人教版初中数学知识点总结2017
人教版初中数学知识点总结.doc
人教版初中数学知识点总结.doc一、数与代数1. 有理数- 有理数的概念:整数和分数统称为有理数。
- 有理数的运算:加法、减法、乘法、除法、乘方、开方。
- 有理数的性质:绝对值、相反数、倒数。
2. 整数- 整数的分类:正整数、负整数、零。
- 整数的性质:奇数、偶数、质数、合数。
3. 分数与小数- 分数的表示:真分数、假分数、带分数。
- 分数的运算:加减乘除、通分、约分。
- 小数的表示:有限小数、无限循环小数。
- 小数与分数的互化。
4. 代数表达式- 代数式的概念:用字母表示数的表达式。
- 单项式与多项式:单项式的系数、次数;多项式的项、次数、升幂排列、降幂排列。
- 代数式的运算:加减、乘除、因式分解。
5. 一元一次方程- 方程的概念:含有未知数的等式。
- 解方程的方法:移项、合并同类项、系数化为1。
- 方程的应用:实际问题中的方程求解。
6. 二元一次方程组- 方程组的概念:两个或多个一元一次方程的集合。
- 解方程组的方法:代入法、消元法。
- 方程组的应用:解决实际问题中的多个未知数问题。
7. 不等式与不等式组- 不等式的概念:表示不等关系的式子。
- 不等式的解集:找出满足不等式关系的所有数。
- 不等式组的解法:求解多个不等式的公共解集。
二、几何1. 平面图形- 点、线、面的概念:点无大小、线有长度无宽度、面有长度和宽度。
- 角的概念:两条射线的夹角。
- 直线与射线:直线无限延伸,射线有起点无限延伸。
2. 三角形- 三角形的性质:内角和为180度,外角和为360度。
- 特殊三角形:等边三角形、等腰三角形、直角三角形。
- 三角形的分类:按边分类、按角分类。
3. 四边形- 四边形的性质:内角和为360度。
- 特殊四边形:正方形、长方形、菱形、平行四边形、梯形。
4. 圆- 圆的概念:平面上所有与定点等距离的点的集合。
- 圆的性质:圆心、半径、直径、弦、弧、切线。
- 圆的分类:正圆、椭圆、扇形。
5. 面积与体积- 平面图形的面积:长方形、正方形、三角形、圆。
人教版初中数学知识点总结(精华)
初中数学知识点总结(精华)第一章 有理数1、有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 .4、.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数 6、有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0;②除以一个不为0的数,等于乘以这个数的倒数7、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .8、比较两个数的大小:(1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小(4)两数相乘(或相除),同号得正 > 0,异号得负 < 09、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-an 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .10、科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.11、非负数的性质:若02=++c b a ,则000===c b a 且且第二章 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
初中数学知识点总结人教版(精选7篇)
初中数学知识点总结人教版(精选7篇)初中数学知识点总结篇一1、一元一次方程根的情况△=b2-4ac当△0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度) 平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
初中九年级数学知识点总结篇二第一章实数一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01时,1/a1;D.积为1.4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1.5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
人教版初中数学重点知识点总结
人教版初中数学重点知识点总结一、数与代数。
1. 有理数。
- 有理数的分类:整数(正整数、0、负整数)和分数(正分数、负分数)。
- 数轴:规定了原点、正方向和单位长度的直线。
数轴上的点与有理数一一对应。
- 相反数:只有符号不同的两个数互为相反数,a的相反数是-a,0的相反数是0。
- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即| a|=a(a≥0) -a(a<0)。
- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算叫乘方,a^n中a是底数,n是指数。
2. 实数。
- 无理数:无限不循环小数,如√(2)、π等。
- 实数的分类:有理数和无理数。
- 实数与数轴上的点一一对应。
- 平方根:如果x^2 = a(a≥0),那么x叫做a的平方根,记作x=±√(a),其中√(a)是a的算术平方根。
- 立方根:如果x^3 = a,那么x叫做a的立方根,记作x=sqrt[3]{a}。
3. 代数式。
- 代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,单独的一个数或者一个字母也是代数式。
- 整式:单项式和多项式统称为整式。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
初中人教版数学知识点总结
初中人教版数学知识点总结初中数学知识点总结如下:
1. 数的性质:
- 整数的比较与排序
- 分数的比较与排序
- 分数与小数的相互转化
2. 整式的加减乘除:
- 多项式的合并同类项
- 多项式的加减运算
- 多项式的乘法
- 多项式的除法(除以一元一次式)
- 分式的加减乘除
- 分式方程的解法
3. 平方根与立方根:
- 平方根的求法
- 平方根的应用
- 立方根的概念与求法
- 立方根的应用
4. 合数与质数:
- 质数与合数的概念
- 素数判定方法
- 合数的因数分解
5. 代数方程:
- 一元一次方程的解法
- 一元一次方程的应用
- 一元二次方程的解法
- 一元二次方程的应用
6. 直线与平面几何:
- 角度的概念与度量
- 四边形与三角形的性质
- 同位角、内错角、同旁内角等的性质
- 平行线与垂直线的判定
- 三角形的相似与全等
- 圆的性质与应用
- 直角三角形的性质与应用
7. 数据统计与概率:
- 数据的整理与展示方式
- 平均数、中位数、众数的计算
- 概率的概念与计算
这只是初中数学的一部分知识点总结,还有很多其他的内容,包括数列、函数、空间几何等等。
不同教材版本可能会有一些差异,所以具体课程的内容还需要根据自己所使用的教材来进行学习和总结。
人教版初中数学知识点汇总
八年级上册
第十一章 三角形(与三角形有关的线段;与三角形有关的角;多边形及其内角和)
第十二章 全等三角形(全等三角形;三角形全等的判定;角的平分线的性质)
第十三章 轴对称(轴对称;画轴对称图形;等腰三角形;最短路径问题)
第十四章 整式的乘法与分解因式(整式的乘法;乘法公式;因式分解)
第二十五章 概率初步(随机事件与概率;用列举法求比例函数;实际问题与反比例函数)
第二十七章 相似(图形的相似;相似三角形;位似)
第二十八章 锐角三角函数(锐角三角函数;解直角三角形及其应用)
第二十九章 投影与视图(投影;三视图;立体模型)
九年级上册
第二十一章 一元二次方程(一元二次方程;解一元二次方程;实际问题与一元二次方程)
第二十二章 二次函数(二次函数的图像和性质;二次函数与一元二次方程;实际问题与二次函数)
第二十三章 旋转(图形的旋转;中心对称;图案设计)
第二十四章 圆(圆的有关性质;点和圆、直线和圆的位置关系;正多边形和圆;弧长和扇形面积)
七年级下册
第五章 相交线与平行线(相交线;平行线及其判定;平行线的性质;平移)
第六章 实数(平方根;立方根;实数)
第七章 平面直角坐标系(平面直角坐标系;坐标方法的简单应用)
第八章 二元一次方程组(二元一次方程组;消元-解二元一次方程组;实际问题与二元一次方程组;三元一次方程组的解法)
第九章 不等式与不等式组(不等式;一元一次不等式;一元一次不等式组)
第十五章 分式(分式;分式的运算;分式的方程)
八年级下册
第十六章 二次根式(二次根式;二次根式的乘除;二次根式的加减)
第十七章 勾股定理(勾股定理;勾股定理的逆定理)
人教版初中数学知识点(全)
人教版初中数学知识点(全)一、整数与有理数1. 整数的概念与表示方法2. 整数的加减法3. 整数的乘法4. 整数的除法5. 整数的混合运算6. 有理数的概念与表示方法7. 有理数的加减法8. 有理数的乘法9. 有理数的除法10. 有理数的混合运算二、代数与方程1. 代数式的基本概念2. 代数式的运算3. 初等代数式4. 一元一次方程5. 一元一次方程的解6. 一元一次方程的应用三、平面图形1. 点、线、面的基本概念2. 直线的性质3. 角的概念与性质4. 线段的概念与性质5. 三角形的基本概念与性质6. 三角形的分类与判定7. 直角三角形与勾股定理8. 平行线与平行四边形9. 四边形的分类及其性质10. 梯形和平行四边形的面积四、图形的位置与方位1. 坐标系2. 图形的部分、全及简单运动3. 图形的位置关系4. 图形的投影和视图五、数据的处理与统计1. 统计调查与数据收集2. 单图形的统计3. 标线图4. 等距统计图与频数分布直方图5. 旋转、平移、翻折、镜面变换6. 几何图形的位置关系六、函数的初步认识1. 函数的概念与表示2. 函数的自变量、因变量与函数图象3. 线性函数及其图象的特征4. 恒等函数和常数函数5. 一元一次方程与一元一次函数七、空间与立体图形1. 立体图形的基本概念2. 正交投影3. 立体图形的展开图4. 空间中的位置关系与方向八、相似与全等1. 点、线、平面的基本性质2. 同位角和同旁内角3. 两个线的夹角与两个平面的夹角4. 直线与平面的位置关系5. 立体图形的拆分九、变量与变化1. 变量与量的关系2. 变量的代数表示3. 变量之间的关系及其图象4. 变量间比例关系及其图象十、数系的扩充1. 自然数、整数、有理数的关系2. 实数的概念与性质3. 几何图形的相似比与相似定理4. 实际问题与解整数方程5. 锐角三角函数、直角三角函数十一、平面直角坐标系1. 平面直角坐标系的建立2. 点与平面直角坐标系3. 点在平面直角坐标系中的坐标4. 平面直角坐标系与方程十二、几何图形的变换1. 图形的变换2. 平移和旋转3. 对称与中心对称4. 拓展与概括(图形自相似、放缩)以上是人教版初中数学知识点的概述,其中包括整数与有理数、代数与方程、平面图形、图形的位置与方位、数据的处理与统计、函数的初步认识、空间与立体图形、相似与全等、变量与变化、数系的扩充、平面直角坐标系以及几何图形的变换等内容。
人教初中数学知识点总结
人教初中数学知识点总结一、数与代数1. 有理数- 有理数的定义:整数和分数统称为有理数。
- 有理数的分类:正有理数、负有理数和零。
- 有理数的运算:加法、减法、乘法、除法、乘方、开方。
2. 整数- 整数的性质:奇数与偶数、质数与合数。
- 整数的运算:加法、减法、乘法、除法、整除、余数、最大公约数和最小公倍数。
3. 分数与小数- 分数的表示:真分数、假分数、带分数。
- 分数的运算:加减乘除、通分、约分。
- 小数的表示:有限小数、无限循环小数。
- 小数与分数的互化。
4. 代数表达式- 单项式:定义、系数、次数。
- 多项式:定义、次数、项、升幂排列与降幂排列。
- 代数式的加减运算:合并同类项。
5. 一元一次方程- 方程的定义:含有未知数的等式。
- 解一元一次方程:移项、合并同类项、系数化为1。
- 实际问题中的一元一次方程。
6. 二元一次方程组- 代入法解方程组。
- 加减法解方程组。
- 消元法解方程组。
7. 不等式与不等式组- 不等式的定义:用符号“<”、“>”、“≤”、“≥”连接的式子。
- 不等式的解集:表示解集的数轴。
- 一元一次不等式的解法:移项、合并同类项。
- 一元一次不等式组的解法:找到每个不等式的解集,然后确定它们的公共部分。
二、几何1. 平面图形- 点、线、面的基本性质。
- 角的定义:邻角、对顶角、同位角、内错角。
- 三角形的分类:按边分类(等边、等腰、不等边三角形);按角分类(锐角、直角、钝角三角形)。
- 四边形的分类:平行四边形、矩形、菱形、正方形、梯形。
2. 图形的性质- 三角形的性质:内角和定理、海伦公式、三角形的中位线定理。
- 四边形的性质:平行四边形的性质、矩形的性质、菱形的性质、正方形的性质。
- 圆的性质:圆的定义、圆的半径、直径、弦、弧、切线、圆周角、圆心角。
3. 图形的变换- 平移:图形沿直线移动。
- 旋转:图形绕一点旋转一定角度。
- 轴对称:图形关于某条直线对称。
人教版初中数学知识点总结
人教版初中数学知识点总结一、数与代数1. 有理数- 有理数的定义:整数和分数统称为有理数。
- 有理数的分类:正有理数、负有理数和零。
- 有理数的运算:加法、减法、乘法、除法、乘方、开方。
2. 整式与分式- 整式的概念:由数和字母的有限次幂的和或差构成的代数式。
- 单项式与多项式:单项式是只有一个项的整式,多项式是多个单项式的和。
- 整式的加减乘除:合并同类项、分配律、结合律、交换律。
- 分式的概念:分子和分母都是整式的有理式。
- 分式的运算:加减、乘除、通分、约分。
3. 代数方程- 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。
- 二元一次方程组:含有两个未知数,每个未知数的最高次数为1的方程组。
- 解方程的方法:代入法、消元法、加减法、代数法。
4. 函数- 函数的概念:一个变量的值依赖于另一个变量的值。
- 函数的表示:图像法、列表法、解析式法。
- 线性函数:形如y=kx+b的函数,其中k为斜率,b为截距。
- 函数的性质:定义域、值域、单调性、奇偶性。
二、几何1. 平面几何- 点、线、面的基本性质。
- 角的概念:邻角、对角、同位角、内角、外角。
- 三角形:分类(等边、等腰、直角)、性质、内角和定理。
- 四边形:分类(平行四边形、矩形、菱形、正方形)、性质。
- 圆的基本性质:圆心、半径、直径、弦、弧、切线。
2. 立体几何- 立体图形的基本概念:多面体、旋转体。
- 棱柱、棱锥、圆柱、圆锥的体积和表面积计算。
- 长方体、正方体的性质和计算。
- 球的体积和表面积计算。
3. 坐标系与图形变换- 平面直角坐标系:点的坐标、距离公式、中点公式。
- 直线的方程:点斜式、斜截式、一般式。
- 圆的方程:标准式、一般式。
- 图形的平移、旋转、对称变换。
三、统计与概率1. 统计- 数据的收集、整理和描述。
- 频数分布表和直方图的绘制。
- 平均数、中位数、众数的计算和意义。
2. 概率- 随机事件的概念:确定事件、随机事件、不可能事件。
初中数学人教版知识点
初中数学人教版知识点初中数学人教版知识点概述一、数与代数1. 有理数- 有理数的定义- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值的概念及性质- 有理数的科学计数法2. 整数- 整数的性质- 整数的四则运算- 整数的整除性- 最大公约数和最小公倍数3. 分数与小数- 分数的基本概念- 分数的四则运算- 小数的基本概念- 小数的四则运算- 分数与小数的互化4. 代数表达式- 代数式的概念- 单项式与多项式- 同类项与合并同类项- 代数式的简化与变形5. 一元一次方程- 方程的基本概念- 解一元一次方程- 方程的应用问题6. 二元一次方程组- 二元一次方程组的概念- 代入法解方程组- 加减法解方程组- 方程组的应用问题7. 不等式与不等式组- 不等式的基本性质- 解一元一次不等式- 一元一次不等式的解集- 不等式组的解法二、几何1. 平面图形- 点、线、面的基本性质- 角的概念及分类- 直线与角的关系- 三角形的基本概念及分类- 特殊三角形的性质(等腰、等边、直角三角形) - 四边形的基本概念及分类- 圆的基本性质2. 几何图形的性质- 图形的对称性- 平行线与角的关系- 三角形的中位线定理- 相似三角形的性质- 平行四边形的性质- 圆的周长与面积公式3. 几何变换- 平移变换- 旋转变换- 轴对称变换- 相似变换4. 几何证明- 证明方法的基本概念- 演绎推理- 证明三角形全等的条件- 证明线段相等或平行的方法- 证明角相等的方法三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读(条形图、折线图、饼图) - 算术平均数、中位数、众数的计算2. 概率- 随机事件的概念- 概率的初步认识- 简单事件的概率计算- 等可能事件的概率四、函数1. 函数的概念- 函数的定义- 函数的表示方法(表格、图形、解析式)- 函数的自变量与因变量2. 一次函数- 一次函数的定义- 一次函数的图象与性质- 一次函数的解析式- 一次函数的应用3. 二次函数- 二次函数的定义- 二次函数的图象与性质- 顶点式、交点式、一般式的解析式- 二次函数的应用以上是初中数学人教版的主要知识点概述。
2017人教版七年级下册数学知识点
2017人教版七年级下册数学知识点数学是一门基础学科,也是一门非常实用的学科。
在人教版七年级下册中,数学知识点内容涵盖了整个数学基础。
下面我将按照章节整理出本册数学知识点,以便同学们复习和学习。
一、有理数有理数是常见数之一,既可以是整数,也可以是分数。
在七年级的这本数学教材中,我们需要掌握有理数的四则运算和解决问题,还有绝对值的概念和计算方法。
二、代数式代数式就像字母和数字的组合,而且它们之间有着特定的关系。
在本书中,我们需要学习如何才能够化简代数式并且合并同类项。
同时,数学教材还介绍了如何将一个代数式转化为另外一种形式。
三、图形的初步认识在七年级的数学课上,我们也学习了大量的图形知识。
从平面图形,到三维图形,本书涉及了各种不同的图形以及他们的性质和用途。
通过学习,同学们可以更加深入的了解图形之间的关系,比如说,正方形是特殊的长方形,而梯形和平行四边形之间也有着很紧密的关系。
四、比例与比例应用比例是数学中的一个非常重要的概念。
在人教版七年级的数学课程中,同学们需要学习如何去解决不同物品之间的比例关系。
同时,我们也需要学习如何使用比例去解决问题。
例如,在书本上看到了一个需求,需要将它缩小或是放大,这时候就可以利用比例关系去求解。
五、数的性质了解数的性质是数学学习中非常重要的一部分。
在这个章节,我们需要学习数的因数、倍数等,还需要了解素数、合数等基本概念。
在学习的过程中,同学们还要掌握如何快速判断一个数是不是素数,这样就能更加快速的解决数学问题。
六、分数分数在七年级数学中是一个非常重要的概念,在每日的生活中也是经常会用到。
在这个章节中,我们需要学会分数和小数的转换,以及分数四则运算、分数大小的比较和化简等等。
七、正比例函数正比例函数在数学中是一个比较特殊的函数,但是学习起来却非常重要。
本节课程中,我们需要学习正比例函数的概念,更进一步掌握函数图像的性质和变化规律。
对于初学者来说,慢慢来,一步一个脚印,才能够更好的掌握这个知识点。
2017人教版七年级下学期数学知识点总结
2017人教版七年级下学期数学知识点总结D第六章 实数一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4. 实数与数轴上点的关系:每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
三、平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根 a 的平方根是x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。
(完整版)2017最全初中数学知识点总结,推荐文档
初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
人教版初中数学知识点大全(非常全、清晰度高)
初中数学知识点总结七年级第一章 有理数一. 知识框架二.知识概念 1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
完整版人教版初中数学知识点汇总
完整版人教版初中数学知识点汇总一、整数及其运算1. 整数的概念和性质2. 整数的加法、减法及其性质3. 整数的乘法、除法及其性质4. 整数的混合运算及其应用二、分数及其运算1. 分数的概念和性质2. 分数的加法、减法及其性质3. 分数的乘法、除法及其性质4. 分数的混合运算及其应用三、小数及其运算1. 小数的概念和性质2. 小数的加法、减法及其性质3. 小数的乘法、除法及其性质4. 小数的混合运算及其应用四、代数式1. 代数式的基本概念2. 代数式的加减法3. 代数式的乘法4. 代数式的除法及其应用五、方程与方程式1. 方程的概念和性质2. 一元一次方程与方程式3. 一元一次方程的解法及其应用4. 一元一次方程组及其解法六、图形的初步认识1. 点、线、面的概念2. 线段、射线、直线、角的概念与性质3. 平行线与垂直线4. 三角形的概念及其性质七、相似与全等1. 图形的相似2. 相似三角形的判定及性质3. 全等图形的判定及性质4. 全等三角形的判定及性质八、比例与比例方程1. 比例的概念和性质2. 比例的应用3. 比例方程的解法及应用4. 类比九、数轴与坐标1. 有理数的数轴表示2. 二维坐标系及其应用3. 平面直角坐标系中点的坐标十、统计与概率1. 统计调查与收集资料2. 统计图3. 概率的初步认识及其运算以上是对完整版人教版初中数学知识点的汇总和概述。
每个知识点都包含其基本概念、性质、运算规则以及应用等方面的内容,以帮助初中生全面理解数学知识,并能够应用到实际问题中。
通过系统地学习这些数学知识点,学生能够提升数学素养,培养逻辑思维和问题解决能力,为进一步学习高中数学打下坚实的基础。
初一数学知识点归纳总结人教版(最全)
初一数学知识点归纳总结人教版(最全)七年级数学知识点总结1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b 的相反数是-a-b;4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:绝对值的问题经常分类讨论;(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.初中数学的学习方法一、抓住课堂理科学习重在平日功夫,不适于突击复习。
平日学习最重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。
同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。
二、高质量完成作业所谓高质量是指高正确率和高速度。
写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。
人教版初中数学知识点总结(精华)(最新最全)
初中数学知识点总结(精华)第一章 有理数1、有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 .4、.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数 6、有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0;②除以一个不为0的数,等于乘以这个数的倒数7、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .8、比较两个数的大小:(1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小(4)两数相乘(或相除),同号得正 > 0,异号得负 < 09、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-an 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .10、科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.11、非负数的性质:若02=++c b a ,则000===c b a 且且第二章 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教最新版初中数学知识点总结2017-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2人教新版初中数学知识点总结七年级数学(上)知识点一.有理数知识框架二.知识概念1.有理数:(1)凡能写成)0为整数且,(≠p q p pq 形式的数,都是有理数. (2)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,互为相反数,即a 和- a 互为相反数; 0的相反数还是0;(2) a+b=0 a 、b 互为相反数.4.绝对值:(1)绝对值的意义是数轴上表示某数的点离开原点的距离;(2) ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或⎩⎨⎧<-≥=)0()0(a a a a a 或⎩⎨⎧≤->=)0()0(a a a a a ;3正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数; 绝对值的问题经常分类讨论,零既可以和正数一组也可以和负数一组;5.有理数比大小:两个负数比大小,绝对值大的反而小;数轴上的两个数,右边的数总比左边的数大;大数-小数 > 0,小数-大数 < 0.6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1 a 、b 互为倒数;若ab=-1 a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定,负因数为奇数个时乘积为负,负因数为偶数个时乘积为正.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;4 注意:零不能做除数,无意义0即a .13.乘方的定义: (1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;14.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n=-an 或(a -b)n=-(b-a)n , 当n 为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .15.科学记数法:把一个大于10的数记成a ×10n 的形式,(其中1≤a <10)这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.第二章整式的加减一.知识框架二.知识概念1.单项式:数字或字母的乘积叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的系数;单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5.同类项:所含字母相同,并且相同字母的指数也相同的单项式叫做同类型。
6.合并同类项:将同类项的系数相加减,字母和字母的指数不变。
56第三章 一元一次方程知识框架二.知识概念1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程. 2.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).4.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”.4.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=;7 (2)工程问题: 工作量=工效·工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100成本成本售价利润率⨯-=; (6)周长、面积、体积问题:C 圆=2πR , S 圆=πR2, C 长方形=2(a+b), S 长方形=ab ,C 正方形=4a ,S 正方形=a2,S 环形=π(R2-r2),V 长方体=abc ,V 正方体=a3,V 圆柱=πR2h ,V 圆锥=31πR2h.图形的认识初步知识框架二.知识概念1.立体图形与平面图形的联系:立体图形的三视图是平面图形;立体图形的展开图是平面图形;面动成体.82.直线、射线、线段的区别(1)端点各数:直线没有端点,射线有一个端点,线段有两个端点;(2)可度量性:直线和射线都不可度量,所以没有大小可言,线段有大小;(3)延伸性:直线可以向两个方向延伸;射线可以向一个方向延伸;线段没有延伸性;3.角的表示方法:三个大写字母——适用于任何角;一个大写字母——适用独立角;一个阿拉伯数字或希腊字母——适用非复合角;4.余角和补角:和为90°的两个角互为余角;和为180°的两个角互为补角;5.定理、公理:(1)两点确定一条直线;(2)两点之间线段最短;(3)等角(或同角)的余角相等,等角(或同角)的补角相等;9七年级数学(下)知识点第五章相交线与平行线一、知识框架二、知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,永不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:同位角:∠1与∠5、∠2与∠6这样具有相同位置关系的一对角叫做同位角。
内错角:∠4与∠6、∠3与∠5像这样的一对角叫做内错角。
同旁内角:∠4与∠5、∠3与∠6像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
107.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.对顶角的性质:对顶角相等。
10.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角互补,两直线平行。
第六章实数1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。
0的算术平方根为0;从定义可知,a只有当a≥0时,a才有算术平方根。
2.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。
3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5.实数的分类)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧--⎩⎨⎧---)无限循环小数有限小数整数()32,21(负分数)32,21(正分数)小数(分数)3,2,1(负整数)3,2,1,0(自然数整数有理数、、 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数 ())0,0(0,0>≥=≥≥=⨯b a b a b a b a ab b a第七章 平面直角坐标系一.知识框架二.知识概念1.有序数对:有顺序的两个数a 与b 组成的数对叫做有序数对,记做(a,b ) 2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x 轴或横轴;竖直的数轴称为y 轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点P ,过P 分别向x 轴,y 轴作垂线,垂足分别在x 轴,y 轴上,对应的数a,b 分别叫点P 的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
注意:坐标轴上的点不在任何一个象限内。
第八章二元一次方程组一.知识结构图二、知识概念1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。
方程,一般形式是 ax+by=c(a≠0,b≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组的解。