性,即可知当x=70时,总运费y最省,然后代入求解即可求得最省的总运费.16.【答案】(1)当0≤x≤3,y1=120-40x;当3<x≤4,y1=0;当4<x≤6,y1=60(x-4)=60x-240;y1与x的图象如图1(2)当0≤x≤3,y2=40x;当3<x≤4,y2=120;当4<x≤6,y1=120+60(x-4)=60x-120;y2与x的图象如图2,【解析】根据y与x的函数图象得到汽车从甲地出法行驶3小时到达乙地,行驶了120千米,则其速度为40千米/时,休息一小时后从乙地返回甲地,用了2个小时,则其速度为60千米/时.(1)分段讨论:当0≤x≤3,汽车距乙地距离等于甲乙之间的距离减去汽车行驶的路程,即y1=120-40x;当3<x≤4,汽车在乙休息,则y1=0;当4<x≤6,汽车从乙出发,则汽车距乙地距离等于此时汽车行驶的路程,则y1=60(x-4)=60x-240;然后根据解析式画图;(2)分段讨论:当0≤x≤3,汽车的路程为其行驶的路程,则y2=40x;当3<x≤4,汽车行驶的路程没变,则y2=120;当4<x≤6,汽车行驶的路程等于甲乙间的距离加上汽车后来行驶的路程,即y1=120+60(x-4)=60x-120;然后根据解析式画图.17.【答案】(1)按“分期付款”方式需支出198元/月×28月=5544(元).∵5544>5346,∴选择“一次付清”的方式付款合算;(2)由题意解得:y=0.5x+198(0≤x≤400),y=398(x>400);(3)0.5元/小时×160小时+198元/月×5个月=1070(元).【解析】(1)从x值的取值范围,来求是否“一次付清”的方式付款合算;(2)由题意按照图标中的情况而得到函数式;(3)由(2)中得到的函数式,代入数值而解得.18.【答案】解:(1)从图象中可知:从B到S城的路程是350千米-150千米=200千米,乙用了2小时,即乙车行驶的速度是200÷2=100(千米/时),从A到S的路程是150千米,甲走了2小时,即甲车行驶的速度是150÷2=75(千米/时),答:甲、乙两车的行驶速度分别是75千米/时、100千米/时;(2)∵150千米÷100千米/时=1.5小时,∴乙车出发后到达A地的时间是2.4+1.5=3.9(小时)答:乙车出发3.9小时后到达A地;(3)设两车出发后x小时第二次相遇,则75(x-2)=100(x-2.4),x=3.6,即两车出发后3.6小时第二次相遇.【解析】(1)从图象中可知:从B到S城的路程是(350-150)千米,乙用了2小时,根据速度公式求出乙车行驶的速度即可;甲从A到S的路程是150千米,甲走了2小时,根据速度公式求出甲车行驶的速度即可;(2)求出乙车走后150千米用的时间,再与2.4小时相加即可;(3)设两车出发后x小时第二次相遇,得出方程75(x-2)=100(x-2.4),求出方程的解即可.19.【答案】(1)设有x名学生,依题意得:需付甲公司的费用是:y甲=3×240+70%×240x=168x+720,需付乙公司的费用是:y =80%(3+x)×240=192x+576;乙(2)当168x+720=192x+576,解得:x=6,当168x+720>192x+576,解得:x<6,当168x+720<192x+576,解得:x>6,答:当学生有6名,则两家公司所需费用一样;当学生人数大于6名,则甲公司更优惠;当学生人数小于6名,则乙公司更优惠.【解析】(1)根据设学生数为x,利用甲乙两公司优惠方案得出函数关系即可;(2)利用(1)中所求函数关系式,再利用不等式求出x的取值范围即可.20.【答案】(1)∵8x+10y+11(10-x-y)=100,∴y与x之间的函数关系式为y=-3x+10.∵y≥1,解得x≤3.∵x≥1,10-x-y≥1,且x是正整数,∴自变量x的取值范围是x=1或x=2或x=3.(2)W=8x×0.22+10y×0.21+11(10-x-y)×0.2=-0.14x+21.因为W随x的增大而减小,所以x取1时,可获得最大利润,此时W=20.86(万元).获得最大运输利润的方案为:用1辆车装甲种苹果,用7辆车装乙种苹果,2辆车装丙种苹果.【解析】(1)根据“甲、乙、丙三种苹果共100吨”列二元一次方程,变形后得出y与x之间的关系式为y=-3x+10.根据实际意义即y≥1,x≥1,得到x的取值范围是x=1或x=2或x=3;(2)写出利润与x之间的函数关系:W=-0.14x+21,根据W随x的增大而减小,所以x取1时,可获得最大利润20.86万元.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.。
一次函数应用题(习题及答案)
一次函数应用题(习题及答案)一次函数应用题(习题及答案)题一:某手机品牌每月销售量与售价之间存在一次函数关系,已知售价为3000元时销售量为4000台,售价为5000元时销售量为3000台,请问每增加一台售价,销售量减少多少台?解析:这是一个典型的一次函数应用题。
首先,我们可以设定售价为x元,销售量为y台。
根据题目已知条件,可以列出两个点的坐标:(3000, 4000)和(5000, 3000)。
根据一次函数的一般式y = kx + b,可以得到方程组:4000 = 3000k + b -------(1)3000 = 5000k + b -------(2)通过解方程组,可以求解出k和b的值,从而确定函数关系。
首先,我们用(1)式减去(2)式,消去b的项,得到:1000 = -2000k解得k = -1/2。
将k的值代入(1)式或(2)式,可解得b = 7000/2 = 3500。
因此,该函数的函数关系为:y = -1/2x + 3500。
根据函数关系,我们可以计算每增加一台售价,销售量减少的台数。
由于每增加一台售价,x的变化量为1,代入函数关系,得到y的变化量为-1/2。
因此,每增加一台售价,销售量减少的台数为1/2台。
答案:每增加一台售价,销售量减少0.5台。
题二:一家电商公司将某商品的售价从每件100元提高到120元后,销售量下降了25%。
求原来的每件商品的销售量。
解析:这同样是一个一次函数的应用题。
我们可以设定原售价为x 元,销售量为y件。
根据题目已知条件,可以得到两个点的坐标:(100, y)和(120, 0.75y)(销售量下降25%相当于销售量的0.75倍)。
根据一次函数的一般式y = kx + b,可以得到方程组:y = 100k + b -------(1)0.75y = 120k + b -------(2)通过解方程组,我们可以求解出k和b的值,从而确定函数关系。
将(1)式代入(2)式,得到:0.75(100k + b) = 120k + b化简可得:75k + 0.75b = 120k + b整理得:0.25b = 45k解得:k = 0.25b/45将k的值代入(1)式,解得b = 11y/12因此,该函数的函数关系为:y = (0.25b/45)x + (11y/12)由于题目求解的是原来的每件商品的销售量,即求解y的值。
一次函数应用题(含答案)
一次函数应用题初一( )班 姓名: 学号: .1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x (百人)的函数解析式和成本费用s(百元)关于观众人数x (百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)2、转炉炼钢产生的棕红色烟尘会污染大气,某装置可通过回收棕红色烟尘中的氧化铁从而降低污染,该装置的氧化铁回收率与其通过的电流有关,现经过试验得到下列数据:通过电流强度(单位:A ) 1 1.7 1.9 2.1 2.4 氧化铁回收率(%)7579888778如图建立直角坐标系,用横坐标表示通过的电流强度,纵坐标表示氧化铁的回收率. (1) 将试验所得数据在如图所示的直角坐标系中用点表示;(注:该 图中坐标轴的交点代表点(1,70))(2)ﻩ用线段将题(1)中所画的点从左到右顺次连接,若用此图象来模拟氧化铁回收率y关于通过电流x的函数关系,试写出该函数在1.7≤x ≤2.4时的表达式;(3) 利用(2)所得函数关系,求氧化铁回收率大于85%时,该装置通过的电流应该控制的范围(精确到0.1A ).O x (A ) y (%)(2,70) (1,70) 75 80853、如图(1),在矩形ABCD中,AB = 10cm,BC= 8cm. 点P从A点出发,沿A→B→C →D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止. 若点P、点Q 同时..出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时,点P、点Q同时..改变速度,点P的速度变为每秒b cm,点Q的速度变为每秒d cm. 图(2)是点P出发x秒后△APD的面积..1S(cm2)与x(秒)的函数关系图象;图(3)是点Q出发x秒后△AQD的面积..2S (cm2)与x(秒)的函数关系图象.(1)(1)参照图(2),求a、b及图(2)中c的值;(2)求d的值;(3)设点P离开点A的路程为1y(cm),点Q到点A还需要走的路程为2y(cm),请分别写出改变速度后1y、2y与出发后的运动时间x(秒)的函数关系式,并求出P、Q相遇时x的值;(4)当点Q出发_________秒时,点P、点Q在运动路线上相距的路程为25cm.4、教室里放有一台饮水机,饮水机上有两个放水管。
一次函数应用题
一次函数应用题1.已知XXX现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套。
已知做一套M型号的时装需要A种布料6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。
设生产N种型号的时装套数为$x$,用这批布料生产这两种型号的时装所获总利润为$y$元。
1) $y$与$x$的函数关系式为:$$y=45(80-x)\cdot\frac{70-6x}{6}+50x\cdot\frac{52-0.4x}{0.4}$$其中,第一项是生产M型号时装所获利润,第二项是生产N型号时装所获利润。
自变量$x$的取值范围为$0\leq x\leq 52/0.4=130$,因为B种布料的数量有限制。
2) 当生产N型号的时装为$20$套时,所获利润最大,最大利润为$y_{\max}=3850$元。
2.某市电话的月租费是$20$元,可打$60$次免费电话(每次$3$分钟),超过$60$次后,超过部分每次$0.13$元。
1) $y$与$x$的函数关系式为:$$y=\begin{cases}20.& x\leq 60 \\20+0.13(x-60)。
& x>60end{cases}$$2) 月通话$50$次的电话费为$20$元,月通话$100$次的电话费为$23$元。
3) 设该月通话次数为$t$,则$$y=\begin{cases}20.& t\leq 60 \\20+0.13(t-60)。
& t>60end{cases}$$解得$t=60+5(y-20)$,代入$y=27.8$得$t=98$次。
3.荆门火车货运站现有甲种货物$1530$吨,乙种货物$1150$吨,安排用一列货车将这批货物运往广州,这列货车可挂A、B两种不同规格的货厢$50$节,已知用一节A型货厢的运费是$0.5$万元,用一节B型货厢的运费是$0.8$万元。
一次函数应用题(讲义及答案)
一次函数应用题(讲义)➢课前预习1.一条公路旁依次有A,B,C三个村庄,甲、乙两人骑自行车分别从A村、B村同时出发前往C村,甲、乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10 km;②出发1.25 h后两人相遇;③出发2 h后甲到达C村庄;④甲每小时比乙多骑行8 km.其中正确的个数是()A.1个B.2个C.3个D.4个➢知识点睛一次函数应用题的处理思路:1.理解题意,梳理信息结合图象、文字信息理解题意,将实际场景与图象中轴、点、线对应起来理解分析.①看轴,明确横轴和纵轴表示的实际意义.②看点,明确起点、终点、状态转折点表示的具体意义,还原实际情景,提取每个点对应的数据.③看线,观察每段线的变化趋势(增长或下降等),分析每段数据的变化情况.2.辨识类型,建立模型①将所求目标转化为函数元素,借助图象特征,利用表达式进行求解;②将图象中的点坐标还原成实际场景中的数据,借助实际场景中的等量关系列方程求解.3.求解验证,回归实际结果验证要考虑是否符合实际场景及自变量取值范围的要求.➢精讲精练1.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②甲走完全程用了40分钟;③乙用16分钟追上甲;④乙走完全程用了30分钟;⑤乙到达终点时,甲离终点还有300米.其中正确的结论是___________.(填序号)2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地的过程中y与x之间的函数关系,结合图象解答下列问题:(1)求线段AB所在直线的函数解析式以及甲、乙两地之间的距离;(2)求a的值;(3)出发多长时间,两车相距140千米?3.甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲的加工时间x(h)之间的函数图象为折线OA-AB-BC,如图所示,结合图象解答下列问题:(1)这批零件一共有______个,甲机器每小时加工______个零件,乙机器排除故障后每小时加工______个零件;(2)求y与x之间的函数关系式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?4.在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,结合图象解答下列问题:(1)甲的骑行速度为_____米/分,点M的坐标为__________;(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);(3)甲从A地出发,经过多长时间在返回途中追上乙?x/分45.某工厂安排甲、乙两个运输队各从仓库调运物资300吨,两队同时开始工作,甲运输队工作3天后因故停止,2天后重新开始工作,由于工厂调离了部分工人,甲运输队的工作效率降低到原来的12;乙运输队在整个运输过程中工作效率保持不变.甲、乙运输队调运物资的数量y(吨)与甲的工作时间x (天)的函数图象如图所示,结合图象解答下列问题:(1)a=________,b=________.(2)求甲运输队重新开始工作后,甲运输队调运物资的数量y(吨)与工作时间x(天)的函数关系式;(3)直接写出乙运输队比甲运输队多运50吨物资时x的值.6.快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,结合图象解答下列问题:(1)慢车的行驶速度为________千米/时,a=________;(2)求快车的速度和B点坐标;(3)两车出发后几小时相距的路程为200千米?请直接写出答案.【参考答案】➢课前预习1.D➢精讲精练1.①②④2.(1)线段AB所在直线的函数解析式为140280y x=-+;甲乙两地之间的距离为280千米;(2)a的值为210;(3)出发1 h或3 h时,两车相距140千米.3.(1)270,20,40;(2)50(01)2030(136090(36)x xy x xx x<⎧⎪=+<⎨⎪-<⎩≤≤≤);(3)在整个加工过程中,甲加工1.5小时或4.5小时时,甲与乙加工的零件个数相等.4.(1)240,(6,1200);(2)2402640y x=-+;(3)甲从A地出发,经过8分钟在返回途中追上乙;5.(1)5,11;(2)2525y x=+(511)x≤≤;(3)乙运输队比甲运输队多运50吨物资时,x的值为6或9.6.(1)60,360;(2)快车的速度为120km/h,B点的坐标为(4,0);(3)两车出发149h,349h或143h时,相距的路程为200千米.。
一次函数图像应用题(带解析版答案)
一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.元B.元C.约元D.元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得﹣3﹣120÷(40×2),=﹣,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=.∴两车在途中第二次相遇时t的值为小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=﹣=1.120÷(﹣)=40(km/h),则a=40,故(1)正确;(2)120÷(﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=,∴7﹣(2+)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n 的直线方程分别为解得故答案为:(n+,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每计费1元(不足按计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A3025B5050C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。
一次函数应用题及答案
一次函数应用题及答案一次函数应用题及答案 1有一群猴子,分一堆桃子,第一只猴子分了4个桃子和剩下桃子的1/10,第二只猴子分了8个桃子和这时剩下桃子的1/10,第三只猴子分了12个桃子和这时剩下桃子的1/10........依次类推。
最后发现这堆桃子正好分完,且每只猴子分得的桃子同样多。
那么这群猴子有多少只?方法一:方程解法:设总的桃子个数是10a+4个,那么第一只猴子分得a+4个桃子剩下9a,假设9a=10b+8个,那么第二只猴子分得b+8个桃子。
所以a+4=b+8,即b=a-4个。
那么就有9a=10(a-4)+8。
解得a=32。
所以桃子有32×10+4=324个。
每只猴子分得32+4=36个,所以猴子有324÷36=9只。
方法二:第一只猴子分得的那1/10比第二只猴子的那1/10多8-4=4个第一只猴子分得的那1/10对应的单位1比第二只猴子分得的1/10对应的单位1多4÷1/10=40个。
那么第一只猴子分得的那1/10是40-8=32个。
所以桃子总数是32×10+4=324个。
每只猴子吃32+4=36个,那么有324÷36=9只猴子。
一次函数应用题及答案 21、题目:某市出租车收费标准为:起步价10元,3千米后每千米的价格为2.4元,小明乘坐出租车走了x千米(x>3),则小明应付车费____元.小明乘坐出租车走了x千米(x>3),则前3千米的费用为10元,超过3千米的费用为:2.4(x3)元,则小明应付车费为:10+2.4(x3)=2.4x+2.8(元).故答案为:2.4x+2.8.2、题目:某市居民用电的价格为每千瓦时0.62元.小明家上个月付电费40.3元,小明家用电多少千瓦时?小明家上个月用电的千瓦数为:40.3÷0.62=65(千瓦时)答:小明家用电65千瓦时.3、题目:某市居民用电的价格为每千瓦时0.62元.小明家上个月付电费40.3元,小明家用电多少千瓦时?小明家上个月用电的千瓦数为:40.3÷0.62=65(千瓦时)答:小明家用电65千瓦时.4、题目:某市居民用电的价格为每千瓦时0.62元.小明家上个月付电费46.5元,小明家用电多少千瓦时?小明家上个月用电的千瓦数为:46.5÷0.62=75(千瓦时)答:小明家用电75千瓦时.5、题目:某市居民用电的价格为每千瓦时0.52元.小明家上个月付电费44.2元,小明家用电多少千瓦时?小明家用电的千瓦数为:44.2÷0.52=85(千瓦时)答:小明家用电85千瓦时.。
一次函数之面积问题(讲义及答案)
一次函数之面积问题(讲义)➢知识点睛1.坐标系中处理面积问题,要寻找并利用横平竖直的线,通常有以下三种思路:①公式法(规则图形);②割补法(分割求和、补形作差);③转化法(例:同底等高).2.坐标系中面积问题的处理方法举例①割补法——铅垂法求面积:B()2APB B AS PM x x=⋅⋅-△②转化法——借助平行线转化:l1l2如图,满足S△ABP=S△ABC的点P都在直线l1,l2上.➢精讲精练1.如图,在平面直角坐标系中,已知A(2,3),B(4,2),则△AOB的面积为___________.2.如图,点A,B在直线74y kx=+上,点A的坐标为(-1,3),点B的横坐标为3,则△AOB的面积为___________.3.如图,直线y=-x+4与x轴、y轴分别交于点A,B,点P的坐标为(-2,2),则S△PAB=___________.4.如图,一次函数y=kx+5的图象经过点A(1,4),点B是一次函数y=kx+5的图象与正比例函数23y x的图象的交点,则△AOB的面积为___________.5.如图,直线l1:y=x+1与x轴、y轴分别交于点A,B,直线l2:y=kx-2与x轴、y轴分别交于点C,D,直线l1,l2相交于点P.若S△APD=92,则k的值为__________.6.如图,在平面直角坐标系中,已知A(2,4),B(6,6),C(8,2),则四边形OABC的面积为___________.7.如图,在平面直角坐标系中,已知点A(2,1),点B(8,4),点C(m,2m-3)在直线AB上方,若△ABC的面积为9,则m的值为________.8.如图,直线l1:y=x与直线l2:y=-2x+3相交于点A,点B在直线l1上,且横坐标为4.C为l2上的一个动点,且在点A的左侧,若△ABC的面积为18,则点C的坐标为__________.9.如图,直线112y x=-+与x轴、y轴分别交于点A,B,点C的坐标为(1,2),点P为坐标轴上一点,若S△ABP =S△ABC,则点P的坐标为__________.10.如图,在平面直角坐标系中,一次函数y=2x+4的图象与x轴、y轴分别交于点A,B,过点A的直线交y轴正半轴于点M,且点M为线段OB的中点.(1)求直线AM的函数解析式;(2)若点P是直线AM上一点,使得S△ABP =S△AOB,请直接写出点P的坐标.【参考答案】1. 42.7 23.84.55.5 26.247. 48.(-3,9)9.(0,52),(5,0),(-1,0),(0,12-)10.(1)直线AM的函数解析式为y=x+2;(2)P1(2,4),P2(-6,-4)。
一次函数之k,b的几何意义(讲义及答案)
一次函数之k,b的几何意义(讲义)➢知识点睛1.一次函数表达式:y=kx+b(k,b为常数,k≠0)①k是斜率,表示倾斜程度,可以用几何中的坡度(或坡比)来解释.坡面的竖直高度与水平宽度的比叫坡度或坡比,如图所示,AM即为____________,BM即为____________,则AMkBM .②b是直线与y轴交点的纵坐标.2.设直线l1:y1=k1x+b1,直线l2:y2=k2x+b2,其中k1,k2≠0.①若k1=k2,且b1≠b2,则直线l1_____l2;②若k1·k2=_________,则直线l1_____l2.3.一次函数与几何综合的思考角度:坐标几何图形一次函数①要求坐标,______________________________________;②要求函数表达式,________________________________;③要研究几何图形,________________________________.➢精讲精练M AB1.如图,在平面直角坐标系中,四边形OABC是矩形,点A在x轴上,点C(0,3),直线2233y x=-与x轴、线段AB分别交于点E,F,若AF=2BF,则△AEF的面积为________.2.如图,点B,C分别在直线y=2x和y=kx上,A,D是x轴上的两点,若四边形ABCD是正方形,则k的值为________.3.如图,点A,B分别在直线y=kx和y=-4x上,C,D是x轴上的两点,若四边形ABCD是矩形,且AB:AD=3:2,则k的值为________.4.如图,△OAB是等腰直角三角形,∠OBA=90°,OBA在x轴上,过点Bx轴交于点C,则点C的坐标为______.5.如图,直线l1与x轴、y轴分别交于点A,B,直线l2与x轴、y轴分别交于点C,D,且OA=OD,OB=OC.(1)直线l 1,l 2的位置关系为_________;(2)若直线l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=_______.第5题图 第6题图6. 如图,直线y =2x +6与x 轴、y 轴分别交于点A ,B ,线段AB 的垂直平分线交x 轴于点C ,交AB 于点D ,则直线CD 的表达式为____________.7. 如图,在平面直角坐标系中,直线443y x =-+与x 轴、y 轴分别交于点A ,B ,点D 在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x轴正半轴上的点C 处,则直线AD 的解析式为______________,直线CD 的解析式为______________.第7题图 第8题图8. 如图,已知直线l 1:2833y x =+与直线l 2:y =-2x +16相交于点C ,直线l 1,l 2与x 轴分别交于点A ,B ,矩形DEFG 的顶点D ,E 分别在l 1,l 2上,顶点F ,G 都在x 轴上,且点G 与点B 重合,则DEFG S 矩形:ABC S △=_________.【参考答案】➢知识点睛1.①竖直高度;水平宽度.2.①∥;②-1;⊥.3.①利用函数表达式或线段长转坐标;②待定系数法或k,b的几何意义;③坐标转线段长或k,b的几何意义.➢精讲精练1. 32.2 33.4 54.(6,0)5.(1)l1⊥l2;(2)-1.6.1924 y x=-+7.y=2x-6;364y x=-8.8 9。
一次函数方案类应用题(讲义及答案).
一次函数方案类应用题(讲义)知识点睛一次函数应用题的处理思路:1.理解题意,梳理信息结合图象、文字信息理解题意,将实际场景与图象中轴、点、线对应起来理解分析.①看轴,明确横轴和纵轴表示的实际意义.②看点,明确起点、终点、状态转折点表示的具体意义,还原实际情景,提取每个点对应的数据.③看线,观察每段线的变化趋势(增长或下降等),分析每段数据的变化情况.2.辨识类型,建立模型①将所求目标转化为函数元素,借助图象特征,利用表达式进行求解;②将图象中的点坐标还原成实际场景中的数据,借助实际场景中的等量关系列方程求解.3.求解验证,回归实际结果验证要考虑是否符合实际场景及自变量取值范围的要求.精讲精练1.某公司要印制产品宣传材料,甲印刷厂提出:每份材料收1元印制费,另收1500元制版费;乙印刷厂提出:每份材料收2.5元印制费,不收制版费.(1)分别写出两印刷厂的收费y甲(元),y乙(元)与印刷数量x(份)之间的关系式;(2)在同一直角坐标系内画出它们的图象;(3)根据图象回答下列问题:①印制800份宣传材料时,选择哪家印刷厂比较合算?②该公司拟拿出3000元用于印制宣传材料,找哪家印刷厂印制宣传材料能多一些?2.小明用的练习本可在甲、乙两个商店购买,已知两个商店的标价都是每本1元.但甲的优惠条件是:购买10本以上,从第11本开始按标价的六折卖;乙商店的优惠条件是:从第1本开始就按标价的八折卖.设小明在甲商店购买x本练习本所需要的费用为y1元,在乙商店购买x本练习本所需要的费用为y2元.(1)请分别写出y1,y2关于x的函数关系式;(2)在同一直角坐标系内画出它们的图象,并根据函数图象,直接写出选择哪个商店购买更省钱.3.甲、乙两个厂家生产的办公桌和办公椅的质量、价格都相同,每张办公桌800元,每把办公椅80元,甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三把椅子;乙厂家:桌子和椅子全部按原价的8折优惠.现学校要为新校区购买10张办公桌和若干把办公椅.若学校购买x把办公椅(x≥30),到甲厂家购买桌椅所需费用为y1元,到乙厂家购买桌椅所需费用为y2元.(1)请分别写出y1,y2关于x的函数关系式;(2)在同一直角坐标系内画出它们的图象,并根据函数图象,直接写出选择哪个厂家购买更合算.4.某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.⎩【参考答案】1.(1)y 甲=x +1500,y 乙=2.5x ;(2)图略;(3)①印制800份宣传材料时,选择乙印刷厂比较合算;②选择甲印刷厂印刷宣传材料能多一些.2.(1)y =⎧x (0<x ≤10);y =0.8x (x >0);1⎨0.6x +4(x >10)2(2)图略.当0<x <20时,选择乙商店购买更省钱;当x =20时,选择甲、乙两商店购买一样省钱;当x >20时,选择甲商店购买更省钱.3.(1)y 1=80x +5600(x ≥30);y 2=64x +6400(x ≥30)(2)图略.当30≤x <50时,选甲厂更合算;当x =50时,甲乙两厂费用相同;当x >50时,选乙厂更合算.4.(1)银卡:y =10x +150;普通卡:y =20x ;(2)A (0,150),B (15,300),C (45,600);(3)当0<x <15时,选普通票更合算.当x =15时,选普通票和银卡都一样,比金卡合算;当15<x <45时,选银卡更合算;当x =45时,选银卡和金卡都一样,比普通卡合算;当x >45时,选金卡更合算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数应用题(讲义)
➢课前预习
1.A,B两地相距80 km,甲、乙两人沿同一条路从A地到B地,l1,l2分别表示甲、
乙两人离A地的距离s(km)与时间
t(h)之间的关系.
根据图象填空:
①乙先出发____h后,甲才出发.
②甲的速度是____ km/h,直线l1的表达式为___________;
乙的速度是____ km/h,直线l2的表达式为______________.
③图象中点M表示的意义是__________________________.
④当t=2 h时,甲、乙两人相距________km.
➢知识点睛
一次函数应用题的处理思路
1.理解题意,梳理信息
(1)图象信息——通过看轴、点、线,把实际场景和函数图象对应起来理解分析.
①看轴,明确横轴和纵轴表示的实际意义;
②看点,明确起点、终点、状态转折点表示的具体意义,还原实际场景,提取每
个点对应的数据;
③看线,观察每一段的变化趋势(增长或下降等),分析每段数据的变化情况.
(2)文字信息——抓取关键词、关键语句、量与量之间的关系.
2.建立模型
确定一次函数表达式,并把所求目标转化为函数元素,借助图象特征,利用表达式进行求解.
3.求解验证,回归实际
结果验证要考虑是否符合实际场景及自变量取值范围的要求.
➢精讲精练
1.甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1 h
后乙出发,甲、乙两人离A地的距离
2.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,
那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量
y(微克)随时间x(小时)的变化如图所示.
(1)y与x之间的函数关系式为________________;
(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是_____小时.
3.为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟发现
忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后,与姐姐一起骑单车前往图书馆(两人骑单车速度相同).已知骑单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:
(1)小亮在家停留了______分钟;
(2)求小亮骑单车从家出发去图书馆时,距家的路程y(米)与出发时间x(分钟)之间的函数关系式;
(3)小亮骑单车追上姐姐时,姐姐已从家出发步行了多久?
4.某公司要印制产品宣传材料,甲印刷厂提出:每份材料收1元印制费,另收1 500
元制版费;乙印刷厂提出:每份材料收2.5元印制费,不收制版费.
(1)分别写出两印刷厂的收费y
甲(元),
乙
y(元)与印刷数量x(份)之间的关
系式;
(2)在同一直角坐标系内画出它们的图象;(3)根据图象回答下列问题:
①印制800份宣传材料时,选择哪家印刷厂比较合算?
②该公司拟拿出 3 000元用于印制宣传材料,找哪家印刷厂印制宣传材料能多一
些?
5.小明用的练习本可在甲、乙两个商店购买,已知两个商店的标价都是每本1
元.但甲的优惠条件是:购买10本以上,从第11本开始按标价的六折卖;乙商店的优惠条件是:从第1本开始就按标价的八折卖.设小明在甲商店购买x本练习本所需要的费用为y1元,在乙商店购买x本练习本所需要的费用为y2元.
(1)请分别写出y1,y2关于x的函数关系式;
(2)在同一直角坐标系内画出它们的图象,并根据函数图象,直接写出选择哪个商店购买更省钱.
6.甲、乙两个厂家生产的办公桌和办公椅的质量、价格都相同,每张办公桌800
元,每把办公椅80元,甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三把椅子;乙厂家:桌子和椅子全部按原价的8折优惠.现学校要为新校区购买10张办公桌和若干把办公椅.若学校购买x把办公椅(x≥30),到甲厂家购买桌椅所需费用为y1元,到乙厂家购买桌椅所需费用为y2元.
(1)请分别写出y1,y2关于x的函数关系式;
(2)在同一直角坐标系内画出它们的图象,并根据函数图象,直接写出选择哪个厂家购买更合算.
7.某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:
①金卡售价600元/张,每次凭卡不再收费;
②银卡售价150元/张,每次凭卡另收10元.
暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x次时,所需总费用为y元.
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
【参考答案】
➢ 课前预习 1. ①1
②40,s =40t -40;
403,403
s t = ③乙出发1.5 h 时,甲在离A 地20 km 处追上乙 ④403
➢ 精讲精练
1. (1)y 乙=90x -90;(2)11
3
,220
2. (1)302327
2188
4x x y x x ⎧⎪
=⎨-+<⎪⎩(≤≤)(≤) (2)6 3. (1)2
(2)y =150x -1500(10≤x ≤30)
(3)小亮骑单车追上姐姐时,姐姐已从家出发步行了15分钟 4. (1)y 甲=x +1500,y 乙=2.5x
(2)图略
(3)①印制800份宣传材料时,选择乙印刷厂比较合算 ②选择甲印刷厂印刷宣传材料能多一些
5. (1)100.640x
x y x x <⎧=⎨+>⎩
(≤10)()
20.80y x x => ()
(2)图略,
当0<x <20时,选择乙商店购买更省钱;
当x =20时,选择甲、乙两商店购买一样省钱; 当x >20时,选择甲商店购买更省钱.
6. (1)180560030y x x =+(≥),264640030y x x =+>()
(2)图略
当30≤x <50时,选甲厂更合算;
当x =50时,甲乙两厂费用相同; 当x >50时,选乙厂更合算.
7. (1)银卡:y =10x +150
普通卡:y=20x
(2)A(0,150),B(15,300),C(45,600)
(3)当30<x<15时,选普通票更合算;
当x=15时,选普通票和银卡都一样,比金卡合算;
当15<x<45时,选银卡更合算;
当x=45时,选银卡和金卡都一样,比普通卡合算;
当x>45时,选金卡更合算.。