外文翻译---细粒方铅矿和闪锌矿的絮凝浮选
浮游选矿技术问答(第一稿)
浮游选矿技术问答印万忠白丽梅荣令坤编目录第1章浮选基本知识 01.1 浮选基本定义 01 什么是浮选? 02 浮选方法的发展历史是什么? 01.2 浮选的过程及特点 03 浮选包括哪几个作业? 04 浮选的过程是什么? 05 什么是正浮选和反浮选? (1)6 什么是优先浮选和混合浮选? (1)7 浮选的使用领域是什么? (1)8 浮选的优缺点是什么? (2)第2章浮选的基本原理 (3)2.1 矿物表面的润湿性和可浮性 (3)1 什么是润湿现象? (3)2 润湿现象中的沾湿(a)、铺展(b)和浸湿(c) 三种类型有何区别和联系? (3)3 什么是接触角、三相润湿周边? (3)4 如何通过接触角鉴别颗粒表面的润湿性? (4)5 润湿方程的物理意义是什么? (4)6 什么是矿物的润湿阻滞现象?产生润湿阻滞现象的因素是什么?阻湿阻滞现象对浮选有何影响? (4)7 接触角的测量方法有那些?躺滴法测润湿角应注意什么? (5)8 固体颗粒表面润湿性的度量有哪些参数?和颗粒浮选行为有何联系? (5)9 矿物的表面润湿性是如何分类的? (5)10 如何改变固体间表面的天然润湿性差异,创造出较大的人工润湿性差异,从而有利于实现浮选? (6)11 什么是矿物的可浮性指标?为什么矿物和气泡的粘附是一种热力学自发过程? (6)2.2 矿物的表面能和水化作用 (6)12 矿物表面的极性和矿物可浮性之间的关系是什么? (6)13 非极性矿物和极性矿物的矿物内部结构和价键特性就是什么? (7)14 矿物表面自由能的数值取决于晶体断裂面的几何形状及表面原子所处的位置,在矿物颗粒表面不同的位置,即晶面上、棱面上和尖角上的表面张力的关系如何? (7)15 矿物表面的极性和矿物水化作用之间的关系是什么? (7)16 矿物表面水化层厚度和矿物润湿性之间的关系是什么? (7)17 表面水化性不同的矿物在水化层变薄过程中自由能变化和水化层厚度的关系是什么? (8)18 矿粒向气泡附着的过程可分为哪几个阶段?各阶段水化膜是如何变化的? (8)2.3 矿物的结构和自然可浮性 (9)19 什么是矿物的天然可浮性和自然可浮性? (9)20 矿物的晶体结构按其键型不同分为哪几种?各自的特点是什么?和可浮性有什么关系? (9)21 矿物结构和天然可浮性之间有何关系? (11)2.4 矿物在水中的溶解和氧化 (12)22 什么是难免离子?难免离子对矿物浮选有何影响? (12)23 消除难免离子对矿物浮选影响的措施有哪些? (12)24 矿物溶解对浮选过程有何影响? (12)25 矿物的氧化对其可浮性的影响是什么?采取什么措施控制矿物的氧化? (12)26 硫化矿物表面氧化的几种形式及规律是什么? (13)2.5 两相界面双电层 (13)27 矿物表面荷电的起源是什么? (13)28 形成双电层的原因是什么? (15)29 双电层的的主要模型有哪些? (15)30 Stern双电层模型结构是什么? (15)31 表面电位、电极电位、静电位和残余电位之间的关系是什么? (16)32 什么是矿物的定位离子?硫化矿、氧化矿、盐类矿物的定位离子是什么? (16)33 什么是固体的动电电位?动电位的测定方法有哪些? (16)34 什么是矿物的零电点和等电点,两者的区别是什么? (17)35 什么是特性吸附?特性吸附对双电层有何影响? (17)36 影响双电层的因素有哪些? (17)37 有机浮选药剂(指捕收剂)能否改变矿物(包括氧化矿和硫化矿)的表面电性质?为什么?能改变表面电位还是电动电位?为什么? (17)38 颗粒表面电性和浮选药剂的吸附、颗粒可浮性的关系是什么? (17)39 锡石的pHpzc=6.6。
采矿专业外文翻译---西藏洞中拉铅锌矿床成矿类型研究(节选)
中文2640字本科毕业论文外文资料翻译系别:地球科学与资源系专业:地质学姓名:学号:2014年4月8日外文资料翻译译文西藏洞中拉铅锌矿床成矿类型研究1.引言洞中拉铅锌矿床位于隆格尔—念青唐古拉火山岩浆弧东段南缘,地处隆格尔—工布江达断隆带与冈底斯—下察隅晚燕山—喜马拉雅岩浆弧的接合部位,属于念青唐古拉—上察隅Pb-Zn( Cu) - Fe 成矿亚带、门巴—金达铅锌铜银钼多金属矿集区中一个十分重要和典型的矿床。
本文通过对流体包裹体的物理化学条件的研究,基于大量的地质事实,结合大量的测试分析数据,并与各种类型的典型铅锌矿床对比,首次提出洞中拉铅锌矿床属于中低温热液型铅锌矿床。
系统分析洞中拉铅锌矿床的成矿作用基础上,最终建立了洞中拉铅锌矿床的成矿模式。
2.构造和地质环境洞中拉矿区位于冈底斯—念青唐古拉地体之念青唐古拉弧背断隆带(隆格尔—念青唐古拉复合古岛弧带) 东段,横跨纳木错—嘉黎结合带南北两侧,北部属昂龙冈日—班戈—腾冲岩浆弧带,南部属隆格尔—工布江达弧背断隆带。
由于经历长期复杂的地质构造演化历史,发育多期区域性构造—热事件。
不同时期、不同类型的构造形迹叠加在一起,形成复杂的区域构造格局(图1)。
图 1 洞中拉矿区区域地质简图1. 第四系;2. 始新统—古新统火山岩、沉积岩;3. 上白垩统火山岩夹砂砾岩、灰岩;4. 下白垩统沉积岩、火山岩;5. 上侏罗统—下白垩统海相沉积岩、火山岩;6. 上侏罗统海相沉积岩;7. 中侏罗统—上侏罗统海相沉积岩、火山岩;8. 中三叠统—下三叠统变质岩、火山岩;9. 上二叠统海相沉积岩、火山岩; 10. 上二叠统—中二叠统海相沉积岩、火山岩; 11. 中二叠统沉积岩、火山岩; 12. 石炭系—二叠系变质岩、火山岩; 13. 上石炭统—下二叠统沉积岩、火山岩; 14. 下石炭统火山岩、沉积岩; 15. 新近纪二长花岗岩; 16. 古近纪花岗岩、二长花岗岩; 17. 白垩纪花岗岩、二长花岗岩、花岗闪长岩; 18. 侏罗纪花岗闪长岩; 19. 三叠纪二长花岗岩、花岗闪长岩;20. 地层界线; 21. 实测断层; 22. 推测断层; 23. 矿床( 点) ; 24. 洞中拉矿区洞中拉矿区域上出露的地层主要有前奥陶系岔萨岗岩组,上古生界的石炭纪—二叠纪地层,即中元古代松多岩组、下石炭统诺错组、上石炭统—下二叠统来姑组和中二叠统洛巴堆组和中生界中上侏罗统和白垩系。
矿物加工技术双语翻译
PartI words Chapter1 Introductionalluvial mining---冲积矿床开采aluminium—铝an optimum grind size—最佳磨矿粒度barytes—重晶石comminution—粉碎degree of liberation—解离度diamond ores—金刚石矿石Electrical conductivity properties—导电性fluorite—萤石fundamental operations—基本选别流程release/liberation—解离Galena—leadsulphide—方铅矿sphalerite-zincsulphide—闪锌矿cassiterite-tin oxide—锡石grinding—磨矿Laboratory and pilot scale test-work—试验室和半工业实验Line flowsheet—线流程locking of mineral and gangue—连生体Middlings—中矿mill(concentrator)--- 选矿厂milling costs—磨矿消耗Minerals definition(p.1)metallic ore processing –金属矿石加工gangue—脉石Mineral—矿物ore—矿石crust of the earth—地壳sea-bed—河床non-metallic ores—非金属矿石bauxite—氧化铝optical properties—光学性质Ore bodies—矿体part per million(ppm)Primary grind—粗磨product handling—产品处理pyrite –黄铁矿Recovery—回收率Refractory bricks—耐火砖abrasives—磨料Separation—分离Smelter—熔炼sorting—拣选subsequent concentration process—后续选别流程Tailings retreatment—尾矿再处理as-mined(run of mine)—原矿mineral processing(ore dressing/mineral dressing/milling(磨选))—矿物加工portion/concentrate—精矿discard/tailing—尾矿the flowsheet—工艺流程The minimum metal content(grade)—最低金属含量The valuable mineral—有用矿物complex ores—复合矿The waste minerals—脉石enrichment process—富集工艺metal losses—金属损失the enrichment ratio—富集比efficiency of mineral processing operations—矿物加工作业效率The ratio of concentration –选别比the grade/assay—品位ultra-fine particles—超细颗粒unit concentration processes—单元选别流程Chapter2Ore handingopen-pit ore(露天开采的矿石p30,左下)run-of-mine ore(原矿)Typical washing plant flowsheet(洗矿车间典型流程figure 2.2) tipper (卸料器p33 右上)Shuttle belt (梭式胶带p33 右中)Gravity bucket elevator (斗式重力提升机p33 右下)Ore storage(矿物储存p35 右上)包括:stockpile (矿场)bin(矿仓)tank (贮槽)Front-end loader (前段式装载机p35 右上)Bucket-wheel reclaimer(斗轮式装载机p35 右上)Reclaim tunnel system(隧道装运系统p35 右上)The amount of reclaimable material/the live storage(有效贮量p35 右中figure 2.7) Conditioning tank (调和槽p36 左上)Chain-feeder (罗斯链式给矿机figure 2.9)Cross-section of elliptical bar feeder (椭圆形棒条给矿机figure 2.10)Vibrating grizzly feeder (振动格筛给矿机p37 左上)Apron feeder (板式给矿机figure 2.11)Belt feeder (胶带给矿机p37 右下)Chapter 4 particle size analysisacicular(针状);adverse(相反的);algorithm(算法);angular(多角状);aperture(孔径);apex (顶点);apparatus(仪器);arithmetic(运算器,算术); assaying(化验);attenuation(衰减);beaker decantation(烧杯倾析); blinding(阻塞);calibration(校正);charge(负荷);congest(充满);consecutive(连续的);contract(压缩);convection current(对流); conversion factor(转化因子); crystalline(晶体状);cyclosizer(旋流分析仪);de-aerated(脱气);derive:(得出);dilute(稀释);dimensionless quantity(无量纲量); dispersing agent(分散剂);distort(变形);duplicate(重复); electrical impedence(电阻); electroetching(电蚀刻); electroform(电铸);elutriation(淘析);epidote(绿帘石);equilateral triangle(等边三角形); flaky(薄片状);flask(烧瓶);fractionated sample(分级产品); gauze(筛网);geometric(几何学的);granular(粒状的);graticule(坐标网);gray scale(灰度);ground glass(毛玻璃);hand sieve(手动筛);histogram(直方图);immersion(浸没);inter-conversion(相互转变); interpolate(插值);intervals(区间);laminar flow(粘性流体);laser diffraction(激光衍射);light scattering method(光散射法); line of slope(斜率);logarithmic(对数的);machine sieve(机械筛); mechanical constraint(机械阻力);mesh(目);modular(系数的,制成有标准组件的);near size(临界筛孔尺寸);nominal aperture();nylon(尼龙);opening(开口);ordinate(纵坐标);perforated(多孔的);pipette(吸管);plotting cumulative undersize(累积筛下曲线); median size(中间粒度d50);polyhedron(多面体); reflection(反射); procure(获得);projected area diameter(投影面直径);ratio of the aperture width(筛比);refractive index(折射率);regression(回归) ;reproducible(可再生的);sedimentation balance(沉降天平); sedimentation(沉降) ;segment(片);sensor section(传感器); sieve shaker(振动筛,振筛器); spreadsheet(电子表格);simultaneously(同时地);size distribution(粒度分布);spectrometer(摄谱仪);stokes diameter(斯托克斯直径);subdivide(细分);sub-sieve(微粒);suction(吸入);syphon tube(虹吸管);tabulate(列表);tangential entry(切向入口);terminal velocity(沉降末速);truncate(截断);twill(斜纹图);two way cock(双通塞);ultra sonic(超声波);underside(下侧);vertex(顶点);vortex outlet (涡流出口);wetting agent(润湿剂);Chapter 5 comminutionattrition----- 研磨batch-type grindability test—小型开路可磨性实验bond’s third theory—邦德第三理论work index----功指数breakage—破碎converyor--- 运输机crack propagation—裂隙扩展crushing and grinding processes—破碎磨矿过程crushing----压扎crystalline material—晶状构体physical and chemical bond –物理化学键diameter—直径elastic—弹性fine-grained rocks—细粒岩石coarse-grained rocks—粗粒岩石chemical additives—化学添加剂fracture----碎裂free surface energy—自由表面能potential energy of atoms—原子势能graphical methods---图解法grindability test—可磨性实验crushing and grinding efficiency--- 破碎磨矿效率grinding media—磨矿介质gyratory crusher---旋回破碎机tumbling mill --- 筒形磨矿机impact crusher—冲击式破碎机high pressure griding roll--高压辊磨impact breaking-冲击破碎impact—冲击jaw—颚式破碎机material index-材料指数grindability—可磨性mill----选矿厂non-linear regression methods--- 非线性回归法ore carry--- 矿车Parameter estimation techniques—参数估计技术reduction ratio—破碎比roll crusher—辊式破碎机operating work indices—操作功指数Scraper—电铲slurry feed—矿浆SPI(SAG Power Index)—SAG 功指数simulation of comminution processes and circuits—粉碎工艺流程模拟stirred mill—搅拌磨stram energy---应变能the breakage characteristics—碎裂特性the crystalline lattice—晶格the reference ore---参比矿石product size distribution--- 产品粒度分布theory of comminution—粉碎理论brittle—脆性的tough material--- 韧性材料platstic flow—塑性流动Tracer methods—示踪法vibration mill-- 振动磨矿机Chapter 6CrushersAG/SAG mills(autogenousgrinding/semiautogenous grinding) 自磨、半自磨Alternating working stresses交替工作应力Amplitude of swing 摆幅Arrested or free crushing 夹压碎矿、自由碎矿Bell-shaped 钟形Belt scales 皮带秤Binding agents 粘结剂Bitumen 沥青Blending and rehandling 混合再处理Breaker plate 反击板Capital costs 基建费用Capstan and chain 铰杆铰链Cast iron or steel 铸铁铸钢Chalk 白垩Cheek plates 夹板Choke fed 阻塞给矿(挤满给矿)Choked crushing 阻塞碎矿Chromium carbide 碳铬合金Clay 粘土Concave 凹的Convex 凸的Corrugated 波纹状的Cross-sectional area 截面积Cross-section剖面图Crusher gape 排矿口Crusher throat 破碎腔Crushing chamber 破碎腔Crushing rolls 辊式碎矿机Crushing 破碎Discharge aperture 排矿口Double toggle 双肘板Drilling and blasting 打钻和爆破Drive shaft 驱动轴Eccentric sleeve 偏心轴套Eccentric 偏心轮Elliptical 椭圆的Epoxy resin 环氧树脂垫片Filler material 填料Fixed hammer impact mill 固定锤冲击破碎机Flakes 薄片Flaky 薄而易剥落的Floating roll 可动辊Flywheel 飞轮Fragmentation chamber 破碎腔Grizzlies 格条筛Gypsum 石膏Gyratory crushers 旋回破碎机Hammer mills 锤碎机Hydraulic jacking 液压顶Idle 闲置Impact crushers 冲击式破碎机Interparticle comminution 粒间粉碎Jaw crushers 颚式破碎机Limestone 石灰岩Lump 成块Maintenance costs 维修费Manganese steel mantle 锰钢罩Manganese steel 锰钢Mechanical delays 机械检修Metalliferous ores 有色金属矿Nip 挤压Nodular cast iron 球墨铸铁Nut 螺母Pack 填充Pebble mills 砾磨Pillow 垫板Pitman 连杆Pivot 轴Plates 颚板Primary crushing 初碎Receiving areas 受矿面积Reduction ratio 破碎比Residual stresses 残余应力Ribbon 流量Rivets 铆钉Rod mills 棒磨Roll crushers 辊式碎矿机Rotary coal breakers 滚筒碎煤机Rotating head 旋回锥体Scalp 扫除Secondary crushing 中碎Sectionalized concaves分段锥面Set 排矿口Shales 页岩Silica 二氧化硅Single toggle 单肘板Skips or lorries 箕斗和矿车Spider 壁架Spindle 竖轴Springs 弹簧Staves 环板Steel forgings 锻件Stroke 冲程Stroke 冲程Surge bin 缓冲箱Suspended bearing 悬吊轴承Swell 膨胀Swinging jaw 动颚Taconite ores 铁燧岩矿石Tertiary crushing 细碎The (kinetic) coefficient of friction (动)摩擦系数The angle of nip啮角The angle of repose 安息角The cone crusher 圆锥破碎机The cone lining 圆锥衬里The gyradisc crusher 盘式旋回碎矿机Thread 螺距Throughput 处理量Throw 冲程Tripout 停机Trommel screen 滚筒筛Valve 阀Vibrating screens 振动筛Wear 磨损Wedge-shaped 锥形Chapter 7 grinding millsAbrasion 磨蚀Alignment Amalgamation 融合/汞剂化Asbestos 石棉Aspect ratio 纵横比/高宽比Attrition 磨蚀Autogenous mill 自磨机Ball mill 棒磨Barite 重晶石Bearing 轴承Bellow 吼叫Belly 腹部Best-fit 最优化Bolt 螺栓Brittle 易碎的Build-up 增强Butt-weld 焊接Capacitance 电容量Cascade 泻落Cataract 抛落Central shaft 中心轴Centrifugal force 离心力Centrifugal mill 离心磨Chipping 碎屑Churning 搅拌器Circulating load 循环负荷Circumferential 圆周Clinker 渣块Cobbing 人工敲碎Coiled spring 盘簧Comminution 粉碎Compression 压缩Contraction 收缩Corrosion 腐蚀Corrugated 起褶皱的Crack 裂缝Critical speed 临界速度Crystal lattice 晶格Cushion 垫子Cyanide 氰化物Diagnose 诊断Dilute 稀释Discharge 放电Drill coreElastic 有弹性的Electronic belt weigher 电子皮带秤Elongation 延长率Emery 金刚砂Energy-intensive 能量密度Entangle 缠绕Expert system 专家系统Explosives 易爆炸的Flange 破碎Fracture 折断、破碎Front-end loader 前段装备Gear 齿轮传动装置Girth 周长Granulate 颗粒状的Grate discharge 磨碎排矿GreenfieldGrindability 可磨性Grinding media 磨矿介质Groove 沟槽Helical 螺旋状的High carbon steel 高碳钢High pressure grinding roll 高压滚磨Hopper 加料斗Housing 外壳Impact 冲击Impeller 叶轮IntegralInternal stress 内部压力Kinetic energy 运动能Least-square 最小平方Limestone 石灰岩Liner 衬板Lock 锁Lubricant 润滑剂Magnetic metal liner 磁性衬板Malleable 有延展性的Manhole 检修孔Material index 材料指数Matrix 矿脉Muffle 覆盖Multivariable control 多元控制Newtonian 牛顿学的Nodular cast iron 小块铸铁Non-Newtonian 非牛顿的Normally 通常Nuclear density gauge 核密度计Nullify废弃Oblique间接地,斜的Operating 操作Orifice 孔Output shaft 产量轴Overgrinding 过磨Parabolic 像抛物线似地Pebble 砾石Pebble mill 砾磨PendulumPilot scale 规模试验Pinion 小齿轮Pitting 使留下疤痕Plane 水平面PloughPotential energy 潜力Pressure transducer 压力传感器Prime moverPrismatic 棱柱形的Probability 可能性/概率Propagation 增值Pulp density 矿浆密度Pulverize 粉碎Quartzite 石英岩Radiused 半径Rake 耙子Reducer还原剂Reduction ratio 缩小比Retention screenRetrofit 改进Rheological 流变学的Rib骨架Rod 棒Roller-bearing 滚动轴承Rotor 旋转器Rubber liner 橡胶衬板Rupture 裂开ScatsScoop铲起Scraper 刮取器Screw flight 螺旋飞行Seasoned 干燥的SegregationSet-point 选点Shaft 轴Shear 剪Shell 外壳Simulation 模拟SlasticitySpalling 击碎Spigot 龙头Spill 溢出/跌落Spin 使什么旋转Spiral classifier 螺旋分级机Spout 喷出Stationary 静止的Stator 固定片Steady-state 不变的Steel plate 钢盘Steel-capped 钢帽Stirred mill搅拌磨Stress concentration 应力集中Sump 水池Taconite 铁燧岩Tensile stress 拉伸力Thicken 浓缩Throughput 生产量Thyristor 半导体闸流管Time lag 时间间隔Tower mill塔磨Trajectory 轨迹Trial and error 反复试验Trunnion 耳轴Tube millTumbling mill 滚磨Undergrinding 欠磨Underrun 低于估计产量Unlock 开启Vibratory mill 振动磨Viscometer 黏度计Viscosity 黏性Warp 弯曲Wearing linerWedged 楔形物Work index 功指数Chapter 8Industrial screeningBauxite 铝土矿Classification 分级Diagonal 斜的Dry screening 干筛Efficiency or partition curve 效率曲线、分离曲线Electrical solenoids 电磁场Elongated and slabby particles 细长、成板层状颗粒Granular 粒状Grizzly screens 格筛Hexagons 六边形Hydraulic classifiers 水力旋流器Linear screen 线性筛Mesh 网眼Mica 云母Near-mesh particles 近筛孔尺寸颗粒Octagons 八边形Open area 有效筛分面积Oscillating 振荡的Perpendicular 垂直的Polyurethane 聚氨酯Probabilistic 概率性的Resonance screens 共振筛Rhomboids 菱形Rinse 漂洗Rubber 橡胶Screen angle 颗粒逼近筛孔的角度Shallow 浅的Static screens 固定筛Tangential 切线的The cut point(The separation size)分离尺寸Trommels 滚筒筛Vibrating screens 振动筛Water sprays 喷射流Chapter9 classification added increment(增益)aggregate(聚集)alluvial(沉积)apex(顶点) deleterious(有害) approximation(概算,近似值)apron(挡板)buoyant force(浮力)correspond(符合,相符)critical dilution(临界稀释度)cut point(分离点)descent(降落)dilute(稀释的)drag force(拖拽力)duplex(双)effective density(有效比重)emergent(分离出的)equilibrium(平衡)exponent(指数)feed-pressure gauge(给矿压力表)free-settling ratio(自由沉降比)full teeter(完全摇摆流态化)geometry(几何尺寸)helical screw(螺旋沿斜槽)hindered settling(干涉沉降)hollow cone spray(中空锥体喷流)Hydraulic classifier(水力分级机)imperfection(不完整度)incorporated(合并的)infinite(任意的)involute(渐开线式)Mechanical classifier(机械分级机)minimize(最小限度的)multi-spigot hydro-sizer(多室水力分级机)pressure-sensitive valve(压敏阀)Newton’s law(牛顿定律)orifice(孔)overflow(溢流)parallel(平行的,并联的)performance or partition curve(应用特性曲线)predominate(主导)pulp density(矿浆比重)quadruple(四倍)quicksand(流砂体)Reynolds number(雷诺数)scouring(擦洗)Settling cones(圆锥分级机)shear force(剪切力)simplex(单)simulation(模拟)slurry(矿浆)sorting column(分级柱)spherical(球形的)spigot(沉砂)Spiral classifiers(螺旋分级机)Stokes’ law(斯托克斯定律)surging(起伏波动)suspension(悬浮液)tangential(切线式)Teeter chamber(干涉沉降室)teeter(摇摆)terminal velocity(末速)The rake classifier(耙式分级机) turbulent resistance(紊流阻力)underflow (底流)vertical axis(垂直轴)vessel(分级柱)viscosity(粘度)viscous resistance(粘滞阻力) vortex finder(螺旋溢流管)well-dispersed(分散良好的)Chapter 10gravity concentrationactive fluidised bed(流化床); amplitude(振幅);annular(环状的); asbestos(石棉); asymmetrical (非对称的); baddeleyite (斜锆石); barytes (重晶石); cassiterite (锡石); chromite(铬铁矿);circular (循环的); circumference (圆周); closed-circuit (闭路);coefficient of friction (摩擦系数); compartment (隔箱);concentration criterion (分选判据); conduit(管);contaminated(污染);counteract (抵消);degradation (降解);density medium separation (重介质分选); detrimental(有害的);diaphragm (隔膜);dilate (使膨胀);displacement (置换);divert (转移);dredge (挖掘船);eccentric drive(偏心轮驱动); encapsulate (密封);equal settling rate(等沉降比);evenly(均匀的);excavation (采掘);exhaust (废气);feed size range (给矿粒度范围); fiberglass (玻璃纤维);flash floatation (闪浮);flattened(变平);float (浮子);flowing film (流膜);fluid resistance (流体阻力);gate mechanism (开启机制);halt(停止);hand jig (手动跳汰机);harmonic waveform (简谐波);helical(螺旋状的);hindered settling (干涉沉降);hutch(底箱);immobile (稳定);interlock (连结);interstice (间隙);jerk(急拉);kyanite (蓝晶石);lateral (侧向的,横向的);linoleum (漆布);mica(云母);momentum (动量) ;mount(安装);multiple (多重的);multi-spigot hydrosizer (多室水力分级机); natural gravity flower (自流); neutralization (中和作用);nucleonic density gauge (核密度计); obscure (黑暗的,含糊不清的); obsolete (报废的);onsolidation trickling (固结滴沉);open-circuit (开路);pebble stone/gravels(砾石); periphery(周边的);pinched (尖缩的) ;platelet(片晶);platinum(铂金);plunger (活塞);pneumatic table(风力摇床); pneumatically (靠压缩空气); porus(孔);preset(预设置);pressure sensing(压力传感的); pressurize (加压);pulsating (脉动的);pulsion/suction stroke (推/吸冲程); quotient (商);radial(径向的);ragging (重物料残铺层);rate of withdraw (引出速率);raw feed (新进料);reciprocate(往复);refuse (垃圾);render (使得);residual (残留的);retard(延迟);riffle (床条);rinse(冲洗);rod mill (棒磨);rotary water vale (旋转水阀); rubber(橡胶);saw tooth (锯齿形的);scraper(刮板);sectors(扇形区);semiempirical(半经验的); settling cone (沉降椎);shaft (轴);side-wall (侧壁);sinterfeed (烧结料);sinusoidal (正弦曲线);slime table(矿泥摇床);sluice (溜槽);specular hematite (镜铁矿); spinning (自转;离心分离); splitters (分离机);starolite (星石英);staurolite (十字石);stratification (分层); stratum (地层); submerge (浸没);sump (池); superimposed (附加的); surge capacity (缓冲容量); synchronization (同步的); throughput(生产能力); tilting frames (翻筛); timing belt (同步带); trapezoidal shaped (梯形的); tray (浅盘) ;trough(槽);tungsten (钨);uneven (不均匀的);uniformity(均匀性);uranolite (陨石);validate(有效);vicinity (附近);water (筛下水);wolframite (黑钨矿,钨锰铁矿);Chapter 11 dense medium separation(DMS) barite(重晶石)Bromoform(溴仿)bucket(桶)carbon tetrachloride(四氯化碳)centrifugal(离心的)chute(陡槽)Clerici solution(克莱利西溶液)corrosion(腐蚀)dependent criterion(因变判据)discard(尾渣)disseminate(分散,浸染)DMS(重介质分选)dominant(主导)Drewboy bath(德鲁博洗煤机)drum separator(双室圆筒选矿机)Drum separator(圆筒选矿机)Dyna Whirlpool()effective density of separation(有效分选比重)envisage(设想)feasibility(可行性)ferrosilicon(硅铁)flexible sink hose(沉砂软管)fluctuation(波动)fluorite(萤石)furnace(炉)grease-tabling(涂脂摇床)hemisphere(半球)incombustible(不可燃烧的)incremental(递增的)initially(最早地)installation(设备)LARCODEMS(large coal dense medium separator)lead-zinc ore(铅锌矿)longitudinal(纵向)magneto-hydrostatic(磁流体静力)mathematical model(数学模型)metalliferous ore(金属矿)nitrite(亚硝酸盐)Norwalt washer(诺沃特洗煤机)olfram(钨)operating yield(生产回收率)optimum(最佳)organic efficiency(有机效率)paddle(搅拌叶轮)Partition coefficient or partition number(分配率)Partition or Tromp curve(分配或特劳伯曲线)porous(多孔的)probable error of separation;Ecart probable (EP)(分选可能误差)raw coal(原煤)recoverable(可回收的)residue(残渣)revolving lifter(旋转提升器)two-compartmentrigidity(稳定性)sand-stone(砂岩)shale(页岩)siliceous(硅质的)sink-discharge(排卸沉砂)sodium(钠)sulphur reduction(降硫)tabulate(制表)tangential(切线)tedious (乏味)Teska Bash()Tetrabromoethane(TBE,四溴乙烷)theoretical yield(理论回收率)toxic fume(有毒烟雾)tracer(示踪剂)typical washability curves(典型可选性曲线)Vorsyl separator(沃尔西尔选矿机)weir(堰板)well-ventilated(通风良好的)Wemco cone separator(维姆科圆锥选矿机)yield stress(屈服应力)yield(回收率)Chapter 12 Froth flotationActivator(活化剂)adherence (附着,坚持)adhesion(附着)adhesion(粘附)adjoining(毗邻,邻接的)adsorption(吸附)aeration(充气)aeration(充气量)aerophilic(亲气疏水的)aerophilic(亲气性)Aggregation(聚集体)agitation(搅动)agitator(搅拌机)allegedly(据称)Amine(胺)baffle(析流板)Bank(浮选机组)barite(重晶石)Barren(贫瘠的)batch(开路)Borne(承担)Bubble(泡沫)bubble(气泡)bubble-particle(泡沫颗粒)bulk flotation (混合浮选)capillary tube(毛细管)cassiterite (锡石)cerussite(白铅矿) chalcopyrite(黄铜矿)circulating load(循环负荷)cleaner(精选)clearance(间隙)Collector(捕收剂)collide(碰撞,抵触)compensate(补偿,抵偿)component(组成)concave(凹)concentrate trade(精矿品位)Conditioning period(调整期)conditioning tank(调和槽)cone crusher(圆锥破碎机)configuration(表面配置,格局) Conjunction(关联,合流)contact angle measurement(接触角测量)contact angle(接触角)copper sulphate(硫酸铜)copper-molybdenum(铜钼矿)core(核心)correspondingly(相关的)cylindrical(圆柱)Davcra cell(page305)decantation(倾析)depressant(抑制剂)deteriorating(恶化)Dilute(稀释)Direct flotation(正浮选)disengage(脱离,解开)dissemination(传播)dissolution(解散)distilled water(蒸馏水)diverter(转向器)drill core(岩心)drill(钻头,打眼)duplication(复制)dynamic(动态,能动)economic recovery(经济回收率)Elapse(过去,推移)electrolyte(电解质)electrowinning(电积)Eliminating(消除)enhance(提高、增加)Entail(意味着)entrainment(夹带)erosion(腐蚀)Fatty acid(脂肪酸)fatty acids(脂肪酸)faulting(断层)FCTRfiltration(过滤)fine particle(较细颗粒)floatability(可浮性)flotation rate constant(浮选速率常数)flowsheet(工艺流程)fluctuation(波动)fluorite(萤石)frother(起泡剂)Frother(起泡剂)Gangue(脉石)grease(润滑脂)grindability(可磨性)gross(毛的,)Hallimond tube technique(哈利蒙管)hollow(凹,空心的)hydrophilic(亲水性)Hydrophobic(疏水)Impeller(叶轮)in situ(原位)Incorporate(合并)indicator(指标,迹象)inert(惰性的)intergrowth(连生)intermediate-size fraction(中等粒度的含量)ionising collector(离子型捕收剂)amphoteric(两性)irrespective(不论)jaw crusher(颚式破碎机)jet(喷射,喷出物)laborious(费力的)layout(布局,安排)layout(布局,设计)liable(负责)magnitude(幅度)maintenance(维修)malachite(孔雀石)manganese(锰)mathematically (数学地) mechanism(进程)metallurgical performance(选矿指标)metallurgical(冶金的)MIBC(methyl isobutyl carbinol)(甲基异丁甲醇)Microflotation(微粒浮选)Mineralized(矿化的)mineralogical composition(矿物组成) mineralogy(矿物学)mineralogy(岩相学)MLA(mineral liberation analyser)modify(改变)molybdenite(辉钼矿)multiple(复合的)multiple-step(多步)Natural floatability(天然可浮性)hydrophobic(疏水性的)neutral(中性的)non-metallic(非金属)non-technical(非技术)nozzle(喷嘴)optimum(最佳)organic solvent(有机溶剂)oxidation(氧化)oxyhydryl collector(羟基捕收剂)xanthate(黄药)Oxyhydryl collector(羟基捕收剂)palladium(钯)parallel(平行)penalty(惩罚,危害)penetrate(穿透)peripheral(周边)peripheral(周边的)permeable base(透气板)personnel(人员)pH modifier(pH调整剂)pinch(钉)platinum(铂)pneumatic(充气式)polishing(抛光)portion(比例)postulate(假设)predetermined value(预定值)prior(优先)Pulp potential(矿浆电位)pyramidal tank(锥体罐)pyrite(黄铁矿)QEMSCAN(p288)reagent(药剂)rectangular(长方形)regulator(调整剂)reluctant(惰性的)residual(残留物)reverse flotation(反浮选)rod mill(棒磨机)rougher concentrate(粗选精矿)rougher-scavenger split(粗扫选分界)scale-up(扩大)scavenger(少选精矿)scheme(计划,构想)SE(separation efficienty)sealed drum(密封桶)severity(严重性)Sinter(烧结)sleeve(滚轴)slipstream(汇集)smelter(熔炼)sparger(分布器)sphalerite(闪锌矿)sphalerite(闪锌矿)Standardize(标定,规范)stationary(静止的)stator(定子,静片)storage agitator(储存搅拌器) Straightforward(直接的)Subprocess(子过程)subsequent(随后)Sulphide(硫化物)summation(合计)sustain(保留)swirling(纷飞)tangible(有形,明确的)tensile force(张力)texture(纹理)theoretical(原理的)thickener (浓密机)titanium(钛)TOF-SIMStonnage(吨位)Tube(管,筒)turbine(涡轮)ultra-fine(极细的)undesirable(不可取) uniformity(统一性)unliberated(未解离的)utilize(使用)Vigorous(有力,旺盛)weir-type(堰式)whereby(据此)withdrawal(撤回)Work of adhesion(粘着功)XPSAgglomeration-skin flotation(凝聚-表层浮选p316 左中)Associated mineral (共生矿物)by-product (副产品)Chalcopyrite (黄铜矿)Coking coal (焦煤p344 左下)Control of collector addition rate(p322 last pa right 捕收剂添加率的控制) Control of pulp level(矿浆液位控制p321 last pa on the right )Control of slurry pH(矿浆pH控制p322 2ed pa on the left)DCS--distributed control system(分布式控制系统p320 右中)Denver conditioning tank(丹佛型调和槽figure 12.56)Electroflotation (电浮选p315 右中)feed-forward control(前馈控制p323 figure 12.60)Galena(方铅矿)Molybdenum (钼)Nickel ore (镍矿的浮选p343 左)PGMs--platinum group metals(铂族金属)PLC--programmable logic controller(可编程序逻辑控制器p320 右中)porphyry copper(斑岩铜矿)Table flotation (摇床浮选俗称“台选”p316 左中)Thermal coal (热能煤p344 左下)Ultra-fine particle(超细矿粒p315 右中)Wet grinding(湿式磨矿)Chapter 13 Magnetic and electrical separationCassiterite(锡石矿) wolframite(黑钨矿) Diamagnetics(逆磁性矿物) paramagnetics(顺磁性矿物) Ferromagnetism(铁磁性) magnetic induction(磁导率)Field intensity(磁场强度) magnetic susceptibility(磁化系数) Ceramic(瓷器) taconite(角岩)Pelletise(造球) bsolete(废弃的)Feebly(很弱的) solenoid(螺线管)Cobbing(粗粒分选) depreciation(折旧)Asbestos(石棉) marcasite(白铁矿)Leucoxene(白钛石) conductivity(导电性)Preclude(排除) mainstay(主要组成)Rutile(金红石) diesel(柴油)Cryostat(低温箱)Chapter 14 ore sortingappraisal(鉴别);audit(检查);barren waste(废石); beryllium isotope(铍同位素); boron mineral(硼矿物); category(范围);coil(线圈);downstream(后处理的); electronic circuitry(电路学); feldspar(长石); fluorescence(荧光);grease(油脂);hand sorting(手选);infrared(红外的);irradiate(照射);laser beam(激光束); limestone(石灰石); luminesce(发荧光); luminescence(荧光); magnesite(菱镁矿); magnetic susceptivity(磁敏性); matrix(基质); microwave(微波);monolayer(单层);neutron absorption separation(中子吸收法); neutron flux (中子通量);oleophilicity(亲油的);phase shift(相变);phosphate(磷酸盐);photometricsorting(光选);photomultiplier(光电倍增管);preliminary sizing(预先分级);proximity(相近性);radiometric (放射性的);scheelite(白钨矿);scintillation(闪烁);seam(缝隙);sequential heating(连续加热);shielding(防护罩);slinger(投掷装置);subtle discrimination(精细的鉴别);talc(滑石);tandem(串联的);thermal conductivity(热导率);ultraviolet(紫外线); water spray(喷水); Chapter15DewateringAcrylic(丙烯酸) monomer(单分子层) Allotted(分批的)jute(黄麻) Counterion(平衡离子) amide(氨基化合物) Diaphragm(隔膜) blanket(覆盖层) Electrolyte(电解液) gelatine(动物胶) Flocculation(聚团) decant(倒出)Gauge(厚度,测量仪表) rayon(人造纤维丝) hyperbaric(高比重的) Membrane(薄膜) coagulation(凝结) miscelaneous(不同种类的) barometric(气压的) Potash(K2CO3)tubular(管状的) Sedimentation(沉淀) filtration(过滤)Thermal drying(热干燥) polyacrylamide(聚丙烯酰胺)Chapter16 tailings disposalBack-fill method—矿砂回填法tailings dams—尾矿坝impoundment—坝墙Cyclone—旋流器Dyke—坝体slimes—矿泥Floating pump—浮动泵站compacted sand—压实矿砂Lower-grade deposits -- 低品位矿床heavy metal—重金属mill reagent—选矿药剂Neutralization agitator—中和搅拌槽thickener---浓密池overflow –溢流River valley—河谷upstream method of tailings-dam construction –上流筑坝法Sulphur compound—硫化物additional values—有价组分the resultant slimes—脱出的矿泥surface run-off-- 地表水lime—石灰the downstream method—下游筑坝法the centre-line method –中线筑坝法drainage layer—排渗层Underflow—沉砂water reclamation—回水利用reservoir—贮水池Part II ElaborationsChapter2 Ore handing1.The harmful materials and its harmful effects(中的有害物质,及其影响) -----P30 右2.The advantage of storage (贮矿的好处)-----p35 左下Chapter 4 particle size analysis3.equivalent diameter (page90);4.:stokes diameter (page98) ; median size (page95,left and bottom); 80% passing size (page95,right) ; cumulative percentage(page94-95under the title’presentation of results’); Sub-sieve;(page 97,right)5.why particle size analysis is so important in the plant operation? (page90, paragraph one); some methods of particle analysis, their theory and the applicable of thesize ranges.(table4.1+theory in page91-106)7.how to present one sizing test?(page94)8.how to operate a decantation test?(page98 sedimentation test)9.advantage and disadvantage of decantation in comparison with elutriation? (Page99 the second paragraph on the left +elutriation technique dis/advantage in page 102 the second paragraph on the left)Chapter 6Crushers10.The throw of the crusher: Since the jaw is pivoted from above, it moves a minimum distance at the entry point and a maximum distance at the delivery. This maximum distance is called the throw of the crusher.11.Arrested(free) crushing: crushing is by the jaws only12.Choked crushing: particles break each other13.The angle of nip:14.1)the angle between the crushing members2)the angle formed by the tangents to the roll surfaces at their points of contact withthe particle(roll crushers)15.Ore is always stored after the crushers to ensure a continuous supply to the grinding section. Why not have similar storage capacity before the crushers and run this section continuously?(P119,right column, line 13)16.The difference between the jaw crusher and the gyratory crusher?(P123,right column, paragraph 3)17.Which decide whether a jaw or a gyratory crusher should be used in a particular plant?(p125,left column, paragraph 2)18.Why the secondary crushers are much lighter than the heavy-duty, rugged primary machines?(P126,right column, paragraph 4)19.What’s the difference between the 2 forms of the Symons cone crusher, the Standard and the short-head?(P128,left column, paragraph3 )20.What’s the use of the parallel section in the cone crusher?(P128,left column, paragraph4)21.What’s the use of the distributing plate in the cone crusher?(P128,right column, paragraph1)22.Liner wear monitoring(P129,right column, paragraph2)23.Water Flush technology(P130, left column, paragraph1)24.What’s the difference between the gyradisc crusher and the conventional cone crusher?(P130,right column, paragraph 4)25.What’s the use of the storage bin?(P140,left column, paragraph 2)26.Jaw crushers(p120)27.the differences between the Double-toggle Blake crushers and Single-toggle Blakecrushers(p121, right column, paragraph 3)28.the use of corrugated jaw plates(p122, right column, line 8)29.the differences between the tertiary crushers and the secondary crushers?(p126,right column, paragraph 5)30.How to identify a gyratory crusher, a cone crushers?(p127, right column, paragraph 3)31.the disadvantages of presence of water during crushing(p130,right column, paragraph 2)32.the relationship between the angle of nip and the roll speed?(p133, right column)33.Smooth-surfaced rolls——used for fine crushing; corrugated surface——used for coarse crushing;(p134, left column, last paragraph)Chapter 7 grinding mills34.Autogenous grinding:An AG mill is a tumbling mill that utilizes the ore itself as grinding media. The ore must contain sufficient competent pieces to act as grinding media.P16235.High aspect ratio mills: where the diameter is 1.5-3 times of the length. P16236.Low aspect ratio mills:where the length is 1.5-3 times of the diameter. P16237.Pilot scale testing of ore samples: it’s therefore a necessity in assessing the feasibility of autogenous milling, predicting the energy requirement, flowsheet, and product size.P16538.Semi-autogenous grinding: An SAG mill is an autogenous mill that utilizes steel balls in addition to the natural grinding media. P16239.Slurry pool:this flow-back process often leads to higher slurry hold-up inside an AG or SAG mill, and may sometimes contribute to the occurrence of “slurry pool”, which has adverse effects on the grinding performance.P16340.Square mills:where the diameter is approximately equal to the length.P16241.The aspect ratio: the aspect ratio is defined as the ratio of diameter to length. Aspect ratios generally fall into three main groups: high aspect ratio mills、square mills and low aspect ratio mills.P16242.grinding circuit: Circuit are divided into two broad classifications: open and closed.( 磨矿回路p170)43.closed circuit: Material of the required size is removed by a classifier, which returns oversize to the mill.(闭路p170左最后一行)44.Circulation load: The material returned to the mill by the classifier is known as circulation load , and its weight is expressed as a percentage of the weight of new feed.(循环负荷p170右)45.Three-product cyclone: It is a conventional hydrocyclone with a modified top cover plate and a second vortex finder inserted so as to generate three product streams. (p171右)46.Parallel mill circuit: It increase circuit flexibility, since individual units can be shut down or the feed rate can be changed, with little effect on the flowsheet.(p172右) 47.multi-stage grinding: mills are arranged in series can be used to produce。
浮选工艺矿种
浮选工艺矿种
浮选工艺是一种常用的矿石分离技术,适用于多种矿种。
以下是一些常见的浮选工艺矿种:
1. 铜矿:铜矿中的主要矿物为黄铜矿和辉铜矿,通过浮选工艺可以将有用的黄铜矿和辉铜矿与废石分离。
2. 锌矿:锌矿中的主要矿物为方铅矿和闪锌矿,通过浮选工艺可以将有用的方铅矿和闪锌矿与废石分离。
3. 铁矿:铁矿中的主要矿物为磁铁矿、赤铁矿和黄铁矿,通过浮选工艺可以将有用的磁铁矿和赤铁矿与废石分离。
4. 铅矿:铅矿中的主要矿物为方铅矿和白铅矿,通过浮选工艺可以将有用的方铅矿和白铅矿与废石分离。
5. 钨矿:钨矿中的主要矿物为白钨矿和黑钨矿,通过浮选工艺可以将有用的白钨矿和黑钨矿与废石分离。
6. 钼矿:钼矿中的主要矿物为辉钼矿和莫里芬矿,通过浮选工艺可以将有用的辉钼矿和莫里芬矿与废石分离。
这些只是一部分浮选工艺适用的矿种,实际上还有很多其他的矿种也可以通过浮选工艺进行分离。
浮选药剂习题 自己出的
1.浮选原则流程:浮选原则流程即只指出了处理各种矿石的原则方案,如段数、循环和矿物的分选顺序。
2.浮选:是利用矿物表面物理化学性质的差异使矿物颗粒选择性向气泡附着的选矿方法。
3.浮选药剂:在矿物浮选过程中,为了改变矿物表面的物理化学性质,提高或降低矿物的可浮性,以扩大矿浆中各种矿物可浮性的差异,进行有效分选,所使用的各种有机和无机化合物。
4.等电点:电动电位改变符号或电动电位恰好等于零时的电解质活度负对数值称为等电点。
5.调整剂:用于调整其他药剂和矿物表面的作用,调整矿浆的性质,提高浮选过程选择性的物质。
二.简答题1.起泡剂的作用及作用机理起泡剂的作用:①可以降低泡沫中水层流动速度,因为矿粒吸附在气泡上形成吸水的毛细管;②矿粒吸附在泡壁上,阻碍了气泡的互相兼并;③矿粒表面的捕收剂相互作用,可以增加气泡的机械强度。
④降低矿浆表面液面张力起泡剂的作用机理:①单纯起起泡剂的作用②起泡剂与捕收剂共吸附的作用2.根据矿物性质可以把浮选药剂分为那几类?并且说出不同种类药剂可浮选的矿物及典型的药剂。
①硫化矿浮选药剂可浮选的矿物:黄铜矿、闪锌矿、方铅矿等典型药剂:黄药和黑药②硫化矿-氧化矿过渡浮选药剂可浮选的矿物:赤铁矿、锆英石、锡石、黑钨矿、金红石典型药剂:羟肟酸③氧化矿浮选药剂可浮选的矿物:方解石、重晶石、萤石典型药剂:油酸、磺酸④天然可浮矿浮选药剂可浮选的矿物:石墨、辉钼矿、硫磺、滑石典型药剂:煤油、煤焦油3.影响浮选工艺过程的因素主要有哪些?主要有①矿物的物理组成和化学组成;②矿浆制备;③浮选药剂制备;④浮选机所造成的工作条件;⑤浮选工艺流程。
4.对起泡剂的要求有哪些?浮选用的起泡剂,对其还有特殊要求:①用量低,能形成量多、分布匀、大小合适、韧性适当和粘度不大的气泡。
②有良好的流动性、适当的水溶性,无毒,无臭,无腐蚀,易使用。
③无捕收性,对矿浆pH 值及各组分有较好的适应性5.混合用药的类型。
①强药剂与弱药剂共用②廉价药剂与高价药剂共用③.相同类型药剂共用④不同类型药剂共用⑤主要捕收剂与辅助捕收剂1.简述影响浮选速率的因素主要有哪些?归纳起来,影响浮选速率的因素可分为四类:①矿石和矿物的性质,如矿物的种类和成分、粒度分布、粒度形状、单体解离度、矿物表面性质等;②浮选化学方面诸因素,如捕收剂的选择性、捕收剂能力强弱、活化剂、抑制剂、起泡剂的种类和用量、介质PH值、水质等;③浮选机特性,如浮选机特性,如浮选机结构和性能、充气量、气泡尺寸分布及分散程度、搅拌程度、泡沫的厚度层及稳定层、刮泡速度等;④操作因素,如矿浆浓度、温度等。
硫化铅锌矿物浮选药剂应用研究进展
矿 冶MINING AND METALLURGY第30卷第3期2021年6月Vol. 30, No. 3June 2021doi : 10. 3969/j. issn. 1005-7854. 2021. 03. 019硫化铅锌矿物浮选药剂应用研究进展胡盘金M 郑永兴1包凌云1黄宇松1宁继来1(1.省部共建复杂有色金属资源清洁利用国家重点实验室,昆明650093;2.昆明理工大学国土资源工程学院,昆明650093)摘 要:浮选是多金属硫化矿分离铅锌最有效的方法之一。
铅锌分离困难的主要原因是方铅矿和闪锌矿具有相近的可浮性、二者致密共生且嵌布关系复杂,而解决该问题的关键在于高效浮选药剂的选择与应用。
系统概述了硫化铅锌矿捕收剂、抑制剂、活化剂和pH 值调整剂的主要应用研究进展,分析了各种浮选药剂的适用范围以及优缺点。
指出药剂制度的优化和新药剂 的研发应遵循高效、低成本和无污染等原则。
关键词:硫化铅锌矿;浮选药剂;铅锌分离中图分类号:TD952; TD923文献标志码:A 文章编号:1005-7854(2021)03-0123-07Research development in the application of flotation reagentfor the lead-zinc sulfide oreHU Pan-jin 1'2 ZHENG Yong-xing 1 BAO Ling-yun 1 HUANG Yu-song 1 NING 斤lai 】(1. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, China ;2. Faculty of Land Resource Engineering , Kunming University of Science and Technology, Kunming 650093, China)Abstract : The flotation is one of the most effective methods for separation of lead and zinc from lead-zincpolymetallic sulfide ore. The difficult separation of lead and zinc is due to the similar floatability of galenaand sphalerite, the dense symbiosis and complex dissemination relationship ・ The key to solve this difficult problem is the selection and application of efficient flotation reagents ・ In this paper, the major researchadvances of lead-zinc sulfide ore collector, depressant? activator and pH value modifier are overallsummarized. The sphere of application, merits and demerits of flotation reagents are analyzed. It was pointed out that the optimization of reagent system and the development of new reagent should follow theprinciples of high efficiency, low cost and no pollution.Key words : lead-zinc sulfide ore ; flotation reagent ; separation of lead and zinc铅和锌是两种重要的有色金属,广泛应用于蓄 电池、电子、机械、焊料和放射性防护等领域。
方铅矿表面亲水性及浮选抑制机理研究进展
前沿评述化工矿物与加工INDUSTRIAL MINERALS &PROCESSING2024年第4期文章编号:1008-7524(2024)04-0063-08D O I :10.16283/j .c n k i .h g k w y j g.2024.04.008 方铅矿表面亲水性及浮选抑制机理研究进展*邱芝莲1,方建军1,2,何海洋1,彭礼国1,秦双1,董诗钦1(1.昆明理工大学国土资源工程学院,云南昆明650093;2.省部共建复杂有色金属资源清洁与利用国家重点实验室,云南昆明650093) 摘要:方铅矿是重要的硫化铅矿物,具有良好的可浮性,常与其他可浮性相近的金属硫化矿伴生,导致浮选分离困难㊂介绍了晶体结构和晶格缺陷㊁半导体性质㊁表面氧化㊁矿浆p H ㊁矿浆电位等因素影响方铅矿亲水性的内在原理,综述了无机抑制剂㊁有机抑制剂㊁组合抑制剂等抑制剂的浮选抑制机理㊂研发无毒㊁环保的高效单一选择性抑制剂和组合抑制剂是方铅矿浮选分离研究的重要方向㊂关键词:方铅矿;浮选;亲水性;抑制剂;抑制机理中图分类号:T D 923 文献标志码:AR e s e a r c h p r o g r e s s o n s u r f a c e h y d r o p h i l i c i t y an d f l o t a t i o n i n h i b i t i o n m e c h a n i s m o f g a l e n aQ i u Z h i l i a n 1,F a n g J i a n j u n 1,2,H e H a i y a n g 1,P e n g L i g u o 1,Q i n S h u a n g 1,D o n g S h i qi n 1(1.F a c u l t y o f L a n d R e s o u r c e s E n g i n e e r i n g o f K u n m i n g U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y,K u n m i n g Y u n n a n 650093,C h i n a ;2.S t a t e K e y L a b o r a t o r y o f C o m pl e x N o n f e r r o u s M e t a l R e s o u r c e s C l e a n U t i l i z a t i o n ,K u n m i n g Yu n n a n 650093,C h i n a )A b s t r a c t :G a l e n a i s t h e i m p o r t a n t l e a d s u l f i d e m i n e r a l w i t h g o o d f l o a t a b i l i t y,o f t e n a s s o c i a t e d w i t h o t h e r m e t a l s u l -f i d e o r e s w i t h s i m i l a r f l o a t a b i l i t y ,l e a d i n g t o f l o t a t i o n s e p a r a t i o n d i f f i c u l t i e s .T h e i n t r i n s i c p r i n c i p l e s o f c r ys t a l s t r u c -t u r e a n d l a t t i c e d e f e c t s ,s e m i c o n d u c t o r p r o p e r t i e s ,s u r f a c e o x i d a t i o n ,p u l p p H ,p u l p po t e n t i a l a n d o t h e r f a c t o r s a f f e c t -i n g t h e h y d r o p h i l i c i t y o f g a l e n a a r e i n t r o d u c e d ,a n d t h e f l o t a t i o n i n h i b i t i o n m e c h a n i s m s o f i n o r g a n i c i n h i b i t o r s ,o r ga n i c i n h ib i t o r s ,c o m b i n ed i n h i b i t o r s a n d o t he r i n h i b i t o r s a r e s u mm a r i z e d .T h e d e v e l o p m e n t of n o n -t o x i c ,e n v i r o n m e n t a l l yf r i e n d l y a n d e f f i c i e n t s i ng l e s e l e c t i v e i nhi b i t o r s a n d c o m b i n a t i o n i n h i b i t o r s i s t h e i m p o r t a n t r e s e a r c h d i r e c t i o n o f g a l e n a f l o t a t i o n s e pa r a t i o n .K e yw o r d s :g a l e n a o r e ;f l o t a t i o n ;h y d r o p h i l i c i t y ;i n h i b i t o r s ;i n h i b i t i o n m e c h a n i s m ㊃36㊃*收稿日期:2023-04-06基金项目:云南省重大科技项目(202202A G 050015)㊂作者简介:邱芝莲(1998-),女,硕士研究生,研究方向为浮选理论与工艺,E -m a i l :3120371924@q q .c o m ㊂通信作者:方建军(1968-),男,博士,副教授,研究方向为浮选理论与工艺,E -m a i l :r u i y u a n ju @126.c o m ㊂引用格式:邱芝莲,方建军,何海洋,等.方铅矿表面亲水性及浮选抑制机理研究进展[J ].化工矿物与加工,2024,53(4):63-70.Q I U Z L ,F A N G J J ,H E H Y ,e t a l .R e s e a r c h p r o g r e s s o n s u r f a c e h y d r o p h i l i c i t y an d f l o t a t i o n i n h i b i t i o n m e c h a n i s m o f g a l e n a [J ].I n d u s t r i a l M i n e r a l s &P r o c e s s i n g,2024,53(4):63-70.邱芝莲等:方铅矿表面亲水性及浮选抑制机理研究进展2024年4月0引言世界铅资源较丰富,分布较广,其中澳大利亚的铅矿储量居世界首位[1],我国铅矿储量位居第二,但仍供不应求,对外依存度较高[2]㊂铅被广泛应用于冶金㊁国防和电子等领域,是一种重要的战略性金属资源㊂方铅矿是自然界分布最广的铅矿物,其形成于不同温度的热液过程,含有A g㊁C u㊁Z n㊁T l㊁A s㊁B i㊁S b㊁S e等元素,其中以A g居多,S e 以类质同象的形式置换S,存在P b S-P b S e完全类质同象系列㊂方铅矿是目前冶炼铅的最重要原料,也是提取银的重要矿物㊂方铅矿的选矿方法以浮选法和重选法为主,重选法适用于粗粒嵌布方铅矿的选矿,而浮选法则适用于细粒浸染方铅矿的选矿㊂由于方铅矿具有良好的可浮性,常与可浮性相近的黄铜矿㊁黄铁矿㊁闪锌矿㊁辉钼矿和稀贵金属等伴生,浮选是选铅的一种有效方法[3]㊂目前,铅浮选工艺主要有优先浮选和混合浮选再分离,在工业生产中,大多采用混合浮选再分离的工艺,但无论优先浮选还是混合浮选,其分离的关键均在于抑制剂㊂抑制剂的主要作用是消除矿浆中的活化离子㊁在矿物表面形成亲水性薄膜或解吸吸附在其表面上的捕收剂㊂方铅矿抑制剂主要有无机抑制剂和有机抑制剂两大类,药剂与矿物之间的相互作用决定了方铅矿的抑制效果,矿浆的环境条件是矿物与药剂作用的重要影响因素,而抑制剂是决定性因素㊂本文总结了方铅矿亲水性影响因素,介绍了抑制剂的分类㊁特点及其抑制机理,旨在为我国方铅矿浮选研究提供参考㊂1方铅矿亲水性影响因素1.1晶体结构和晶格缺陷晶体结构对于选矿工艺流程和分选指标有较大影响㊂不同成矿过程形成的矿物晶体结构特性不同,其影响着表面极性㊁不饱和键性质和微结构的形成,导致矿物表面电性和润湿性存在差异,这就是不同产地的方铅矿具有不同可浮性的原因[4-5]㊂方铅矿(P b S)晶体结构为典型的氯化钠型,属立方晶系,晶体呈立方体,即S2-呈立方最紧密堆积,P b2+充填于八面体空隙中㊂每个单胞包含4个P b S分子,S与P b的配位数均为6,即每个硫原子分别与6个相邻的铅原子配位,而每个铅原子也分别与6个相邻的硫原子配位,形成八面体构造[6]㊂立体方铅矿及其晶体结构见图1㊂图1立体方铅矿及其晶体结构F i g.1 T h e c u b i c g a l e n a a n d i t s c r y s t a l s t r u c t u r e晶格缺陷对矿物可浮性有重要影响㊂矿物在成矿过程中,不同的晶格杂质会以类质同象的形式进入矿物晶体导致晶格缺陷,从而使矿物出现不同的浮选行为[4]㊂如方铅矿含银(呈缺陷存在),当含银量升高时,晶格常数减小,接触角也减小,亲水性有所提高,可浮性下降[5]㊂晶格缺陷的存在会显著影响方铅矿的半导体性质和捕收剂的吸附能力㊂陈建华等[7-8]通过研究含有硫空位和铅空位的方铅矿电子结构发现,铅空位和硫空位对其可浮性的影响不同,这是因为铅空位不会改变方铅矿的半导体类型,但可增强方铅矿对黄药的吸附能力,进而提高可浮性;硫空位会使方铅矿的半导体类型由p型变为n型,降低方铅矿对黄药的吸附能力,导致可浮性变差㊂晶体缺陷会导致氧化反应机理与过程发生改变㊂蓝丽红[9]研究了空位缺陷对氧分子在方铅矿(100)表面吸附行为的影响,结果表明,铅空位和硫空位缺陷均有利于方铅矿表面对氧的化学吸附,且硫空位比铅空位更易吸附氧分子而被氧化㊂1.2半导体性质绝大多数硫化矿都是半导体,方铅矿的半导体性质与晶体结构密切相关[4,7-8]㊂方铅矿是一种窄带隙半导体,其半导体类型根据导电类型分为p型和n型㊂其中p型半导体方铅矿为空穴导电,有利于黄药的吸附[10]㊂方铅矿矿床主要有热液型㊁热水沉积型㊁矽卡岩型3种典型成因矿床,不同成因的方铅矿其半导体性质存在显著差异,这是因为不同成因的方铅矿矿床杂质不同,而杂质的存在会改变方铅矿的半导体性质[11-13]㊂L A N等[11]研究了A g㊁C u㊁Z n㊁M n㊁B i㊁S b等杂质对方铅矿可浮性的影响,结果表明,A g和B i显著提升了方铅矿的回收率,而Z n㊁S b㊁M n和C u降低了其回收率;从动力学角㊃46㊃2024年第4期I M&P化工矿物与加工第53卷度分析,其原因是黄药在含A g或含B i的方铅矿上的吸附热和反应速率系数大于纯方铅矿的反应热和反应速率系数,而含Z n㊁S b㊁M n㊁C u的方铅矿则相反㊂1.3表面氧化矿物表面的氧化和氧化产物对药剂的吸附具有重要影响,进而影响其亲疏水性[14]㊂有研究[15]表明,n型半导体方铅矿必须经氧化才能被黄药捕收㊂因此,在浮选分离过程中,抑制n型半导体的方铅矿可通过减少表面氧化来提高分离效果㊂一般而言,在没有氧气的情况下方铅矿不能被捕收剂捕收,而在氧饱和溶液中可以达到最佳可浮性[16]㊂各种p H环境下方铅矿自身氧化反应式如下:(1)弱酸性条件P b SңP b2++S0+2e-㊂(2)弱碱性条件P b S+2H2OңP b(OH)2+S0+2H++2e-㊂(3)碱性条件P b S+2H2OңH P b O2-+S0+3H++e-㊂有研究[17]表明,在重铬酸盐法中,方铅矿表面的氧化对重铬酸盐作用生成的铬酸铅有促进作用,能增强其亲水性㊂重铬酸盐抑制机理表明,在弱碱性条件下,重铬酸盐只对表面氧化的方铅矿有抑制作用㊂鉴于氧化在重铬酸盐体系下对方铅矿的双重作用,在浮选分离过程中应控制好搅拌时间和充气量,最佳状态是控制方铅矿表面充分氧化,而与之分离的矿物则刚开始氧化㊂C H E N等[18]研究了氧化剂H2O2对木质素磺酸钠抑制方铅矿浮选分离黄铜矿的作用机理,结果表明,H2O2可增强木质素磺酸钠对方铅矿的抑制作用,并降低木质素磺酸钠的用量,抑制作用增强的原因是H2O2与木质素磺酸钠发生化学反应产生了更多的氧化产物,促进了金属铅的羟基化合物在矿物表面的吸附,增加了木质素磺酸钠在方铅矿表面的吸附量,从而增强了抑制作用㊂腐殖酸抑制方铅矿的机理研究表明,氧化对于腐殖酸抑制方铅矿有重要作用,中度氧化抑制效果最好,矿物表面氧化形成的硫和硫酸铅是腐殖酸的重要吸附位点[19]㊂L I U等[20]研究了腐殖酸钠和过硫酸铵对方铅矿的抑制机理,结果表明,腐殖酸钠不会吸附在新鲜的方铅矿表面,矿浆的氧化环境和方铅矿表面的适当氧化是腐殖酸钠抑制方铅矿的前提,在氧化后方铅矿表面可产生化学吸附㊂LÓP E Z-V A L D I V I E S O等[21]以羧甲基纤维素(C M C)为抑制剂,开展了混合铜铅精矿分离试验,结果表明,C M C通过C O O-和P b(O H)+酸碱键合吸附在方铅矿表面,方铅矿表面的氧化促进了硫氧基和P b(O H)+的生成以及C M C的吸附,极大影响了方铅矿的可浮性,而黄铜矿的可浮性不受影响,从而使铜铅混合精矿得到有效分离㊂在重铬酸钾分离铜铅试验中,弱碱性条件下分离效果会受次生硫化铜矿氧化的影响,因为次生硫化铜矿的氧化可以产生具有活化作用的铜离子吸附在方铅矿表面而活化方铅矿,导致方铅矿亲水性下降[22];高碱性条件下分离效果会受黄铜矿氧化的影响,因为黄铜矿氧化产生的S O32-㊁S O42-㊁C u O优先吸附在黄铜矿表面使其亲水,从而影响铜铅分离效果[23]㊂1.4矿浆p Hp H是浮选过程中需要控制的一个重要参数,主要通过影响抑制剂和捕收剂的稳定性及效能来影响矿物的亲疏水性㊂方铅矿的可浮性较好,其回收率与矿浆p H 紧密相关[14]㊂刘润清等[24]研究发现,将丁基黄药作为捕收剂,在矿浆p H为2~10范围内,方铅矿的回收率约为99%;当p H>10时,方铅矿回收率急剧下降至27.93%㊂通常情况下,抑制剂只有在适宜的p H条件下,才能表现出较好的抑制效果㊂在重铬酸盐体系下,需要严格控制矿浆p H,通常控制在7.4左右,因为酸性过强会导致重铬酸盐中的六价铬迅速还原为三价铬,从而失去抑制能力;而碱性过强则会使重铬酸盐对方铅矿的氧化速率降低,从而影响抑制效果[25]㊂亚硫酸盐使强碱弱酸盐溶液呈碱性,而方铅矿在弱碱性条件下的可浮性良好㊂因此,亚硫酸盐法一般要在弱酸性介质中进行,在试验过程中需要严格控制亚硫酸盐用量和矿浆p H㊂通常认为,有机抑制剂(如C M C㊁淀粉㊁糊精)是通过与表面金属氢氧化物的相互作用吸附在矿物表面而使其亲水的[21,26-27],因此有机抑制效果与p H紧密相关㊂P b S-H2O体系下的E h-p H图见图2㊂㊃56㊃邱芝莲等:方铅矿表面亲水性及浮选抑制机理研究进展2024年4月图2 P b S-H2O体系下的E h-p H图F i g.2 E h-p H d i a g r a m f o r t h e P b S-H2O s y s t e m石灰因来源广㊁成本低而被广泛用作p H调整剂和硫化矿抑制剂,一定用量下的石灰可作为脉石矿物的抑制剂,用量较大时可实现对方铅矿的抑制,同时石灰还能与矿浆中的金属离子形成稳定的络合物或发生氧化还原反应,以此消除矿浆中的活化离子来实现抑制[28]㊂1.5矿浆电位矿浆电位对硫化矿的疏水性和浮选行为具有明显影响㊂方铅矿具有半导体性质,可浮性良好,存在较宽的浮选矿浆电位㊂通过调控电位可实现对方铅矿的有效抑制[7,29]㊂王淀佐等[30]对方铅矿-石灰-乙硫氮体系进行了研究,结果表明,石灰的作用不仅是作为p H调整剂,还对矿浆电位有很好的稳定作用;通过控制矿浆电位,不加闪锌矿抑制剂也能实现方铅矿和闪锌矿的分离,同时还降低了选矿药剂成本㊂罗仙平等[31]在某铜铅锌多金属硫化矿电位调控浮选试验中发现,矿浆电位与p H呈负相关,因此可以通过调节矿浆p H来较为准确地调节矿浆电位;为此,针对矿石性质,采用 铜铅混浮-铜铅分离-混浮尾矿抑硫浮锌 浮选工艺,通过调控矿浆电位,最终获得了铜精矿品位为18.13%㊁回收率为55.41%,铅精矿品位为50.20%㊁回收率为83.29%和锌精矿品位为49.75%㊁回收率为86.17%的浮选指标㊂张文钲[32]认为控制矿浆电位可以强化磷诺克斯的抑制作用,硫化钠可以降低溶液的氧化还原电位,因此磷诺克斯往往和硫化钠等抑制剂配合使用,利用协同效应实现对方铅矿的抑制㊂硫化钠要超过一定浓度后才能实现对矿浆电位的改变,对方铅矿的抑制机理主要是H S-与黄药的竞争吸附,降低黄药在矿物表面的吸附量,同时解吸已吸附于其表面的黄药[33-34]㊂1.6其他影响因素黄铜矿与方铅矿之间的电流相互作用会抑制黄药在黄铜矿表面的吸附,进而降低方铅矿和黄铜矿的可浮性差异[35]㊂方铅矿与黄铁矿之间的电流相互作用会抑制黄铁矿表面双黄药的形成,进而降低方铅矿与黄铁矿的可浮性差异[36]㊂有研究[37]表明,黄铁矿可促进方铅矿表面铅离子的溶出,进而增强对方铅矿的抑制作用㊂磨矿环境对方铅矿浮选行为有重要影响㊂有研究[38-39]发现,方铅矿和磨矿介质会发生反应生成亲水性的铁氢氧化物,降低方铅矿的可浮性㊂另外,不同研磨介质对矿浆中溶解氧的消耗量不同,影响了方铅矿表面的氧化和黄药的吸附效能,从而改变方铅矿的可浮性㊂迟晓鹏等[40]在铜铅分离新型抑制剂的研究中发现,硫酸铝和C M C的加入顺序对方铅矿的抑制效果有显著影响,先加C M C再加硫酸铝对方铅矿的抑制产生负协同效应,而先加硫酸铝再加C M C才能对方铅矿的抑制产生正协同效应㊂除以上影响因素外,方铅矿的亲水性还受药剂制度㊁浮选工艺㊁矿浆浓度㊁温度和浮选机转速等的影响㊂2抑制剂及其抑制机理2.1无机抑制剂重铬酸盐和亚硫酸盐是方铅矿最主要的抑制剂,这些无机抑制剂具有用量小㊁生产稳定㊁效果显著等优势㊂重铬酸盐抑制机理研究已较为深入,重铬酸盐在方铅矿表面形成铬酸铅亲水薄膜而使其亲水,同时解吸吸附在方铅矿表面的黄药[41],反应式如下:(1)铬酸盐和重铬酸盐之间的转换2C r O42-+2H+ң2H C r O42-ңC r2O72-+H2O㊂(2)弱酸性条件3P b S+11C r O42-+16H+ң3P b C r O4+4C r2O3+3S O42-+8H2O,3P b S+5H C r O4-+5H+ң3P b C r O4+C r2O3+3S0+5H2O㊂(3)弱碱性条件P b S+C r O42-+4H2OңP b C r O4+S O42-+8H++8e-,2P b S+C r2O72-+9H2Oң2P b C r O4+2S O42-+18H++16e-㊂㊃66㊃2024年第4期I M&P化工矿物与加工第53卷在安徽某铜铅分离选矿试验中,闫德利[42]为降低铜铅互含,采用重铬酸钾为铅抑制剂,通过闭路试验最终获得了含铜15.34%㊁含铅5.94%㊁铜回收率为44.49%的铜精矿,含铅64.17%㊁含铜0.42%㊁铅回收率为90.99%的铅精矿,实现了铜资源的综合回收,解决了铜铅互含严重的问题㊂亚硫酸盐的抑制机理较为复杂,目前大都认为是在方铅矿表面生成了亲水性的硫酸铅或亚硫酸铅薄膜,同时解吸吸附在方铅矿表面的黄药,从而降低方铅矿的可浮性[43]㊂水玻璃和焦磷酸钠也是方铅矿的有效抑制剂,但水玻璃通常需要与其他药剂组合使用,焦磷酸钠也需要在柠檬酸钠的辅助下才能抑制方铅矿㊂乔吉波等[44]针对某铜铅矿石分别采用水玻璃+高锰酸钾或水玻璃+亚硫酸钠进行试验研究,通过闭路试验最终获得了铜品位为26.63%㊁铜回收率达84.26%的铜精矿,铅品位为57.43%㊁铅回收率达89.66%的铅精矿㊂有研究[45]表明,在方铅矿-黄铜矿混合物的浮选试验中使用H2S O4对方铅矿表面进行改性,可降低方铅矿的可浮性㊂在最佳改性条件下,方铅矿表面的接触角从93.03ʎ降至44.67ʎ,可浮性显著降低,抑制机理是其在表面生成了亲水性物质P b S O4㊂2.2有机抑制剂方铅矿的有机抑制剂主要有多糖(淀粉㊁纤维素㊁糊精及其衍生物)㊁木质素㊁腐殖酸钠,其具有来源广㊁种类多㊁对环境友好等特点,逐渐取代了有毒有害的重铬酸盐,但仅有少数应用于工业生产㊂淀粉对方铅矿的抑制机理研究成果较多㊂一般认为,淀粉与方铅矿的作用主要是氢键作用[34]㊂有研究[26]表明,淀粉是通过亲水基团羟基与方铅矿表面金属离子的羟基化合物相互作用而使其亲水,表面金属离子的羟基化合物性质决定了淀粉与矿物表面的作用强弱㊂这种作用又是酸碱的相互作用,羟基化合物的碱性越强,亲水性越好㊂邱仙辉等[27]研究了磷酸酯淀粉对黄铜矿和方铅矿浮选的影响及其吸附机理,原子力显微镜(A F M)检测结果表明,磷酸酯淀粉对方铅矿有较强的亲和力,其表面形成的吸附形态均匀且覆盖度较高,在高p H条件下可实现对方铅矿的高效抑制㊂糊精是淀粉热降解的产物,对方铅矿的抑制作用主要是依靠亲水性基团羟基与铅离子的化学络合[46]㊂大量研究已经证实,羧甲基纤维素(C M C)是方铅矿的高效选择性抑制剂,在早期的研究中,通常将其与重铬酸钾组合使用以提高选择性抑制作用,降低药剂消耗㊂但随着研究的深入,重铬酸钾产品逐渐被无铬产品替代㊂有研究[47]表明,C M C分离黄铜矿和方铅矿时,C M C 可选择性化学吸附在方铅矿表面㊂C M C对方铅矿浮选的抑制机制主要是通过C O O-基团和P b O H+之间的静电吸附和氢键作用[48-49]吸附在方铅矿表面而实现对方铅矿的抑制㊂迟晓鹏等[40]在铜铅分离的新型铅抑制剂研究中发现, C M C㊁硫酸铝以及硫酸铝+C M C组合均可实现对方铅矿的抑制,经过1次粗选可获得铜精矿品位为22.49%㊁回收率为77.29%,铅回收率仅为4.96%和铅精矿品位为41.38%㊁铅回收率为95.04%㊁含铜1.28%的指标㊂2.3组合抑制剂单一的抑制剂很难达到理想的抑制效果,且药剂消耗量大㊂为了达到更好的分离效果和经济指标,常将淀粉㊁纤维素㊁糊精等有机抑制剂和重铬酸盐与亚硫酸盐组合使用㊂高锰酸钾和C M C 协同抑制方铅矿的机理研究表明[50],协同抑制作用主要表现在方铅矿对黄药的吸附量大大降低㊂L I U等[20]研究了使用腐殖酸钠(H A)和过硫酸铵(A P S)抑制方铅矿与黄铜矿的浮选分离效果,结果表明,H A和A P S组合抑制剂成功实现了铜铅矿的清洁高效分离,两者组合抑制比单一使用重铬酸钾㊁H A㊁A P S的抑制作用更加明显㊂采用组合抑制剂,通过闭路试验获得了铜精矿含铜30.47%㊁含铅1.58%,回收率分别为89.16%㊁2.06%;铅精矿含铅50.34%㊁含铜1.58%,回收率分别为98.42%㊁2.06%的指标㊂亚硫酸钠+硅酸钠组合抑制方铅矿的机理研究[51]表明,方铅矿表面生成了亲水性物质硫酸铅㊁亚硫酸铅和正硅酸铅㊂张一超等[52]在云南某铜铅硫化矿选矿试验中,采用重铬酸钾+硫酸钠的组合抑制剂抑制方铅矿,获得了铜精矿品位为25.32%㊁含铅7.96%㊁回收率为82.06%,铅精矿品位为58.36%㊁回收率为85.61%㊁含铜0.73%的指标㊂㊃76㊃邱芝莲等:方铅矿表面亲水性及浮选抑制机理研究进展2024年4月李江涛等[53]对某铜铅混合精矿分别使用重铬酸钾㊁重铬酸钾+水玻璃㊁重铬酸钾+C M C㊁重铬酸钾+亚硫酸钠为抑制剂分离铜铅,工业试验结果表明,以重铬酸钾+亚硫酸钠为组合抑制剂,可得到铜精矿品位为24.99%㊁含铅5.48%,铅精矿品位为34.34%㊁含铜6.56%的指标㊂王中生等[54]在某铜铅锌多金属矿浮选分离试验中,对比了单一使用亚硫酸盐㊁重铬酸盐和C M C-重铬酸盐组合抑铅浮铜的效果,结果表明,C M C-重铬酸盐组合浮选效果最好,可以有效降低铜铅互含㊂除此以外,重铬酸盐-亚硫酸钠-羧甲基纤维素[55]㊁重铬酸钠-水玻璃-羧甲基纤维素[56]㊁亚硫酸钠-羧甲基纤维素[57]㊁亚硫酸钠-硫酸锌-羧甲基纤维素[58]等组合抑制剂对方铅矿均有良好的抑制效果㊂在浮选过程中,组合抑制剂中各种抑制剂的抑制机理并未发生变化,只是发挥了各自的抑制效果和协同效应㊂3结论a.方铅矿晶格缺陷和半导体性质与其亲水性密切相关㊂晶格缺陷越多,矿物的可浮性受到的影响越大㊂不同的半导体性质会导致矿物与捕收剂的作用行为不同㊂晶格缺陷和半导体性质主要受地质作用影响㊂b.矿浆环境条件是影响浮选指标的重要因素,因此应综合考虑方铅矿表面氧化㊁矿浆p H㊁矿浆电位㊁伴生矿物㊁磨矿介质和加药顺序等因素对其可浮性的影响㊂c.重铬酸盐和亚硫酸盐是方铅矿浮选的主要抑制剂㊂但由于单一药剂很难达到满意的抑制效果,同时,重铬酸盐毒性大㊁消耗量大且会损失贵金属,故重铬酸盐产品逐渐被无铬产品或低铬产品的组合抑制剂代替㊂因此,研发新型高效的单一选择性抑制剂和组合抑制剂对实现方铅矿的高效抑制具有重要意义,未来方铅矿抑制剂将向无毒㊁环保㊁高效和组合药剂的方向发展㊂4参考文献[1]江少卿,徐毅,孙尚信,等.全球铅锌矿资源分布[J].地质与资源,2020,29(3):224-232.J I A N G S Q,X U Y,S U N S X,e t a l.G l o b a l d i s t r i b u t i o n o f l e a d-z i n c r e s o u r c e s[J].G e o l o g y a n d R e s o u r c e s,2020,29(3): 224-232.[2]窦源东,张建华,王涛.河北某低品位难选铅锌矿选矿工艺优化研究[J].中国矿业,2023,32(1):134-140+149.D O U Y D,Z H A N G J H,WA N G T.S t u d y o n t h e o p t i m i z a-t i o n o f b e n e f i c i a t i o n t e c h n o l o g y o f a l o w g r a d e r e f r a c t o r y l e a d-z i n c o r e i n H e b e i P r o v i n c e[J].C h i n a M i n i n g M a g a z i n e, 2023,32(1):134-140+149.[3]杨荣林.浅析我国铅锌矿资源开发现状及可持续发展建议[J].世界有色金属,2018(1):148+150.Y A N G R L.A n a l y s i s o f c u r r e n t s i t u a t i o n o f l e a d a n d z i n c m i n e r e s o u r c e s d e v e l o p m e n t a n d s u g g e s t i o n s f o r s u s t a i n a b l ed e v e l o p m e n t i n C h i n a[J].W o r l d N o n f e r r o u s M e t a l s,2018(1):148+150.[4]S U C,L I U D W,S H E N P L,e t a l.P r o g r e s s i n t h e s t u d y o fe l e c t r o c h e m i c a l p r o p e r t i e s a n df l o t a t i o n b e h a v i o r o f c h a l c o p y-r i t e a n dg a l e n a[J].N o n f e r r o u s M e t a l E n g i n e e r i n g,2020,10 (9):79-87.[5]印万忠,孙传尧.矿物晶体结构与表面特性和可浮性关系的研究[J].国外金属矿选矿,1998(4):8-11.Y I N W Z,S U N C Y.S t u d y o n t h e r e l a t i o n s h i p b e t w e e n m i n e r a l c r y s t a l s t r u c t u r e a n d s u r f a c e c h a r a c t e r i s t i c s a n d f l o a t a b i l i t y[J].M e t a l l i c O r e D r e s s i n g A b r o a d,1998(4): 8-11.[6]赵珊茸.结晶学及矿物学[M].北京:高等教育出版社,2004. Z HA O S R.C r y s t a l l o g r a p h y a n d m i n e r a l o g y[M].B e i j i n g:H i g h e r E d u c a t i o n P r e s s,2004.[7]陈建华,王檑,陈晔,等.空位缺陷对方铅矿电子结构及浮选行为影响的密度泛函理论[J].中国有色金属学报,2010,20(9):1815-1821.C H E N J H,WA N G L,C H E N Y,e t a l.D e n s i t y f u n c t i o n a l t h e o r y o f e f f e c t s o f v a c a n c y d e f e c t s o n e l e c t r o n i c s t r u c t u r e a n d f l o t a t i o n o f g a l e n a[J].T h e C h i n e s e J o u r n a l o f N o n f e r-r o u s M e t a l s,2010,20(9):1815-1821.[8]C H E N J H,C H E N Y,L O N G X H,e t a l.D F T s t u d y o f c o a d-s o r p t i o n o f w a t e r a n d o x y g e n o n g a l e n a(P b S)s u r f a c e:a n i n-s i g h t i n t o t h e o x i d a t i o n m e c h a n i s m o f g a l e n a[J].A p p l i e d S u r f a c e S c i e n c e,2017,420(31):714-719.[9]蓝丽红.晶格缺陷对方铅矿表面性质㊁药剂分子吸附及电化学行为影响的研究[D].南宁:广西大学,2012.L A N L H.T h e e f f e c t o f l a t t i c e d e f e c t o f g a l e n a o n t h e s u r-f a c e p r o p e r t i e s,m o l e c u l e a b s o r p t i o n o f f l o t a t i o n r e a g e n t s a n d e l e c t r o c h e m i c a l b e h a v i o r[D].N a n n i n g:G u a n g x i U n i v e r-s i t y,2012.[10]王淀佐,邱冠周,胡岳华.资源加工学[M].北京:科学出版社,2005.WA N G D Z,Q I U G Z,HU Y H.R e s o u r c e p r o c e s s i n g[M].B e i j i n g:S c i e n c e P r e s s,2005.[11]L A N L H,C H E N J H,L I Y Q,e t a l.M i c r o t h e r m o k i n e t i cs t u d y o f x a n t h a t e a d s o r p t i o n o n i m p u r i t y-d o p e d g a l e n a[J].T r a n s a c t i o n s o f N o n f e r r o u s M e t a l s S o c i e t y o f C h i n a,2016, 26(1):272-281.[12]O E R T E L J,E L L M E R K,B O H N E W,e t a l.G r o w t h o f n-t y p e p o l y c r y s t a l l i n e p y r i t e(F e S2)f i l m s b y m e t a l o r g a n i cc h e m i c a l v a p o u rde p o s i t i o n a n d t h e i r e l e c t r i c a l c h a r a c t e r i z a-t i o n[J].J o u r n a l o f C r y s t a l G r o w t h,1999,198(98): 1205-1210.㊃86㊃2024年第4期I M&P化工矿物与加工第53卷[13]俞献林.不同成因方铅矿的矿物学特性及浮游性研究[D].赣州:江西理工大学,2018.Y U X L.R e s e a r c h o n m i n e r a l o g y c h a r a c t e r i s t i c s a n d f l o a-t i n g o f d i f f e r e n t c a u s e s o f g a l e n a[D].G a n z h o u:J i a n g x i U n i-v e r s i t y o f S c i e n c e a n d T e c h n o l o g y,2018.[14]E L I Z O N D O-L V A R E Z M A,D A V I L A-P U L I D O G L,B E L-L O-T E O D O R O S,e t a l.R o l e o f p H o n t h e a d s o r p t i o n o f x a n t h a t e a n d d i t h i o p h o s p h i n a t e o n t o g a l e n a[J].C a n a d i a n M e t a l l u r g i c a l Q u a r t e r l y,2019,58(1):107-115.[15]S T E P H E N F,M I C HA E L D H.S o m e p h o t o e l e c t r o c h e m i c a li n s i g h t s i n t o g a l e n a f l o t a t i o n[J].I n t e r n a t i o n a l J o u r n a l o fM i n e r a l P r o c e s s i n g,1991,33(1/4):145-163. [16]陈荩,冯其明,李世锟.方铅矿无捕收剂浮选行为的研究[J].有色金属,1986(2):33-39.C H E N J,F E N G Q M,L I S K.S t u d y o n c o l l e c t o r-f r e e f l o t a-t i o n b e h a v i o r o f g a l e n a[J].N o n f e r r o u s M e t a l s,1986(2):33-39.[17]路亮,梁爽,张行荣,等.方铅矿抑制剂在铜铅分离中的研究进展[J].矿产保护与利用,2020,40(2):105-111.L U L,L I A N G S,Z HA N G X R,e t a l.A d v a n c e d r e s e a r c h o ng a l e n a d e p r e s s a n t i n c o p p e r-l e a d s u l f i d e s f l o t a t i o n s e p a r a-t i o n[J].C o n s e r v a t i o n a n d U t i l i z a t i o n o f M i n e r a l R e s o u r c e s, 2020,40(2):105-111.[18]C H E N Y G,F E N G B,G U O Y T,e t a l.T h e r o l e o f o x i d i z e ri n t h e f l o t a t i o n s e p a r a t i o n o f c h a l c o p y r i t e a n d g a l e n a u s i n gs o d i u m l i g n o s u l f o n a t e a s a d e p r e s s a n t[J].M i n e r a l s E n g i-n e e r i n g,2021,172(1/2):107160.[19]WA N G X J,Q I N W Q,J I A O F,e t a l.I n h i b i t i o n o f g a l e n af l o t a t i o n b y h u m i c a c i d:i d e n t i f i c a t i o n o f t h e a d s o r p t i o n s i t ef o r h u m i c a c i d o n m o d e r a t e l y o x i d i z e dg a l e n a s u r f a c e[J].M i n e r a l s E n g i n e e r i n g,2019,137:102-107.[20]L I U R Z,Q I N W Q,J I A O F,e t a l.F l o t a t i o n s e p a r a t i o n o fc h a l c o p y r i t e f r o m g a l e n a b y s od i u m h u m a te a n d a mm o n i u mp e r s u l f a t e[J].T r a n s a c t i o n s o f N o n f e r r o u s M e t a l s S o c i e t y o fC h i n a,2016,26(1):265-271.[21]LÓP E Z-V A L D I V I E S O A,L O Z A N O-L E D E S MA L A,R O B L E D O-C A B R E R A A,e t a l.C a r b o x y m e t h y l c e l l u l o s e(C M C)a s P b S d e p r e s s a n t i n t h e p r o c e s s i n g o f P b-C u b u l kc o n c e n t r a t e s.Ad s o r p t i o n a n d f l o a t a b i l i t y s t u d ie s[J].M i n e r a l s E n g i n e e r i n g,2017,112:77-83.[22]王卫初.利用组合抑制剂进行铜铅分离的试验研究[J].有色矿山,1999(2):35-38+53.WA N G W C.T h e t e s t s t u d y o f u s i n g c o m b i n e d d e p r e s s a n t si n c o p p e r a n d l e a d s e p a r a t i o n[J].N o n f e r r o u s M i n e s,1999(2):35-38+53.[23]牛晓鹏.方铅矿㊁黄铜矿和黄铁矿表面氧化与可浮性研究[D].北京:中国科学院大学,2019.N I U X P.C o r r e l a t i o n o f s u r f a c e o x i d a t i o n o f g a l e n a,c h a l-c o p y r i t e a nd p y r i te w i t h t h e i rf l o a t a b i l i t y[D].B e i j i n g:U n i-v e r s i t y o f C h i n e s e A c a d e m y o f S c i e n c e s,2019. [24]刘润清,孙伟,胡岳华.铜铅分离有机抑制剂F C L S的研究[J].矿冶工程,2009,29(3):29-32.L I U R Q,S U N W,HU Y H.S t u d y o n o r g a n i c d e p r e s s a n tF C L S f o r s e p a r a t i o n o f c h a l c o p y r i t e a n d g a l e n a[J].M i n i n ga n d M e t a l l u r g i c a l E n g i n e e r i n g,2009,29(3):29-32.[25]康博文,谢贤,陈国举,等.硫化铜铅矿物分离过程铅抑制剂的研究现状与进展[J].金属矿山,2018(10):104-109.K A N G B W,X I E X,C H E N G J,e t a l.P r e s e n t s i t u a t i o n a n d r e s e a r c h p r o g r e s s o f g a l e n a d e p r e s s a n t i n c o p p e r-l e a d s u l f i d e o r e s s e p a r a t i o n[J].M e t a l M i n e,2018(10):104-109. [26]L I U Q,Z HA N G Y H,L A S K OW S K I J S.T h e a d s o r p t i o n o fp o l y s a c c h a r i d e s o n t o m i n e r a l s u r f a c e s:a n a c i d/b a s e i n t e r a c-t i o n[J].I n t e r n a t i o n a l J o u r n a l o f M i n e r a l P r o c e s s i n g,2001, 60(3/4):229-245.[27]邱仙辉,孙传尧,于洋.磷酸酯淀粉在黄铜矿及方铅矿表面吸附研究[J].有色金属(选矿部分),2014(3):86-90.Q I U X H,S U N C Y,Y U Y.R e s e a r c h o n a d s o r p t i o n o f p h o s p h a t e s t a r c h o n c h a l c o p y r i t e a n d g a l e n a s u r f a c e[J].N o n f e r r o u s M e t a l s(M i n e r a l P r o c e s s i n g S e c t i o n),2014(3): 86-90.[28]姚辉,贺寒冰,王一清,等.C a2+和M g2+对方铅矿浮选效果的影响及机理研究[J].中国矿业,2023,32(4):119-124.Y A O H,H E H B,WA N G Y Q,e t a l.S t u d y o n t h e e f f e c ta n d m e c h a n i s m o f C a2+a n d M g2+o n g a l e n a f l o t a t i o n[J].C h i n a M i n i n g M a g a z i n e,2023,32(4):119-124.[29]郑伦,张笃.电位调控浮选在凡口铅锌矿的应用[J].中国矿山工程,2005(2):1-4+8.Z H E N G L,Z H A N G D.A p p l i c a t i o n o f p o t e n t i a l a d j u s t m e n ta n d c o n t r o l f l o t a t i o n i n F a n k o u l e a d-z i n c m i n e[J].C h i n aM i n i n g E n g i n e e r i n g,2005(2):1-4+8.[30]王淀佐,顾帼华,刘如意.方铅矿-石灰-乙硫氮体系电化学调控浮选[J].中国有色金属学报,1998(2):135-139.WA N G D Z,G U G H,L I U R Y.P o t e n t i a l a d j u s t m e n t f l o t a-t i o n o f g a l e n a l i m e d i e t h y l d i t h i o c a r b a m a t e s y s t e m[J].T h eC h i n e s e J o u r n a l o f N o n f e r r o u s M e t a l s,1998(2):135-139.[31]罗仙平,王淀佐,孙体昌,等.某铜铅锌多金属硫化矿电位调控浮选试验研究[J].金属矿山,2006(6):30-34.L U O X P,WA N G D Z,S U N T C,e t a l.E x p e r i m e n t s t u d y o n p o t e n t i a l c o n t r o l l e d f l o t a t i o n f o r C u-P b-Z n m u l t i-m e t a l s u l f i d e o r e[J].M e t a l M i n e,2006(6):30-34. [32]张文钲.钼精矿降铅方法[J].中国钼业,2003(4):5-6+17.Z H A N G W Z.M e t h o d o f r e d u c i n g l e a d f r o m m o l y b d e n i t ec o n c e n t r a t e s[J].C h i n a M o l y bde n u m I n d u s t r y,2003(4):5-6+17.[33]H E R R E R A-U R B I N A R,S O T I L L O F J,F U E R S T E N A U DW.E f f e c t o f s o d i u m s u l f i d e a d d i t i o n s o n t h e p u l p p o t e n t i a la n d a m y l x a n t h a t e f l o t a t i o n o f c e r u s s i t e a n d g a l e n a[J].I n-t e r n a t i o n a l J o u r n a l o f M i n e r a l P r o c e s s i n g,1999,55(3):157-170.[34]Q I N W Q,W E I Q,J I A O F,e t a l.U t i l i z a t i o n o f p o l y s a c c h a-r i d e s a s d e p r e s s a n t s f o r t h e f l o t a t i o n s e p a r a t i o n o f c o p p e r/ l e a d c o n c e n t r a t e[J].I n t e r n a t i o n a l J o u r n a l o f M i n i n g S c i e n c ea n d T e c h n o l o g y,2013,23(2):191-198.[35]K E B L,C H E N J H.I n f l u e n c e o f g a l v a n i c i n t e r a c t i o nb e t w e e nc h a l c o p y r i t e a nd g a le n a o n e l e c t r o c h e m i c a l a n df l o t a t i o n b e h a v i o u r o f c h a l c o p y r i t e[J].A p p l i e d S u r f a c eS c i e n c e,2022,573:151475.[36]Q I N W Q,WA N G X J,MA L Y,e t a l.E f f e c t s o f g a l v a n i c㊃96㊃邱芝莲等:方铅矿表面亲水性及浮选抑制机理研究进展2024年4月i n t e r a c t i o n b e t w e e n g a l e n a a n d p y r i t e o n t h e i r f l o t a t i o n i nt h e p r e s e n c e o f b u t y l x a n t h a t e[J].T r a n s a c t i o n s o f N o n f e r-r o u s M e t a l s S o c i e t y o f C h i n a,2015,25(9):3111-3118.[37]WA N G X J,Q I N W Q,J I A O F,e t a l.T h e i n f l u e n c e o fg a l v a n i c i n t e r a c t i o n o n t h e d i s s o l u t i o n a n d s u r f a c e c o m p o s i-t i o n o f g a l e n a a n d p y r i t e i n f l o t a t i o n s y s t e m[J].M i n e r a l sE n g i n e e r i n g,2020,156:106525.[38]K E B L,C H E N J H,W E I C.G a l v a n i c i n t e r a c t i o n b e t w e e nd i f fe r e n t g r i n d i n g m e d i a a n d g a l e n a(100)s u rf a c e a n d i t s i n-f l u e n c e o ng a l e n a f l o t a t i o n b eh a vi o r:a D F T s t u d y[J].A p p l i e d S u r f a c e S c i e n c e,2022,571:151379.[39]B R U C K A R D W J,S P A R R OW G J,WO O D C O C K J T.Ar e v i e w o f t h e e f f e c t s o f t h e g r i n d i n g e n v i r o n m e n t o n t h e f l o-t a t i o n o f c o p p e r s u l p h i d e s[J].I n t e r n a t i o n a l J o u r n a l o f M i n e r a l P r o c e s s i n g,2011,100(1):1-13.[40]迟晓鹏,王纪镇,邓海波,等.铜铅分离新型铅抑制剂研究[J].金属矿山,2013(11):56-59.C H I X P,WA N G J Z,DE N G H B,e t a l.S t u d y o n a n e w-t y p e l e a d d e p r e s s a n t f o r c o p p e r a n d l e a d s e p a r a t i o n[J].M e t a l M i n e,2013(11):56-59.[41]姜永智,李国栋.西北某难选铅锌矿石浮选试验[J].金属矿山,2014,459(9):60-63.J I A N G Y Z,L I G D.F l o t a t i o n e x p e r i m e n t s o n a r e f r a c t o r y l e a d-z i n c o r e i n n o r t h w e s t e r n C h i n a[J].M e t a l M i n e,2014, 459(9):60-63.[42]闫德利.安徽某矿山铜铅分离选矿试验[J].现代矿业,2019,35(5):186-190.Y A N D L.B e n e f i c i a t i o n e x p e r i m e n t o n c o p p e r-l e a d s e p a r a-t i o n o f a m i n e i n A n h u i[J].M o d e r n M i n i n g,2019,35(5): 186-190.[43]刘润清,郭衍哲,江峰,等.亚硫酸在黄铜矿和方铅矿浮选分离中的作用研究[J].矿冶工程,2014,34(增刊1):104-107.L I U R Q,G U O Y Z,J I A N G F,e t a l.S t u d y o n t h e r o l e o f s u l f i t e i n f l o t a t i o n s e p a r a t i o n o f c h a l c o p y r i t e a n d g a l e n a[J].M i n i n g a n d M e t a l l u r g i c a l E n g i n e e r i n g,2014,34(S u p.1): 104-107.[44]乔吉波,文书明,王少东.登高某铜铅矿选矿工艺试验研究[J].矿业研究与开发,2012,32(4):47-50.Q I A O J B,W E N S M,WA N G S D.E x p e r i m e n t a l s t u d y o n t h e b e n e f i c i a t i o n p r o c e s s o f a c o p p e r-l e a d o r e f r o m D e n g g a o [J].M i n i n g R e s e a r c h a n d D e v e l o p m e n t,2012,32(4): 47-50.[45]X I E H Y,J I N Y,Z H A N G P,e t a l.S u r f a c e m o d i f i c a t i o nm e c h a n i s m o f g a l e n a w i t h H2S O4a n d i t s e f f e c t o n f l o t a t i o n s e p a r a t i o n p e r f o r m a n c e[J].A p p l i e d S u r f a c e S c i e n c e,2022, 579:152129.[46]R A J U B G,H O L MG R E N A,F O R S L I N G W.A d s o r p t i o n o fd e x t r i n a t m i n e r a l/w a t e r i n t e r f a c e[J].J o u r n a l o f C o l l o i d&I n t e r f a c e S c i e n c e,1997,193(2):215-222.[47]Q I U X M,Y A N G H Y,C H E N G B,e t a l.I n h i b i t e d m e c h a-n i s m o f c a r b o x y m e t h y l c e l l u l o s e a s a g a l e n a d e p r e s s a n t i nc h a l c o p y r i t e a nd g a le n a s e p a r a t i o nf l o t a t i o n[J].M i n e r a l sE n g i n e e r i n g,2020,150:106273.[48]孟书青,刘金华,廖平婴,等.C M C与方铅矿和闪锌矿作用机理的探讨[J].矿冶工程,1982(3):32-36+25.M E N G S Q,L I U J H,L I A O P Y,e t a l.D i s c u s s i o n o n t h e m e c h a n i s m o f C M C w i t h g a l e n a a n d s p h a l e r i t e[J].M i n i n ga n d M e t a l l u r g i c a l E n g i n e e r i n g,1982(3):32-36+25.[49]L A S K OW S K I J S,L I U Q,B O L I N N J.P o l y s a c c h a r i d e s i nf l o t a t i o n o f s u l p h i d e s.p a r tⅠ.a d s o r p t i o n o f p o l y s a c c h a r i d e so n t o m i n e r a l s u r f a c e s[J].I n t e r n a t i o n a l J o u r n a l o f M i n e r a l P r o c e s s i n g,1991,33(1/4):223-234.[50]Y U L,L I U Q J,L I S M,e t a l.T h e s y n e r g e t i c d e p r e s s i o ne f f e c t o f KM n O4a n d C M C o n t h e d e p r e s s i o n o f g a l e n af l o t a t i o n[J].C h e m i c a l E ng i n e e r i n g C o mm u n i c a t i o n s,2019,206(5):581-591.[51]Z H A N G Y,L I U R Q,S U N W,e t a l.E l e c t r o c h e m i c a lm e c h a n i s m a n d f l o t a t i o n o f c h a l c o p y r i t e a n d g a l e n a i n t h ep r e s e n c e o f s o d i u m s i l i c a t e a n d s o d i u m s u l f i t e[J].T r a n s a c-t i o n s o f N o n f e r r o u s M e t a l s S o c i e t y o f C h i n a,2020,30(4): 1091-1101.[52]张一超,刘全军,袁华玮,等.云南某铜铅硫化矿石选矿试验[J].金属矿山,2016(7):125-128.Z H A N G Y C,L I U Q J,Y U A N H W,e t a l.B e n e f i c i a t i o ne x p e r i m e n t o n a c o p p e r-l e a d s u lf i d e o r e f r o m Y u n n a n[J].M e t a l M i n e,2016(7):125-128.[53]李江涛,库建刚,黄加能.亚硫酸钠在铜铅分离浮选中的应用[J].中国矿业,2007(10):74-76.L I J T,K U J G,HU A N G J N.T h e p r a c t i c e o f s o d i u m s u l f i t e i n t h e f l o t a t i o n s e p a r a t i o n o f l e a d-c o p p e r[J].C h i n a M i n i n g M a g a z i n e,2007(10):74-76.[54]王中生,郭月琴.C M C在铜铅分离浮选中的应用[J].矿产保护与利用,2002(1):30-32.WA N G Z S,G U O Y Q.A p p l i c a t i o n o f C M C i n f l o t a t i o n s e p a r a t i o n o f C u-P b[J].C o n s e r v a t i o n a n d U t i l i z a t i o n o f M i n e r a l R e s o u r c e s,2002(1):30-32.[55]陈晓芳.福建某银多金属矿铜铅分离试验研究[J].有色金属(选矿部分),2015(1):49-53.C H E N X F.R e s e a r c h o n c o p p e r-l e a d s e p a r a t i o n o f a s i l v e rp o l y m e t a l l i c o r e i n F u j i a n[J].N o n f e r r o u s M e t a l s(M i n e r a l P r o c e s s i n g S e c t i o n),2015(1):49-53.[56]冷相超,李运强.某铜铅锌多金属硫化矿石选矿试验[J].金属矿山,2018,503(5):88-93.L E N G X C,L I Y Q.S t u d y o n m i n e r a l p r o c e s s i n g o f ac o p p e r l e ad z i n c p o l y me t a l l i c s u lf i d e o r e[J].M e t a l M i n e,2018,503(5):88-93.[57]杨绍晶,刘全军,罗帅.云南某含银铜铅混合精矿分离试验研究[J].贵金属,2019,40(2):19-25.Y A N G S J,L I U Q J,L U O S.E x p e r i m e n t a l s t u d y o n s e p a-r a t i o n o f a s i l v e r-b e a r i n g C u-P b m i x e d c o n c e n t r a t e i n Y u n n a n[J].P r e c i o u s M e t a l s,2019,40(2):19-25. [58]刘国晨.云南元阳某金多金属矿铜㊁铅分离浮选试验[J].现代矿业,2018,34(4):86-88+94.L I U G C.E x p e r i m e n t o n f l o t a t i o n o f c o p p e r-l e a d s e p a r a t i o n o f a g o l d p o l y m e t a l l i c o r e i n Y u a n y a n g c o u n t y,Y u n n a n p r o v i n c e[J].M o d e r n M i n i n g,2018,34(4):86-88+94.㊃07㊃。
经铜离子活化后的某铅锌硫混合精矿中闪锌矿的浮选分离研究
s h lrt o c n r t t i c g a e a d r c v r f3 0 p ae i c n e tae wih a zn r d n e o ey o 6. 4% a d 8 41 , r s e tv l e n 9. % e p c ie y,c n b b an d fo te a e o ti e r m h
co e C r u fls. l s d— ic - e 1
Ke r y wo ds:foa in;s h lrt l tt o p aei e;c p e o ci ain;c l co ;d p e s n o p ri n a tv to ol t r e r s a t e
Absr c :To s p r t p lrt fo a b— — b l o c nr t a tv td b u rc u ft wh c c nti s a g ta t e a a e s hae i r m P Zn S u k c n e tae c ia e y c p i s lae, e i h o a n lr e a u t fc l co n r t e ,apatb l o ai n tc n q e,n mey,t o d c u k fo ai n o a e a a d p rt mo n so o l tra d foh r r— u k f tto e h i u e l a l o c n u ta b l ltto fg l n n y i e whi pr si g s ae ie,wa d p e l de e sn ph lrt e sa o td.W h n a t ae a b n wa s d frr a e tr mo a ,a d s d u s li nd e c i t d c r o s u e o e g n e v l n o i m u f v de a zm‘ uf t r s d e mb 1 y t e r s p ae i i s lae we e u e o iml o d p e ss h lrt e,a s c e ss p r to fs h lrt o t i — n— u k C [ e3 u c s e a a in o p a e ief m h sPb Z S b l OI I r C 一 tae c n e c u l e r t a b a t a i d. Fo r — fmi e r t a e d n zn g a e f9.3 z r a un o - n o e wi h la a d i c r d o 2% ad 2 n 0.01 , r s e tv l % e p ci ey,
550种矿物分类中英名称缩写代号分子式产状鉴定特征表
550种矿物分类中英名称缩写代号分子式产状鉴定特征表分类矿物名称缩写英文名字分子式晶系综合特征颜色条痕透明度光泽解理比重硬度01111岛状硅酸盐单个[SiO4]4- 双四面体[Si2O7]6-0111锆石Zrn Zircon Zr(SiO4)四方晶形柱状,单形四方柱、四方双锥纯净无色,常呈黄、黄褐、褐黑色白色透明金刚不完全 4.6-4.77.0-8.00111钍石thorite Th(SiO4)四方0111铀石Coffinite U(SiO4)0111?硅锌矿belgite Zn2[SiO4 ]三方0111?钪钇石Thortveitite Sc2[Si2O7]0111?赛黄晶danburite CaB2[SiO4]2正交0111?水硅铀矿??U[SiO4 ]四方0112钙橄榄石kalkorthosilicat Ca2[SiO4 ]正交0112钙镁橄榄石Mtc Monticellite CaMg[SiO4]正交0112钙锰橄榄石calcioolivine CaMn[SiO4]正交0112钙铁橄榄石kirschsteinite CaFé[SiO4]正交0112橄榄石Ol Olivine(Mg,Fe)2[SiO4]粒状或散粒状黄绿至黑绿白色透明玻璃不完全3.2-4.4 6.5-7.0 0112钴橄榄石cobalt olivine Co2[SiO4]正交0112镁橄榄石Fo Forsterite Mg2[SiO4]正交0112锰橄榄石tdphroite Mn2[SiO4]正交0112锰铁橄榄石ferroknebelite MnFe[SiO4]正交0112镍橄榄石liebenbergite Ni2[SiO4]正交0112铁橄榄石Fa Fayalite Fe2[SiO4]正交0113红柱石And Andalusite Al2+Al3+[SiO4]O正交晶体柱状,集合体呈放射状浅红色,风化为白、灰白白色透明玻璃中等,不完全3.1-3.2 6.5-7.50113空晶石Cht Chiastolite含炭质包裹体的红柱石碳定向排列0113蓝晶石Ky Kyanite Al2[SiO4]O三斜晶体呈板条状,集合体为放射状浅蓝色,灰白,绿,粉红色白色透明玻璃完全 3.56-3.68平4.5垂60113锰红柱石Viridina(Al2+,Mn)Al[SiO4]O0113矽线石Sil Sillimanite Al[AlSiO5]正交针状、放射状、纤维状集合体透明,灰白色白色透明玻璃完全 3.23-3.277.001140石榴石石榴子石Grt Garnet(Mg2+,Fe2+)3(Al3+,Fe3+)2[SiO4]3X3Y2[SiO4]3型晶形呈十二面体和四角三八面体,集合体为块状、粒状暗红色,红褐至黑色白色或淡黄色透明玻璃无 3.5-4.37.0-7.50114钙钒榴石Goldmanite Ca3V2[SiO4]3 )立方无0114钙铬榴石绿榴石Uvt Uvarovite Ca3Cr2[SiO4]3稀有,仅见于富含铬铁矿的超基性岩中,找矿翠绿墨绿无0114钙铝榴石Grs Grossular Ca3Al2[SiO4]3立方矽卡岩中,与白钨矿密切黄白红绿褐无0114钙铁榴石Adr Andradite Ca3Fe2[SiO4]3立方常和钙铝类质同象,环带构造,产于矽卡岩中,黄褐红褐黑黑无0114黑榴石Men Melanite含1-5%TiO2的钙铁榴石是碱性火成岩的产物无0114镁铬榴石Knorringite Mg3Cr2[SiO4]3无0114镁铝榴石Prp Pyrope Mg3Al2[SiO4]3立方金刚石指示矿物粉红血红暗红无0114锰铝榴石Sps Spessartine Mn3Al2[SiO4]3少见,锰矿床接触带或区域变质岩中暗红黑无0114锰铁榴石Calderite Mn3Fe2[SiO4]3无0114水钙铝榴石Hydrogrossular Ca3Al2[SiO4]3-x(OH)4x0114水榴石(类)Hydrogarnet X3Y2[SiO4]3-x(OH)4x成份中SiO2不足。
选矿专业英语词汇
专业英语词汇共 12 页 第 1 页矿物加工工艺学(浮选部分)英文词汇floatation 浮选froth flotation 泡沫浮选 direct flotation 正浮选 reverse flotation 反浮选differential flotation 优先浮选 bulk flotation 混合浮选fineness of grinding 磨矿细度 fractionation,sizing 分级mineral wettability 矿物润湿性 mineral flotability 矿物的可浮性 equilibrium contact angle 平衡接触角 three phase interface 三相界面hydrophobicity of mineral 矿物的疏水性 hydrophilicity of mineral 矿物的亲水性 foam adhesion 泡沫附着 ionic lattice 离子晶格 covalence lattice 共价晶格surface inhomogeneity 表面的不均匀性 oxidation and dissolution 氧化与溶解 oxidizing agent 氧化剂 reducting agent 还原剂surface modification of mineral 矿物的表面改性 electric double layer 双电层 ionization 电离 adsorption 吸附electrokinetic potential 电动电位 point of zero charge 零电点 isoelectric point 等电点 collecting agent 捕收剂semi micelle adsorption 半胶束吸附 exchange adsorption 交换吸附 competitive adsorption 竞争吸附 specific adsorption 特性吸附 modifying agent 调整剂 depressant 抑制剂activating agent 活化剂 foam, froth 泡沫 frother 起泡剂hydrophilic group 亲水基团 liberation degree 解离度 polar group 极性基团nonpolar group 非极性基团 sulphide ore 硫化矿oxidized mineral 氧化矿物xanthate 黄药 hydrolysis 水解medicamentous selectivity 药剂的选择性 catchment action 捕收作用electrochemical action 电化学作用 alkyl radical 烃基含氧酸 organic amine 有机胺类carboxylate surfactant 羧酸盐 kerosene 煤油amphoteric collector 两性两捕收剂 alkyl radical sulfonate 烃基磺酸盐 complex 络合物pH modifying agent pH 调整剂 long-chain molecule 长链分子 pyrite 黄铁矿 calcite 方解石chalcopyrite 黄铜矿 galena 方铅矿blende/ sphalerite 闪锌矿 quartz 石英 barite 重晶石oxidized ore 氧化矿 flocculant 絮凝剂non-ionic flocculant 非离子型絮凝剂 desorption 解吸 air bladder 气泡 solubility 溶解度specific surface area 比表面积 mineral resources 矿源、矿藏 three phase air bladder 三相气泡 ore pulp electric potential 矿浆电位 mixed potential model 混合电位模型freedom hydrocarbon diversification 自由烃变化 electrostatic pull 静电引力 intermolecular force 分子间力 goethite (gothite )针铁矿semi micelle adsorption 半胶束吸附 concentration of solution 溶液浓度 flotation machine (cell )浮选机 oxygenation 充气作用aeration recovery 回收率concentrate grade 精矿品位handling capacity 处理能力Processing capacity ,processing power共 12 页 第 2 页矿物加工工艺学(重选部分)英文词汇(1) gravity concentration/ gravity separation 重力选矿 (2) Abkhazite 透闪石棉 (3) Amiantus 石棉 (4) meerschaum 海泡石 (5) menachanite 钛铁砂 (6) talcum 滑石 (7) taraspite 白云石 (8) preconcentration 矿石预选 (9) Acclivity 斜面 (10) a irborne dust 大气浮尘 (11) a ir conveying 风力输送 (12) a mplitude of vibration 振幅 (13) a ncillary mineral 伴生矿物 (14) a pparent viscosity 视粘度 (15) a rtificial bedding 人工床层 (16) a ttle 充填料;废屑;矿渣;废石 (17) a verage grain diameter 平均粒径 (18) a xial motion 轴向运动 (19) b ackwash water 冲洗水 (20) b ackwater 筛下水 (21) b arite 菱镁蛇纹岩 (22) b arren rock 脉石 (23) b each ore 砂矿 (24) b ed separation 分层 (25) b evel angle 倾斜角 (26) b uddle 淘洗盘 (27) b uddle jig 动筛跳汰机 (28) b uoyancy 浮力 (29) b uoyant weight 悬浮重量 (30) C aplastometer 毛细管粘度计,粘度计 (31) C entipoises 厘泊 (32) C entrifugal field 离心力场 (33) C entrifugal jig 离心跳汰机 (34) C ircular jig 圆形跳汰机 (35) C entrifuge 离心机 (36) C lassification efficiency 分级效率 (37) C lassifier/sizer 分级机 (38) C lassifier overflow 分级机溢流 (39) C lassifier sand 分级机返砂 (40) C lose sizing 窄级分级 (41) C laster of particles 颗粒群 (42) C oarse feed 粗粒给料 (43) C yclone 水力旋流器 (44) C assiterite 锡石 (45) D ilated 松散床层 (46) d imensionless parameter 无因次参数 (47) d uplex table 双层摇床 (48) d iaphragm jig 隔膜跳汰机 (49) d windles out 尖灭 (50) f ilm concentration 流膜选矿 (51) f inal velocity 末速度 (52) f ree settling particle 自由沉降颗粒 (53) f ree settling ratio 自由沉降比 (54) g ravity concentrate 重选精矿 (55) gravity tailings 重选尾矿 (56) i ron ore pellet 铁矿球团 (57) j ig cycle 跳汰周期 (58) h eavy liquid 重液 (59) h eavy-media separator 重介质分选 (60) h eavy-media suspension 重介质悬浮液 (61) h ydraulic analysis 水力分析 (62) h igh-weir spiral classifier 高堰式螺旋分级机 (63) h indered settling 干涉沉降 (64) H MS-flotation method 重介质浮选联合分选共12 页第3 页专业英语词汇矿物加工工艺学(磁电选矿部分)英文词汇Mineral Processing Technology 矿物加工工艺学Principle of magnetic separation 磁选原理Magnetic force 磁力Ratio magnetic force 比磁力Compete force 竞争力Mineral magnetism 矿物的磁性Atomic magnetism moment 原子磁矩Molecular magnetism moment 分子磁矩Magnetization & magnetic field 磁化和磁化磁场Magnetization intensity 磁化强度Ratio susceptibility 比磁化系数Diamagnetism 逆磁性Paramagnetism 顺磁性Ferromagnetism 铁磁性Magnetic domain 磁畴Revers ferromagnetism 反铁磁性Subferromagnetism 亚铁磁性Coercive force 矫顽力Remanence 剩磁Magnetization roasting 磁化焙烧Deoxidization roasting 还原焙烧Midlle roasting 中性焙烧Oxidation roasting 氧化焙烧Siderite 菱铁矿Hematite 赤铁矿Magnetite 磁铁矿Unhydrophite magnetization 疏水磁化Magnetic process equipment 磁选设备Feebleness magnetic separation machine 弱磁场磁选机Dry magnetic separation machine 干式磁选机Wet feebleness magnetic separation machine 湿式弱磁场磁选机High magnetic separation machine 强磁场磁选机High grads magnetic sparation machine 高梯度磁选机Supercondduct magnetic separation 超导电选Concentrator 选矿机Electrity process 电选Electrity concentrator 电选机Static separation 静电选矿Air-ionization separation 电晕分选Friction electric separation 摩擦电选Magnetic process practice 磁选实践Nonmetal ore 非金属矿Diamond process 金刚石选矿Heavy medium reclaim 重介质回收共12 页第4 页专业英语词汇Primary concentrate 粗精矿Graphite gangue 石墨尾矿Kaolin magnetic process 高岭土磁选Block metal ore 黑色金属矿石Manganese ore magnetic process 锰矿石磁选Coloured metal & rare metal 有色金属和稀有金属Ilmenite 钛铁矿Rutile 金红石Zircon 锆英石Electric process practice 电选实践Tungstate 钨酸盐cassiterite 锡石hematite . 赤铁矿gangue 脉石,废石,矸石magnet .磁铁,磁体,磁石conductor mineral 导体矿物silicate 硅酸盐diatomite 硅藻土hysteresis 磁滞现象magnetic core . 磁铁芯winding 绕组,线圈medium 介质electrophoresis 电泳screening 筛分magnetic field 磁场flux 磁通量ferromagnet 铁磁物质ferromagnetism 铁磁性reunite 团聚magnetic system 磁系magnetic agitate 磁搅动permanent magnet 永久磁铁solenoid magnet 螺管式磁铁pyrite .黄铁矿,硫铁矿limonite 褐铁矿reluctivity 磁阻率conduct 传导induce .诱导,感应,归纳astrict 束缚charge 电荷electric field .电场interfacial 界面的,面间的magnetism 吸引力electrode 电极,电焊条,电极Strontium & iron oxid 锶铁氧体Periodic magnetic field 交变磁场共12 页第5 页专业英语词汇共 12 页 第 6 页Pulsant magnetic field 脉动磁场 Saturation 饱和 stainless steel material 不锈钢材料 polar distance 极距 mica 云母 quarte 石英 stimulate magnetism 激磁 magnetism circuit 磁路 magnetic line of force 磁力线 commutate quality 整流性Flatation reagent professional wordsAbsorption 吸收Absorption band 吸收光谱带 Abstract 抽出,提取 Abundance 丰富,丰度 Accelerant 促进剂 Acceptance 验收,接收 Accumulate 积累,聚集 Accuracy 准确度 Acctate 醋酸盐 Acctamide 乙酰胺 Acid 酸,酸的Acid anion 酸性阴离子 Acidation 酸化Acid depression 加酸抑制 Acid hydrolysis 加酸水解 Acintol 妥尔油制品 Acrylic amide 丙烯酰胺 Activate 活化Activated adsorption 活性吸附 Activated molecule 活化分子 Activated effect 活化作用 Activator 活化剂,活性剂 Acto 精制石油磺酸钠 Acylamide 酰胺 Addition 加添Adhere 粘附,附着Adhesion coefficient 粘着系数 Adhesive 粘合剂Adhesive tension 胶结张力 界面吸引力 Adion 吸附离子 Adsorbate 吸附物 Adsorbent 吸附剂Adsorption isotherm 吸附等温线 Adsorption layer 吸附层Aero 美国氰胺公司的药剂品牌号 Aerofloat 美国氰胺公司的黑药牌号 Aerofloc 絮凝剂牌号 Aerofroth 起泡剂牌号Aeromine 阳离子型表面活性剂 Aero promoter 促进剂牌号 Aerosol 润湿剂牌号Aerosurf MG-98A 醚胺醋酸盐 Agglomerant 团聚的凝结剂Agglomeration flotation 团聚浮选Aggregate of large molecules 大分子团 Aiv-avid 亲气的Aiv-mineral adhesion 空气-矿物粘附 Alamine 胺的牌号 Alcohol 醇Alcohol frother 醇类起泡剂 Aliphat- 妥尔油脂肪酸牌号 Aliphatic alcohol 脂肪醇 Aliphatic acid 脂肪酸 Aliphatic amine 脂肪胺Aliphatic dydrocarbon 脂肪烃 Aliquat 苯胺盐牌号 Alkali 碱Alkaliuity 碱度,碱性 Alkane 链烷,烷烃 Alkoxy- 烷氧基Alkoxyamine 烷氧胺 Alkoxy benzene 烷氧基苯 Alkyl- 烷基Alkyl alcohol sulfate 烷基醇硫酸盐共12 页第7 页专业英语词汇矿物加工工艺常用词汇(一)1选矿-Mineral separation (ore dressing) 2设计-Design3工艺-Process (craftwork) 4初步设计-Initiative(preliminary) design5流程-Flow(circuit) 6流程图-flowchart7施工设计-working design 8设计方案-design project9粉碎-comminution 10 磨矿-grinding11浮选-flotation 12脱水-dehydration13干燥车间-drying shop 14尾矿-tailing15精矿-concentrate 16中矿-middles17精选-concentration 18粗选-first concentration20选矿机-concentrator 21矿浆ore pulp22分级-classification 22磨矿-grinding23磨矿机-grinding mills 24筛分-screen25粉碎-crush 26筛分机-screener27粉碎机-crusher 28颚式粉碎机-jaw crusher29圆锥粉碎机-cone crusher 30冲击式粉碎机impact crusher31辊式粉碎机-crusher rolls 32球磨机-ball mill33棒磨机-rod mill 34自磨机-autogenous mills35震动筛-vibratory screener 36分级机-classification equipment37浮选-flotation 38浮选机-flotation equipment39重选- gravity concentration40特殊选-special selection41 浮选柱-flotation column 42脱水机-spin-drier43干燥机-drier 44总图-general chart45配置-deploy 46运输-transport47环境保护-environment protect 48场址-field location(site)49布置-lay 50设计资料-design information51粉碎流程-comminution flow 52磨矿流程-grinding flow(circuit)53浮选流程-flotation flow 54金属矿-metallic mines55非金属矿-non-metallic mines 56闭路-close circuit(loop)57闭路流程-close flow 58开路-cut circuit(loop)59开路流程-cut flow 60废水-liquid waste共12 页第8 页专业英语词汇61粉尘-powder 62噪声-yawp63污染-contamination 64沉淀-form sediment65净化-decontaminate 66输送-transportation67矿石-ore 68物料-material69给矿-feed ores 70给料-feed stuff71设备-equipment 72方案-project73标高-elevation 74通道-passage75维修-maintain 76检查-check77操作-operation 78化验-test、assay79检测-examine 80坡度-gradient81起重机-crane 82堆积-accumulation83细粒-granule、fine 84粗粒-coarse85尾矿坝-tailing dam 86矿仓-feed bin(storehouse)87粉矿仓-crushing pocket 88产品仓-product bin(storehouse)89砂泵-pump 90立式泵-stand pump91卧式泵-horizontal pump 92耐酸泵-acid-proof pump93耐碱泵-alkali-resistant pump 94勘察-reconnaissance95地形-landform 96工程-engineering97设计步骤design process 98规模-scale99选矿厂-concentrating mill 100设计内容design content(二)1 comminution-粉碎2 comminution engineering-粉碎工程3粉碎机-comminuter 4粉碎动力学-comminution kinetics 5筛分曲线图-screen analysis chart 6筛孔-screen aperture7筛面-screen area 8筛条screen bar9筛框-screen box 10筛选厂-screen building11筛分机生产能力screen capacity 12筛分槽-screen cell13筛布-screen cloth 14筛分screen classification15筛孔-screen hole 16筛分车间-screenhouse17筛分分析-screen analysis 18滚筒筛-screening-drum19筛分效率-screening efficiency 20筛分速率-screening rate共12 页第9 页专业英语词汇21筛网-screen mesh 22筛制、筛比、筛序-screen scale 23筛孔尺寸-screen size 24套筛-screen set25筛序-screen size gradation 26筛余物screen tailings27筛下产品-screen throughs(underflow.undersize) 28可碎性crushability 29可碎性系数-crushability factor 30碎矿仓-crushed ore pocket31粉碎产品-crushed product 32粉碎粒度-crusher size33粉碎腔-crushing cavity 34粉碎厂-crushing plant35粉碎系数-crushing coefficient 36粉碎工段-crushiong section37助磨剂-grinding aid 38磨球-grinding ball39 磨矿负荷-grinding charge 40磨矿效率-grinding efficiency41磨矿-grinding ore 42磨砾-grinding pebble43磨碎能力-grinding property 44研磨试验grinding test45磨矿设备-grinding unit 46磨矿速度-grinding rate47磨矿功率-grinding power 48磨矿车间-grinding plant49可磨性-grindability 50可磨性指数-grindability index51可磨性指标-grindability rating 52可磨性试验-grindability test53研磨工-grinder 54磨工车间-grindery55磨矿动力学-grinding kinetics 56粉碎能-crushing energy57粉碎机给矿口-crushing mouth 58粉碎面-crushing face59粉碎力-crushing force 60粉碎机进料口-crusher throat61筛分动力学-screen kinetics 62选厂矿仓-mill bin63 选厂中矿mill chats 64选厂配置mill configuration65磨过的矿石-milled ore 66磨机给料-mill feeder67选厂给矿-mill-head 68研磨作用-milling action69磨机衬里mill liner 70入选品位milling grade71入选品位矿石milling-grade ore 72磨矿机milling-grinder73细碎、精磨-milling grinding 74磨矿介质-milling medium75磨矿法-milling method 76选矿作业-milling operation77选矿厂-milling plant 78选厂矿泥-milling slime79选厂厂址-mill site 80磨机负荷-mill load81选矿工(工长)millan 82磨机需用功率-mill power draft 83选矿质量控制mill puality control 84选矿取样-mill sampling共12 页第10 页85磨机外壳-mill shell 86磨机矿浆-mill slurries87磨石-millstone 88选矿厂储矿仓mill-storage89选厂尾矿-mill tail 90选矿用水-mill water91磨矿机溶液-mill solution 92选矿厂建筑师-millwright93分级沉淀-class setting 94矿粉-mineral fine95分级-classification 96分级溢流-classifier overflow97分级返砂-classifier sand 98分级机-classifier99分级筛-classifying screen 100分级箱-classifying box(三)1品位-grade 2精矿品位-concentrate grade3尾矿品位-tailing grade 4尾矿场-tail area(pile)5尾矿仓-tailing bin 6尾矿滤饼-tailing cake7尾矿坝-tailing dam 8尾矿池-tailing pond(pit)9取样-taking cut(sampling) 10滑石talc11蓝晶石-talc blue 12 试样缩分-sample division13 分样器-sample divider 14精矿取样-concentrate sampling15中矿取样-middles sampling 16尾矿取样-tailing sampling17浓缩-thickening 18精矿浓缩-concentrate thickening19选矿流程-concentrating circuit 20精选机-concentrating mcching21试样缩分-sample reduction (splitting) 22矿物组成-mineralcomposition23矿物组分-mineral constituent 24矿床-mineral depost25矿物-mineral 26选矿方法mineral dressing method27选矿厂-concentrating mill 28选矿ore dressing,mineral separation29矿物分析-mineral analysis 30矿物组合-mineral association31 试样袋-sample sack 32矿床-deposit33矿物岩相facies 34矿物纤维-mineral fiber35固、气界面-mineral-air interface 36固、液界面-mineral-water interface37固、气、液接触mineral-air-water contact 38矿物颗粒-grain39矿物鉴定-mineral identification 40矿物资源-interest41矿物解离-mineralliberation 42矿物特性mineral character43矿物储量-mineral reserve 44矿物(成分)检验mineral logical examination 45扑收剂-Minerec,flotigan, 46精矿回收率concentrate recovery47中矿回收率middles recovery 48精选concentration49附着精矿气泡concentratr-loaded bubble 50精选机-concentrating maching51分选判据-concentration criterion 52富集比-concentration factor53选矿摇床-concentration table 54选厂流程concentrator flow5选厂流程图concentrator flow sheet 56试样品位-sample grade57絮凝剂-flocculant 58絮凝-floculate59絮凝物-flocs 60絮凝浮选floc flotation61絮凝作用flocculation 62浮选机flotation unit63浮选剂- flotation agent 64整排浮选机flotation bank65浮选槽- flotation cell 66浮选能力flotation capacity67浮选精矿- flotation concentrate 68浮选尾矿flotation rejects69浮选中矿- flotation middles 70浮选设备flotation equipment71浮选泡沫-flotation froth 72浮选动力学flotation kinetics73浮选浸出法- flotation leaching method 74浮选厂flotation mill75浮选油-flotation oil 76浮选矿浆- flotation pulp77浮选速度-flotation rate 78浮选试验flotation test79单槽浮选机- flotation unit cell 80浮选摇床- flotation table81摇床浮选- flotation tabling 82起泡剂Flotol83流程图-flow line 84工艺流程图-flow process chart (flow sheet) 85可选(洗)性-washability 86可选性特性- washability characteristic 87可选性曲线- washability curve 88可选性指数- washability number89可选性试验- washability test 90可浮性-flotability91可浮性曲线-flotability curve 92粒度特性-granularity93粒度分级试验grading test 94结构-texture95构造-tectonic(structural) 96致密结构-compact texture97斑状结构porphyritic texture 98 粒度分析-granularmetric analysis99采样-sample collecting 100分样器-sample divider。
某难选铅锌矿无碱浮选工艺试验研究
第37卷第3期2021年6月湖南有色金属HUNANNONFERROUSMETALS作者简介:常 城(1988-),男,助理工程师,主要从事矿物加工研究工作。
某难选铅锌矿无碱浮选工艺试验研究常 城,李希掌,陈 云,向 平(湖南华麒资源环境科技发展有限公司,湖南株洲 412007)摘 要:为取代某铅锌矿铅锌高碱浮选工艺,对该含铅3 26%、锌3 54%、银74g/t、金0 16g/t的原矿进行了无碱浮选工艺选矿试验研究。
采用“优先浮铅—浮锌”工艺,以调整剂HQD82、捕收剂HQ77优先选铅;然后以调整剂HQD52、捕收剂HQ66及常规活化剂硫酸铜选锌,获得的铅精矿中铅品位64 26%、铅回收率93 16%,伴生银品位1371g/t、银回收率87 31%,伴生金品位1 06g/t、金回收率43 19%;锌精矿中锌品位56 42%、锌回收率93 25%、伴生银品位130g/t,银回收率10 28%。
关键词:铅锌矿;无碱浮选;伴生金银;回收率;环保中图分类号:TD923+1 文献标识码:A 文章编号:1003-5540(2021)03-0019-04 某铅锌矿一直采用传统高碱选矿工艺进行铅锌浮选,但高碱工艺使用大量石灰存在很多弊端:添加石灰对铅锌矿物也会产生一定抑制作用,尤其伴生金银矿物的抑制更为明显,降低了金属回收率[1];石灰具有一定的凝结性,影响浮选效果[2];此外添加石灰对后续尾水处理也增加不少麻烦。
基于以上原因,该矿山迫切需要替代高碱工艺的铅锌浮选新技术,以消除石灰对生产和环境的不利影响。
杨自然,李繁荣,贺翔[3~5]等针对该铅锌矿做出大量研究,采用组合抑制剂取代石灰获得了一定的效果,但生产不易操作,指标不稳定,故未能完全取代石灰高碱工艺。
湖南华麒公司研发的新型铅锌无碱浮选工艺,采用用于硫化矿分选的无毒、高效复合型无机抑制剂[6]取代石灰,配合配套的捕收剂,加上合理的药剂制度,取得了良好的浮选指标,完美解决了该矿山的需求。
外文资料翻译
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx本科毕业论文外文资料翻译系别: xxx专业: xxx姓名: xxx学号: xxx1 区域成矿背景概述塔木铅锌矿床位于阿克陶县塔木村北约5 km,大地构造位置为西昆仑造山带与塔里木板块的交接部位[1],属库斯拉甫-他龙铅锌(铜)成矿带的一部分。
本区前震旦纪末期陆壳裂解形成塔里木板块、西昆仑地体、帕米尔板块等。
加里东期塔里木板块沿库地北断裂(俯冲带)往南西向西昆仑地体俯冲,形成昆中岩浆弧;两者于志留纪末期拼贴为一体[2]。
加里东期花岗质岩浆侵入时代的变化趋势佐证了这一观点[3]。
晚古生代时受古特提斯裂解作用的影响,俯冲带迁移到康西瓦断裂带附近,板块俯冲方向由南西往北东,西昆仑中带成为晚古生代岩浆弧(即昆中多期岩浆弧)[4],库斯拉甫-他龙地区正处于弧后位置,在板块俯冲的影响下发展为晚古生代弧后裂谷(即奥依塔格-库尔良裂陷槽)。
随着古特提斯洋的消亡,库斯拉甫-他龙晚古生代裂谷盆地于二叠纪末期闭合。
三叠纪时期本区处于隆起剥蚀状态,缺失沉积。
侏罗纪为山间盆地相与间夹沼泽相沉积。
至白垩纪末与早第三纪早期,因受新特提斯裂谷化作用遭受一次海侵,形成一套浅海至湖相的沉积岩系。
在喜马拉雅期造山运动的作用下,新特提斯洋闭合,青藏高原崛起,盆山构造急剧分野,引起本区西昆仑前缘大规模的逆冲推覆和走滑,形成铁克力克推覆体等构造,奠定了现今的构造格局。
因此,库斯拉甫-他龙铅锌(铜)成矿带所处的大地构造位置为晚古生代弧后裂谷盆地)))具陆壳基底的奥依塔格-库尔良裂陷槽,晚古生代的裂谷沉积作用、海西末期和喜马拉雅期的强烈构造作用为本区大范围、高强度的铅锌(铜)成矿创造了有利的构造条件[5]。
塔木MVT型铅锌矿区及外围主要出露上泥盆统、石炭系、侏罗系与白垩系)第三系地层,褶皱构造为科克然达坂复式向斜东翼的塔木向斜,区域断裂有克孜勒陶-库斯拉甫北北西向走滑断裂系与北西向昆北逆冲推覆断裂系。
四川某铅锌矿选矿厂浮选工艺流程优化
282管理及其他M anagement and other四川某铅锌矿选矿厂浮选工艺流程优化岳显林(四川会东大梁矿业有限公司,四川 会东 615200)摘 要:四川某铅锌矿选矿厂采用优先浮铅—选铅尾矿浮锌的浮选工艺流程,但随着矿石性质的变化,采用原浮选工艺流程表现出对矿石性质变化一定程度的不适应性,极大地制约了选矿生产指标的提升。
通过对浮选工艺流程及药剂制度进行优化调整后,将铅浮选流程由“两粗两扫五精”改为“两粗两扫四精”流程,将锌浮选流程由原来“两粗两扫三精”改为“一粗三扫三精”流程,选矿生产指标得到了较大提升,铅、锌金属回收率分别达到了64.65%、92.04%,回收率有了较大提高,且降低了生产成本,为公司创造了显著的经济效益。
关键词:铅锌矿;浮选工艺流程;药剂制度;回收率中图分类号:TD952 文献标识码:A 文章编号:11-5004(2020)14-0282-2收稿日期:2020-07作者简介:岳显林,男,生于1987年,四川会东人,本科,工程师,研究方向:矿物加工。
四川某铅锌矿选矿厂位于四川省凉山州境内,选矿厂的生产规模为66万吨/年,选矿回收利用的主要有价金属为铅、锌、银。
选矿厂建成投产之后,经公司广大干部及职工的共同努力,各项生产指标均达到了设计要求。
近年来,随着矿山开采的深入,矿石性质趋于复杂,泥化、氧化等问题日益突出,有用矿物嵌布共生关系复杂,采用原浮选工艺流程表现出对矿石性质变化一定程度的不适应性,极大地制约了选矿生产指标的提升,影响公司经济效益。
为此,针对该选矿厂存在的一系列问题,进行了生产现场浮选工艺流程的改进及药剂制度的优化,优化后使铅、锌金属回收率得到了较大的提高,且降低了生产成本,为公司创造了显著的经济效益。
1 矿石性质1.1 原矿化学多元素分析原矿化学多元素分析结果见表1。
表1 原矿化学多元素分析结果元素Pb Zn MgO Al 2O 3SiO 2S 含量0.89%8.34%9.61% 5.96%24.14% 4.54%元素Fe CaO Mn As Cd Ag 含量1.45%16.26%0.05%0.18%0.07%30.97g/t由表1可知,矿石中最主要的化学组分是SiO 2,其次为CaO、Al 2O 3及MgO、S、Fe 等,主要回收的有价元素为铅和锌,含量分别为0.89%、8.34%,伴生元素贵金属银的含量为30.97g/t,具有较高的回收价值。
固体物料分选学浮选部分重点
( ZF n ) ] RT
11、简述类质同像置换必须具备的条件及其特点。 答:㈠类质同象置换必须具备的条件: ① 原子或离子互相交换取代,其半径必须接近。互相取代的两种原子或离子的半 径比<15%。 (这是由几何因素决定的,大的离子不可能进入晶格中比它更小的 空间位置中。 ) ② 离子的极化性质相近,即离子的外层电子结构相近。 (如 Na+和 Cu+的离子半 径相同,但不能互相取代,其原因是两者的外层电子结构不一样。 )
数。常用 PZC 来表示。 RT ln a 8.314 298 ln [ H ] 0.059( PZC pH ), (V ) 0 0
nF
a
1 96500
[H 0 ]
等电点: (Iso-Electro Point)当存在特性吸附的体系中,电动电位为零时电解质浓度的负 对数。常用 IEP 来表示。即电荷转换点。 定位离子:(potential determining ion):指决定矿物表面荷电性质和数量的离子。定位离 子常化学吸附于矿物表面,一般来说,氧化物的定位离子是 OH-、H+。硫化物的 定位离子是同名类质同象离子和难溶化合物离子。 盐类矿物的定位离子是同名离子 和离子在水中的反应产物。 特性吸附:一些电解质解离后的离子能克服静电斥力进入紧密层,改变电动电位。这种吸附 称特性吸附,且存在化学键力的作用。 注意:当不存在特性吸附时,为零时,0 也为零,故此时 PZC=IEP。 吸附: 固相在水溶液中,或者某种物质在任何两相界面上发生富集(或相反)的现象。 物理吸附: (Specific adsorption)吸附本质是物理作用,分子靠范德华力,离子靠静电力 吸附。没有化学键的生成与破坏,也没有原子的重新排列。 化学吸附: (Chemical adsorption) 吸附本质是化学作用, 吸附质与吸附剂之间发生电子转
矿业工程专业词汇英语翻译(I-Q)
i arch 工字钢拱i bar 工字钢i beam 工字钢i steel 工字钢ice 冰ice cylinder 冻结冰柱ice wall 冻结壁idle roller 导辊idler 托滚igneous breccia 火成角砾岩ignitability 可燃性ignitable 易点火的ignite 点火igniter 点火器点火装置igniter cord 导火线igniting composition 起火剂igniting primer 雷管ignition 发火ignition cap 雷管ignition charge 点火药ignition compound 起火剂ignition energy 点火能量ignition impulse 点火冲量ignition inhibitor 爆炸抑制剂ignition order 点火次序ignition point 着火点ignition temperature 发火温度ill air 污浊空气illite 伊利石illumination 照明illuminator 照明ilmenite 钛铁矿ilvaite 墨柱石imbibition 吸收immediate roof 直接顶板immersible pump 潜水泵immersion 油浸;浸没immobile 不能移动的immobility 不能移动immovable 不能移动的impact 冲击impact action 冲幻impact crusher 冲唤破碎机impact crushing 冲黄碎impact energy 冲卉impact idler 缓冲托辊impact mill 冲唤磨机impact plough 冲唤刨煤机impact pressure 冲灰压impact rate 冲毁度impact resistance 冲昏力impact ripper 冲唤挑顶机;冲唤平巷掘进机impact screen 冲唤振动筛impact sensitivity 冲霍感度impact strength index 冲豢度指数impact test 冲辉验impact toughness 冲煌性impact type hammer crusher 冲桓式破碎机impenetrability 不可入性impermeability 不渗透性impermeability test 不渗透性试验impermeable 不可渗透的impermeable barrier 不透水煤柱impermeable bed 不透水层impermeable rock 不透水岩石impermeable seam 不透水层imperviousness 不渗透性impregnate 浸渍impregnating apparatus 浸染器impregnating compound 浸润剂impregnation 浸透impregnation of timber 木材的浸渍improvement 改良impulse 脉冲impurity 不洁物impurity concentration 杂质浓度in situ origin 原地成因in situ rock 原地岩石inactive face 停产工祖inbreak 崩落inbreak angle 陷落角incendivity 引火性inch 英寸incidence 入射incidence angle 入射角incidence indicator 倾角指示器inclination 倾斜inclination pitch 倾斜度incline 倾斜incline hoist 斜井提升机incline inset 斜井井底车场inclined adit 斜硐inclined bed 倾斜层inclined belt conveyor 倾斜皮带运输机inclined boring 倾斜钻进inclined bottom car 斜底车inclined conveyor 倾斜运输机inclined cut 斜工祖inclined cut and fill 倾斜分层充填回采inclined drift 倾斜巷道inclined grizzly 倾斜格筛inclined hole 斜炮眼inclined plane 轮坡inclined seam 倾斜层inclined shaft 斜井inclined shaft mucking apparatus 斜井装岩机inclined slicing 倾斜分层开采inclined stone drift 倾斜岩石巷道inclinometer 测斜器include 包含inclusion 包含incoalation 煤化incoherent 不燃性的;不连贯的incombustibility 不燃性incombustible 不燃性的incombustible dust 不可燃性尘粉incombustible lining 耐火支架incomplete combustion 不完全燃烧incomplete detonation 不完全起爆incompressibility 不可压缩性incompressible 不可压缩的increase 增加indentation test 凹痕硬度试验index bed 标准层index well 注入井indicate 指示indication 指示indicator 表示器指示器indirect priming 底部点火indium 铟individual hydraulic prop 单体液压支柱individual prop 单体支柱induced block caving 阶段人工崩落开采法induced fan 抽风机induced roll separator 辊式感应磁选机induced ventilation 透导通风induction 诱导induction blasting 诱导爆破induction coil 感应圈induction generator 异步发电机induction motor 异步电动机industrial explosives 工业炸药industrial oil 工业用油industry 工业ineffective 无效的inelastic 无弹性的inert 不适泼的inert dust 惰性岩粉inert gas 惰性气体inertia 惯性inertia vibrating screen 惯性震动筛inertness 惯性inexplosive dust 不爆炸性尘粉inferior coal 劣质煤infiltration 渗入infiltration ditch 排水沟inflammability 燃烧性inflammable 易燃的inflammable coal dust 爆炸性煤炭尘粉inflammable gas 可燃气体inflammableness 燃烧性inflammation 发火inflection 弯曲inflection point 拐点inflexible 不曲的inflexion 弯曲infrared blasting 红外引爆infrared detector package 红外探测瓢置infrared heater 红外加热器infusion time 灌注时间infusion tube 灌注管ingredient 成分inhalator 吸入器inhaler 氧气呼吸器inhaul cable 头绳inhibition 抑制inhibitor 抑制剂inhomogeneity 不均质性inhomogeneous 不均质的initial 最初的initial blast 初爆破initial caving 初次落顶initial cost 原价initial cut 开始掏槽initial velocity 初速initiating ability 起爆能力initiating charge 起爆装药initiating explosive 起爆炸药initiating relay 起爆继电器initiation 起爆inject 注入injection 注入injection drill 注水钻机injection hole 注入孔injection pressure 喷射压力injection pump 喷射泵injection type hydraulic prop 内注式液压支柱injection well 注入井injector 注射器喷射器inlet 入口inlet air 入风inlet pipe 进入管inmost depth 最大深度inner angle 内角inner diameter 内径inner height 内高度inner tube 内岩心管inner width 内宽inorganic 无机的inorganic chemistry 无机化学inorganic compound 无机化学inpact pulverizer 冲唤磨机input well 注入井inside 内部的inside labour 井下工作inside width 内宽insolubility 不溶性insoluble 不溶的instability 不安定性instable 不安定的installation 装置instant detonator 瞬发雷管instantaneous 瞬时的instantaneous blast 瞬发爆破instantaneous cap 瞬发雷管instantaneous overload 瞬时过载instrument 仪器七insulated conductor 绝缘导体insulated paper 绝缘纸insulating compound 绝缘物insulating oil 绝缘油insulating paper 绝缘纸insulating plate 绝缘板insulating rod 绝缘杆insulation 绝缘insulation condition indicator 绝缘状态指示器漏电指示器insulation layer 绝缘层insulation resistance 绝缘电阻insulator 绝缘体intact coal 未采过的煤层intake 进风巷道intake air 进风流intake airway 进风巷道intake brine 进入冻结钻孔的盐水intake entry 进风平巷intake horizon 进风水平intake level 入风硐intake shaft 进风井intake well 注入井integration 积分法intensification 加强intensity 强度intensive 强烈的intensive support 加强支架inter unit hose 液压支架间胶管interaction 相互酌intercalation 夹层intercepting ditch 截水沟interception 交叉interchamber pillar 矿房间的矿柱interchange 交换interchange of gases 气体代谢interchangeability 互换性interchangeable 可互换的intercooler 中间冷却器intercooling 中间冷却interface 界面interfacial adsorption 界面间吸附interfacial tension 界面张力interior shaft 盲竖井interlayer 夹层intermediary 中间的intermediate 中间的intermediate bearer 竖井中间底框intermediate conveyor 中间运输机intermediate crusher 中碎机intermediate crushing 中碎intermediate drill 中间钻杆intermediate entry 中间平巷intermediate entry branch road way 中间平巷intermediate hole 中间炮眼intermediate level 中间产水平intermediate piston 凿岩机中的冲锤intermediate post 中间立柱intermediate product 中间产品intermediate rock 岩石夹层intermittent thickener 间歇式浓缩机internal 内部的internal frictional angle 内摩擦角internal pressure 内压力internal resistance 内阻抗internal shaft 盲竖井internal stress 内应力internal transport 矿内运输international unit 国际单位interrelation 相互关系interrupt 中断interruption 中断intersect 模断intersection 交叉interstice 间隙interstratified bed 间层interval 间隔intrinsically safe apparatus 安全火花设备intrusion 侵入intrusive 侵入的intrusive rock 侵入岩inundation 淹没invariable 不变的inverse initiation 底部点火inverted steps working 倒梯段开采inverted ventilation 反向通风inyoite 板硼石iodargyrite 碘银矿iodine 碘iodyrite 碘银矿ion 离子ion exchange 离子交换ion exchanged explosives 离子交换炸药ion flotation 离子浮选ionic 离子的ionic bond 离子键ionic charge 离子电荷ionization 电裔iridium 铱iron 铁iron carbon alloy 铁碳合金iron glance 赤铁矿iron lining 铁支架iron magnesia spinel 镁铁尖晶石iron mine 铁矿山iron ore 铁矿iron post 铁支柱iron producing area 铁矿区iron prop 铁支柱iron reinforcement 钢筋iron tie 铁轨枕isoclinal 等斜的isocline 等斜褶皱isodynamic 等磁力线;等磁力的isodynamic line 等磁力线isolate 隔离isolating ring 隔离环isolation 隔离isomorphism 类质同象isotherm 等温线isothermal 等温的isothermal compression 等温压缩isothermal line 等温线isotope 同位素isotropic 蛤同性的isotropy 蛤同性issue of firedamp 沼气泄出jack 千斤顶jack bit 可折式钻头jack catch 防跑车挡jack column 撑杆jack drill 凿岩机jack furnace 修钎炉jack hammer 手持式凿岩机jack hammer drill 手持式凿岩机jack lamp 安全灯jack leg 钻机腿jack mill 修钎机jack pit 浅井jack rod 钻杆jack screw 螺杆千斤顶jack shaft 浅井jadder 割石机jade stone 硬玉jadeit 硬玉jamesonite 脆硫锑铅矿jar down spear 套管矛jar mill 罐式磨机jargon 烟色红铁石jarosite 黄钾铁石jasper 碧玉jasperite 碧玉jaw breaker 颚式破碎机jaw crusher 颚式破碎机jerking table 摇床jet 射流;喷嘴jet drilling 火力钻眼jet elevator 喷射泵jet orifice 喷射口jet piercer 火力钻孔机jet piercer drilling 火力钻眼jet piercing burner 热钻孔喷热器jet pressure 喷射压力jet pulverizer 喷射式粉磨机jet pump 喷射泵jetcreting 混凝土喷射浇注jetting 水力冲采jetting drilling 水力钻眼jetting method of drilling 水力钻进法jib 悬臂jib head radius 挖掘机酌半径jig 跳汰机jig bed 跳汰床层jig brow 自重滑行坡jig concentration 跳汰机选别jig plane 自重滑行坡jig plant 跳汰装置jig tailings 跳汰选尾矿jigger 跳汰机jigger work 跳汰选jigging 跳汰选jigging conveyor 摇动运输机jigging machine 跳汰机jigging ratio 跳汰比jigging screen 跳汰机筛板jinny 固定绞车jinny roadway 自重滑行坡jitty 联络巷道jockey 矿车的无极绳抓叉;连接装置joint 接合;饺链;节理joist 小梁journal 轴颈journal box 轴颈箱journal bush 轴颈衬套jowling 问顶jumbo 钻车jump 断层jumper 冲魂杆jumping 脱轨jurassic 侏罗纪kainite 钾盐镁矾kalinite 纤维钾茂kalium 钾kampylite 磷砷铅矿kaolin 高岭土kaolinite 高岭石karat 克拉kast brisance test 猛度试验kawk 荧石keatite 热液石英keeps 罐笼座keeve 洗矿桶kelve 荧石keps 罐托keratophyre 角斑岩kerf 截槽kermesite 红锑矿kernite 四水硼矿kerosene 煤油kerosine shale 油页岩kerve 截槽kerving 截槽kettle 吊桶key 钥匙;楔key bed 标淮层key well 注入井kibble 吊桶kibble hoist 吊桶提升kibble hoisting 吊桶提升kibble winder 吊桶提升机kick back 反冲轨道;反冲kick up 翻车器kick up block 阻车器挡车器阻块kicker port 放气口kieselguhr 硅藻土kieserite 水镁矾kil 黑海白粘土kilbrickenite 斜方硫锑铅矿kilchoanite 斜方硅钙石kimberlite 角砾云橄岩;角砾云母榄岩kindling temperature 着火温度kinematic 运动学的kinematic viscosity 动粘度kinetic 动的kinetic energy 动能kinetic theory of gases 气体运动说kirve 截槽kirving 截槽knapper 碎石工knapping machine 碎石机kneader 捏和机kneading machine 捏和机knee pipe 曲管knife switch 闸刀开关knock burst 岩石突出knock indicator 爆震指示器koepe hoist 戈培式提升机koepe hoisting 戈培式提升koepe pulley 戈培轮koepe reel 戈培轮koepe sheave 戈培轮kohlenhobel 刨煤机konimeter 计尘器konimetry 空气浮尘计量koniosis 尘肺kremersite 氯钾铵矿krennerite 白碲金银矿;针钸金矿kronkite 柱铜铜矾krypton 氪kunzite 紫钾辉石;紫锂辉石kyanite 蓝晶石lab flotation machine 实验室用浮选机labile 不安定的laboratory 实验室laboratory coal crusher 实验室型碎煤机laboratory equipment 实验室设备laboratory test 实验室试验labradorite 拉长石laccolite 岩盖laccolith 岩盖lacer 胶带接合机lacing 背板ladder 梯ladder bucket excavator 多斗挖掘机ladder compartment 梯子间ladder dredger 多斗挖掘船ladder landing 梯子平台ladderway 梯子间lag 延迟lagging 背板lagging timber 背板木lamber 琥珀lamellar 薄片状的laminar 薄片状的laminar flow 层流laminary 薄片状的laminated ground 纹层地层lamination 分层lamp 灯lamp house 灯房lamp man 矿灯工lamp room 灯房lamp station 灯房lamp tender 矿灯工lamprophyllite 闪叶石lander 把钩工landing 出车台landing keps 罐笼座landing shaft 提升井landing stage 出车台landings 出煤量landmark 界标lane bolter 长方孔筛lang lay rope 同捻向钢丝绳langbeinite 无水钾镁矾lantern coal 烛煤lanthanite 镧石lapis lazuli 天青石large coal 大块级煤large ore 大块矿石large scale blast 大爆破large scale mining 大规模开采lashing 清除岩石latch 闩latching 矿山测量latent period 潜伏期lateral 横的lateral bracing 横拉条lateral coring 井壁取样lateral development 水平开拓lateral drift 侧部平巷lateral drilling 侧面钻眼lateral force 横力lateral opening 走向平巷lateral stability 横向稳定性lateral strain 横应变laterite 红土lath 护井板桩lattice 格子lattice truss 格构桁架laumontite 浊沸石launder 里欧洗煤槽laundry box 里欧洗煤槽lava 熔岩lavatory 金矿洗选厂law 法刚law of mass action 质量酌律lay out of round 成组炮眼的排列layer 地层layer mining 分层开采layer of coal 煤层layers of shale 夹层laying 铺设layout 布置;没计lazulite 天蓝石lazurite 天青石leaching 浸滤lead 铅;导线lead block test 铅筒试验lead cylinder compression test 赫氏猛度试验lead glance 方铅矿lead line 吝lead plate test 铅板试验lead rail 导轨lead vitriol 硫酸铅矿leading face 超前工祖leading pass 溜道leading pile 导桩leading place 超前巷道leading wire 爆破母线leaf 分层leaf mining 分层开采leak detector 泄漏探测器leakage 泄漏lean 贫lean coal 贫煤lean ore 贫矿leapfrogging 间断勘探ledge 矿脉leg 脚leg piece 支柱leg resistance 支柱阻力leg restoration 支柱复位leg wire 脚线leg yield pressure 支柱屈服压力length 长度lengthening 加长lens 透镜lepidolite 锂云毋leucite 白榴石leucitite 白榴岩leucophyre 淡色斑岩leucoxene 白钛石levee 堤level 水平面level cutting 水平掏槽level development 水平开采level drift 水平巷道level interval 水平间距level pillar 水平矿柱level plan 水平平面图level theodolite 水准径纬器level workings 平巷levelling 水准测量levelling box 水准仪levelling instrument 水准仪levelling peg 水准标桩levelling pole 水准标杆levelling process 水准测量法levelman 水准测量员lever 杠杆leverman 跟车工levigate 淘洗levigation 淘洗lewis cut 楔形掏槽leyner cut 锥形掏槽lhd 铲运机lherzolite 二辉橄家liberation 分离;释出liberation of methane 沼气放出libethenite 磷铜矿lid 盖lie bare 露出liebigite 铀钙石life belt 保险带lift 分层;纸巷lift platform 上升平台lift wire 提升钢丝绳lifter 底部炮眼lifter cut 底板掏槽lifting 提升lifting capacity 提升能力lifting drum 提升绞筒lifting force 起重力lifting ram 起重千斤顶lifting speed 提升速度lifting winch 提升绞车light 光;轻的light alloy 轻合金light hammer drill 轻冲魂light hydraulic prop 轻形液压支柱light intensity 光强度light loading 轻装药light metal 轻金属light oil 轻油light wall pipe 薄管lighter 点火器lighting 点火lighting circuit 照眠路lighting order 点火次序lightweight concrete 轻混凝土lightweight construction 轻量构造lightweight structure 轻量构造lignite 褐煤lignitic coal 褐煤lignitous coal 褐煤lime 石灰lime feldspar 钙长石lime milk 石灰乳lime pit 采石灰场lime rock 石灰岩limespar 方解石limestone 石灰岩limit 界限limit grade 极限坡度limit of elasticity 弹性限度limit of error 误差极限limit of proportionality 比例限度limit stress 极限应力limit value 极限值limitation 限制limiting gradient 极限坡度limonite 褐铁矿limontite 褐铁矿line 线line cut 直线掏槽line of bearing 走向线line of dip 倾斜线line of flow 吝line of least resistance 最小抵抗线line of magnetization 磁化曲线line of sight 视线line of strike 走向线linear 线的linear actuator 直线运动液压机linear velocity 线速度lining 柜架衬板link 环link belt 链带link chain 铰接链link pin 锁环销linkage 结合linnaeite 硫钴矿linneite 硫钴矿linoleum 漆布liparite 疗岩liquation 熔析liquefaction 液化liquid 液体;液态的liquid air 液态空气liquid cement 水泥桨liquid fuel 液态燃料liquid oxygen cartridge 液氧爆破筒liquid oxygen explosives 液氧炸药liquid oxygene explosives 液氧炸药lithium 锂lithogenesis 岩石成因论lithology 岩相学lithosphere 岩石圈little winds 暗竖井livingstonite 硫汞锑矿lixiviation 浸滤load 负荷load cable 牵引钢丝绳load capacity 载重能力load characteristic 负荷特性load curve 负荷曲线load diatance 运输距离load factor 负载系数load haul dumper 铲运机load test 负荷试验load yield curve 载荷下沉曲线loaded length 装药长度loader 装载机;装填机loader belt 装载机皮带loader conveyor 装载机的运输机loader discharge conveyor 装载机的卸载输送机loader drift 装载平巷loader shovel 装载机铲斗loading 装载;装药loading area 装载场loading bay 进料台loading bridge 装载桥loading bunker 装车仓loading capacity 装载能力loading cartridge 限量装置loading chute 装载槽loading conveyor 装载运输机loading density 装药密度loading digger 装载勺斗loading drift 装载平巷loading gate 装载平巷loading gauge 装载尺寸loading grab 抓岩机loading height 装载高度loading hopper 装载漏斗loading machine 装载机loading plant 装载设备loading platform 装载台loading plough 装载刨煤机loading point 装载点loading ramp 装载台loading shovel 装载机铲斗loading speed 装载速度loading station 装载站loading stick 塞药棒loading time 装载时间loadstone 磁铁矿loam 亚粘土loam pit 采粘土场local 局部的local ventilation 局部通风locating pin 定位针location 位置lock 水门lock piece 模梁locked coil rope 封闭式钢丝绳locking pawl 销定瓜locomotive 机车locomotive barn 电气机车库locomotive haulage 机车运输lode 矿脉lode chamber 矿脉变厚处lode mining 矿脉开采lode ore 脉矿石lodeston 磁铁矿lodge 水仓loess 黄土log 钻孔柱状图logging 钻孔测量long 长的long face 长壁工祖long face mining 长工祖开采long face place 长壁工祖long face system 长工祖开采法long flame coal 长焰煤long hole benching 深孔台阶式开采long hole rods 深孔钻杆long pillar method 长柱分段开采法long pillar mining 长柱分段开采long pillar work 长柱分段开采long wall method 长壁开采法long wall system 长壁开采法longhole 深泡眼longhole blasting 深眼爆破longhole drilling 深孔钻凿longhole infusion 深孔注水longhole method 深孔爆破开采法longitudinal 纵的longitudinal grade 纵坡longitudinal oscillation 纵振动longitudinal pressure 纵向压力longitudinal section 纵切面longitudinal subsidence profile 地表沉陷纵剖面longwall 长壁工祖longwall advancing 前进式长壁开采longwall face 长壁工祖longwall face development 长壁工祖升采longwall mining 长壁开采longwall retreating 后退式长壁开采longwall with caving 崩落式长壁开采loose bottom 活底loose end 掏槽的采煤工祖loose fill 松填loose ground 松散易垮岩石loose roof 软弱顶板loosened rock 软弱的岩石loss 损失loss of head 压头损失loss of pressure 压力损失low 低的low ash coal 低灰分煤low carbon steel 低碳钢low cost explosive 低价炸药low density explosive 低密度炸药low dip 低倾斜low explosive 低级炸药low freezing dynamite 难冻硝甘炸药low grade 低级的low grade coal 劣质煤low grade ore 贪矿石low pitch 缓倾斜low pressure 低压low pressure compressor 低压压缩机low seam 薄层low seam conveyor 薄煤层输送机low temperature resistance 耐寒性low vein 薄矿脉low velocity explosive 低速炸药lower cut 底槽lower gangway 下平巷lower leaf 下分层lower level 下水平lower limit 下限lower prop 下柱lower seam 下层lower slice 下分层lower wall 下盘lubricant 润滑剂lubricating device 润滑设备lubricating oil 润滑油lubricating oil purifier 滑油净化器lubricating pipe 润滑油管lubricating ring 润滑环lubrication 润滑lubrication pump 润滑油泵lubricator 注油器ludwigite 硼镁铁矿lum 崩落拱lumber 木料lumber yard 存木场lumen 流lump 块;块的lump coal 块煤lump coal yield 块煤产量lump formation 块形成lump ore 大块矿石lunar iron 月球铁lungmotor 人工呼吸器luster 光泽lustrous coal 辉煤lutetium 镥lux 勒luxmeter 照度计luxometer 照度计lyddite 赖代特炸药lye 碱液lying wall 下盘maceral 显微组分machine 机器machine driller 凿岩工machine drilling 机械穿孔machine loading 机械装载machine mining 机械化开采machine oil 机油machine stable 机窝machine wall 机械化工祖machine worked mine 机械化煤矿macrocrystalline 粗晶的macromolecular 大分子的macromolecule 大分子macrostructure 目视结构made ground 填筑地magazine 炸药库maggie 低质的maggy 低质的magma 岩浆magmatic ore 岩浆矿石magmatic origin 岩浆成因magmatic rock 岩浆岩magnesia cement 高镁水泥magnesite 菱镁矿magnesium 镁magnet 磁石magnetic 磁性的magnetic action 磁效应magnetic analysis 磁性分析magnetic cobbing 粗粒磁选magnetic concentrate 磁选精矿magnetic concentration 磁选magnetic concentrator 磁选机magnetic density 磁感应密度magnetic dressing 磁选magnetic drum 磁鼓magnetic field 磁场magnetic field intensity 磁场强度magnetic flux 磁通量magnetic flux density 磁感应密度magnetic hysteresis 磁滞magnetic iron ore 磁铁矿magnetic line of force 磁力线magnetic lock 磁闩magnetic material 磁性材料magnetic measurement 磁力测量magnetic mill 磁力选矿厂magnetic ore 磁性矿石magnetic permeability 导磁率magnetic pick up 磁性传感器magnetic plant 磁力选矿厂magnetic pole 磁极magnetic property 磁性magnetic prospecting 磁法勘探magnetic pull 磁铁引力magnetic resistance 磁阻magnetic sensor 磁性传感器magnetic separation 磁选magnetic separator 磁选机magnetic survey 磁力测量magnetic susceptibility 磁化率magnetic theodolite 磁经纬仪magnetic work 磁法勘探magnetism 磁性magnetite 磁铁矿magnetization 磁化magnetometer 磁力计magnetomotive force 磁通势magnification 放大率magnitude 大小maiden field 未采的矿区main 知的main adit 纸硐main airway 昼巷main and tail rope haulage 头尾绳运输main belt 干线皮带运输机main bottom 基岩main conveyor 炙输机main conveyor roadway 咒送机巷道main crosscut 知石门main distributing conveyor 种配运输机main drift 知平巷main drive 肢动装置main ends 旨备开采工祖main fan 秩风机main fault system 窒层系main gangway 水平巷道main gravity incline 种子坡main haulage 知运输main haulage level 炙输水平main haulage roadway 运输大巷main lateral 炙输道main level 之平main line track 干线main mine drainage 峙水main opening 助井main reef 嘱main return 重风流main roadway 知平巷main roof 老顶main roof caving 老顶垮落main roof collapse 老顶垮落main shaft 助井main timber 底梁main transfer point 知载点main ventilation 吱风main winding shaft 轴升井main working 永久巷道maintenance 维持maintenance costs 维修费major blast 大爆破make of refuse 尾矿产量make up bunker 井口炸药室malachite 孔雀石malleability 展性mallet 锤malm 泥灰岩mammoth blast 大爆破mammoth mill 大型选矿厂man cage 升降人员用的罐笼man cage compartment 乘人罐笼隔间man hoist 人员提升机man hole 人孔man riding 人具运输man tramming 人力运输man trip 人员运送man way 人行道mancar 人车mandrel socket 捞管器mangan blende 硫锰矿manganese 锰manganese ore 锰矿石manganese spar 菱锰矿manganiferous iron ore 含锰铁矿manganite 水锰矿manless face 无人操驻祖manless mining 无人回采manner 方法manometer 压力计mansonry lining 砌筑支架manual adjustment 手动蝶manual control 手动控制manual feed 手动进给manual operation 人力操作manual regulation 手动蝶manway compartment 人行道隔间manway landing 梯子间平台map of mine working 采掘工程平面图marble 大理石marcasite 白铁矿margarite 珍珠云母margin 边缘;储备marine deposit 海详沉积marine drilling 海上钻井marine mineral resources 海洋矿物资源marine technology 海底矿枝术工艺mark post 标柱marker 指示层marl 泥灰岩marlaceous 泥灰岩的marly 泥灰岩的marmatite 铁闪锌矿marmolie 白蛇纹石marsh 沼泽marsh gas 沼地瓦斯marsh land 沼泽地marsh ore 沼铁矿martite 假象赤铁矿mash 矿浆mason 砖石工masonry 砌筑支架masonry lining 砌石支架mass 质量mass action 质量酌mass breaking 大量采矿mass caving 大崩落mass production 大量生产master control system 中央控制台masurium 钨material 材料material handling equipment 装卸转运设备material transport 材料运输matrix 脉石matter 物质mattock 鹤嘴锄maul 大锤maximal 最大的maximum allowable concentration 最高容许浓度maximum load 最大负载maximum speed 最高速度meagre coal 贫煤meal 岩粉mean 平均mean density 平均密度mean deviation 平均偏差mean error 平均误差mean life 平均寿命mean value 平均值measurable 可量的measure 测量;度量measured profile 实测断面measured reserves 查芒量measured value 测定值measurement 测定measuring bin 计量仓measuring instrument 计量仪器measuring lath 测量杆measuring plug 测量标桩measuring pocket 计量仓measuring point 测点measuring range 测量范围mechanical 机械的mechanical analysis 粒度分析mechanical brake 机械制动器mechanical breaking 机械回采mechanical classifier 机械分级机mechanical coal mining 机械化采煤mechanical digger 机铲mechanical feed 机械进给mechanical feeder 机械式给矿机mechanical filling 机械充填mechanical flotation machine 机械搅拌式浮选机mechanical force 机械力mechanical gradation 筛别分析mechanical grading 粒度组成mechanical haulage 机械运输mechanical jig 机械的跳汰机mechanical loader 装载机mechanical loading 机械装载mechanical mining 机械化开采mechanical mole 掘进护盾;平巷联合掘进机mechanical packing 机械充填mechanical pick 风镐mechanical picker 拣选机mechanical plough 机械犁mechanical prop 机械支柱mechanical property 机械性质mechanical shovel 机铲mechanical stowing 机械充填mechanical strength 机械强度mechanical thickener 机械浓缩机mechanical ventilation 机械通风mechanics 力学mechanism 机构mechanization 机械化mechanized coal face 机械化采煤工祖mechanized drilling 机械钻眼mechanized extraction 机械化采掘mechanized face 机械化工祖mechanized haulage 机械化运输mechanized mucking 机械化岩石清理mechanized output 机械化采煤量mechanized support 机械化支保medium 介质medium ground 中硬地层medium hard coal 中等硬度煤medium thickness seam 中厚矿层meionite 钙柱石melaconite 土黑铜矿melanterite 水绿矾melaphyre 暗玢岩melinite 麦林奈特炸药mellite 密蜡石melonite 碲镍矿men hoisting 人力提升mercaptan 硫醇mercaptobenzothiazole 巯基苯并噻唑merchantable 工业矿石merchantable coal 商品煤mercury 汞mercury barometer 水银气压表meridian 子午线mesh 筛眼;筛号mesh analysis 筛别分析mesh aperture 筛孔尺寸mesh reinforcement 网状钢筋mesh wire lagging 钢丝网背板mesozoic 中生代metal 金属metal content 金属含量metal mine 金属矿山metal mining 金属矿床开采metal net 金属丝网metal prop 金属支柱metal support 金属支架metal trough 铁槽metallic cement 矿渣水泥metallic lining 金属支架metallic mineral 金属矿物metallic ore 金属矿石metalliferous 含金属的metallization 矿物化metallogeny 矿床成因论metalloid 准金属metallurgical extraction 冶金提取metallurgy 冶金学metamorfic rock 变质岩metamorphism 变质酌metasomatism 交代酌metasomatosis 交代酌metasome 代替矿物metering 计量methan explosive proportion 沼气爆炸量methane 沼地瓦斯methane accumulation 沼气聚集methane air mixture 沼气空气混合物methane content 沼气含量methane detector 沼气检定器methane determination 沼气测定methane emission 沼气泄出methane outburst 沼气突出methane pocket 沼气包methane recorder 沼气记录器methane tester 沼气检定器methanol 甲醇methanometer 沼气测定器methanophone 沼气信号器method 方法method of preparation 连矿法method of working 开采法mica 云母mica schist 云母片岩micacite 云母片岩micell 微胞michigan cut 平行空炮眼掏槽mickle 软粘土microanalysis 微量分析microcline 微斜长石microcrystalline 微晶的microlog 接触测井micromagnetometer 显微磁强计micromineralogy 显微矿物学micronic dust particle 微尘粒microscope 显微镜microscope objective 显微镱物镱microscopic analysis 显微分析microscopic sizing 显微镜粒度法microstructure 显微组织middle 中部middle band 夹石层middle cutting 中部掏槽middle point 中点middling product 中间产品middlings 中间产品midway level 中间产水平migmatite 混合岩migration 移动milk of lime 石灰乳mill 磨机;选矿厂mill barrel 磨矿机滚筒mill feed 磨机给料mill hole mining 漏斗采矿mill liner 磨机衬里mill method 漏斗采矿法mill tailings 选矿尾矿millerite 针镍矿millhole 放矿口milling 选矿;磨碎milling hole 矿溜子milling method 连矿法milling ore 可选级矿石millisecond blasting 毫秒爆破millisecond delay 毫秒迟发millisecond delay detonator 毫秒延时电雷管millisecond round 迟发毫秒爆破炮眼组millstone 磨石;燧石milltailings 选矿尾矿mimetesite 砷铅矿mimetite 砷铅矿minable seam 可采煤层minable thickness 可采厚度minable width 可采宽度mine 矿山mine age 矿山寿命mine air 矿井空气mine air preheating 预热矿井空气mine air refrigeration 矿井空气冷却mine bottom plan 井底车场平面图mine cable 矿用电缆mine cage 矿用罐笼mine camp 矿工村mine car 矿车mine climate 矿井气候mine concession 矿区mine conditions 矿山条件mine conveying 矿山运输mine digger 矿工mine drainage 矿井排水mine drainage pollution 矿山排水造成的污染mine dump 矿山废石堆mine dust 矿尘mine explosion 矿井爆炸mine fan 矿用扇风机mine fill 充填材料mine fills chamber 充填砂仓mine fire 矿内火灾mine fire truck 矿用消防车mine fracture forecast with satellite 卫星矿山断裂预测mine gas 井下气体mine gas drainage plant 矿井瓦斯排泄装置mine goaf 采空区mine haulage 矿山运输mine hygiene 矿山卫生mine inspection office 矿山监察局mine inspector 矿山监察员mine layout 矿山布置mine lighting 矿山照明mine management 矿山管理mine map 矿山图mine model 矿山模型mine mouth 井口mine mouth structure 井口建筑物mine openings 矿山巷道mine orifice 等积孔mine plan 矿区平面图mine portal 平硐口mine pump 矿用泵mine recovery 矿井恢复mine rescue car 矿山救护车mine rescue crew 矿山救护队mine rescue equipment 矿山救护设备mine rescue station 矿山救护站mine resistance 矿井阻力mine rig 矿用钻车mine roadway 矿山巷道mine safety 矿山安全mine safety appliance 矿山安全设备mine safety car 矿山救护车mine section 矿区mine slope 倾斜巷道mine smalls 粉矿mine static head 矿井通风静压头mine structure plan 矿山构造平面图mine survey plug 矿山测量标桩mine surveying 矿山测量学mine technical inspection 矿山技术检查mine timber 坑木mine timbering 井支架mine total head 矿井通风兑压头mine transportation 矿山运输mine tub 矿车mine valuation 矿床评价mine velocity head 矿井通风速度压头mine ventialtion 矿井通风mine water 矿水mine workings 矿山巷道mineability 可开采性mined bed 开采层mined out space 采空区miner 矿工miner's code of laws 矿山规程miner's consumption 矿工矽肺病miner's helmet 矿工安全帽miner's lamp 矿工灯miner's level 矿用水准仪miner's powder 黑火药miner's rule 矿工规则miner's tool 矿工用工具mineral 矿物mineral assemblage 矿物共生mineral bearing froth 含矿泡沫mineral benefication 选矿mineral carbon 煤mineral composition 矿物组成mineral constituent 矿物成分mineral dust explosion 矿尘爆炸mineral extraction 矿物提出mineral fines 岩粉mineral laden bubble 矿化气泡mineral microscope 矿物学用显微镜mineral mining 矿物开采mineral oil 矿物油mineral output 矿物产量mineral paragenesis 矿物共生mineral pollution 矿物污染mineral processing 选矿mineral products 有用矿物mineral prospecting 矿物勘探mineral resources 矿物资源mineral separation plant 选矿厂mineral tallow 地蜡mineralization 矿化酌mineralized bubble 矿化泡沫mineralogist 矿物学家mineralography 矿相学mineralogy 矿物学minerless mining 无人回采minimal 最小的minimum 最小mining 矿业;开采mining area 矿区mining car 矿车mining compass 矿用罗盘mining conditions 开采条件mining cost 开采费mining depth 开采深mining district 矿山管区mining economy 矿业经济mining engineer 采矿工程师mining engineering 采矿工程mining equiment 矿山设备mining explosive 矿用炸药。
矿物加工专业词汇
方铅矿闪锌矿萤石浮选流程
方铅矿闪锌矿萤石浮选流程方铅矿、闪锌矿和萤石的浮选流程可是很有趣的呢!咱们先来说说方铅矿的浮选流程吧。
方铅矿可是一种比较重要的矿石哦。
在浮选它的时候呀,要先把矿石进行破碎和磨矿,这就像是给矿石做个“按摩”,把它变得细一点,这样才能更好地进行后面的操作。
磨好的矿浆会进入浮选槽,这时候就开始加药剂啦。
通常会加入一些捕收剂,就像是给方铅矿撒下一张特殊的“网”,让它能够被泡沫带起来。
这个捕收剂就像一个很有吸引力的小魔法,专门吸引方铅矿呢。
然后通过搅拌,让药剂和矿浆充分混合,那些被“网”住的方铅矿就会附着在气泡上,慢慢地浮到表面,就像一个个小气球带着方铅矿一起往上飘。
最后把浮起来的含有方铅矿的泡沫收集起来,再经过一些后续的处理,就可以得到方铅矿的精矿啦。
接下来讲讲闪锌矿的浮选。
闪锌矿浮选也有自己的一套小把戏。
同样的,也是先破碎磨矿这个基本操作。
然后在浮选的时候呢,药剂的选择就很关键啦。
闪锌矿的浮选药剂和方铅矿会有些不同哦。
要加一些专门针对闪锌矿的捕收剂,这个捕收剂就像是闪锌矿的专属小跟班,紧紧地跟着闪锌矿。
在浮选槽里,通过调节各种条件,像pH 值这些,就像给闪锌矿创造一个最适合它被“抓住”的环境。
搅拌的时候呢,闪锌矿就会和药剂结合,然后被气泡带到表面。
不过呀,闪锌矿浮选的时候可能会受到一些其他矿物的干扰,这就需要操作人员有很丰富的经验啦,要像个聪明的小侦探一样,找出干扰的因素并且解决它,这样才能得到纯度比较高的闪锌矿精矿呢。
再来说说萤石的浮选流程。
萤石浮选也是从矿石的破碎磨矿开始的。
萤石有它自己的特点,所以浮选它的时候要用适合萤石的药剂。
一般会有调整剂先对矿浆进行调整,就像是给萤石的浮选舞台做个布置。
然后加入捕收剂,这个捕收剂就像是一把钥匙,专门打开萤石被浮选起来的那扇门。
在浮选过程中,要控制好各种参数,比如药剂的用量、搅拌的强度等等。
如果药剂用多了或者少了,就像做菜的时候盐放多放少了一样,会影响最终的结果。
浮选药剂与矿物作用的理论
浮选药剂与矿物作用的理论基础浮选过程中药剂的作用机理十分复杂,近年来通过利用各种现代测试方法研究,特别是关于捕收剂与矿物表面作用的研究,取得很多进展。
然而到目前为止,也还有很多问题没有研究清楚。
已经有许多专著讨论选药剂的作用机理,有关的论文也不断在发表,我们简略地介绍一些较有影响的理论和与本书有关的一些研究成果。
捕收剂在矿物表面的作用,总的说来,不外是;(1)物理吸附特点是能量小(有人提出约在,.0l-,0,1电子伏特/克分子),或者说吸附热小(几千卡/克分子或更小),吸附分子一与固体表面距离较大,在固体表面上具有流动性(好似二维气体)。
吸附力为范德华力或静电力。
药剂分子(或离子)与矿物间不发生键合的电子转移或共有。
物理吸附一般没有选择性或选择性较差,并且易十解吸,通常吸附量随温度上升而下降。
(2)化学吸附特点是能量大(约在1电子伏/摩尔),或说吸附热高(几十千焦/摩尔),吸附分子与矿物表面距离小,药剂分子与矿物间发生键合的电子关系,吸附力本质上是化学力。
化学吸附一般具有选择性吸附比较牢固,不易解吸,通常随着温度升高(在一定范围内)吸附量升高。
(3)表面化学反应化学吸附进一步发展,常常在矿物表而发生化学反应。
表面化学反应一与化学吸附的主要区别是前者的反应产物在表面上构成独立的相。
捕收剂与矿物作用的具体方式,已经提出了各种看法,现将主要的列举如下。
(1)非极性分子的物理吸附主要是各种非极性经类油的吸附,吸附力为瞬间偶极力(或称色散力)。
据观测,非极性油的吸附主要发生在矿物与气泡粘着时的三相润湿周边上。
(2)双电层吸附理论矿物在水中由于表面一种离子转人溶液或吸附于表面的趋外较大,·使表面多余了定位离子,并由此而引来的异名的配衡离子(或称相反离子),形成表面双电层。
内层由矿物表面的定位离子组成;外层又分为厚度约为水化离子半径的紧密层(或称斯特恩层)及再向外的扩散层。
由溶液内部至矿物表面的总电位义称电极电位(或化学电位);至紧密层滑动面的电位则通常作为电动电位又称省电位。
cmc与方铅矿和闪锌矿作用机理的探讨
文章标题: CMC与方铅矿和闪锌矿作用机理的探讨序言方铅矿和闪锌矿在矿业领域中扮演着重要角色,它们的作用机理一直以来备受关注。
而在这个广阔而古老的领域中,CMC(羧甲基纤维素钠)作为一种重要的分散剂也逐渐引起了研究者的兴趣。
本文将就CMC与方铅矿和闪锌矿的作用机理展开探讨,从深度和广度上剖析这一话题。
一、方铅矿的形成与作用机理1. 方铅矿的形成方铅矿,即闪亮矿,是一种常见的铅矿石,其主要成分为硫化铅。
方铅矿一般形成于中低温热液脉、岩浆热液蚀变或后期热液成矿阶段。
在地质构造复杂的区域,方铅矿也可能与成岩成矿流体和变质矿化流体有关。
2. 方铅矿的作用机理方铅矿的作用机理在矿石学和绿色矿山领域中备受研究,其作用机理主要包括矿石成因、热液作用、晶体形态等。
二、闪锌矿的形成与作用机理1. 闪锌矿的形成闪锌矿是一种硫化锌矿,是铁、镁、亚铁和镁闪锌矿的混合晶体。
闪锌矿一般形成于火山岩脉或火山喷发后期的热液蚀变阶段。
闪锌矿的形成过程复杂,也与热液成矿、岩浆成矿相关。
2. 闪锌矿的作用机理闪锌矿的作用机理是矿石学和矿物学领域的重要研究课题之一。
其作用机理主要包括形成条件、成矿物质来源、晶体结构等。
三、 CMC在方铅矿和闪锌矿中的应用与作用机理1. CMC在矿山领域的应用CMC作为一种重要的分散剂,在矿山领域有着广泛的应用。
其主要应用包括矿石粉磨、浮选、脱泥等过程。
2. CMC与方铅矿和闪锌矿的作用机理CMC作为分散剂,其与方铅矿和闪锌矿的作用机理一直备受研究者的关注。
其作用机理可能与分散作用、表面吸附、电荷中和等有关。
四、个人观点与理解在我看来,CMC与方铅矿和闪锌矿的作用机理是一个复杂而有趣的研究领域。
通过深入的学习和研究,我认为我们可以更好地理解工业化生产过程中的矿石处理技术,更好地应用于实际生产中。
对于方铅矿和闪锌矿的成因和作用机理的研究,也有助于我们更好地认识地球科学与矿床成因理论。
总结通过对CMC与方铅矿和闪锌矿的作用机理进行全面探讨,我们可以更好地理解矿石成因与成矿作用及CMC在矿山领域的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录相关文献原文及译文英文原文:Fine-grained galena and sphalerite flotation flocculation Abstract:In this paper, the formation of floc in the conduct of fine-grained galena and sphalerite flotation, flocculation and flotation that. By potassium amyl xanthate and kinetic energy change caused by the hydrophobic flocculation of mineral to form floc.The study is the monomer-20μm trace minerals flotation and floc size determination. Of pH, potassium amyl xanthate (PAX) concentrations, kerosene dosage and mixing intensity and other parameters on the flocculation Flotation. The results show that the floc size on the effect of flocculation flotation great influence.The appropriate operating conditions, galena and sphalerite flocculation flotation recovery rate 100%, while the conventional flotation recovery rate of only 40%.The experiment also found that adding a small amount of kerosene to improve the flotation, which greatly reduces the amount of PAX.Also used in Mexico ReydePlata disseminated sulfide minerals (lead, zinc, silver and gold) for the flocculation flotation test. The results show that not only reduces the loss of valuable metals in tailings, and the selection efficiency has been greatly improved concentrate grade and recovery rate is much higher than conventional flotationThe former may be due to the high rate of fine useful minerals, which may be due to floc formation and the addition of kerosene to make useful minerals flotation faster.Keywords:Sulfide minerals Fine dressing Flocculation Foam flotationSummary:Froth flotation ore only a narrow particle size fraction is more effective on the other flotation of ore particle size fraction effect is greatly reduced (Gaudin, et al, 1931; Colins and Jamesion, 1976; Arbiter, 1979). The effective grain size with the flotation of mineral types and pharmaceutical systems change, for example, the effective flotation of galena grain size for the 6-70μm, sphalerite for the 8-90μm, chalcopyrite for the 15-60μm, yellow iron ore for the 20-150μm (Trahar and Warren, 1976). Generally considered difficult to flotation of fine mineral was mainly due to the quality of small and large specific surface area, leading to mineral particles and the small probability of bubble collision and adhesion. However, if the ore particle surface composition, oxidation, mineralogical composition and the concentration of soluble ions and other factors also affect the fine mineral flotation (Somasundaran, 1980).There are two difficulties to improve the flotation of fine mineral methods: the particle size increased flotation and reducing bubble size. The former is by selective flotation particles together, then formed floc flotation of fine particles, the law shall flocculation flotation. The latter is represented by the vacuum flotation and electrolytic flotation. In the flocculation flotation, flocculation interactions instead of fine particles and bubbles, fine particles and air bubbles to avoid the collision andadhesion of the small chance of problems. The floc is usually formed through hydrophobic flocculation can lead to mineral particles of hydrophobic and kinetic energy changes (Xu and Yoon, 1989; Warren, 1992; Song and Lu, 1994; Lu, et al, 1999). Coagulation with the electrolyte and polymer floc comparison, hydrophobic floc foam flotation is more suitable because of their hydrophobic surface, the structure is more compact, more intense flocculation. With selective hydrophobic flocculation of fine mineral-based flocculation flotation shown in Figure 1. Flocculation flotation is the core of fine-grained selective hydrophobic flocculation of minerals, including decentralization, selective and hydrophobic hydrophobicity of the formation of floc. Add mixed with pH adjustment agent dispersion effects dispersant can play the role, to prevent condensation of fine minerals, which reduces the efficiency of mineral separation. In addition to the natural hydrophobicity of minerals, the selectivity generally by hydrophobic adsorption of collector on the flotation of the particles formed. Hydrophobic floc is formed by mechanical agitation, by the hydrophobicity of mineral particles enter the kinetic energy to overcome the energy barrier to form. Hydrophobic flocculation depends on the degree of hydrophobic particles, adding non-polar oil (Capes and Germain, 1982; Song, et al, 1999) or hydrophobic coarse particles (Chia and Somasundaran, 1983) and bubble (Drzymala, et al, 1986 ) greatly enhanced through the hydrophobic flocculation.Fig 1: basis of selective hydrophobic flocculation flotation diagram. Arrows indicate the composition of the process of flocculation-flotation method Flocculation and carrier flotation flotation has long used the shear flocculation flotation. Carrier through hydrophobic flocculation flotation to fine particles adhesion on the basis of coarse particles, and coarse particle flotation. For example, the use of coarse particles as carrier, tall oil and fuel oil for flotation, Flotation of anatase from kaolin effect has been greatly improved (Seeton, 1961; Greene and Duke, 1962). Another example is coarse-grained hematite and hematite mineral mud sodium and kerosene oil is available for collectors to separate (Cristoveanu and Meech, 1985). Shear flocculation and flotation for the first time disseminated in scheelite ore flotation experiments (Koh and Warren, 1977), fine-grained scheelite flocculation is due to the adsorption of oleic acid and the application of strong shear stress caused. This method has been successfully used in Sweden Yxjoberg Scheelite Ore DressingPlant production, with fatty acid as collector (Grasburg and Mattson, 1979). Flocculation flotation not only for fine mineral separation, but also for coal washing test (Song and Lopez-Valdivieso, 1998). Flocculation flotation in order to reduce energy consumption during the high, Song and Trass (1997) proposed that the hydrophobic flocculation carried out in the centrifugal mill to reduce the number of mixing drum sets.Although there are a large number of fine particles on the flocculation and flotation of the reports, but only a small number of researchers studying the hydrophobic flocculation and coagulation of metal sulfide minerals flotation. Our previous papers (Song, et al, 2000,2001) has reported galena and sphalerite in the hydrophobic flocculation. Has also been found that by kinetic energy changes, pentyl xanthate (short hydrocarbon chain collector) can lead to strong hydrophobic flocculation fine particles by adding a small amount of non-polar oils can also be a strong increase in hydrophobic flocculation effect. Flocculation of the fine particle size range and the effective size of conventional flotation almost. In this study, we investigated when using amyl xanthate as the collector when the flocculation of galena and sphalerite flotation characteristics. The aim is to study the flocculation and flotation for the beneficiation of galena and sphalerite in the feasibility and parameters of coagulation and the relationship between flotation, Ru Xu group size, pH, the concentration of amyl xanthate, kerosene dosage and mixing strength. In addition, would like to flocculation flotation for Mexico's Rey de Plata ore (metal sulfide minerals).1 Pilot1.1 MaterialsGalena and sphalerite single taken from the Naica Mine Chihuahua, Mexico. Ore crushing hammer hand first, and then hand-selected purification. First fine grinding using a vibrating mill, and then obtained a gravity-20μm particle size of the fine galena and sphalerite, the grain-level products used for flotation of flocculation and coagulation. With a Shimadzu SALD-1100 Determination of their dispersion, and then particle size analysis, tests showed that galena d50 and d80 of the grain size was 4.4μm and 12.8μm, d50 and d80 of sphalerite grain size was 2.5μm and 9.7μm. Test was 98.2% galena containing the PbS, sphalerite containing 93.4% of ZnS.Rey de Plata ore samples collected from Mexico, Guerrero, Rey de Plata Mine. Which contains 340g/tAg, 1.3g/tAu, 2.49% Pb, 10.1% Zn and 0.49% Cu. Useful minerals well-galena, sphalerite and chalcopyrite, associated with silver and gold. Some useful minerals were embedded in fine cloth, so they need finely ground to produce a large number of fine particles.Single mineral tests used in the potassium amyl xanthate (PAX) from Mexico, Quimica industrial companies, and in our laboratory for purification. From JTBarker of analytical pure hydrochloric acid and sodium hydroxide for adjusting pH. Kerosene from Fisher Scientific without further purification, using ultrasonic processing, are used emulsion. The pH adjusting agent from JTBarker lime, ZnSO4, Na2SO3, inhibitors NaCN, and were analytically pure CuSO4 activator for the Rey de Plata ore trial. CYTEC Industries provided by the collector Aerophine242 and Aerophine3418(dithiophosphate), from Mexico, Quimica industrial companies Collector X-350 (xanthate) and foaming agent Teuton-100. Single mineral tests with distilled water first, and then resin and 0.2μm pore filter processing, the residual conductivity of less than 1μS/cm. Rey de Plata ore in the experiment, using a di stilled water.1.2 Method1.2.1 Hydrophobic flocculationHydrophobic flocculation of fine mineral test is diameter 10cm, width 2cm 4 baffle mixing tank conducted. Stirring shaft equipped with a width of 6cm, height 2cm of the S-shaped impeller. 1g 100ml water mineral and suspension pH values adjusted with hydrochloric acid or sodium hydroxide, and then a strong presence in the PAX mixing, is sometimes added to kerosene emulsion. Then, the suspension transferred to the particle size analyzer for particle size determination of floc, or transfer to Hallimomd flotation flotation tubes to trace.1.2.2Micro-flotationDispersion or flocculation flotation pulp of trace nitrogen in the dark into the tube for flotation Hallimond. Mineral suspension was transferred to the flotation tube first, and then diluted to 130ml. Then, with the rate of bubbling nitrogen 29.2ml/min, flotation 1min. Float float and not be filtered and dry, respectively. According to float the weight of the product divided by the total weight of the two parts to measure the effect of floating minerals.1.2.3 ReydePlata ore flocculation-flotationRey de Plata ore flocculation and flotation as shown in Figure 2. Ore zinc sulfate, sodium sulfide and sodium cyanide (inhibition of sphalerite and pyrite) in the ball mill grinding. Then the pulp with lime to pH value adjusted to 8.5, and then add Aerophine241, Aerophine3148 and kerosene mixed in the tank speed 900r/min strong stirring 15min, then add foaming agent Teuton-100 for roughing. Crude concentrate, without adding any pharmaceutical under the conditions of two selected, zinc flotation tailings into the cycle. Lead, silver and copper minerals in the enrichment of the lead concentrate. Zinc flotation cycle with lime to pH value adjusted to 10.5, add copper sulfate activator, collector X-350 and kerosene emulsion mixture in the tank speed 900r/min strong stirring 15min. Add a foaming agent Teuton-100 for zinc roughing and three times selected. In the selection, the pulp pH value adjusted to 11.5. Test finally be a lead concentrate, a zinc concentrate, 2 Lead Ore, 3 zinc mine and a tailingsFigure 2: Rey de Plata ore flocculation flotation1.2.4Floc size determinationIn the study, with a semiconductor laser light source with Shimandzu SALD-1100 laser diffraction particle size analyzer dispersed mineral particles and flocculation of the mineral particle size distribution. This instrument measured the optical diameter, rather than the equivalent Stokes diameter. In order to prevent floc destruction in the measurement, the measurements without ultrasonic treatment suspension.1.2.5 Contact angle measurementsWith a Rame-Hart NRL-100-00-type angle was determined by measuring the size of the contact angle, the measurement of the details described in the past have been reported (Song, et al, 2000).2 Results and discussion2.1F locculation of fine mineral flotation2.1.1 PHFlocculation of galena and sphalerite for flotation with PAK floatability when the relationship with pH shown in Figure 3. Pharmacy same ore system in the same conditions, by conventional methods galena and sphalerite flotation results also indicated that in the diagram. In conventional flotation, suspension, transfer to Hallimond in the flotation tube just prior to mixing with a magnetic stirrer with PAX to moderate stirring. The results showed that the flotation of fine hydrophobic flocculation efficiency as greatly improved. In a given pharmaceutical system and operation conditions, when compared with conventional flotation, when the pH value of 5-8, the flocculation and flotation can galena and sphalerite flotation efficiency increased by 30% and 50% . Obviously, flocculation flotation is the recovery of fine sphalerite galena and effective way. Can see from the chart, flocculation and flotation effect of changes in pH, similar to conventional flotation. Can see from Figure 3-A, galena floatability decreased with increasing pH. This decrease in the alkaline range than in the acidic range is more apparent. For flocculation, flotation, can float in thepH value of the difference between 4 and 10 to 40%. Can see from Figure 3-B, flocculation flotation in the relatively stable between pH4-8, in this range, the mineral can be greatly reduced float. The pH range and Fuerstenau report (1982) using amyl xanthate as a collector when the maximum sphalerite flotation efficiency is the same.Figure 3: PAX as collector with the flocculation of galena (A) and sphalerite(B)the floatability of the relationship with pHConventional mineralflotation results indicated in the figure2.1.2 amyl xanthate (PAX) concentrationFigure 4 shows the PAX concentration on the flocculation of fine galena and sphalerite flotation effect. Thus, with the PAX concentration increased galena, sphalerite recovery rate will increase until the PAX concentration reached 2 ×10-3mol / l (galena), 1 ×10-2mol / l (flash zinc). In PAX low concentrations, the recovery rate of increase of mineral medium, but when more than the critical PAX concentration (1 ×10-5mol / l (galena), 1 ×10-4mol / l (sphalerite), the mineral recovery increased dramatically. According to Song, et al reported (2000.2001), these observations on the mineral surface with PAX adsorption amount and the size of the mineral surface contact angle with the PAX concentration is similar. that flocculation flotation on the mineral surface with PAX closely related to the adsorption, although the mineral surface hydrophobic. because of the hydrophobic particles formed in the hydrophobic flocculation plays a major role (Song and Lu, 1994; Song, et al, 2000), so PAX flocculation flotation concentration of income increases with age enhanced not only because of the extent of hydrophobic flocculation increased, but also because the increase of floc size.Figure 4: The flocculation of galena and sphalerite floatability of therelationship between concentration and PAX2.1.3 amount of kerosenePAX caused by the fine galena and sphalerite in the flocculation of recovery and kerosene consumption relationship shown in Figure 5. Can be seen from the figure, when the increase in kerosene consumption, galena and sphalerite floatability also increased, until the amount of kerosene, respectively, 200mg / l and 250mg / l. Operating conditions in the figure, there is no time to add kerosene, galena and sphalerite flocculation flotation recoveries were 64% and 67%. Obviously, a small amount of kerosene will be able to significantly improve the floatability of floc. Figure 4 and Figure 5 can be found, kerosene substitute for part of the PAX. In order to fully use the flocculation flotation galena flotation, when no kerosene, the need to use 2 × 10-3mol / l of PAX, if using a 200mg / l of kerosene, just with 1 ×10-4mol / l of PAX. For sphalerite, no kerosene, you need to 1 × 10-2mol / l of PAX, if using a 250mg / l of kerosene, just use the 5 ×10-4mol / l of PAX. Whether to add two cases of kerosene, used by the PAX galena reduction 384mg / l, sphalerite PAX used to reduce the 1919mg / l. Because PAX is more expensive than kerosene, add kerosene can greatly save the cost of flocculation and flotation.Figure 5: PAX cause flocculation of fine-grained galena and sphaleritefloatability of the relationship between consumption and keroseneFlocculation and flotation of non-polar oil on the improvement may be due to floc size and density increase, and the floc and the bubbles increase the adsorption strength. Water suspension of non-polar oil is always absorption in the hydrophobic particles, and then form a film. Film can increase the hydrophobic particles, particles in the reunion will be bridged together. Oil bridging flocculation greatly enhanced hydrophobic adsorption strength of particles (or floc strength), leading to flocculation in turbulent flow under the strong force is not broken (Song, et al, 1999). These two factors add non-polar hydrophobic oils can enhance flocculation, resulting in non-polar oil than not to join a larger, more dense floc.2.1.4 mixing strengthAs previously mentioned, the slurry mixing machine on a change from the hydrophobic particles of kinetic energy to overcome the energy barrier to particles close to the hydrophobic flocculation occurred. Figure 6 indicated that the flocculation caused by the PAX grained galena and sphalerite floatability of phase with the hydrophobic flocculation stirring rate (or mixing intensity) relationship. Can be seen from the figure, mineral recovery increased with the increase of stirring intensity to the maximum, then decreased. Given operating conditions, galena 900r/min in stirring intensity, its highest rate; sphalerite were the highest when the 750r/min. Obviously, the hydrophobic flocculation stage, the pulp need to have sufficient strength of mixing, flocculation and flotation to get good results. PAX concentration and kerosene with stirring strength of the impact of different mixing strength of floc flocculation flotation by changing the particle size to achieve. Therefore, the high stirring speed range, due to strong shear and pull effect, makes the lower floatability.Figure 6: PAX cause flocculation of fine-grained galena and sphaleriterecovery of hydrophobic flocculation and mixing section of therelationship between speed2.1.5 floc size influenceFigure 7, the flocculation caused by the PAX grained galena and sphalerite floatability of the relationship between the diameter and flocculation. When the floc hydrophobic constant, the hydrophobic flocculation by changing the phase of theagitation speed to adjust the floc particle size. This shows that the recovery rate is closely related with the floc size. As the floc diameter increases, the floatability of floc also increased, up to 38μm galena or sphalerite grain size to 45μm after the curve flattened. Small size floc, the recovery have increased significantly. However, when the change is not greater than the critical size strongly. The critical particle size galena 20μm, the critical particle size of sphalerite 24μm, the critical size is given under the conditions of the lower limit of flocculation-flotation size. The minimum size limit than the flotation of minerals corresponding larger size, which may be due to floc density and low porosity make it big. As expected, the impact of floc size is an important factor in flocculation flotation.Figure 7: PAX cause flocculation of fine-grained galena and sphalerite recovery rate and the average size of the relationship between floc2.2 Rey de Plata ore flocculation flotationIn order to reduce the loss of fine mineral particles, to improve gold, silver, lead, zinc and copper recovery, the Rey de Plata ore flocculation flotation tests carried out. Galena and sphalerite, respectively, the other pilot. Thio-phosphate and kerosene with a hydrophobic flocculation of galena, chalcopyrite also entered floc, the use of zinc sulfate, sodium sulfite and sodium cyanide inhibition of sphalerite, galena and sphalerite to separation. Xanthate and kerosene with the hydrophobic flocculation of sphalerite. The results shown in Table 1. For comparison, conventional flotation methods, under the same conditions (flotation agents, mineral size and flotation methods, etc.) on the same ore flotation was also carried out, but without kerosene, not to the strong mixing tank slurry mixing. The results are listed in Table 1.Table 1: Rey de Plata ore flotation and conventional flotation results offlocculationTest conditions:1), grinding stage: 1300g/tZnSO4, 500g/tNa2SO3, 130g/tNaCN, slurry particle size 87.5%-37μm.2), shallow flotation cycle: in the conventional flotation time, pH value of 8.5 (adjusted with lime), 6g/tAerophine241, 9g/tAerophine3418, pulp in the flotation machine mixing time 2min. When the flocculation flotation, pH value of 8.5 (adjusted with lime), 6g/tAerrofloat-241, 9g/tAperofloat-3418, 200g / t of kerosene in the tank mixture stirred 15min (stirring speed 900r/min). Add 6g/tTeuton-100 foaming agent, roughing 5min, no increase in the pharmaceutical, the selection I choose 4min, featured II election 3min.3), zinc flotation circuits: conventional flotation at the time, 700g/tCuSO4, pH value of 10.5 (adjusted with lime), 22g/tX-350, pulp in the flotation machine mixing time 2min. When the flocculation flotation, 700g/tCuSO4, pH value of 10.5 (adjusted with lime), 22g/tX-350, in a mixed tank mixing 15min (stirring speed 900r/min). Add 35g/tTeuton-100 foaming agent, roughing 7.5min; pH adjusted with lime to 11, selected I choose 5min, select the election II 3min, selected III election 3min.As can be seen from Table 1, compared with conventional flotation, Rey de Plata ore flocculation-flotation better. First, the flocculation flotation tailings useful components than conventional flotation of low grade, reducing the useful minerals in tailings loss. Money, and zinc crude select gold, silver, lead, zinc and copper loss rate decreased by 6.6%, 3.4%, 1.6%, 5.2% and 4.2%, making recovery more useful minerals. Second, the flocculation flotation stage in the fossil Featured greatly improved the separation efficiency of selection. In addition to gold, the silver in lead concentrate, lead and copper recovery was increased by 14.8%, 15.1% and 24.8%; zinc concentrate zinc recovery rate of 41%. Compared with conventional flotation, concentrate silver, copper and zinc grade increased by 310g / t, 2.6% and 0.4%, but lower grade of 1.5% lead. In the study, the hydrophobic flocculation and kerosene on rough selection of sulfide minerals effect is not obvious, this may be due to the ultrafine ore useful minerals (-5μm) content of less. However, these two factors on the selected effect is obvious, this may be due to the formation of hydrophobic flocculation and the addition of kerosene to make a useful and accelerated pace of mineral flotation. .Figure 8: Rey de Plata ore flocculation flotation and conventional flotation oflead in lead concentrate grade and recovery of the relationship between leadFigure 9: Rey de Plata ore flocculation flotation and conventional flotation ofzinc in zinc concentrate grade and recovery of the relationship between zinc From Figure 8 and Figure 9 shows that, with the Rey de Plata ore in the test, flocculation flotation of lead and zinc concentrates at lead and zinc concentrate by conventional flotation than the high grade. These data are from the selected roughing and 3 received. Can see from Figure 2, flocculation flotation of the curve at the right side of the curve of conventional flotation, flocculation and flotation that receive the same grade but the recovery rate is higher than conventional flotation concentrates. For example, when the lead lead concentrate grade of 40%, flocculation flotation recovery of lead is 11% higher than conventional flotation; when the zinc concentrate grade of 52% zinc, the flocculation and flotation recovery of zinc higher than conventional flotation 15%. As the concentrate grade increased, the rate gap between the two methods also increased, suggesting that flocculation flotation selected section in the high than the low selection section is more effective. In other words, with the increase in the number selected with conventional flotation, flocculation and flotation separation efficiency differences also increased. Clearly, not only successfully used in flocculation flotation of fine galena and sphalerite minerals monomer, and still successfully used in ore.3 Conclusions1), suggesting that, we demonstrated that PAX and the momentum change caused by the hydrophobic flocculation of galena and sphalerite to form a floc can greatlyimprove the fine-grained galena and sphalerite floatability. Flocculation flotation effect depends on floc particle size, in an appropriate size can be achieved under full flotation.2), can be greatly improved by adding a small amount of kerosene flotation flocculation effect, not only because of enhanced hydrophobic flocculation, but also because of flocculation increases the probability of adsorption to the bubble. In this process, kerosene can be replaced by a large number of PAX, and thus reduce the production cost.3), Rey de Plata ore flotation showed flocculation, flocculation flotation not only reduces the useful minerals in the tailings of the loss and to improve the recovery of fine mineral particles helpful and useful minerals in the flotation by increasing the speed greatly improved the selection of separation efficiency. Can be seen that flocculation is disseminated ore flotation recovery of galena and sphalerite effective and feasible method.中文翻译:细粒方铅矿和闪锌矿的絮凝浮选摘要:本文研究了在形成絮团的情况下进行细粒方铅矿和闪锌矿浮选,即絮凝浮选法。