大学工程材料耐热钢及高温合金
耐高温的金属材料
耐高温的金属材料耐高温的金属材料引言:随着现代工业的发展和科学技术的进步,高温环境下的工作需求越来越多。
例如,汽车引擎、航空发动机、核电站等都需要在高温条件下正常工作。
因此,耐高温的金属材料的研究和应用日益重要。
本文将详细介绍几种常见的耐高温金属材料,并讨论其特性和应用领域。
一、镍基高温合金镍基高温合金是一种使用镍和其他合金元素制成的金属材料。
由于其优异的高温力学性能和耐腐蚀性,镍基高温合金在航空、航天、能源等领域得到广泛应用。
例如,现代喷气发动机中的涡轮叶片、燃烧室等都采用了镍基高温合金。
此外,镍基高温合金还常用于核电站、石油化工设备等高温环境中。
二、钼基高温合金钼基高温合金是以钼为基础元素的合金材料。
钼具有高熔点、高热传导性和良好的力学性能,因此钼基高温合金在高温环境下表现出色。
主要应用领域包括航空航天、航空发动机、化工装备等。
例如,超音速飞机的发动机涡轮叶片和喷管等部分常采用钼基高温合金制造。
三、钛基高温合金钛基高温合金是一种以钛为基础元素的合金材料。
钛具有低密度、高强度和良好的耐腐蚀性,在高温环境下有一定的抗氧化性能。
钛基高温合金常应用于航空航天、核工业、舰船制造等领域。
例如,宇航器中的舰身、喷管和发动机部件可以采用钛基高温合金制造。
四、铜基高温合金铜基高温合金是以铜为基础元素的合金材料。
铜具有良好的导热性和导电性,在高温环境下能保持较高的强度和韧性。
因此,铜基高温合金常用于电力工业和电子工业。
例如,高能密度电池、电子器件散热器和导线等部件通常采用铜基高温合金制造。
五、钼铜合金钼铜合金是由钼和铜按一定比例熔炼而成的合金材料。
钼具有良好的高温强度和抗氧化性能,而铜具有高热传导率和良好的导电性能。
因此,钼铜合金具有良好的耐高温特性和导热性能。
广泛应用于航空航天、电子器件和真空设备等领域。
结论:耐高温的金属材料在现代工业中起着重要的作用。
镍基高温合金、钼基高温合金、钛基高温合金、铜基高温合金和钼铜合金都具有优异的高温性能和特性。
耐热钢
5
按制备工艺分类,有变形高温合金, 按制备工艺分类,有变形高温合金,铸造 高温合金和粉末冶金高温合金。 高温合金和粉末冶金高温合金。 按强化方式分类,有固溶强化型、 按强化方式分类,有固溶强化型、沉淀强 化型、金属间化合物、 化型、金属间化合物、氧化物弥散强化型 和纤维强化型等。 和纤维强化型等。 铁基、 铁基、钴基和镍基合金的使用温度一般不 超过1000℃,温度再高就必须选用难熔金 超过 ℃ 指熔点高于1650℃的金属)或其合金 属(指熔点高于 ℃的金属)
Chapter 7 耐热钢和高温合金
1
• 耐热钢和高温合金是指在高温下工作并具有 一定强度和抗氧化、耐腐蚀能力的金属材料。 一定强度和抗氧化、耐腐蚀能力的金属材料。 • 耐热钢按合金元素多少通常可以分为两类: 耐热钢按合金元素多少通常可以分为两类: 在低合金结构钢基础上发展起来的低合金珠 光体型热强钢; 光体型热强钢; 在不锈钢基础上发展起来的高合金专用耐热 钢。
三、合金元素对化学稳定性的影响
1、Cr、Al、Si改善钢的化学稳定性。 、 、 、 改善钢的化学稳定性 改善钢的化学稳定性。 • Cr、Al、Si提高 提高FeO出现的温度,改善钢的高温 出现的温度, 、 、 提高 出现的温度 化学稳定性。 化学稳定性。 钢表面氧化膜的结构: 外层: 钢表面氧化膜的结构 : 外层 : Fe 2 O 3 ; 中间层 Fe 3 O4 ; 内层 内层FeO,当 FeO出现时钢的氧化速度 , 出现时钢的氧化速度 剧增。 剧增。 • Cr、Al含量较高时, 钢的表面出现致密的 2O3 含量较高时, 、 含量较高时 钢的表面出现致密的Cr 保护膜。 或Al2O3保护膜。 • 含硅钢中生成 2 SiO4 氧化膜 , 具有良好的保护 含硅钢中生成Fe 氧化膜, 作用。 作用。 10 • Cr是提高抗氧化能力的主要元素,Al也能单独提 是提高抗氧化能力的主要元素, 也能单独提 是提高抗氧化能力的主要元素 耐热钢的工作条件及性能 7.1 高钢的抗氧化能力。 高钢的抗氧化能力。
耐热钢及高温合金
2019年12月11日星期
8
§6.1 钢的 热稳定性和 热稳定性钢
牌号 典型钢种 应用 热处理工艺?
2019年12月11日星期
第六章 耐热钢和高温合金
9
第六章 耐§热5钢和特高殊温性合能金钢
§6.2 金属的热强性
高温力学性能指标:
①蠕变极限:材料在高温长期载荷下对缓慢
塑性变形(即蠕变)的抗力;以
1、抗蠕变、抗热松弛和热疲劳性能及抗氧化能力 2、介质中抗腐蚀能力和足够韧性 3、良好加工性能和焊接性 4、合理的组织稳定性
用 途:制造工业加热炉、 热工动力机械(如内燃机)、 石油及化工机械与设备等。
2019年12月11日星期
3
第六章 耐热钢和高温合金
§6.1 钢的热稳定性和热稳定性钢
一、钢的抗氧化性能及其提高途径 失效:高温下强度不足、表面氧化腐蚀 要求:较好的热稳定性 热稳定性:钢在高温下抗氧化或抗高温介质腐蚀
种类:
1、热稳定钢 高温下抗氧化或抗高温介质腐 蚀而不破坏的钢种。
2、热强钢 高温下具有一定抗氧化能力并具 有足够强度而不产生大量变形或断裂的钢种。
失效形式:高温下强度不足、表面氧化腐蚀
2019年12月11日星期
2
第六章 耐热钢和高温合金
§6.1 钢的热稳定性和热稳定性钢
服役条件:高温下工作(影响化学稳定性、降强度) 性能要求:
§6.1 §钢6的.2 热金稳属定的性热和强热性稳定性钢
2、提高钢的热强性途径
①基体(固溶)强化元素Cr、Ni、W、Mn、Mo、Nb等,形成单相组 织并提高再结晶温度。
原理:提高原子结合力,降低扩散系数
②第二相沉淀强化元素V、Ti、Nb、Al等,形成细小弥散分布的 稳定碳化物(VC、TiC、NbC)或稳定性更高的金属间化合物(Ni3Ti、 Ni3Nb、Ni3Al),获得第二相沉淀强化效果并提高组织稳定性。
耐热钢与耐热合金
钛基合金
01
钛基合金是以钛为主要成分的合金,具有轻质、高强、耐腐蚀等优点。
02
钛基合金广泛应用于航空航天、船舶、化工等领域。
03
钛基合金的优点包括优良的高温强度、蠕变强度、抗疲劳性能和耐腐 蚀性能,密度低,减轻设备重量。
04
钛基合金的缺点是加工困难,成本较高,但其使用寿命长,适用于高 温和腐蚀环境。
应用
广泛应用于发动机、涡轮机、热力管道等需要承受交变载荷的设 备。
03 耐热合金的种类与特性
高温合金
01
02
03
04
高温合金是指在高温下具有优 良力学性能和抗氧化、抗腐蚀
能力的合金。
高温合金主要应用于航空航天 、能源、化工等领域,用于制
造高温部件和设备。
高温合金的优点包括良好的高 温强度、蠕变强度、抗疲劳性 能和抗氧化、抗腐蚀能力。
化学性能比较
抗氧化性
耐热合金的抗氧化性通常优于耐热钢,因为合金元素可以形成更 稳定的氧化膜。
抗腐蚀性
耐热合金的抗腐蚀性也优于耐热钢,因为合金元素可以增强钢的钝 化性能。
高温稳定性
在高温环境下,耐热合金的化学稳定性通常优于耐热钢。
机械性能比较
1 2
强度
耐热合金的强度通常高于耐热钢,因为合金元素 可以细化钢的晶粒,从而提高强度。
韧性
在低温环境下,耐热钢的韧性通常优于耐热合金。 但在高温环境下,耐热合金的韧性可能会降低。
3
疲劳强度
耐热合金的疲劳强度通常高于耐热钢,特别是在 循环载荷下。
06 耐热钢与耐热合金的未来 发展与挑战
新材料的研发与应用
研发新型耐热钢与耐热合金,以满足更高温度和更复杂环境下的应用需求。 探索新型的合金元素和制备工艺,以提高材料的抗氧化、抗蠕变和抗腐蚀性能。
耐热钢
铁素体钢
含有较多的铬、铝、硅等元素,形成单相铁素体组织,有良好的抗氧化性和耐高温气体腐蚀的能力,但高温 强度较低,室温脆性较大,焊接性较差。如1Cr13SiAl,1Cr25Si2等。一般用于制作承受载荷较低而要求有高温抗 氧化性的部件。
奥氏体钢
奥氏体钢含有较多的镍、锰、氮等奥氏体形成元素,在 600℃以上时,有较好的高温强度和组织稳定性,焊 接性能良好。通常用作在 600℃以上工作的热强材料。
硼、稀土均为耐热钢中的微量元素。硼溶入固溶体中使晶体点阵发生畸变,晶界上的硼又能阻止元素扩散和 晶界迁移,从而提高钢的高温强度;稀土元素能显著提高钢的抗氧化性,改善热塑性。
分类
珠光体钢 马氏体钢
铁素体钢 奥氏体钢
珠光体钢
耐热钢合金元素以铬、钼为主,总量一般不超过5%。其组织除珠光体、铁素体外,还有贝氏体。这类钢在 500~600℃有良好的高温强度及工艺性能,价格较低,广泛用于制作 600℃以下的耐热部件。如锅炉钢管、汽轮 机叶轮、转子、紧固件及高压容器、管道等。
基本信息
简介
类别
常用于
简介
耐热钢(heat-resisting steels) 在高温条件下,具有抗氧化性和足够的高温强度以及良化钢和热强钢两类。抗氧化钢又简称不起皮钢。热强钢是指在高温下具有 良好的抗氧化性能并具有较高的高温强度的钢。
奥氏体抗氧化钢大多采用高温固溶热处理,以获得良好的冷变形性。奥氏体热强钢则先用高温固溶处理,然 后在高于使用温度60~100℃条件下进行时效处理,使组织稳定化,同时析出第二相,以强化基体。耐热铸钢多在 铸态下使用,也有根据耐热钢的种类采用相应的热处理的。
用途
用途
耐热钢图册 耐热钢
谢谢观看
典型钢种有:16Mo,15CrMo,12Cr1MoV, 12Cr2MoWVTiB,10Cr2Mo1,25Cr2Mo1V,20Cr3MoWV等。
耐热钢及耐热合金
10.3 珠光体及马氏体耐热钢
10.3.1 珠光体耐热钢 一、概述 定义:珠光体耐热钢指在正火状态下,显微组 织是珠光体的耐热钢。 应用:石油化工,动力工业 分类:低碳珠光体耐热钢和中碳珠光体耐热钢。
二、低碳珠光体耐热钢(锅炉管子用钢)
内燃机排气阀用钢
工作环境:700-850℃,燃气中含有Na,S,V等气 体和盐类介质
损伤形式:机械疲劳,热疲劳,气体冲刷等 性能要求:高温强度,硬度,韧性,抗氧性,耐
蚀性,组织稳定 成分特点:添加Si提高抗氧化性,Mo提高淬透性和
第二类回火脆性 代表钢种:4Cr9Si2,4Cr14Ni14W2Mo
固溶强化型
合金化特点 低碳,主加元素为Cr,Ni形
成奥氏体组织,添加W,Mo固溶 强化提供固溶强化
特点:焊接及冷加工成型性好 使用环境:温度较高,承受载
荷不大的零件上,如高温传送 带,喷气发动机的喷嘴等
代表钢种:Incoloy800 『Cr20Ni32』
碳化物沉淀强化型
化学成分特点 高Cr,Ni%以形成奥氏体; 含有强碳化物形成元素:W,Mo,Nb,V等; 特点:以碳化物为沉淀强化相 热处理:铸态使用或锻轧后经固溶处理+时效处理后使用 代表钢种:4Cr25Ni20(HK40)
二、中碳珠光体耐热钢(紧固件及汽轮机转子用钢)
使用环境特点: 温度低于锅炉管子 承受扭转,弯曲,震动所产生的应力和温度梯度引起的热应力
性能要求 较高的热强性,热疲劳性,高温塑性,韧性的综合性能
加工 一般采用锻造加工,少用焊接
合金化特点 含碳量较高+Cr,Mo(提高淬透性和回火稳定性)+适量的Ti, Nb,V,B等。
第6章 耐热钢和耐热合金
因此,欲得到抗氧化钢,就要形成具有致密晶格、连续、牢固附着的氧化物 层。
2. 提高钢抗氧化性的途径
主要采取合金化的方法。一般加Cr、Al、Si,它们与O亲和力比Fe大,选择 性氧化形成 结构致密、稳定、与基体结合牢固的 Cr2O3、 A12O3、 SiO2 氧化膜。 抑制或避免疏松FeO生成和长大,起保护作用,使钢不发生继续氧化。 铬:提高钢抗氧化性的主要元素。在600-650℃ Cr5%、800℃ Crl2%、 950℃ Cr20%、1100℃ Cr28%才满足抗氧化性。 Al、 Si:也是提高抗氧化性 有效 元素,但增加钢的脆性,因此很少单独加入, 常常和Cr一起加入。 Ni、Mn:对钢的抗氧化性能影响较弱。 C、N:固溶时对钢的抗氧化性影响不大;形成化合物时防碍钢表面氧化膜连 续性,因而↓钢的抗氧化性。 Mo、V:生成氧化物熔点较低,使抗氧化性变坏。 稀土元素:↑钢的抗氧化性。主要是由于稀土元素可消除高温下晶界优先氧化 现象。 除了加入合金元素外,还采用渗金属方法,如渗铝、渗铬或渗硅等以提高 钢的抗氧化能。
四、耐热钢及耐热合金的分类
P耐热钢 Fe 为基的耐热钢 M耐热钢 F抗氧化钢 A耐热钢 Fe为基的耐热钢 A抗氧化钢 镍基耐热合金:以Cr 20 Ni80合金为基础发展起来的,类似的还有钴基合金 Mo基 Ta基 难熔金属耐热合金 Nb基 金属陶瓷
化学成分及热处理:
C高于低碳珠光体热强钢。为↑淬透性和回火稳定性,以Cr、Mo为主适量加 Ti、Nb、V、B等,含量稍高。如25Cr2MoVA、20Cr1Mo1VNbTiB等。
淬火+高温回火
叶片钢:汽轮机叶片,工作温度450~620℃ 二、马氏体耐热钢 阀门钢:汽车、内燃机排气阀,工作温度700~850℃
最耐高温的钢材排名
最耐高温的钢材排名一、铬镍奥氏体不锈钢(如310S)1. 耐温性能- 310S不锈钢具有良好的耐高温性能,能在900 - 1150℃的高温环境下保持较好的强度和抗氧化性。
其铬含量高达24 - 26%,镍含量为19 - 22%,这种高铬镍的成分组合使其在高温下形成致密的氧化铬保护膜,阻止进一步氧化。
2. 应用领域- 常用于高温炉部件,如炉胆、炉管等,在化工、石油等行业的高温反应设备中也有广泛应用。
二、镍基高温合金(如Inconel 600、Inconel 718等)1. Inconel 600- 耐温性能- 可以承受高达1100℃左右的高温。
它具有优异的高温强度和抗氧化、抗腐蚀性能,镍含量超过72%,还含有铬(14 - 17%)等元素。
铬元素有助于提高抗氧化性,而镍则赋予合金良好的高温稳定性。
- 应用领域- 在核工业中的高温反应堆部件、化工行业的高温耐腐蚀设备等方面应用广泛。
2. Inconel 718- 耐温性能- 在650 - 980℃范围内具有较高的强度和良好的抗疲劳性能。
它含有镍(约50 - 55%)、铬(17 - 21%)、铌(4.75 - 5.5%)等多种元素,铌的加入通过形成γ''相沉淀强化,提高合金在高温下的强度。
- 应用领域- 常用于航空发动机高温部件,如涡轮盘、叶片等,也在石油开采的高温高压环境设备中有应用。
三、钴基高温合金(如Haynes 188)1. 耐温性能- Haynes 188钴基高温合金的熔点较高,可在1090℃左右的高温下使用。
它含有约22%的铬、22%的镍、14%的钨等元素。
钨元素提高了合金的高温强度,铬和镍有助于抗氧化和抗腐蚀。
2. 应用领域- 在航空航天领域的高温燃烧室部件、燃气轮机的高温部件等方面有应用。
四、铁素体耐热钢(如1Cr13)1. 耐温性能- 1Cr13铁素体耐热钢能够在500 - 700℃的温度范围内工作。
它的铬含量为11.5 - 13.5%,铬元素使钢在高温下形成抗氧化的保护膜,具有一定的高温强度和抗氧化性。
耐热钢标准
耐热钢标准耐热钢是一种具有良好耐高温性能的特殊钢材,广泛应用于航空航天、能源、化工等领域。
本文将从耐热钢的定义、特性、分类、应用领域和发展趋势等方面进行详细介绍。
一、耐热钢的定义耐热钢是一种能够在高温环境下保持良好力学性能和抗氧化性能的特殊钢材。
它具有较高的耐高温稳定性、抗氧化性能和抗蠕变性能,能够在高温下保持较高的强度和硬度,不易软化和变形。
二、耐热钢的特性1. 耐高温稳定性:耐热钢在高温下能够保持较高的强度和硬度,不会发生明显的软化和变形。
2. 抗氧化性能:耐热钢表面形成一层致密的氧化膜,能够有效防止氧化反应,延缓材料的氧化速度。
3. 抗蠕变性能:耐热钢在高温下能够抵抗塑性变形和蠕变现象,保持较好的形状稳定性和尺寸精度。
4. 良好的加工性能:耐热钢具有较好的可塑性和可焊性,可以方便地进行热加工和焊接。
三、耐热钢的分类根据耐热钢的化学成分和性能特点,可以将其分为几个主要类别:1. 铁基耐热钢:主要由铁、铬、镍等元素组成,具有较高的耐高温稳定性和抗氧化性能。
2. 镍基耐热合金:主要由镍、铬、钼等元素组成,具有较高的耐高温稳定性、抗氧化性能和抗蠕变性能。
3. 钨基耐热合金:主要由钨、铼、铬等元素组成,具有极高的耐高温稳定性和抗氧化性能,广泛应用于高温环境中。
4. 铸造耐热钢:主要由铁、铬、镍等元素组成,具有较好的耐高温稳定性和抗氧化性能,适用于大型铸件的制造。
四、耐热钢的应用领域耐热钢广泛应用于航空航天、能源、化工等领域,主要包括以下几个方面:1. 航空航天领域:耐热钢用于制造航空发动机的涡轮叶片、涡轮盘、燃烧室等部件,以及航空航天器的隔热材料。
2. 能源领域:耐热钢用于制造火电站锅炉的超临界和超超临界锅炉管道和受热面,以及核电站的核反应堆压力容器和燃料元件。
3. 化工领域:耐热钢用于制造化工设备的反应器、分离器、石油裂化炉管道等,能够承受高温、高压和腐蚀介质的作用。
4. 其他领域:耐热钢还广泛应用于冶金、机械、汽车等领域,用于制造高温工作环境下的各种零部件和工具。
耐热钢的比热容
耐热钢的比热容一、介绍耐热钢耐热钢是一种高温合金材料,具有优异的高温性能,主要用于制造高温工作环境下的零部件。
它具有良好的耐腐蚀性、抗氧化性和机械强度,能够承受高温下的重载荷。
耐热钢通常被用于航空发动机、石油化工设备、核反应堆等领域。
二、比热容的定义比热容是指物质单位质量在吸收或释放一定量热量时所需要的温度变化。
它是描述物体对热能响应能力的物理量,通常用J/(kg·K)来表示。
三、耐热钢的比热容耐热钢由于其材料特性,其比热容通常较低。
比如INCOLOY 800HT 这种高温合金材料,其比热容为0.46 J/(g·K),而普通碳素钢的比热容则为0.46-0.51 J/(g·K)。
四、影响耐热钢比热容的因素1.组成成分:不同成分的合金材料其比热容也会有所不同。
例如,镍基合金的比热容通常较低,而钼基合金的比热容则较高。
2.温度:温度对于耐热钢的比热容也有一定影响。
随着温度的升高,耐热钢的比热容通常会减小。
3.晶体结构:晶体结构也是影响耐热钢比热容的因素之一。
不同晶体结构的材料其比热容也会有所不同。
五、应用了解耐热钢的比热容对于其在高温环境下的应用具有重要意义。
在制造高温工作环境下零部件时,需要考虑到材料在高温下承受重载荷时所产生的能量释放和吸收问题,而这些问题都与材料的比热容密切相关。
六、总结耐热钢是一种非常重要的材料,在高温工作环境下具有优异性能。
了解其比热容对于设计和制造高温零部件具有重要意义。
影响耐热钢比热容的因素包括组成成分、温度和晶体结构等。
在应用中需要考虑到材料对热能的响应能力,以确保其正常工作。
《高温合金简述》课件
3
未来发展
随着技术的不断创新,取向结晶技术在高温合金制备中的应用前景广阔。
高温合金的热处理工艺
1
固溶处理
高高温合金的强度和耐腐蚀性能。
3
退火处理
改善高温合金的晶粒结构和内部应力。
高温合金的机械性能和腐蚀性能
机械性能
高温合金具有高强度、高硬度和良好的韧性。
腐蚀性能
《高温合金简述》
高温合金是一种特殊的金属材料,具有出色的耐高温性能和机械性能,被广 泛应用于航空航天、能源、化工、医疗器械和汽车工业等领域。
高温合金的分类
镍基合金
包括有铸造合金、变形合金和粉末冶金合金 等。
铁基合金
具有良好的耐腐蚀性能和高温强度,适用于 核电和石油化工等领域。
钴基合金
应用于高温腐蚀环境中,例如炼油和化工行 业。
高温合金的组成和制造工艺
合金组成
制造工艺
高温合金通常由金属元素和合金元素组成,如镍、 铁、钴、钛和铝等。
高温合金的制造过程包括熔炼、铸造、变形加工 和热处理等。
取向结晶技术在高温合金制备中的应用
1
取向结晶原理
通过控制结晶取向,提高高温合金的性能和使用寿命。
2
应用案例
取向结晶技术已成功应用于航空发动机叶片等高温合金零件的制备。
钛基合金
具有良好的高温强度和耐腐蚀性能,用于航 空航天和船舶制造。
高温合金的特性及应用
1 耐高温性能
高温合金具有出色的耐高温性能,可长时间在高温环境中工作。
2 优异的机械性能
高温合金具有高强度、高硬度和良好的抗腐蚀性能。
3 广泛应用领域
高温合金被广泛用于航空航天、能源、化工、医疗器械和汽车工业等领域。
耐高温合金钢研究报告
耐高温合金钢研究报告高温合金钢的研究报告一、背景及理论1、高温合金钢的定义:高温合金钢是指能够在高温作用下维持其物理性能及力学性能的钢种,是盲气与容易熔化金属合金的物理结合物。
2、高温合金钢的特征:具有优良的热强度、抗紫外线灰蚀性、抗热残留应力、抗氧化高温腐蚀性、耐裂纹、均匀性好等特点,还具有耐热变形、良好的耐磨性能、良好的耐疲劳性能并具有良好的耐腐蚀性。
二、主要成分以及组成1、高温合金钢的主要成分:主要成分有碳、铬、锰、钴、钒、硅、锡、铜、钛、硫等,在特定的特殊环境中,以铝、钨、钼、钽等为主,用以调节合金钢的组成。
2、高温合金钢的组成:碳是高温合金钢的主要合金元素,决定着钢的结构及其断裂特性;铬和锰和其他合金元素一起增强钢的强度、耐热性、耐腐蚀性;硅、锡和硫是增强耐热性与耐蚀性的重要元素,还能改善焊接性。
三、研究开发1、材料改性与提升:通过改良材料和合金成分,提高其物理性能及力学性能,从而达到针对不同工况的高温钢的特殊需求。
2、新型设计:通过对高温合金钢结构及构造的研究,将最新的造型手法和设计思想用于高温合金钢的生产,从而满足不同工况下高温合金钢的使用需求。
3、高温处理技术:通过改进高温合金钢的加工工艺及高温处理技术,可以有效的提高其它硬度、耐磨性和抗疲劳性,并可以使用长寿命的使用寿命。
四、可行性研究设计新型材料、新型设计和加工工艺以及高温处理技术,可以使高温合金钢的抗热变形性和耐磨性显著地提高,改进高温耐腐蚀性能,使得高温合金钢的强度大大增强,实现其高温合金钢耐用性极强,并为它提供全面的技术支持。
五、结论与建议在研发高温合金钢方面,应当首先扎实地建立理论基础,充分发挥其特殊组份和成分的作用,在材料改性、构造设计及高温处理领域能够获得满意效果,进而实现高温合金钢的全面升级。
高温合金材料的制备和性能测试
高温合金材料的制备和性能测试高温合金材料是指能在高温环境下工作的金属材料。
由于高温环境的特殊性质,高温合金材料具有一系列独特的性质,例如抗氧化、耐热腐蚀、高强度、高温硬度等,因此广泛应用于航空、航天、汽车、核工业等行业。
本文将介绍高温合金材料的制备和性能测试。
一、高温合金材料的制备1. 熔铸法熔铸法是制备高温合金材料的主要方法之一。
该方法的基本原理是将各种金属和非金属元素按照一定的比例混合后,在高温下熔化,再逐步冷却形成所需的合金。
这种方法的优点是制备工艺简单,生产成本低,但是产品质量不容易控制,易产生内部缺陷和杂质。
2. 粉末冶金法粉末冶金法是制备高温合金材料的另一种常见方法。
该方法的基本原理是将金属和非金属粉末按照一定的比例混合,加工成粉末冶金件,然后在高温下进行烧结和变形加工,形成所需的合金。
这种方法的优点是产品的化学成分均匀,内部无缺陷,但是加工难度大,生产成本高。
3. 热处理法热处理法是制备高温合金材料的较为简单的方法之一。
该方法的基本原理是利用热处理的方法改变金属的结晶结构和物理性质,从而达到提高金属高温性能的目的。
这种方法适用于原料成分比较单一、不需要低温环节的高温合金材料制备。
二、高温合金材料的性能测试1. 抗氧化性能测试高温下的氧化是高温合金材料失效的主要原因之一。
因此,抗氧化性能的测试是高温合金材料性能测试中比较关键的一环。
通常采用高温氧化实验和动态载荷下的氧化实验来测试高温合金材料的氧化性能。
2. 耐热腐蚀性能测试高温下的腐蚀也是高温合金材料失效的原因之一。
耐热腐蚀性能的测试旨在了解高温合金材料在具体腐蚀环境下的长期性能。
常用的测试方法包括塔氏液腐蚀、硝酸腐蚀等。
3. 高强度性能测试高强度是高温合金材料具有的一种重要性能。
通过拉伸试验、冲击试验等方法,可以测试高温合金材料的高强度性能。
4. 高温硬度测试高温硬度是指高温下材料的抗压强度。
通常采用压痕硬度仪等设备来测试高温合金材料的高温硬度。
高温合金的力学性能研究
高温合金的力学性能研究引言高温合金是一种在高温环境下具有良好力学性能的金属合金,广泛应用于航空航天和能源领域。
本文旨在探讨高温合金的力学性能研究,包括其力学性质、研究方法及应用。
一、高温合金的力学性质1. 抗拉强度和屈服强度高温合金的抗拉强度和屈服强度是评估其力学性能的重要指标。
通过材料力学试验,可以得到高温合金在不同温度下的抗拉强度和屈服强度曲线。
高温合金具有较高的抗拉强度和疲劳强度,适用于高温环境下的结构应用。
2. 韧性高温合金的韧性是指其在受力过程中的塑性变形能力。
韧性是衡量材料抗断裂能力的重要指标。
高温合金的韧性对于耐久性和安全性至关重要。
通过断裂韧性实验,可以评估高温合金的耐久性能。
3. 疲劳强度高温合金在高温环境下长时间受到交替载荷作用时,容易发生疲劳破坏。
研究高温合金的疲劳强度是预测其寿命的关键。
疲劳试验可以模拟实际工况下的循环载荷,用于评估高温合金的疲劳寿命。
二、高温合金力学性能研究方法1. 金相显微镜分析金相显微镜是一种常见的高温合金力学性能研究方法。
通过金相显微镜观察高温合金的显微组织,可以了解材料的晶粒尺寸、相分布情况以及可能存在的缺陷。
金相显微镜分析可以揭示材料的内部结构特征,为后续力学性能研究提供基础数据。
2. 力学性能试验力学性能试验是研究高温合金力学性能的重要手段。
包括抗拉、屈服、硬度、冲击等试验,通过测量材料在不同温度和应力条件下的力学性能参数,可以得到高温合金的力学性能曲线和高温下的强度指标。
3. 数值模拟数值模拟是一种常用的力学性能研究方法,可以通过计算机仿真模拟高温合金受力过程。
通过建立高温合金的数学力学模型,利用有限元分析等数值方法,可以预测材料的力学性能参数、破坏形态和失效机制。
三、高温合金力学性能的应用1. 航空航天领域高温合金在航空航天领域中应用广泛。
由于其良好的力学性能和高温抗氧化能力,高温合金常用于航空发动机涡轮叶片、燃烧室和喷嘴等部件,以提高发动机的性能和可靠性。
耐热钢和耐热合金
使合金表面本来具有的保护作用的氧化物质遭受破坏,从而加 剧腐蚀。
⑶防止措施:
①控制或排出燃料或燃烧空气中的有害杂质,特别是Na,S;
②使用表面防护层。如:金属扩散涂层、陶瓷涂层。
耐蚀材料
7.3 其他耐热钢和耐热合金
7.3.1抗氧化钢
抗氧化钢也称耐热不起皮钢,多属于铁素体与奥氏体钢。 特点:具有良好的抗氧化性,且有一定的高温强度。
反应形式:
Me(金属)+ 1/2 O2 → MeO Me(金属)+ 1/2 S2 → MeS
耐蚀材料 ⑵钢的高温氧化结果: 钢在高温下的氧化可以形成三种氧化物:FeO 、Fe3O4 、 Fe2O3 。 在570℃以下,氧化层由Fe3O4 和 Fe2O3组成,570℃以上氧化层由 FeO 、Fe3O4 和 Fe2O3组成
7.3.3高温合金
耐蚀材料
能在高温(600~1100℃)氧化性气氛和燃气腐蚀条件下,长期承 受较大应力的合金材料。
应用:是现在航空发动机,火箭发动机以及燃气轮机必不可少的金 属材料。
钢种: 主要是高Cr 、Ni 、加Mo 、W 等。
2、高温蠕变强度
耐蚀材料
蠕变---指金属材料在一定温度下,即使所承受的应力远低于 屈服极限,也会随时间的增长而慢慢地产生永久塑性变形的现象。
蠕变极限---在给定的温度下和规定的时间内,试样产生一定 量蠕变总变形的应力值。
耐蚀材料
7.2.2应力松弛性能
1、 定义和条件
应力松弛----金属在高温和压力状态下,如果维持总变形量不 变,而随着时间的延长,应力则逐渐减少,这种现象称作应力松弛。
2、按组织分类 :
耐蚀材料
⑴珠光体耐热钢 ----在正火状态下显微组织由珠光体加铁素体组成的一类钢。
高温合金钢的高温机械性能测试与评价
高温合金钢的高温机械性能测试与评价高温合金钢是一种用于高温环境下的特种钢材,具有优异的高温机械性能,被广泛应用于航空、航天、能源等领域。
为了确保其在高温条件下的可靠性和性能,对高温合金钢的高温机械性能进行测试与评价是至关重要的。
1. 强度和延伸性测试高温合金钢在高温环境下的强度和延伸性是评价其机械性能的重要指标。
常用的测试方法包括拉伸试验和冲击试验。
拉伸试验是指在一定应变速率下对试样进行拉伸,测定其抗拉强度、屈服强度、延伸率等力学性能指标。
高温环境下的拉伸试验要求使用专用设备,温度范围通常从室温到高温条件。
通过拉伸试验可以评估高温合金钢在高温下的强度和延伸性,为材料的设计和应用提供依据。
冲击试验是另一种常用的测试方法,用于评估材料在高温条件下的抗冲击性能。
冲击试验一般使用冲击试样,通过对其施加冲击载荷来测定材料的韧性和抗冲击能力。
高温合金钢在高温环境下的冲击试验需要在恒温条件下进行,以模拟实际使用情况下的冲击载荷。
2. 硬度测试硬度是反映材料抗压强度的指标,通常使用洛氏硬度、维氏硬度等进行测定。
高温环境对高温合金钢的硬度有较大影响,因此在高温条件下的硬度测试和评价至关重要。
在高温下进行硬度测试需要考虑到试样在测试过程中的热变形和蠕变现象。
确保测试过程中试样的稳定状态是关键,通常使用高温硬度试验机进行测试。
通过在不同温度下对高温合金钢进行硬度测试,可以了解其在高温环境下的硬度变化规律,为材料设计和使用提供依据。
3. 疲劳性能测试高温合金钢在高温条件下的疲劳性能是评价其耐久性能的重要指标。
疲劳性能测试可以模拟材料在实际使用条件下受到的循环载荷,通过测定材料的疲劳寿命来评估其抗疲劳性能。
高温合金钢的疲劳性能测试主要包括低周疲劳试验和高周疲劳试验。
低周疲劳试验是在较高应变幅下进行,可以评估材料在高温环境下的疲劳寿命和抗疲劳性能。
高周疲劳试验是在较低应变幅下进行,用于评估材料在高温条件下的高周疲劳强度。
疲劳性能测试需要考虑到试样的热蠕变和材料疲劳寿命的统计性质。
耐高温强度高的材料
耐高温强度高的材料耐高温强度高的材料引言在现代科技的迅速发展中,高温工况下的材料需求日益增多。
高温环境是指工作温度在400摄氏度以上的条件下,这种环境下要求材料具备较高的强度和耐热性能。
本文将介绍一些耐高温强度高的材料以及它们在各个领域的应用。
一、金属材料1.高温合金高温合金是由基体金属和合金元素共同组成的一种合金材料。
它们具有较高的熔点和耐高温性能。
常见的高温合金有镍基合金、钴基合金等。
镍基合金具有良好的热蠕变和抗氧化性能,广泛应用于航空、能源等领域。
钴基合金具有优异的高温强度和耐热疲劳性能,常用于航空发动机部件、涡轮叶片等。
2.钨合金钨合金是一种高温强度高的金属材料。
它具有高熔点、高热导率和良好的耐腐蚀性能,被广泛应用于制作高温工具、电子器件等。
钨合金在航天航空、能源、电子等领域有着重要的应用价值。
3.钛合金钛合金是一类高强度、低密度的金属材料,具有良好的耐高温性能。
它们广泛应用于航空航天、工程机械等领域。
钛合金具有优良的抗氧化性能和高温强度,是一种理想的高温结构材料。
二、陶瓷材料1.氧化物陶瓷氧化物陶瓷是一类耐高温的材料,包括氧化铝、氧化锆等。
它们具有较高的熔点和优异的抗热震性能,被广泛应用于航空、能源、化工等领域。
氧化铝陶瓷常用于制作高温容器、窑炉隔热材料等。
2.碳化硅陶瓷碳化硅陶瓷是一种高温强度高、耐磨性好的材料。
它具有良好的抗氧化性能和高温强度,被广泛应用于机械工程、石油化工等领域。
碳化硅陶瓷在高温环境下可以保持较高的硬度和强度,具有良好的耐磨性和抗腐蚀性能。
三、复合材料1.复合陶瓷材料复合陶瓷材料由陶瓷和金属等材料组成,具有优良的高温强度和耐热性能。
它们广泛应用于航空航天、能源等领域。
复合陶瓷材料的结构可以通过调控不同材料的组合和相互连接方式来获得理想的高温性能。
2.纤维增强复合材料纤维增强复合材料是一类高温强度高的材料,由纤维增强剂和基质材料组成。
它们具有良好的耐高温性能和高强度,广泛应用于航空航天、汽车等领域。
高性能金属结构材料-高温合金1.pdf
中、高温性能有害 (Nv>2.5,中温长期时效) 4μ-A7B6相 (三角晶系): 高W,Mo合金中出现 4 不常见的相:Laves相,R相,δ相
镍、铁、钴的合金化能力不同,镍具有最好的相稳定 性,铁最差,这是最重要的特性。镍或镍铬基体可以 固溶更多的合金元素而不生成有害的相,而铁或铁镍 基体却只能固溶较少的合金元素,有强烈的析出各种 有害相的倾向。这一特性为改善镍的各种性能提供了 潜在的可能性,而铁、钴则受到了一定的限制。
镍、铁、钴的这种特性与其各自的电子结构有关。
a 常规铸造等轴晶合金 b 定向凝固合金
c 单晶合金
左图为高温 合金的光学 显微镜照 片,通常为 枝晶组织, 枝晶间白色 大块为共晶 γ′相。
左图为高温 合金的扫描 电镜照片, 黑色块状为 γ′相,白色 编篮状为 γ,白色块 状为碳化 物。
形成筏排结构的过程可以分为以下几步:①γ′相的部分 溶解;②溶解的γ′相形成元素扩散;③扩散的元素在γ′颗 粒外延生长。
铸造合金:CC:K (28) DS:DZ(~10) SX:DD
粉末合金:FGH(95,96)
四、高温合金的应用背景与发展历史
¾主要应用领域
航空、航天、核工业、能源动力、交通运 输、石油化工、冶金等
¾航空上的应用
航空发动机(叶片、涡轮盘、燃烧室等) 高温合金用量>50%(高性能发动机上 60%)
航空发动机构造
高温合金的应用背景与发展历史
高温合金材料的制备与力学性能测试
高温合金材料的制备与力学性能测试高温合金材料制备与力学性能测试随着现代航空、航天、能源等高科技产业的发展,高温合金材料的需求量越来越大,而高温合金材料制备与力学性能测试成为了重要的研究方向。
本文将介绍高温合金材料的制备过程、力学性能测试及其在实际应用中的应用情况。
高温合金材料的制备高温合金材料是指在高温环境下能够保持其机械性能和化学稳定性的材料。
它具有良好的综合性能,如高温抗氧化、高温强度、高温疲劳寿命等。
高温合金材料的制备主要分为熔融法和固相法两种。
熔融法是指通过高温熔融金属和非金属原材料,再进行冷却和固化处理,得到高温合金材料。
这种方法可以制备出单晶、多晶、多孔和涂层等各种形态的材料。
固相法是指通过冶金反应或固溶化反应将原材料进行高温反应,得到高温合金材料。
这种方法制备的材料多为多晶形态。
高温合金材料的力学性能测试高温合金材料的力学性能测试主要包括拉伸试验、压缩试验、扭转试验等。
其中,拉伸试验是最常用的测试方法之一。
拉伸试验是指将样品在直线拉伸下,测定材料的拉伸强度、屈服强度、断裂伸长率、弹性模量等力学性能指标。
压缩试验是将样品在直线压缩下,测定材料的压缩强度、屈服强度、断裂延性等力学性能指标。
扭转试验是将材料样品置于扭转试验机的卡盘上,通过加载和转动试验样品,测定材料的扭转强度、扭转韧性等力学性能指标。
高温合金材料的实际应用高温合金材料广泛应用于航空、航天、能源等领域,在这些领域中是必不可少的材料。
例如,在航空制造领域中,高温合金材料被用于制造飞机涡轮引擎的叶片、轴承、轴套和燃气轮机的叶轮、导叶、燃烧室等;在航天制造领域中,高温合金材料被用于制造火箭发动机燃烧室、喷嘴和动力系统的超高温零件等;在能源制造领域中,高温合金材料被用于制造核电站反应堆的核燃料元件、冷却剂管道、蒸汽发生器等。
总之,高温合金材料的制备及其力学性能测试是高科技产业发展的重要方向,其应用将为人类社会的发展做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年3月14日星期日
6
第六章 耐热钢和高温合金
§6.1 钢的热稳定性和热稳定性钢
铁氧化物:FeO、Fe2O3、Fe3O4(致密)
FeO氧化物:Fe缺位固溶体,Fe离子通
过FeO层易扩散,即易氧化
抗氧化措施:
防止FeO形成; 提高其形成温度; 加入合金元素Cr、Al、Si形成其致密牢 固氧化物,防止Fe、O原子扩散
F型热稳定性钢:Cr13、Cr18、Cr25型 A型热稳定性钢:A型不锈钢加Si、Al
而得
性能:后者较前者更好的工艺性能和热
强性
2021年3月14日星期日
9
§6.1 钢的热 稳定性和热 稳定性钢
牌号 典型钢种 应用 热处理工艺?
2021年3月14日星期日
第六章 耐热钢和高温合金
10
第六章 耐热§5钢特和殊高性温能合钢金
大学工程材料耐热钢及高温 合金
第六章 耐热钢和高温合金
§6.1 钢的热稳定性和热稳定性钢 §6.2 金属的热强性 §6.3 α-Fe基热强钢 §6.4 γ -Fe基热强钢
2021年3月14日星期日
2
第六章 耐热钢和高温合金
§6.1 钢的热稳定性和热稳定性钢
耐热钢:高温下具有高的热化学稳定性(抗腐
§6.2 金属的热强性
高温力学性能指标:
①蠕变极限:材料在高温长期载荷下对缓慢
塑性变形(即蠕变)的抗力;以
700 0.2 /
1000
表示
700℃下经1000h产生0.2%残余变形量的最大
应力。
②持久强度:材料在高温长期载荷下对断裂的
抗力;以
500 10000
表示在500℃下经10000h发生
断裂的应力值。
服役条件:高温下工作(影响化学稳定性、降强度) 性能要求:
1、抗蠕变、抗热松弛和热疲劳性能及抗氧化能力 2、介质中抗腐蚀能力和足够韧性 3、良好加工性能和焊接性 4、合理的组织稳定性
用 途:制造工业加热炉、 热工动力机械(如内燃机)、 石油及化工机械与设备等。
2021年3月14日星期日
4
第六章 耐热钢和高温合金
蚀和耐腐蚀性能)和热强性的特殊钢。
种类:
1、热稳定钢 高温下抗氧化或抗高温介质腐 蚀而不破坏的钢种。
2、热强钢 高温下具有一定抗氧化能力并具 有足够强度而不产生大量变形或断裂的钢种。
失效形式:高温下强度不足、表面氧化腐蚀
2021年3月14日星期日
3
第六章 耐热钢和高温合金
§6§.61.1 钢钢的的热热稳稳定定性性和和热热稳稳定定性性钢钢
失效:常时间高温工作+介质腐蚀,产生组织转变和 性能变化
晶界空位填补:晶界易扩散,加B、RE填充晶界空位 晶界沉淀强化:晶界析出强化相,塑变滑移和断裂扩 展受阻,热强性提高,如析出Cr23C6
还有:形变强化处理
2021年3月14日星期日
15
第六章 耐热钢和高温合金
§6.3 α-Fe基热强钢
种类:P型热强钢、M型热强钢
特点:加热或冷却时,α、γ相间互转变,
中温使用,热强性、热稳定性、工艺性能 较好、线膨胀系数小,低碳、低廉,600650℃使用;
应用:制造锅炉、汽轮机、石油提炼设备等
2021年3月14日星期日
16
第六章 耐热钢和高温合金
§6.3 α-Fe基热强钢
一、珠光体型热强钢
分类(C含量):低碳P热强钢、中碳P热强钢
低碳P热强钢:锅炉管道等;
中碳P热强钢:汽轮机等耐热紧固件、转子。
原理:常时间稳定难长大,高温弥散态
2021年3月14日星期日
14
第六章 耐热钢和高温合金
§6.2 金属的热强性
2、提高钢的热强性途径
③晶界强化 减少高温下晶界转动 途径: 减少晶界:控制钢晶粒度(难滑移塑变抗力提高) 净化晶界:微量元素硼(B)与稀土(RE)元素,高熔点 晶核,长大进入晶内,起净化晶界。
2021年3月14日星期日
13
第六章 耐热§5钢特和殊高性温能合钢金
§6.1 §钢6的.2 热金稳属定的性热和强热性稳定性钢
2、提高钢的热强性途径
①基体(固溶)强化元素Cr、Ni、W、Mo等,形成单相组织并提高 再结晶温度。
原理:提高原子结合力,降低扩散系数
②第二相沉淀强化元素V、Ti、Nb、Al等,形成细小弥散分布的 稳定碳化物(VC、TiC、NbC)或稳定性更高的金属间化合物(Ni3Ti、 Ni3Nb、Ni3Al),获得第二相沉淀强化效果并提高组织稳定性。
②微量稀土(RE)元素如钇(Y)、镧(La)等,能防止高温 晶界的优先氧化,明显改善耐热钢的抗氧化性。
③金属表面渗Cr、Al、Si也有效提高钢抗氧化性。
2021年3月14日星期日
8
第六章 耐热钢和高温合金
§6.1 钢的热稳定性和热稳定性钢
二、热稳定钢(抗氧化钢,不起皮钢) 种类:
F型热稳定钢、A型热稳定钢
Al、Si加入有副作用,降强度增脆性
2021年3月14日星期日
7
§Hale Waihona Puke 特殊性能钢§6.1 钢的热稳定性和热稳定性钢
①在钢表面生成致密稳定连续而牢固的Cr2O3、Al2O3、 SiO2氧化膜,但Al、Si明显增加钢的脆性,常与Cr一起 加入;当Cr达5%时,工作温度达600~650℃,达28% 时,工作温度可达1100℃。
2021年3月14日星期日
11
第六章 耐热钢和高温合金
§6.2 金属的热强性
一、高温下金属材料力学性能特点 热强性:
高温和载荷下抵抗塑性变形能力 包括:高温下瞬时性能和长时性能
瞬时性能:高温拉伸、冲击、硬度
长时性能:蠕变极限、持久强度、应力松弛、 高温疲劳强度、冷热疲劳等
2021年3月14日星期日
§6.1 钢的热稳定性和热稳定性钢
一、钢的抗氧化性能及其提高途径 失效:高温下强度不足、表面氧化腐蚀
要求:较好的热稳定性
热稳定性:钢在高温下抗氧化和高温介质腐蚀的 能力;
指标:g/m2.单位时间、面积上的氧化后质量增加 或减少的数值表示。
2021年3月14日星期日
5
第六章 耐热钢和高温合金
。
§6.1 钢的热稳定性和热稳定性钢
12
第六章 耐热钢和高温合金
§6.2 金属的热强性
二、耐热钢热强性的影响因素及其提高途径 1、影响耐热钢热强性的因素 A、软化因素
温升,原子结合力下降,扩散系数加大,组 织由亚稳定态向稳态转变。如第二相集聚长大等 B、形变断裂方式变化
低温滑移;高温有滑移、扩散变形、晶界 滑动和迁移 C、断裂失效 金属常温断裂:穿晶断裂(晶内强度大于晶界强度) 金属高温断裂:晶间断裂(原子扩散加速)