曲线拟合的最小二乘法matlab举例

合集下载

最小二乘法曲线拟合的Matlab程序

最小二乘法曲线拟合的Matlab程序

方便大家使用的最小二乘法曲线拟合的Matlab程序非常方便用户使用,直接按提示操作即可;这里我演示一个例子:(红色部分为用户输入部分,其余为程序运行的结果,结果图为Untitled.fig,Untitled2.fig) 请以向量的形式输入x,y.x=[1,2,3,4]y=[3,4,5,6]通过下面的交互式图形,你可以事先估计一下你要拟合的多项式的阶数,方便下面的计算.polytool()是交互式函数,在图形上方[Degree]框中输入阶数,右击左下角的[Export]输出图形回车打开polytool交互式界面回车继续进行拟合输入多项式拟合的阶数m = 4Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 72In zxecf at 64输出多项式的各项系数a = 0.0200000000000001a = -0.2000000000000008a = 0.7000000000000022a = 0.0000000000000000a = 2.4799999999999973输出多项式的有关信息 SR: [4x5 double]df: 0normr: 2.3915e-015Warning: Zero degrees of freedom implies infinite error bounds.> In polyval at 104In polyconf at 92In zxecf at 69观测数据拟合数据x y yh1.0000 3.0000 3.00002.0000 4.0000 4.00003 5 54.0000 6.0000 6.0000剩余平方和 Q = 0.000000标准误差 Sigma = 0.000000相关指数 RR = 1.000000请输入你所需要拟合的数据点,若没有请按回车键结束程序.输入插值点x0 = 3输出插值点拟合函数值 y0 = 5.0000>>结果:untitled.figuntitled2.fig一些matlab优化算法代码的分享代码的目录如下:欢迎讨论1.约束优化问题:minRosen(Rosen梯度法求解约束多维函数的极值)(算法还有bug) minPF(外点罚函数法解线性等式约束)minGeneralPF(外点罚函数法解一般等式约束)minNF(内点罚函数法)minMixFun(混合罚函数法)minJSMixFun(混合罚函数加速法)minFactor(乘子法)minconPS(坐标轮换法)(算法还有bug)minconSimpSearch(复合形法)2.非线性最小二乘优化问题minMGN(修正G-N法)3.线性规划:CmpSimpleMthd(完整单纯形法)4.整数规划(含0-1规划)DividePlane(割平面法)ZeroOneprog(枚举法)5.二次规划QuadLagR(拉格朗日法)ActivedeSet(起作用集法)6.辅助函数(在一些函数中会调用)minNT(牛顿法求多元函数的极值)Funval(求目标函数的值)minMNT(修正的牛顿法求多元函数极值)minHJ(黄金分割法求一维函数的极值)7.高级优化算法1)粒子群优化算法(求解无约束优化问题)1>PSO(基本粒子群算法)2>YSPSO(待压缩因子的粒子群算法)3>LinWPSO(线性递减权重粒子群优化算法)4>SAPSO(自适应权重粒子群优化算法)5>RandWSPO(随机权重粒子群优化算法)6>LnCPSO(同步变化的学习因子)7>AsyLnCPSO(异步变化的学习因子)(算法还有bug)8>SecPSO(用二阶粒子群优化算法求解无约束优化问题)9>SecVibratPSO(用二阶振荡粒子群优化算法求解五约束优化问题)10>CLSPSO(用混沌群粒子优化算法求解无约束优化问题)11>SelPSO(基于选择的粒子群优化算法)12>BreedPSO(基于交叉遗传的粒子群优化算法)13>SimuAPSO(基于模拟退火的粒子群优化算法)2)遗传算法1>myGA(基本遗传算法解决一维约束规划问题)2>SBOGA(顺序选择遗传算法求解一维无约束优化问题)3>NormFitGA(动态线性标定适应值的遗传算法求解一维无约束优化问题)4>GMGA(大变异遗传算法求解一维无约束优化问题)5>AdapGA(自适应遗传算法求解一维无约束优化问题)6>DblGEGA(双切点遗传算法求解一维无约束优化问题)7>MMAdapGA(多变异位自适应遗传算法求解一维无约束优化问题)自己编写的马尔科夫链程序A 代表一组数据序列一维数组本程序的操作对象也是如此t=length(A); % 计算序列“A”的总状态数B=unique(A); % 序列“A”的独立状态数顺序,“E”E=sort(B,'ascend');a=0;b=0;c=0;d=0;for j=1:1:ttLocalization=find(A==E(j)); % 序列“A”中找到其独立状态“E”的位置for i=1:1:length(Localization)if Localization(i)+1>tbreak; % 范围限定elseif A(Localization(i)+1)== E(1)a=a+1;elseif A(Localization(i)+1)== E(2)b=b+1;elseif A(Localization(i)+1)== E(3)c=c+1;% 依此类推,取决于独立状态“E”的个数elsed=d+1;endendT(j,1:tt)=[a,b,c,d]; % “T”为占位矩阵endTT=T;for u=2:1:ttTT(u,:)= T(u,:)- T(u-1,:);endTT; % 至此,得到转移频数矩阵Y=sum(TT,2);for uu=1:1:ttTR(uu,:)= TT(uu,:)./Y(uu,1);endTR % 最终得到马尔科夫转移频率/概率矩阵% 观测序列马尔科夫性质的检验:N=numel(TT);uuu=1;Col=sum(TT,2); % 对列求和Row=sum(TT,1); % 对行求和Total=sum(Row); % 频数总和for i=1:1:ttfor j=1:1:ttxx(uuu,1)=sum((TT(i,j)-(Row(i)*Col(j))./Total).^2./( (Row(i)*Col(j)). /Total));uuu=uuu+1; % 计算统计量x2endendxx=sum(xx)。

matlab function编程最小二乘法

matlab function编程最小二乘法

matlab function编程最小二乘法在MATLAB中,使用最小二乘法拟合数据通常涉及到使用函数进行编程。

以下是一个简单的MATLAB函数,用于实现最小二乘法拟合直线的例子:function [coefficients, fittedData] = leastSquaresFit(x, y, degree)% x: 输入数据的 x 值% y: 输入数据的 y 值% degree: 拟合多项式的次数% 创建 Vandermonde 矩阵A = zeros(length(x), degree + 1);for i = 1:degree + 1A(:, i) = x.^(degree + 1 - i);end% 使用最小二乘法计算系数coefficients = (A' * A)\(A' * y);% 生成拟合曲线的数据fittedData = polyval(coefficients, x);% 绘制原始数据和拟合曲线figure;plot(x, y, 'o', x, fittedData, '-');legend('原始数据', '拟合曲线');xlabel('X轴');ylabel('Y轴');title('最小二乘法拟合');end你可以通过调用这个函数并提供你的数据和拟合多项式的次数来进行最小二乘法拟合。

例如:x = [1, 2, 3, 4, 5];y = [2.1, 2.8, 3.4, 3.7, 4.2];degree = 1;[coefficients, fittedData] = leastSquaresFit(x, y, degree);disp('拟合系数:');disp(coefficients);这是一个简单的线性拟合的例子。

你可以根据需要修改该函数,以适应高次多项式的情况。

Matlab曲线拟合 最小二乘法

Matlab曲线拟合 最小二乘法

Matlab曲线拟合最小二乘法polyfit2009-04-07 19:04曲线拟合已知离散点上的数据集,即已知在点集上的函数值,构造一个解析函数(其图形为一曲线)使在原离散点上尽可能接近给定的值,这一过程称为曲线拟合。

最常用的曲线拟合方法是最小二乘法,该方法是寻找函数使得最小。

MATLAB函数:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。

x必须是单调的。

矩阵s用于生成预测值的误差估计。

(见下一函数polyval)多项式曲线求值函数:polyval( )调用格式: y=polyval(p,x)[y,DELTA]=polyval(p,x,s)说明:y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。

[y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。

它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。

则Y DELTA将至少包含50%的预测值。

练习:如下给定数据的拟合曲线,x=[0.5,1.0,1.5,2.0,2.5,3.0],y=[1.75,2.45,3.81,4.80,7.00,8.60]。

解:MATLAB程序如下:x=[0.5,1.0,1.5,2.0,2.5,3.0];y=[1.75,2.45,3.81,4.80,7.00,8.60];p=polyfit(x,y,2)x1=0.5:0.05:3.0;y1=polyval(p,x1);plot(x,y,'*r',x1,y1,'-b')计算结果为:p =0.5614 0.8287 1.1560即所得多项式为y=0.5614x^2+0.08287x+1.15560。

曲线拟合的最小二乘法实验

曲线拟合的最小二乘法实验

Lab04.曲线拟合的最小二乘法实验【实验目的和要求】1.让学生体验曲线拟合的最小二乘法,加深对曲线拟合的最小二乘法的理解;2.掌握函数ployfit和函数lsqcurvefit功能和使用方法,分别用这两个函数进行多项式拟合和非多项式拟合。

【实验内容】1.在Matlab命令窗口,用help命令查询函数polyfit和函数lsqcurvefit 功能和使用方法。

2.用多项式y=x3-6x2+5x-3,产生一组数据(xi,yi)(i=1,2,…,n),再在yi上添加随机干扰(可用rand产生(0,1)均匀分布随机数,或用randn产生N(0,1)均匀分布随机数),然后对xi和添加了随机干扰的yi用Matlab提供的函数ployfit用3次多项式拟合,将结果与原系数比较。

再作2或4次多项式拟合,分析所得结果。

3.用电压V=10伏的电池给电容器充电,电容器上t时刻的电压为,其中V0是电容器的初始电压,τ是充电常数。

对于下面的一组t,v数据,用Matlab提供的函数lsqcurvefit确定V0和τ。

t(秒) 0.5 1 2 3 4 5 7 9v(伏) 6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63 【实验仪器与软件】1.CPU主频在1GHz以上,内存在128Mb以上的PC;2.Matlab 6.0及以上版本。

实验讲评:实验成绩:评阅教师:200 年月日问题及算法分析:1、利用help命令,在MATLAB中查找polyfit和lsqcurvefit函数的用法。

2、在一组数据(xi,yi)(i=1,2,…,n)上,对yi上添加随机干扰,运用多项式拟合函数,对数据进行拟合(分别用2次,3次,4次拟合),分析拟合的效果。

3、根据t和V的关系画散点图,再根据给定的函数运用最小二乘拟合函数,确定其相应参数。

第一题:(1)>> help polyfitPOLYFIT Fit polynomial to data.P = POLYFIT(X,Y,N) finds the coefficients of a polynomial P(X) ofdegree N that fits the data Y best in a least-squares sense. P is arow vector of length N+1 containing the polynomial coefficients indescending powers, P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + P(N+1).[P,S] = POLYFIT(X,Y,N) returns the polynomial coefficients P and astructure S for use with POLYVAL to obtain error estimates forpredictions. S contains fields for the triangular factor (R) from a QRdecomposition of the Vandermonde matrix of X, the degrees of freedom(df), and the norm of the residuals (normr). If the data Y are random,an estimate of the covariance matrix of P is(Rinv*Rinv')*normr^2/df,where Rinv is the inverse of R.[P,S,MU] = POLYFIT(X,Y,N) finds the coefficients of a polynomial inXHAT = (X-MU(1))/MU(2) where MU(1) = MEAN(X) and MU(2) = STD(X). Thiscentering and scaling transformation improves the numerical propertiesof both the polynomial and the fitting algorithm.Warning messages result if N is >= length(X), if X has repeated, ornearly repeated, points, or if X might need centering and scaling.Class support for inputs X,Y:float: double, singleSee also poly, polyval, roots.Reference page in Help browserdoc polyfit>>(2)>> help lsqcurvefitLSQCURVEFIT solves non-linear least squares problems.LSQCURVEFIT attempts to solve problems of the form:min sum {(FUN(X,XDATA)-YDATA).^2} where X, XDATA, YDATA and the valuesX returned by FUN can be vectors ormatrices.X=LSQCURVEFIT(FUN,X0,XDATA,YDATA) starts at X0 and finds coefficients Xto best fit the nonlinear functions in FUN to the data YDATA (in theleast-squares sense). FUN accepts inputs X and XDATA and returns avector (or matrix) of function values F, where F is the same size asYDATA, evaluated at X and XDATA. NOTE: FUN should returnFUN(X,XDATA)and not the sum-of-squares sum((FUN(X,XDATA)-YDATA).^2).((FUN(X,XDATA)-YDATA) is squared and summed implicitly in thealgorithm.)X=LSQCURVEFIT(FUN,X0,XDATA,YDATA,LB,UB) defines a set of lower andupper bounds on the design variables, X, so that the solution is in therange LB <= X <= UB. Use empty matrices for LB and UB if no boundsexist. Set LB(i) = -Inf if X(i) is unbounded below; set UB(i) = Inf ifX(i) is unbounded above.X=LSQCURVEFIT(FUN,X0,XDATA,YDATA,LB,UB,OPTIONS) minimizes with thedefault parameters replaced by values in the structure OPTIONS, anargument created with the OPTIMSET function. See OPTIMSET for details.Used options are Display, TolX, TolFun, DerivativeCheck, Diagnostics,FunValCheck, Jacobian, JacobMult, JacobPattern, LineSearchType,LevenbergMarquardt, MaxFunEvals, MaxIter, DiffMinChange andDiffMaxChange, LargeScale, MaxPCGIter, PrecondBandWidth, TolPCG,OutputFcn, and TypicalX. Use the Jacobian option to specify that FUNalso returns a second output argument J that is the Jacobian matrix atthe point X. If FUN returns a vector F of m components when X has length n, then J is an m-by-n matrix where J(i,j) is the partialderivative of F(i) with respect to x(j). (Note that the Jacobian J isthe transpose of the gradient of F.)[X,RESNORM]=LSQCURVEFIT(FUN,X0,XDATA,YDATA,...) returns the valueof thesquared 2-norm of the residual at X: sum {(FUN(X,XDATA)-YDATA).^2}.[X,RESNORM,RESIDUAL]=LSQCURVEFIT(FUN,X0,...) returns the value of residual,FUN(X,XDATA)-YDATA, at the solution X.[X,RESNORM,RESIDUAL,EXITFLAG]=LSQCURVEFIT(FUN,X0,XDATA,YDATA,...) returnsan EXITFLAG that describes the exit condition of LSQCURVEFIT. Possiblevalues of EXITFLAG and the corresponding exit conditions are1 LSQCURVEFIT converged to a solution X.2 Change in X smaller than the specified tolerance.3 Change in the residual smaller than the specified tolerance.4 Magnitude of search direction smaller than the specified tolerance.0 Maximum number of function evaluations or of iterations reached.-1 Algorithm terminated by the output function.-2 Bounds are inconsistent.-4 Line search cannot sufficiently decrease the residual alongthecurrent search direction.[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT]=LSQCURVEFIT(FUN,X0,XDATA,YDATA ,...)returns a structure OUTPUT with the number of iterations taken inOUTPUT.iterations, the number of function evaluations inOUTPUT.funcCount,the algorithm used in OUTPUT.algorithm, the number of CG iterations (ifused) in OUTPUT.cgiterations, the first-order optimality (if used)inOUTPUT.firstorderopt, and the exit message in OUTPUT.message.[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA]=LSQCURVEFIT(FUN,X0,XDAT A,YDATA,...)returns the set of Lagrangian multipliers, LAMBDA, at the solution:LAMBDA.lower for LB and LAMBDA.upper for UB.[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA,JACOBIAN]=LSQCURVEFIT(FU N,X0,XDATA,YDATA,...)returns the Jacobian of FUN at X.ExamplesFUN can be specified using @:xdata = [5;4;6]; % example xdataydata = 3*sin([5;4;6])+6; % example ydatax = lsqcurvefit(@myfun, [2 7], xdata, ydata)where myfun is a MATLAB function such as:function F = myfun(x,xdata)F = x(1)*sin(xdata)+x(2);FUN can also be an anonymous function:x = lsqcurvefit(@(x,xdata) x(1)*sin(xdata)+x(2),[2 7],xdata,ydata)If FUN is parameterized, you can use anonymous functions to capture theproblem-dependent parameters. Suppose you want to solve the curve-fittingproblem given in the function myfun, which is parameterized by its secondargument c. Here myfun is an M-file function such asfunction F = myfun(x,xdata,c)F = x(1)*exp(c*xdata)+x(2);To solve the curve-fitting problem for a specific value of c, first assignthe value to c. Then create a two-argument anonymous function that capturesthat value of c and calls myfun with three arguments. Finally, pass thisanonymous function to LSQCURVEFIT:xdata = [3; 1; 4]; % example xdataydata = 6*exp(-1.5*xdata)+3; % example ydatac = -1.5; % define parameterx = lsqcurvefit(@(x,xdata) myfun(x,xdata,c),[5;1],xdata,ydata) See also optimset, lsqnonlin, fsolve, @, inline.Reference page in Help browserdoc lsqcurvefit>>第二题:1 三次线性拟合clear allx=0:0.5:5;y=x.^3-6*x.^2+5*x-3;y1=y;for i=1:length(y)y1(i)=y1(i)+rand;enda=polyfit(x,y1,3);b=polyval(a,x);plot(x,y,'*',x,b),aa =1.0121 -6.1033 5.1933 -2.4782② 二次线性拟合clear allx=0:0.5:20;y=x.^3-6*x.^2+5*x-3;y1=y;for i=1:length(y)y1(i)=y1(i)+rand;enda=polyfit(x,y1,2);b=polyval(a,x);plot(x,y,'*',x,b),aa =23.9982 -232.0179 367.9756③ 四次线性拟合clear allx=0:0.5:20;y=x.^3-6*x.^2+5*x-3;y1=y;for j=1:length(y)y1(j)=y1(j)+rand;enda=polyfit(x,y1,4);b=polyval(a,x);plot(x,y,'*',x,b),aa =-0.0001 1.0038 -6.0561 5.2890 -2.8249 >>第三题:1 拟合曲线为:f(x)=定义函数:function f=fun(a,x)f=a(1)-(a(1)-a(2))*exp(-a(3)*x);主程序:clear allclcx=[0.5 1 2 3 4 5 7 9];y=[6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63];a0=[1 1 1];a=lsqcurvefit('fun',a0,x,y);y1=a(1)-(a(1)-a(2))*exp(-a(3)*x);plot(x,y,'r*',x,y1,'b')V1=a(2)tei=1/a(3)Optimization terminated: relative function value changing by less than OPTIONS.TolFun.。

最小二乘法曲线拟合的Matlab程序

最小二乘法曲线拟合的Matlab程序

方便大家使用的最小二乘法曲线拟合的Matlab程序非常方便用户使用,直接按提示操作即可;这里我演示一个例子:(红色部分为用户输入部分,其余为程序运行的结果,结果图为Untitled.fig,Untitled2.fig) 请以向量的形式输入x,y.x=[1,2,3,4]y=[3,4,5,6]通过下面的交互式图形,你可以事先估计一下你要拟合的多项式的阶数,方便下面的计算.polytool()是交互式函数,在图形上方[Degree]框中输入阶数,右击左下角的[Export]输出图形回车打开polytool交互式界面回车继续进行拟合输入多项式拟合的阶数m = 4Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 72In zxecf at 64输出多项式的各项系数a = 0.0200000000000001a = -0.2000000000000008a = 0.7000000000000022a = 0.0000000000000000a = 2.4799999999999973输出多项式的有关信息 SR: [4x5 double]df: 0normr: 2.3915e-015Warning: Zero degrees of freedom implies infinite error bounds.> In polyval at 104In polyconf at 92In zxecf at 69观测数据拟合数据x y yh1.0000 3.0000 3.00002.0000 4.0000 4.00003 5 54.0000 6.0000 6.0000剩余平方和 Q = 0.000000标准误差 Sigma = 0.000000相关指数 RR = 1.000000请输入你所需要拟合的数据点,若没有请按回车键结束程序.输入插值点x0 = 3输出插值点拟合函数值 y0 = 5.0000>>结果:untitled.figuntitled2.fig一些matlab优化算法代码的分享代码的目录如下:欢迎讨论1.约束优化问题:minRosen(Rosen梯度法求解约束多维函数的极值)(算法还有bug) minPF(外点罚函数法解线性等式约束)minGeneralPF(外点罚函数法解一般等式约束)minNF(内点罚函数法)minMixFun(混合罚函数法)minJSMixFun(混合罚函数加速法)minFactor(乘子法)minconPS(坐标轮换法)(算法还有bug)minconSimpSearch(复合形法)2.非线性最小二乘优化问题minMGN(修正G-N法)3.线性规划:CmpSimpleMthd(完整单纯形法)4.整数规划(含0-1规划)DividePlane(割平面法)ZeroOneprog(枚举法)5.二次规划QuadLagR(拉格朗日法)ActivedeSet(起作用集法)6.辅助函数(在一些函数中会调用)minNT(牛顿法求多元函数的极值)Funval(求目标函数的值)minMNT(修正的牛顿法求多元函数极值)minHJ(黄金分割法求一维函数的极值)7.高级优化算法1)粒子群优化算法(求解无约束优化问题)1>PSO(基本粒子群算法)2>YSPSO(待压缩因子的粒子群算法)3>LinWPSO(线性递减权重粒子群优化算法)4>SAPSO(自适应权重粒子群优化算法)5>RandWSPO(随机权重粒子群优化算法)6>LnCPSO(同步变化的学习因子)7>AsyLnCPSO(异步变化的学习因子)(算法还有bug)8>SecPSO(用二阶粒子群优化算法求解无约束优化问题)9>SecVibratPSO(用二阶振荡粒子群优化算法求解五约束优化问题)10>CLSPSO(用混沌群粒子优化算法求解无约束优化问题)11>SelPSO(基于选择的粒子群优化算法)12>BreedPSO(基于交叉遗传的粒子群优化算法)13>SimuAPSO(基于模拟退火的粒子群优化算法)2)遗传算法1>myGA(基本遗传算法解决一维约束规划问题)2>SBOGA(顺序选择遗传算法求解一维无约束优化问题)3>NormFitGA(动态线性标定适应值的遗传算法求解一维无约束优化问题)4>GMGA(大变异遗传算法求解一维无约束优化问题)5>AdapGA(自适应遗传算法求解一维无约束优化问题)6>DblGEGA(双切点遗传算法求解一维无约束优化问题)7>MMAdapGA(多变异位自适应遗传算法求解一维无约束优化问题)自己编写的马尔科夫链程序A 代表一组数据序列一维数组本程序的操作对象也是如此t=length(A); % 计算序列“A”的总状态数B=unique(A); % 序列“A”的独立状态数顺序,“E”E=sort(B,'ascend');a=0;b=0;c=0;d=0;for j=1:1:ttLocalization=find(A==E(j)); % 序列“A”中找到其独立状态“E”的位置for i=1:1:length(Localization)if Localization(i)+1>tbreak; % 范围限定elseif A(Localization(i)+1)== E(1)a=a+1;elseif A(Localization(i)+1)== E(2)b=b+1;elseif A(Localization(i)+1)== E(3)c=c+1;% 依此类推,取决于独立状态“E”的个数elsed=d+1;endendT(j,1:tt)=[a,b,c,d]; % “T”为占位矩阵endTT=T;for u=2:1:ttTT(u,:)= T(u,:)- T(u-1,:);endTT; % 至此,得到转移频数矩阵Y=sum(TT,2);for uu=1:1:ttTR(uu,:)= TT(uu,:)./Y(uu,1);endTR % 最终得到马尔科夫转移频率/概率矩阵% 观测序列马尔科夫性质的检验:N=numel(TT);uuu=1;Col=sum(TT,2); % 对列求和Row=sum(TT,1); % 对行求和Total=sum(Row); % 频数总和for i=1:1:ttfor j=1:1:ttxx(uuu,1)=sum((TT(i,j)-(Row(i)*Col(j))./Total).^2./( (Row(i)*Col(j)). /Total));uuu=uuu+1; % 计算统计量x2endendxx=sum(xx)。

Matlab最小二乘法曲线拟合

Matlab最小二乘法曲线拟合

最小二乘法在曲线拟合中比较普遍。

拟合的模型主要有1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型......一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。

在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。

在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。

“\”命令1.假设要拟合的多项式是:y=a+b*x+c*x^2.首先建立设计矩阵X:X=[ones(size(x)) x x^2];执行:para=X\ypara中包含了三个参数:para(1)=a;para(2)=b;para(3)=c;这种方法对于系数是线性的模型也适应。

2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2)设计矩阵X为X=[ones(size(x)) exp(x) x.*exp(x.^2)];para=X\y3.多重回归(乘积回归)设要拟合:y=a+b*x+c*t,其中x和t是预测变量,y是响应变量。

设计矩阵为X=[ones(size(x)) x t] %注意x,t大小相等!para=X\ypolyfit函数polyfit函数不需要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵。

1.假设要拟合的多项式是:y=a+b*x+c*x^2p=polyfit(x,y,2)然后可以使用polyval在t处预测:y_hat=polyval(p,t)polyfit函数可以给出置信区间。

[p S]=polyfit(x,y,2) %S中包含了标准差[y_fit,delta] = polyval(p,t,S) %按照拟合模型在t处预测在每个t处的95%CI为:(y_fit-1.96*delta, y_fit+1.96*delta)2.指数模型也适应假设要拟合:y = a+b*exp(x)+c*exp(x.?2)p=polyfit(x,log(y),2)fminsearch函数fminsearch是优化工具箱的极小化函数。

曲线拟合的最小二乘法matlab举例

曲线拟合的最小二乘法matlab举例

学院:光电信息学院 姓名:赵海峰 学号:1001一、曲线拟合的最小二乘法原理:由已知的离散数据点选择与实验点误差最小的曲线)(...)()()(1100x a x a x a x S n n ϕϕϕ+++=称为曲线拟合的最小二乘法。

若记),()()(),(0i k i j mi i k j x x x ϕϕωϕϕ∑==k i k i mi i k d x x f x f ≡=∑=)()()(),(0ϕωϕ上式可改写为),...,1,0(;),(n k d a k j noj j k -=∑=ϕϕ这个方程成为法方程,可写成距阵形式d Ga =其中,),...,,(,),...,,(1010T n T n d d d d a a a a ==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=),(),(),()(),(),(),(),(),(101110101000n n n n n n G ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕΛM M M ΛΛ。

它的平方误差为:.)]()([)(||||2022i i mi i x f x S x -=∑=ωδ二、数值实例:下面给定的是乌鲁木齐最近1个月早晨7:00左右(新疆时间)的天气预报所得到的温度数据表,按照数据找出任意次曲线拟合方程和它的图像。

下面应用Matlab编程对上述数据进行最小二乘拟合三、Matlab程序代码:x=[1:1:30];y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7,6,5,3,1 ];a1=polyfit(x,y,3) %三次多项式拟合%a2= polyfit(x,y,9) %九次多项式拟合%a3= polyfit(x,y,15) %十五次多项式拟合%b1=polyval(a1,x)b2=polyval(a2,x)b3=polyval(a3,x)r1= sum((y-b1).^2) %三次多项式误差平方和%r2= sum((y-b2).^2) %九次次多项式误差平方和%r3= sum((y-b3).^2) %十五次多项式误差平方和%plot(x,y,'*') %用*画出x,y图像%hold onplot(x,b1, 'r') %用红色线画出x,b1图像%hold onplot(x,b2, 'g') %用绿色线画出x,b2图像%hold onplot(x,b3, 'b:o') %用蓝色o线画出x,b3图像%四、数值结果:不同次数多项式拟和误差平方和为:r1 =r2 =r3 =r1、r2、r3分别表示三次、九次、十五次多项式误差平方和。

Matlab最小二乘法曲线拟合

Matlab最小二乘法曲线拟合

之杨若古兰创作最小二乘法在曲线拟合中比较普遍.拟合的模型次要有1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型......普通对于LS成绩,通常利用反斜杠运算“\”、fminsearch 或优化工具箱提供的极小化函数求解.在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操纵.在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型.“\”命令1.假设要拟合的多项式是:y=a+b*x+c*x^2.首先建立设计矩阵X:X=[ones(size(x)) x x^2]; 履行:para=X\ypara中包含了三个参数:para(1)=a;para(2)=b;para(3)=c; 这类方法对于系数是线性的模型也适应.2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2) 设计矩阵X为X=[ones(size(x)) exp(x) x.*exp(x.^2)]; para=X\y3.多重回归(乘积回归) 设要拟合:y=a+b*x+c*t,其中x和t是猜测变量,y是呼应变量.设计矩阵为X=[ones(size(x)) x t] %留意x,t大小相等!para=X\ypolyfit函数polyfit函数不须要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵.1.假设要拟合的多项式是:y=a+b*x+c*x^2 p=polyfit(x,y,2)然后可以使用polyval在t处猜测:y_hat=polyval(p,t)polyfit函数可以给出相信区间. [p S]=polyfit(x,y,2) %S中包含了尺度差[y_fit,delta] = polyval(p,t,S) %按照拟合模型在t处猜测在每个t处的95%CI为:(y_fit1.96*delta, y_fit+1.96*delta)2.指数模型也适应假设要拟合:y = a+b*exp(x)+c*exp(x.?2) p=polyfit(x,log(y),2)fminsearch函数fminsearch是优化工具箱的极小化函数.LS成绩的基本思想就是残差的平方和(一种范数,由此,LS发生了很多利用)最小,是以可以利用fminsearch函数进行曲线拟合. 假设要拟合:y = a+b*exp(x)+c*exp(x.?2) 首先建立函数,可以通过m文件或函数句柄建立:x=[......]';y=[......]';f=@(p,x) p(1)+p(2)*exp(x)+p(3)*exp(x.?2) %留意向量化:p(1)=a;p(2)=b;p(3)=c; %可以根据须要选择是否优化参数%opt=options()p0=ones(3,1);%初值para=fminsearch(@(p) (yf(p,x)).^2,p0) %可以输出Hessian矩阵res=yf(para,x)%拟合残差曲线拟合工具箱提供了很多拟合函数,对大样本场合比较无效!非线性拟合nlinfit函数clear all; x1=[0.4292 0.4269 0.381 0.4015 0.4117 0.3017]'; x2=[0.00014 0.00059 0.0126 0.0061 0.00425 0.0443]'; x=[x1 x2]; y=[0.517 0.509 0.44 0.466 0.479 0.309]'; f=@(p,x)2.350176*p(1)*(11/p(2))*(1(1x(:,1).^(1/p(2))).^p(2)).^2.*(x(:,1).^(1 /p(2))1).^(p(2)).*x(:,1).^(1/p(2)0.5).*x(:,2);p0=[8 0.5]'; opt=optimset('TolFun',1e3,'TolX',1e3);%[p R]=nlinfit(x,y,f,p0,opt)例子例子例子例子例子例子例子例子例子例子例子例子例子例子例子例子直线型例子2.多项式型的一个例子19002000年的总人口情况的曲线拟合clear all;close all; %cftool提供了可视化的曲线拟合!t=[1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000]'; y=[75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 249.633 281.4220]'; %t太大,以t的幂作为基函数会导致设计矩阵尺度太差,列变量几乎线性相依.变换为[1 1]上s=(t1950)/50;%plot(s,y,'ro');%回归线:y=a+bx mx=mean(s);my=mean(y);sx=std(s);sy=std(y);r=corr(s,y);b=r*sy/sx;a=myb*mx;rline=a+b.*s;figure;subplot(3,2,[1 2]) plot(s,y,'ro',s,rline,'k');%title('多项式拟合'); set(gca,'XTick',s,'XTickLabel',sprintf('%d|',t));%hold on; n=4;PreYear=[ ];%猜测年份tPreYear=(PreYear1950)/50;Y=zeros(length(t),n);res=zeros(size(Y));delta=zeros(size(Y));PrePo=zeros(length(PreYear),n);Predelta=zeros(size(PrePo));for i=1:n[p S(i)]=polyfit(s,y,i);[Y(:,i) delta(:,i)]=polyval(p,s,S(i));%拟合的Y [PrePo(:,i) Predelta(:,i)]=polyval(p,tPreYear,S(i));%猜测res(:,i)=yY(:,i);%残差end% plot(s,Y);%a主动添加分歧色彩% legend('data','regression line','1st poly','2nd poly','3rd poly','4th poly',2)% plot(tPreYear,PrePo,'>'); % hold off % plot(Y,res,'o');%残差图r=corr(s,Y).^2 %R^2 %拟合误差估计CI YearAdd=[t;PreYear'];tYearAdd=[s;tPreYear'];CFtit={'一阶拟合','二阶拟合','三阶拟合','四阶拟合'}; for col=1:nsubplot(3,2,col+2);plot(s,y,'ro',s,Y(:,col),'g');%原始数据和拟合数据legend('Original','Fitted',2);hold on;plot(s,Y(:,col)+2*delta(:,col),'r:');%95% CIplot(s,Y(:,col)2*delta(:,col),'r:');plot(tPreYear,PrePo(:,col),'>');%猜测值plot(tPreYear,PrePo(:,col)+2*Predelta(:,col));%猜测95% CIplot(tPreYear,PrePo(:,col)2*Predelta(:,col));axis([1.2 1.8 0 400]);set(gca,'XTick',tYearAdd,'XTickLabel',sprintf('%d|',YearAdd));title(CFtit{col});hold off; endfigure;%残差图for col=1:nsubplot(2,2,col);plot(Y(:,i),res(:,i),'o'); end一个非线性的利用例子(多元情况)在百度晓得中,要拟合y=a*x1^n1+b*x2^n2+c*x3^n3%注:只是作为利用,模型纷歧定准确!!!%x2=x3!!!y=[1080.94 1083.03 1162.80 1155.61 1092.82 1099.26 1161.06 1258.05 1299.03 1298.30 1440.22 1641.30 1672.21 1612.73 1658.64 1752.42 1837.99 2099.29 2675.47 2786.33 2881.07]'; x1=[1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2]'; x2=[1 1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.225 1.250 1.275 1.3 1.325 1.350 1.375 1.4 1.425 1.45 1.475 1.5]'; x3=[1 1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.225 1.250 1.275 1.3 1.325 1.350 1.375 1.4 1.425 1.45 1.475 1.5]'; x=[x1 x2 x3]; f=@(p,x) p(1)*x(:,1).^p(2)+p(3)*x(:,2).^p(4)+p(5)*x(:,3).^p(6); p0=ones(6,1);p=fminsearch(@(p)sum(yf(p,x)).^2,p0)res=yf(p,x);res2=res.^2 %失败的模型。

基于Matlab实现最小二乘曲线拟合

基于Matlab实现最小二乘曲线拟合

基于Matlab实现最小二乘曲线拟合一、本文概述在数据分析和科学计算中,曲线拟合是一种常见且重要的技术。

通过拟合,我们可以根据已知数据建立数学模型,预测未知数据,以及深入理解数据背后的规律。

最小二乘法是曲线拟合中最常用的一种方法,其原理是通过最小化预测值与实际值之间的平方误差来寻找最佳拟合曲线。

本文旨在介绍如何使用Matlab这一强大的数学计算软件,实现最小二乘曲线拟合,包括其理论基础、实现步骤以及实际应用案例。

通过本文的学习,读者将能够掌握在Matlab环境中进行最小二乘曲线拟合的基本方法,提高数据处理和分析能力。

二、最小二乘曲线拟合原理最小二乘法(Least Squares Method)是一种数学优化技术,它通过最小化误差的平方和来寻找数据的最佳函数匹配。

在曲线拟合中,最小二乘法被广泛应用于通过一组离散的数据点来估计一个连续函数的形状。

这种方法的基本思想是通过选择一个模型函数(通常是多项式、指数函数、对数函数等),使得该模型函数与实际数据点之间的差距(即残差)的平方和最小。

假设我们有一组数据点 ((x_1, y_1), (x_2, y_2), \ldots,(x_n, y_n)),我们希望通过一个模型函数 (y = f(x, \mathbf{p})) 来拟合这些数据点,其中 (\mathbf{p}) 是模型的参数向量。

最小二乘法的目标就是找到最优的参数向量 (\mathbf{p}^*),使得残差平方和 (S(\mathbf{p})) 最小:S(\mathbf{p}) = \sum_{i=1}^{n} [y_i - f(x_i,\mathbf{p})]^2]为了使 (S(\mathbf{p})) 达到最小,我们需要对(S(\mathbf{p})) 求偏导数,并令其等于零。

这样,我们就得到了一个关于 (\mathbf{p}) 的方程组。

解这个方程组,就可以得到最优的参数向量 (\mathbf{p}^*)。

matlab 最小二乘法拟合曲线

matlab 最小二乘法拟合曲线

matlab 最小二乘法拟合曲线最小二乘法(Least Squares Method)是一种常用的数据拟合技术,在数学建模、统计学以及工程领域中被广泛应用。

该方法通过最小化实际观测值与拟合模型之间的平方误差和,从而找到一个最佳的拟合曲线。

首先,我们来了解一下最小二乘法的基本原理。

假设我们有一组n组数据点{(x1, y1), (x2, y2), ..., (xn, yn)},我们希望找到一个函数f(x)来拟合这些数据。

为了简便计,我们假设函数f(x)是一个线性函数,即f(x) = ax + b。

要使用最小二乘法来进行拟合,我们需要构造一个目标函数,该函数是残差平方和(Sum of Squared Residuals,SSR)。

残差表示实际数据点与拟合曲线之间的差异,而残差平方和则是将所有残差平方相加得到的一个值。

目标函数可以表示为:SSR = Σ(yi - f(xi))^2最小二乘法的核心思想就是通过调整拟合函数中的参数a和b,使得目标函数SSR达到最小值。

为了实现这一目标,我们需要对目标函数求导,并令导数为0。

这样做可以得到一组线性方程组,可以使用线性代数中的方法求解这个方程组,从而得到a和b的值。

推导过程略去不表,最终我们可以得到最佳的拟合曲线方程:f(x) = (Σxiyi - n * x_mean * y_mean) / (Σxi^2 - n *x_mean^2) * x + (y_mean - (Σxiyi - n * x_mean * y_mean) / (Σxi^2 - n * x_mean^2) * x_mean)其中,x_mean和y_mean分别表示x和y的平均值,n表示数据点的数量。

通过以上公式,我们可以得到一个最佳的线性拟合曲线,该曲线可以最小化数据点与拟合曲线之间的距离。

当然,在实际应用中,我们会遇到更复杂的拟合函数,而不仅仅是线性函数。

但不论函数形式如何,最小二乘法的思想都是相同的——将观测值与模型之间的误差最小化。

matlab最小二乘法实现三参数拟合

matlab最小二乘法实现三参数拟合

matlab最小二乘法实现三参数拟合
在MATLAB中,你可以使用`polyfit`函数来实现三参数的最小二乘拟合。

以下是一个示例,其中我们试图拟合一个三次多项式:
```matlab
% 创建一些示例数据
x = linspace(-10,10,100);
y = 3x.^3 + 2x.^2 + x + randn(size(x));
% 使用polyfit进行三参数拟合
p = polyfit(x, y, 3);
% 绘制原始数据和拟合曲线
plot(x, y, 'o');
hold on;
plot(x, polyval(p, x), '-');
hold off;
```
在这个例子中,`polyfit(x, y, 3)`函数试图找到一个三次多项式,该多项式能最小化所有`(xi, yi)`的平方和。

返回的`p`是一个包含三个系数的向量,这些系数对应于多项式的最高次项,即`p(1)x^3 + p(2)x^2 + p(3)x + p(4)`。

在这个例子中,我们没有提供第四个系数,所以它默认为0。

请注意,由于MATLAB中的`polyfit`函数默认使用最小二乘法进行拟合,因此我们不需要做任何额外的最小二乘法计算。

最小二乘拟合matlab

最小二乘拟合matlab

最小二乘拟合(Least Squares Fitting)是一种经典的数据拟合方法,可以通过最小化残差平方和来求解线性或非线性函数的系数。

在Matlab中,可以使用polyfit函数进行最小二乘拟合。

polyfit函数的用法如下:p = polyfit(x, y, n)其中,x和y分别是数据的自变量和因变量,n为拟合的多项式阶数,p为拟合后的多项式系数向量。

如果x和y是向量,则表示拟合一条曲线,如果x和y是矩阵,则表示拟合多条曲线。

下面以一个简单的例子来说明如何使用polyfit函数进行最小二乘拟合。

假设有一组数据,如下:x = [1 2 3 4 5];y = [1.2 2.3 3.2 4.1 5.2];现在我们想要拟合一条一次函数y = ax + b来描述这些数据。

我们可以使用polyfit函数进行拟合,代码如下:p = polyfit(x, y, 1);a = p(1);b = p(2);这里的参数n设置为1,表示拟合一次函数。

拟合后得到的多项式系数向量p为[0.98 0.12],表示a = 0.98,b = 0.12。

可以将拟合后的函数画在图上,代码如下:xx = linspace(0, 6, 100);yy = polyval(p, xx);plot(x, y, 'o', xx, yy);这里使用linspace函数生成100个等间隔的点,然后使用polyval函数计算每个点的y 值。

最后将数据点和拟合曲线一起画在图上。

可以看到,拟合的一次函数可以较好地描述这些数据点的分布。

同样地,我们也可以拟合更高次的多项式函数来更精确地描述数据。

需要注意的是,最小二乘拟合并不一定能够得到准确的结果,特别是在数据存在较大噪声的情况下。

此时,需要进行数据清洗、噪声滤波等处理,才能得到更可靠的拟合结果。

曲线拟合的线性最小二乘法及其MATLAB程序

曲线拟合的线性最小二乘法及其MATLAB程序

曲线拟合的线性最⼩⼆乘法及其MATLAB程序3.1 曲线拟合的线性最⼩⼆乘法及其MATLAB 程序例3.1.1 给出⼀组数据点),(i i y x 列⼊表3-1中,试⽤线性最⼩⼆乘法求拟合曲线,并估计其误差,作出拟合曲线.表3-1 例3.1.1的⼀组数据),(y x解(1)在MATLAB ⼯作窗⼝输⼊程序>> x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];plot(x,y,'r*'),legend('实验数据(xi,yi)')xlabel('x'), ylabel('y'),title('例3.1.1的数据点(xi,yi)的散点图')运⾏后屏幕显⽰数据的散点图(略).(3)编写下列MATLAB 程序计算)(x f 在),(i i y x 处的函数值,即输⼊程序>> syms a1 a2 a3 a4x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];fi=a1.*x.^3+ a2.*x.^2+ a3.*x+ a4运⾏后屏幕显⽰关于a 1,a 2, a 3和a 4的线性⽅程组fi =[ -125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4,a4, 1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4, 19683/1000*a1+729/100*a2+27/10*a3+a4, 5832/125*a1+324/25*a2+18/5*a3+a4]编写构造误差平⽅和的MATLAB 程序>> y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];fi=[-125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4, a4, 1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4,5832/125*a1+324/25*a2+18/5*a3+a4];fy=fi-y; fy2=fy.^2; J=sum(fy.^2)运⾏后屏幕显⽰误差平⽅和如下J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+289/100*a2-17/10*a3+a4+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2为求4321,,,a a a a 使J 达到最⼩,只需利⽤极值的必要条件0=??ka J )4,3,2,1(=k ,得到关于4321,,,a a a a 的线性⽅程组,这可以由下⾯的MA TLAB 程序完成,即输⼊程序>> syms a1 a2 a3 a4J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+289/100*a2-17/10*a3+a4...+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a 4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2;Ja1=diff(J,a1); Ja2=diff(J,a2); Ja3=diff(J,a3); Ja4=diff(J,a4);Ja11=simple(Ja1), Ja21=simple(Ja2), Ja31=simple(Ja3), Ja41=simple(Ja4),运⾏后屏幕显⽰J 分别对a 1, a 2 ,a 3 ,a 4的偏导数如下Ja11=56918107/10000*a1+32097579/25000*a2+1377283/2500*a3+23667/250*a4-8442429/625Ja21 =32097579/25000*a1+1377283/2500*a2+23667/250*a3+67*a4+767319/625Ja31 =1377283/2500*a1+23667/250*a2+67*a3+18/5*a4-232638/125Ja41 =23667/250*a1+67*a2+18/5*a3+18*a4+14859/25解线性⽅程组Ja 11 =0,Ja 21 =0,Ja 31 =0,Ja 41 =0,输⼊下列程序>>A=[56918107/10000, 32097579/25000, 1377283/2500, 23667/250; 32097579/25000, 1377283/2500, 23667/250, 67; 1377283/2500, 23667/250, 67, 18/5; 23667/250, 67, 18/5, 18];B=[8442429/625, -767319/625, 232638/125, -14859/25];C=B/A, f=poly2sym(C)运⾏后屏幕显⽰拟合函数f 及其系数C 如下C = 5.0911 -14.1905 6.4102 -8.2574f=716503695845759/140737488355328*x^3-7988544102557579/562949953421312*x^2+1804307491277693/281474976710656*x-4648521160813215/562949953421312故所求的拟合曲线为8.25746.410214.19055.0911)(23-+-=x x x x f .(4)编写下⾯的MATLAB 程序估计其误差,并作出拟合曲线和数据的图形.输⼊程序>> xi=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];n=length(xi);f=5.0911.*xi.^3-14.1905.*xi.^2+6.4102.*xi -8.2574;x=-2.5:0.01: 3.6;F=5.0911.*x.^3-14.1905.*x.^2+6.4102.*x -8.2574;fy=abs(f-y); fy2=fy.^2; Ew=max(fy),E1=sum(fy)/n, E2=sqrt((sum(fy2))/n)plot(xi,y,'r*'), hold on, plot(x,F,'b-'), hold offlegend('数据点(xi,yi)','拟合曲线y=f(x)'),xlabel('x'), ylabel('y'),title('例3.1.1的数据点(xi,yi)和拟合曲线y=f(x)的图形')运⾏后屏幕显⽰数据),(i i y x 与拟合函数f 的最⼤误差E w ,平均误差E 1和均⽅根误差E 2及其数据点),(i i y x 和拟合曲线y =f (x )的图形(略).Ew = E1 = E2 =3.105 4 0.903 4 1.240 93.2 函数)(x r k 的选取及其MATLAB 程序例3.2.1 给出⼀组实验数据点),(i i y x 的横坐标向量为x =(-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5, -2.1,-1.5, -2.7,-3.6),纵横坐标向量为y =(459.26,52.81,198.27,165.60,59.17,41.66,25.92, 22.37,13.47, 12.87, 11.87,6.69,14.87,24.22),试⽤线性最⼩⼆乘法求拟合曲线,并估计其误差,作出拟合曲线.解(1)在MATLAB ⼯作窗⼝输⼊程序>>x=[-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5,-2.1,-1.5, -2.7,-3.6];y=[459.26,52.81,198.27,165.60,59.17,41.66,25.92,22.37,13.47, 12.87, 11.87,6.69,14.87,24.22];plot(x,y,'r*'),legend('实验数据(xi,yi)')xlabel('x'), ylabel('y'),title('例3.2.1的数据点(xi,yi)的散点图')运⾏后屏幕显⽰数据的散点图(略).(3)编写下列MATLAB 程序计算)(x f 在),(i i y x 处的函数值,即输⼊程序>> syms a bx=[-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5,-2.1,-1.5,-2.7,-3.6]; fi=a.*exp(-b.*x)运⾏后屏幕显⽰关于a 和b 的线性⽅程组fi =[ a*exp(17/2*b), a*exp(87/10*b), a*exp(71/10*b),a*exp(34/5*b), a*exp(51/10*b), a*exp(9/2*b), a*exp(18/5*b), a*exp(17/5*b), a*exp(13/5*b), a*exp(5/2*b), a*exp(21/10*b),a*exp(3/2*b), a*exp(27/10*b), a*exp(18/5*b)]编写构造误差平⽅和的MATLAB 程序如下>>y=[459.26,52.81,198.27,165.60,59.17,41.66,25.92,22.37,13.47,12.87, 11.87, 6.69,14.87,24.22];fi =[ a*exp(17/2*b), a*exp(87/10*b), a*exp(71/10*b), a*exp(34/5*b), a*exp(51/10*b), a*exp(9/2*b), a*exp(18/5*b),a*exp(17/5*b), a*exp(13/5*b), a*exp(5/2*b), a*exp(21/10*b), a*exp(3/2*b), a*exp(27/10*b), a*exp(18/5*b)];fy=fi-y;fy2=fy.^2;J=sum(fy.^2)运⾏后屏幕显⽰误差平⽅和如下J =(a*exp(17/2*b)-22963/50)^2+(a*exp(87/10*b)-5281/100)^2+(a*exp(71/10*b)-19827/100)^2+(a*exp(34/5*b)-828/5)^2+(a*exp(51/10*b)-5917/100)^2+(a*exp(9/2*b)-2083/50)^2+(a*exp(18/5*b)-648/25)^2+(a*exp(17/5*b)-2237/100)^2+(a*exp(13/5*b)-1347/100)^2+(a*ex p(5/2*b)-1287/100)^2+(a*exp(21/10*b)-1187/100)^2+(a*exp(3/2*b)-669/100)^2+(a*exp(27/10*b)-1487/100)^2+(a*exp(18/5*b)-1211/50)^2为求b a ,使J 达到最⼩,只需利⽤极值的必要条件,得到关于b a ,的线性⽅程组,这可以由下⾯的MA TLAB 程序完成,即输⼊程序>> syms a bJ=(a*exp(17/2*b)-22963/50)^2+(a*exp(87/10*b)-5281/100)^2+(a*exp(71/10*b)-19827/100)^2+(a*exp(34/5*b)-828/5)^2+(a*exp(51/10*b)-5917/100)^2+(a*exp(9/2*b)-2083/50)^2+(a*exp(18/5*b)-648/25)^2+(a*exp(17/5*b)-2237/100)^2+(a*exp(13/5*b)-1347/100)^2+(a*exp(5/2*b)-1287/100)^2+(a*exp(21/10*b)-1187/100)^2+ (a*exp(3/2*b )-669/100)^2+(a*exp(27/10*b)-1487/100)^2+(a*exp(18/5*b)-1211/50)^2;Ja=diff(J,a); Jb=diff(J,b);Ja1=simple(Ja), Jb1=simple(Jb),运⾏后屏幕显⽰J 分别对b a ,的偏导数如下Ja1 =2*a*exp(3*b)+2*a*exp(17*b)+2*a*exp(87/5*b)+2*exp(68/5*b)*a+2*exp(9*b)*a+2*a*exp(34/5*b)-669/50*exp(3/2*b)-1487/50*exp(27/10*b)-2507/25*exp(18/5*b)-22963/25*exp(17/2*b)-5281/50*exp(87/10*b)-19827/50*exp(71/10*b)-2237/50*exp(17/5*b)-1656/5*exp(34/5*b)-1347/50*exp(13/5*b)-5917/50*exp(51/10*b)-1287/50*exp(5/2*b )-2083/25*exp(9/2*b)-1187/50*exp(21/10*b)+4*a*exp(36/5*b)+2*a*exp(26/5*b)+2*a*exp(71/5*b)+2*a*exp(51/5*b)+2*a*exp(5*b)+2*a*exp (21/5*b)+2*a*exp(27/5*b)Jb1 =1/500*a*(2100*a*exp(21/10*b)^2+8500*a*exp(17/2*b)^2+6800*a*exp(34/5*b)^2-10035*exp(3/2*b)-40149*exp(27/10*b)-180504*exp (18/5*b)-3903710*exp(17/2*b)-459447*exp(87/10*b)-1407717*exp(71/10*b)-76058*exp(17/5*b)-1126080*exp(34/5*b)-35022*exp(13/5*b)-301767*exp(51/10*b)-32175*exp(5/2*b)-187470*exp(9/2*b)-24927*ex p(21/10*b)+7100*a*exp(71/10*b)^2+5100*a*exp(51/10*b)^2+4500*a*exp(9/2*b)^2+7200*a*exp(18/5*b)^2+3400*a*exp(17/5*b)^2+2600*a*exp(13/5*b)^2+2500*a*exp(5/2*b)^2+1500*a*exp(3/2*b)^2+2700*a*exp(27/10*b)^2+8700*a*exp(87/10*b)^2)⽤解⼆元⾮线性⽅程组的⽜顿法的MATLAB 程序求解线性⽅程组J a1 =0,J b1 =0,得a = b=2.811 0 0.581 6故所求的拟合曲线(7.13)为0811.2)(=x f e x 5816.0-.(4)编写下⾯的MATLAB 程序估计其误差,并做出拟合曲线和数据的图形.输⼊程序>> xi=[-8.5 -8.7 -7.1 -6.8 -5.10 -4.5 -3.6 -3.4 -2.6 -2.5-2.1 -1.5 -2.7 -3.6];y=[459.26 52.81 198.27 165.60 59.17 41.66 25.92 22.3713.47 12.87 11.87 6.69 14.87 24.22];n=length(xi); f=2.8110.*exp(-0.5816.*xi); x=-9:0.01: -1;F=2.8110.*exp(-0.5816.*x); fy=abs(f-y); fy2=fy.^2;Ew=max(fy),E1=sum(fy)/n, E2=sqrt((sum(fy2))/n), plot(xi,y,'r*'), hold on plot(x,F,'b-'), hold off,legend('数据点(xi,yi)','拟合曲线y=f(x)')xlabel('x'), ylabel('y'),title('例3.2.1的数据点(xi,yi)和拟合曲线y=f(x)的图形')运⾏后屏幕显⽰数据),(i i y x 与拟合函数f 的最⼤误差E w = 390.141 5,平均误差E 1=36.942 2和均⽅根误差E 2=106.031 7及其数据点),(i i y x 和拟合曲线y =f (x )的图形(略).3.3 多项式拟合及其MATLAB 程序例3.3.1 给出⼀组数据点),(i i y x 列⼊表3–3中,试⽤线性最⼩⼆乘法求拟合曲线,并估计其误差,作出拟合曲线.表3–3 例3.3.1的⼀组数据),(y x解(1)⾸先根据表3–3给出的数据点i i ,⽤下列MATLAB 程序画出散点图.在MATLAB ⼯作窗⼝输⼊程序>> x=[-2.9 -1.9 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[53.94 33.68 20.88 16.92 8.79 8.98 4.17 9.1219.88];plot(x,y,'r*'), legend('数据点(xi,yi)')xlabel('x'), ylabel('y'),title('例3.3.1的数据点(xi,yi)的散点图')运⾏后屏幕显⽰数据的散点图(略).(3)⽤作线性最⼩⼆乘拟合的多项式拟合的MATLAB 程序求待定系数k a )3,2,1(=k .输⼊程序>> a=polyfit(x,y,2)运⾏后输出(7.16)式的系数a =2.8302 -7.3721 9.1382故拟合多项式为2138.91372.72830.2)(2+-=x x x f .(4)编写下⾯的MATLAB 程序估计其误差,并做出拟合曲线和数据的图形.输⼊程序>> xi=[-2.9 -1.9 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[53.94 33.68 20.88 16.92 8.79 8.98 4.17 9.12 19.88];n=length(xi); f=2.8302.*xi.^2-7.3721.*xi+9.1382x=-2.9:0.001:3.6;F=2.8302.*x.^2-7.3721.*x+8.79;fy=abs(f-y); fy2=fy.^2; Ew=max(fy), E1=sum(fy)/n,E2=sqrt((sum(fy2))/n), plot(xi,y,'r*', x,F,'b-'),legend('数据点(xi,yi)','拟合曲线y=f(x)')xlabel('x'), ylabel('y'),title('例3.3.1 的数据点(xi,yi)和拟合曲线y=f(x)的图形')运⾏后屏幕显⽰数据),(i i y x 与拟合函数f 的最⼤误差E w ,平均误差E1和均⽅根误差E 2及其数据点(x i ,y i )和拟合曲线y =f (x )的图形(略).Ew = E1 = E2 =0.745 7, 0.389 2, 0.436 33.4 拟合曲线的线性变换及其MATLAB 程序例3.4.1 给出⼀组实验数据点),(i i y x 的横坐标向量为x =(7.5 6.8 5.10 4.53.6 3.4 2.6 2.5 2.1 1.5 2.7 3.6),纵横坐标向量为y =(359.26 165.60 59.17 41.66 25.92 22.37 13.47 12.87 11.87 6.69 14.87 24.22),试⽤线性变换和线性最⼩⼆乘法求拟合曲线,并估计其误差,作出拟合曲线.解(1)⾸先根据给出的数据点),(i i y x ,⽤下列MATLAB 程序画出散点图.在MATLAB ⼯作窗⼝输⼊程序>> x=[7.5 6.8 5.10 4.5 3.6 3.4 2.6 2.5 2.1 1.5 2.73.6];y=[359.26 165.60 59.17 41.66 25.92 22.37 13.47 12.87 11.87 6.69 14.87 24.22];plot(x,y,'r*'), legend('数据点(xi,yi)')xlabel('x'), ylabel('y'),title('例3.4.1的数据点(xi,yi)的散点图')运⾏后屏幕显⽰数据的散点图(略).(2)根据数据散点图,取拟合曲线为a y =e bx )0,0(≠>b a ,其中b a ,是待定系数.令b B a A y Y ===,ln ,ln ,则(7.19)化为Bx A Y +=.在MATLAB ⼯作窗⼝输⼊程序>> x=[7.5 6.8 5.10 4.5 3.6 3.4 2.6 2.5 2.1 1.5 2.73.6];y=[359.26 165.60 59.17 41.66 25.92 22.37 13.47 12.87 11.87 6.69 14.87 24.22];Y=log(y); a=polyfit(x,Y,1); B=a(1);A=a(2); b=B,a=exp(A)n=length(x); X=8:-0.01:1; Y=a*exp(b.*X); f=a*exp(b.*x);plot(x,y,'r*',X,Y,'b-'), xlabel('x'),ylabel('y')legend('数据点(xi,yi)','拟合曲线y=f(x)')title('例3.4.1 的数据点(xi,yi)和拟合曲线y=f(x)的图形')fy=abs(f-y); fy2=fy.^2; Ew=max(fy), E1=sum(fy)/n,E2=sqrt((sum(fy2))/n)运⾏后屏幕显⽰a y =e bx 的系数b =0.624 1,a =2.703 9,数据),(i i y x 与拟合函数f的最⼤误差Ew =67.641 9,平均误差E 1=8.677 6和均⽅根误差E 2=20.711 3及其数据点),(i i y x 和拟合曲线9703.2)(=x f e x 1624.0的图形(略).3.5 函数逼近及其MATLAB 程序最佳均⽅逼近的MATLAB 主程序function [yy1,a,WE]=zjjfbj(f,X,Y,xx)m=size(f);n=length(X);m=m(1);b=zeros(m,m); c=zeros(m,1);if n~=length(Y)error('X 和Y 的维数应该相同')endfor j=1:mfor k=1:mb(j,k)=0;for i=1:nb(j,k)=b(j,k)+feval(f(j,:),X(i))*feval(f(k,:),X(i));endendc(j)=0;for i=1:nc(j)=c(j)+feval(f(j,:),X(i))*Y(i);endenda=b\c;WE=0;for i=1:nff=0;for j=1:mff=ff+a(j)*feval(f(j,:),X(i));endWE=WE+(Y(i)-ff)*(Y(i)-ff);endif nargin==3return ;endyy=[];for i=1:ml=[];for j=1:length(xx)l=[l,feval(f(i,:),xx(j))];endyy=[yy l'];endyy=yy*a; yy1=yy'; a=a';WE;例3.5.1 对数据X 和Y , ⽤函数2,,1x y x y y ===进⾏逼近,⽤所得到的逼近函数计算在 6.5=x 处的函数值,并估计误差.其中X =(1 3 4 5 6 7 8 9); Y =(-11 -13 -11 -7 -1 7 17 29).解在MATLAB ⼯作窗⼝输⼊程序>> X=[ 1 3 4 5 6 7 8 9]; Y=[-11 -13 -11 -7 -1 7 17 29];f=['fun0';'fun1';'fun2']; [yy,a,WE]=zjjfbj(f,X,Y,6.5)运⾏后屏幕显⽰如下yy =2.75000000000003a =-7.00000000000010 -4.99999999999995 1.00000000000000WE =7.172323350269439e-027例3.5.2 对数据X 和Y ,⽤函数2,,1x y x y y ===,x y cos =,=y e x,xy sin =进⾏逼近,其中X =(0 0.50 1.00 1.50 2.00 2.50 3.00),Y =(0 0.4794 0.8415 0.9815 0.9126 0.5985 0.1645).解在MATLAB ⼯作窗⼝输⼊程序>> X=[ 0 0.50 1.00 1.50 2.00 2.50 3.00];Y=[0 0.4794 0.8415 0.9815 0.9126 0.5985 0.1645];f=['fun0';'fun1';'fun2';'fun3';'fun4';'fun5'];xx=0:0.2:3;[yy,a,WE]=zjjfbj(f,X,Y, xx), plot(X,Y,'ro',xx,yy,'b-')运⾏后屏幕显⽰如下(图略)yy = Columns 1 through 7-0.0005 0.2037 0.3939 0.5656 0.7141 0.8348 0.9236Columns 8 through 140.9771 0.9926 0.9691 0.9069 0.8080 0.6766 0.5191Columns 15 through 160.3444 0.1642a = 0.3828 0.4070 -0.3901 0.0765 -0.4598 0.5653 WE = 1.5769e-004即,最佳逼近函数为y=0.3828+0.4070*x-0.3901*x^2+0.0765*exp(x) -0.4598*cos(x) +0.5653*sin(x).。

matlab最小二乘法拟合求参数

matlab最小二乘法拟合求参数

matlab最小二乘法拟合求参数
在Matlab中,可以使用`polyfit`函数来进行最小二乘法拟合,并求得拟合参数。

`polyfit`函数的使用格式如下:
```
p = polyfit(x, y, n)
```
其中,`x`和`y`是数据点的横坐标和纵坐标,`n`是拟合多项式的阶数。

函数返回一个包含拟合参数的向量`p`,其中`p(1)`为常数项,`p(2)`为一次项,以此类推。

下面是一个示例代码,展示了如何使用`polyfit`函数进行最小二乘法拟合并求参数:
```matlab
% 生成示例数据
x = [1, 2, 3, 4, 5];
y = [3, 5, 7, 9, 11];
% 进行最小二乘法拟合
p = polyfit(x, y, 1);
% 输出拟合参数
disp(p);
```
在上述示例中,拟合的是一阶多项式,即直线。

运行代码后,将输出拟合参数的值。

如果需要拟合更高阶的多项式,只需将`n`参数设置为相应的阶数即可。

在Matlab中最小二乘法计算拟合曲线系数的程序

在Matlab中最小二乘法计算拟合曲线系数的程序

clear allload('F:\2——学习资料篇\1——专业课资料\测量数据处理程序设计\Matlab中最小法计算程序\datafile.mat') %%加载数据[r,c]=size(data); %%data数据第一列为点序号,第二列为x坐标,第三列为y坐标m=20; %%假设其运行次数,for n=1:m;for i=1:r/2 %%用数据的前半部分计算系数x1=data(i,2);y1=data(i,3);for j=1:n;B1(i,j)=x1^(j-1); %%B矩阵计算endl(i,1)=y1; %%l矩阵endX=inv(B1'*B1)*B1'*l; %%系数矩阵V=B1*X-l;[r1,c1]=size(B1);m0(n,1)=sqrt((V'*V)/(r1-c1)); %%单位权中误差if n>2&&m0(n,1)>=m0(n-1,1); %%判断单位权中误差disp(n)xsgs=n-1; %%单位权中误差最小时其系数的个数zgcs=n-2; %%单位权中误差最小时其x的最高次数break%%如果找到了最优值时跳出循环endendfor i=1:rx2=data(i,2);y2=data(i,3);for k=1:xsgs;B2(i,k)=x2^(k-1);endl2(i,1)=y2;X1=inv(B2'*B2)*B2'*l2; %%计算出最优的系数矩阵endx2=data(:,2);y2=data(:,3);plot(x2,y2,'bo'); %%作出测量点的图形hold ony3(i,1)=0;for i=1:r;for k=1:5;a=X1(k,1)*data(i,2)^(k-1);y3(i,1)=y3(i,1)+a;end%%该循环是将求出的系数代入拟合曲线,验证所有数据endy4=y3(:,1);plot(x2,y4,'r'); %%作出拟合曲线的图形title('最小二乘法拟合图');xlabel('数据');ylabel('拟合');legend('观测数据点','拟合曲线',1); msgbox '计算完毕!';。

用MatLab画图(最小二乘法做曲线拟合)

用MatLab画图(最小二乘法做曲线拟合)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 用MatLab画图(最小二乘法做曲线拟合) 用 MatLab 画图(最小二乘法做曲线拟合) 帮朋友利用实验数据画图时,发现 MatLab 的确是画图的好工具,用它画的图比Excel光滑、精确。

利用一组数据要计算出这组数据对应的函数表达式从而得到相应图像,MatLab 的程序如下:x=[1 5 10 20 30 40 60 80] y=[15. 4 33. 9 42. 2 50. 556 62. 7 72 81. 1] plot(x, y, ‘ r*’ ) ; legend(‘ 实验数据(xi, yi) ‘ ) xlabel(‘ x’ ) , ylabel(‘ y’ ) , title(‘ 数据点(xi, yi) 的散点图’ ) syms a1 a2 a3 x=[15 10 20 30 40 60 80]; fi=a1. *x. +a2. *x+a3 y=[15. 4 33.9 42. 2 50. 5 56 62. 7 72 81. 1] fi =[a1+a2+a3,25*a1+5*a2+a2+(400*a1+20*a2+a3-101/2) +(900*a1+30*a2+a3-56) +(1600*a1+40*a2+a3-627/10) +(3600*a1+60*a2+a3-72)+(6400*a1+80*a2+a3-811/10) ; Ja1=diff(J, a1) ;Ja2=diff(J, a2) ; Ja3=diff(J, a3) ; Ja11=simple(Ja1) ,Ja21=simple(Ja2) , Ja31=simple(Ja3) A=[114921252, 1656252, 26052; 1656252, 26052, 492; 26052, 492, 16]; B=[9542429/5, 166129/5, 4138/5]; C=B/A, f=poly2sym(C) xi=[1 5 10 20 3040 60 80] ; y=[15. 4 33. 9 42. 2 50. 5 56 62. 7 72 81. 1]; n=length(xi) ; f=-0. 0086. *xi. +1. 3876. *xi+23. 1078;1 / 6x=1: 1/10: 80; F=-0. 0086. *x. +1. 3876. *x+23. 1078; fy=abs(f-y) ; fy2=fy. ; Ew=max(fy) , E1=sum(fy) /n,E2=sqrt((sum(fy2) ) /n) plot(xi, y, ‘ r*’ ) , hold on, plot(x, F, ‘ b-’ ) , hold off legend(‘ 数据点(xi, yi) ‘ , ‘ 拟合曲线f(x) = -0. 0086x +1. 3876x+23. 1078’ ) , xlabel(‘ x’ ) , ylabel(‘ y’ ) , title(‘ 实验数据点(xi, yi) 及拟合曲线f(x) ‘ ) 下图是程序运行后得到的:Su7Tw8VxaW ybXAcZB d#Cf!Eg%FhGj*Ik(Jl-Kn+M o0Np2Or3Ps4R t6Sv7Tw8VxaWzbXAcZBe#Cf! Eg%Fi Gj*Ik)Jl-Kn+Mo1Np2Or3Qs4Rt6Sv7 Uw8Vx aWzbYAc ZBe#Df!Eg%FiHj*Ik) Jm-Kn +Mo1Nq2Or3Qs 5Rt6Sv7Uw9VxaWzbYAdZBe#D f$Eg%F iHj(I k) Jm-Ln+Mo1Nq2Pr3Qs5Ru6S v7Uw9V yaWzbY AdZCe#Df$Eh%FiHj(Il) Jm-Ln0Mo1Nq2Pr4 Qs5Ru6Tv8Uw9VyaXzbYAdZCe !Df$Eh %GiHj (Il) Km-Ln0Mp1Nq2Pr4Qt5Ru 6Tv8U x9VyaXz cYAdZCe! Dg$Eh%Gi*Hj(Il) Km+Ln0M p1Oq2P r4Qt5Su6Tv8Ux9WyaXzcYBdZ Ce!Dg$Fh%Gi* Hk(Il) Km+Lo0Mp1Oq3Pr4Qt5 Su7Tv8Ux9Wyb XzcYBd#Ce!Dg$FhGi*Hk(Jl ) Km+L o0Np1Oq 3Ps4Rt 5Su7Tw8Ux9WybXAcY Bd#Cf!Dg$FhGj*Hk(Jl-Km+Lo0Np2Oq3Ps4 Rt6Su7Tw8Vx9 WybXAcZBd#Cf!Eg$FhGj*Ik (Jl-Kn +Lo0Np2Or3Ps4Rt6Sv7Tw8VxaWybXA cZBe#Cf!Eg%F hGj*Ik) Jl-K n+Mo0Np2Or3Q s4Rt6Sv 7Uw8V xaWzbXAcZBe# D f! Eg%FiGj* Ik) Jm- Kn+Mo1 Nq2Or3Qs5Rt6Sv7Uw9VxaWzb YAcZBe#Df$Eg %FiHj*Ik)---------------------------------------------------------------最新资料推荐------------------------------------------------------ Jm-Ln+Mo1Nq2Pr 3Qs5Ru 6Sv7Uw 9VyaWzbYAdZBe#Df$Eh%FiH j(Ik) J m-Ln0M o1Nq2Pr4Qs5Ru6Tv7Uw9VyaX zbYAdZC e#Df$ Eh%GiHj(Il) Jm-Ln0Mp1Nq2 Pr4Qt5Ru6Tv8 Uw9VyaXzcYAdZCe!Df$Eh%Gi *Hj(Il) Km+Ln 0Mp1Oq2Pr4Qt5Su6Tv8Ux9Vy aXzcYB dZCe!D g$Eh%Gi*Hk(Il) Km+Lo0Mp1O q3Pr4Qt5Su7Tv8Ux9WyaXzc Y Bd#Ce!Dg$Fh %Gi*Hk( Jl) Km +Lo0Np1Oq3Ps 4 Qt5Su7Tw8Ux 9WybXzcYBd#C f!Dg$FhGi*H k (Jl-Km+Lo0N p2Oq3Ps4Rt5S u7Tw8Vx9WybX AcYBd#Cf! Eg$ FhGj*Ik (Jl- Kn+Lo0Np2Or3 P s4Rt6Su7Tw8 VxaWybXA cZBd #Cf!Eg%FhGj * Ik) Jl-Kn+Mo 0Np2Or3Qs4Rt 6Sv7Tw8VxaWz bXAcZBe#Cf!E g%FiGj*Ik) J m-Kn+Mo1Np2O r 3Qs5Rt6Sv7U w8VxaWzbYAcZ Be#Df! Eg%Fi H j*Ik) Jm-Ln+ Mo1Nq2O r3Qs5 Ru6Sv7Uw9Vxa W zbYAdZBe#Df $Eh%Fi Hj(Ik ) Jm-Ln0Mo1Nq 2Pr3Qs5Ru6Tv 7Uw9Vya WzbYA dZCe#Df$Eh%G iHj(Il) Jm-L n0Mp1Nq2Pr4Q s5Ru6Tv8Uw9V ya XzbYAdZCe! Df$Eh%Gi*Hj( Il) Km-Ln0Mp1 Oq 2Pr4 Qt5Ru6Tv8Ux9Vy aXz cYAdZCe!Dg$E h%G i*Hk(Il) K m+Ln0Mp1O q3P r4Qt5Su6Tv8U x9WyaXzcYBd# Ce!Dg$Fh% Gi* Hk(Jl) Km+Lo0 Mp1Oq3Ps4Qt5 Su7Tv8Ux9Wyb XzcYBd#Cf! Dg $F hGi*Hk(Jl -Km+Lo0N p1Oq 3Ps4Rt5Su7Tw 8U x9WybXAcYB d#Cf!Eg$F hG j*Hk(Jl-Kn+Lo0Np2O q3Ps4Rt 6Su7Tw8Vx9WybXAcZBd#Cf!E g%FhGj*Ik(J l-Kn+Mo0Np2O r3Ps4Rt6Sv7T w8Vxa WzbXAcZ Be#Cf! Eg%Fi Gj*Ik) Jl-Kn+ Mo1Np2Or3Qs4 Rt6Sv7Uw8VxaWzbYAcZBe#Df !Eg%FiHj*Ik )3 / 6Jm-Kn+Mo1Nq2Or3Qs5Rt6Sv 7Uw9Vx aWzbYA dZBe#Df$Eg%FiHj(Ik) Jm-L n+Mo1Nq2Pr3Q s5Ru6Sv7Uw9VyaWzbYAdZCe# Df$Eh %FiHj( Il) Jm-Ln0Mo1Nq2Pr4Qs5Ru6 Tv8Uw9VyaXzb YAdZCe!Df$Eh%GiHj(Il) Km -Ln0Mp 1Nq2Pr 4Qt5Ru6Tv8Ux9VyaXzcYAdZC e!Dg$E h%Gi*H j(Il) Km+Ln0Mp1Oq2Pr4Qt5S u6Tv8U x9WyaX zcYBdZCe! Dg$Fh%Gi*Hk(Il) Km+Lo0Mp1Oq3 Pr4Qt5Su7Tv8Ux9WybXzcYBd #Ce!D g$FhGi *Hk(Jl ) Km+Lo0Np1Oq3Ps4R t5Su7Tw8Ux9T v7Uw9VyaXzbYAdZCe#Df$Eh% GiHj( Il) Jm- Ln0Mp1Nq2Pr4Qs5Ru6Tv8Uw9 VyaXzcY AdZCe !Df$Eh%Gi*Hj(Il) Km-Ln0Mp 1Oq2Pr 4Qt5Ru 6Tv8Ux9VyaXzcYBdZCe! Dg$E h%Gi*Hk(Il) K m+Ln0Mp1Oq3Pr4Qt5Su6Tv8U x9WyaX zcYBd# Ce!Dg$Fh%Gi*Hk(Jl) Km+Lo0 Mp1Oq3P s4Qt5 Su7Tw8Ux9Wyb X zcYBd#Cf!Dg $FhGi*Hk(Jl -Km+Lo0Np1Oq3Ps4Rt5Su7Tw 8Vx9Wy bXAcYB d#Cf! Eg$FhGj*Hk(Jl-Kn+L o0Np2O q3Ps4R t6Su7Tw8VxaWybXAcZBd#Cf! Eg%Fh Gj*Ik( Jl-Kn+Mo0Np2Or3Ps4Rt6Sv7 Tw8Vxa WzbXAc ZBe#Cf!Eg%FiGj*Ik) Jl-Kn +Mo1Np2Or3Qs 5Rt6Sv7Uw8Vx a WzbYAcZBe#D f! Eg%FiHj*Ik) Jm-Kn+Mo1 Nq 2Or3Qs5Ru6 Sv7Uw9Vx aWzb YAdZBe#Df$Eg %F iHj(Ik) Jm -Ln+Mo1N q2Pr 3Qs5Ru6Tv7Uw 9VyaWzbYAdZC e#Df$Eh%FiH j(Il) Jm-Ln0M o1Nq2Pr4Qs5R u6Tv8Uw9VyaX zbYAdZCe! Df$ E h%GiHj(Il) Km-Ln0Mp 1Oq2 Pr4Qt5Ru6Tv8 U x9VyaXzcYAd ZCe!Dg$E h%Gi *Hj(Il) Km+Ln 0Mp1Oq3Pr4Qt 5Su6Tv8Ux9Wy aXzcYBdZCe!D g $Fh%Gi*Hk(I l)---------------------------------------------------------------最新资料推荐------------------------------------------------------ Km+Lo0Mp1O q3Ps4Qt5Su7T v 8Ux9WybXzcY Bd#Ce! D g$Fh Gi*Hk(Jl) Km+ L o0Np1Oq3Ps4 Rt5Su7T w8Ux9 WybXAcYBd#Cf !Dg$FhGj*Hk (Jl-Km+ Lo0Np 2Oq3Ps4Rt6Su 7Tw8Vx9WybXA cZBd#Cf ! Eg$F hGj*Ik(Jl-K n+Mo0Np2Or3P s4Rt6Sv 7Tw8V xaWybXAcZBe# C f!Eg% FhGj*Ik) Jl-K n+Mo 1Np2Or3Qs4Rt 6Sv 7Uw8VxaWz bXAcZBe#D f!E g%FiGj*Ik) J m- Kn+Mo1Nq2O r3Qs5Rt6Sv7U w9VxaWzbYAcZ Be#Df$Eg%Fi Hj*Ik) Jm-Ln+ Mo1Nq2Pr3Qs5 Ru6Sv7Uw9Vya WzbYAdZBe#Df $Eh%FiHj(Il ) Jm -Ln0Mo1Nq 2Pr4Qs5Ru 6Tv 7Uw9VyaXzbYA dZCe#Df$Bd#C f! Eg%FhGj*I k(Jl-Kn+Mo0Np2O r3Qs4Rt 6Sv7Tw8VxaWzbXAcZBe#Cf!E g%FiGj*Ik) J l-Kn+Mo1Np2O r3Qs5Rt6Sv7U w8Vxa WzbYAcZ Be#Df! Eg%Fi Hj*Ik) Jm-Kn+ Mo1Nq2Or3Qs5 Ru6Sv7Uw9VxaWzbYAdZBe#Df $Eg%FiHj(Ik ) Jm-Ln0Mo1Nq2Pr3Qs5Ru6Tv 7Uw9Vy aWzbYA dZCe#Df$Eh%FiHj(Il) Jm-L n0Mp1Nq2Pr4Q s5Ru6Tv8Uw9VyaXzbYAdZCe! Df$Eh %GiHj( Il) Km-Ln0Mp1Oq2Pr4Qt5Ru6 Tv8Ux9VyaXzc YAdZCe!Dg$Eh%Gi*Hj(Il) Km +Ln0Mp 1Oq3Pr 4Qt5Su6Tv8Ux9WyaXzcYBdZC e!Dg$F h%Gi*H k(Jl) Km+Lo0Mp1Oq3Ps4Qt5S u7Ts5R u6Sv7U w9VyaWzbYAdZBe#Df$Eh%Fi Hj(Ik)Jm-Ln0 Mo1Nq2Pr4Qs5Ru6Tv7Uw9Vya XzbYA dZCe#Df $Eh%Gi Hj(Il) Jm-Ln0Mp1N q2Pr4Qt5Ru6T v8Uw9VyaXzcYAdZCe!Df$Eh% Gi*Hj( Il) Km- Ln0Mp1Oq2Pr4Qt5Su6Tv8Ux9 VyaXzcY BdZCe !Dg$Eh%Gi*Hk(Il) Km+Ln0Mp 1Oq3Pr4Qt5Su5 / 67Tv8Ux9WyaXzcYBd#Ce! Dg$F h%Gi*Hk (Jl) K m+Lo0Np1Oq3Ps4Qt5Su7Tw8U x9WybX zcYBd# Cf!Dg$FhGi*Hk(Jl-Km+Lo0 Np2Oq3Ps4Rt5 Su7Tw8Vx9WybXAcYBd#Cf!Eg $FhGj*Hk(Jl -Kn+Lo0Np2Or3Ps4Rt6Su7Tw 8VxaWy bXAcZB d#Cf! Eg%FhG j*Ik(Jl-Kn+M o0Np2O r3Qs4R t6Sr4Qt5Su6Tv8Ux9WyaXzcY BdZCe!Dg$Fh% Gi*Hk(Il) Km+Lo0Mp1Oq3Pr4 Qt5Su7Tv8Ux9 WybXzcYBd#Ce! Dg$FhGi*Hk (Jl) Km +Lo0Np 1Oq3Ps4Rt5Su7Tw8Ux9WybXA cYBd#Cf!Dg$FhGj*Hk(Jl- K m+Lo0Np2Oq3 Ps4Rt6Su7Tw8 Vx9WybXAcZBd # Cf!Eg$FhGj *Ik(Jl- Kn+Lo 0Np2Or3Ps4Rt 6Sv7Tw8VxaWy bXAcZBe#Cf!E g%FhGj*Ik) J l-Kn+Mo0Np2O r3Qs4Rt6Sv7U w8VxaWzbXAcZ B e#Df!Eg%Fi Gj*Ik) J m-Kn+ Mo1Nq2Or3Qs5 R t6Sv7Uw9Vxa WzbYAcZB e#Df $Eg%Ff! Dg$Fh Gi*Hk(Jl-Km +Lo0Np1Oq3Ps 4Rt5Su7Tw8Vx 9W ybXAcYBd#C f!Eg$Fh Gj*H k(Jl-Kn+Lo0N p2Oq3Ps4Rt6S u7Tw8Vxa WybX AcZBd#Cf!Eg% F hGj*Ik(Jl- Kn+Mo0N p2Or3 Ps4Rt6Sv7Tw8 V xaWzbXAcZBe #Cf!Eg% FiGj *Ik) Jl-Kn+Mo 1Np2Or3Qs5Rt 6Sv7Uw8V xaWz bYAcZBe#Df!E g%FiHj*Ik) J m-Kn+Mo1Nq2O r3Qs5Ru6Sv7U w9VxaW zbYAdZBe#Df$Eg %Fi Hj(Ik) Jm-Ln +M o1Nq2Pr3Qs 5Ru6Tv7U w9Vy aWzbYAdZCe#D f$Eh%FiHj(I l) Jm-Ln0Mo1N q2Pr4Qs5Or3P s4Rt6Su7Tw8V xaWybXAcZ Be# Cf! Eg%FhGj* I。

matlab最小二乘法拟合曲线代码

matlab最小二乘法拟合曲线代码

在Matlab中使用最小二乘法进行曲线拟合是一项非常常见的任务。

最小二乘法是一种数学优化技术,用于对一组数据进行曲线拟合,以便找到最能代表数据趋势的曲线。

在本文中,我将深入探讨Matlab中最小二乘法拟合曲线的代码实现,并共享我对这一主题的个人理解。

让我们来了解一下什么是最小二乘法。

最小二乘法是一种数学优化技术,用于寻找一组数据的最佳拟合曲线。

在Matlab中,可以使用内置的polyfit函数来实现最小二乘法曲线拟合。

这个函数的基本语法是:```matlabp = polyfit(x, y, n)```其中,x和y分别是数据点的横纵坐标,n是要拟合的多项式次数。

这个函数将返回多项式系数向量p,使得拟合多项式最小化了实际数据点与拟合曲线之间的误差平方和。

举个例子,假设我们有一组数据点(x, y),我们可以使用polyfit函数来进行二次多项式拟合:```matlabx = [1, 2, 3, 4, 5];y = [2, 3, 4, 3, 5];p = polyfit(x, y, 2);```在这个例子中,p将会是一个包含三个元素的向量,分别代表二次多项式的系数a、b和c。

通过这些系数,我们就可以得到拟合的二次多项式方程。

除了使用polyfit函数,我们还可以使用polyval函数来计算拟合曲线上的点。

其基本语法形式是:```matlaby_fit = polyval(p, x)```在这个例子中,p是通过polyfit得到的多项式系数向量,x是我们要计算拟合曲线上的点的横坐标,y_fit将是这些点的纵坐标。

另外,Matlab还提供了许多其他的拟合函数和工具箱,用于不同类型的数据和曲线拟合需求。

通过调用这些函数和工具箱,我们可以实现更复杂的曲线拟合任务,满足不同数据类型和拟合目标的需求。

总结来说,Matlab提供了丰富的工具和函数,用于实现最小二乘法曲线拟合。

通过调用polyfit函数和其他拟合工具箱,我们可以轻松地对一组数据进行曲线拟合,从而得到最能代表数据趋势的曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲线拟合的最小二乘法
学院:光电信息学院 姓名:赵海峰 学号: 200820501001
一、曲线拟合的最小二乘法原理:
由已知的离散数据点选择与实验点误差最小的曲线
S( x) a 0 0 ( x) a 1 1(x) ... a n n ( x) 称为曲线拟合的最小二乘法。

若记
m
( j , k )
i
(x i ) j (x i ) k (x i ), 0
m
(f , k )
i0
(x i )f (x i ) k (x i ) d k
n
上式可改写为 ( k ,
jo
j
)a j d k ; (k
0,1,..., n) 这个方程成为法方程,可写成距阵
形式
Ga d
其中 a (a 0,a 1,...,a n )T ,d (d 0,d 1,...,d n )T ,
、 数值实例:
下面给定的是乌鲁木齐最近 1个月早晨 7:00左右(新疆时间 )的天气预报所得 到的温度数据表,按照数据找出任意次曲线拟合方程和它的图像。

它的平方误差为: ||
2
|
2
] x ( f
(2008 年 10 月 26~11 月 26)
F 面应用Matlab 编程对上述数据进行最小二乘拟合
三、Matlab 程序代码:
x=[1:1:30];
y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7,6,5,3,1];
%三次多项式拟合% %九次多项式拟合%
%十五次多项式拟合%
%三次多项式误差平方和 % %九次次多项式误差平方和 % %十五次多项式误差平方和 % %用*画出x,y 图像%
%用红色线画出x,b1图像% %用绿色线画出x,b2图像%
%用蓝色o 线画出x,b3图像%
四、数值结果:
不同次数多项式拟和误差平方和为:
r1 = 67.6659 r2 = 20.1060 r3 = 3.7952
r1、r2、r3分别表示三次、九次、十五次多项式误差平方和
拟和曲线如下图:
a 仁polyfit(x,y,3) a2= polyfit(x,y,9) a3= polyfit(x,y,15) b1= polyval(a1,x) b2= polyval(a2,x) b3= polyval(a3,x) r1= sum((y-b1).A
2) r2= sum((y-b2).A2) r3= sum((y-b3).A2) plot(x,y,'*') hold on plot(x,b1, 'r') hold on
plot(x,b2, 'g') hold on plot(x,b3, 'b:o')
14
0 8 6 4 2 0
n
»

30
上图中*代表原始数据,红色曲线代表三次多项式拟合曲线,绿色曲线代表九次多项式拟合曲线,蓝色0线代表十五次多项式拟合曲线。

五、结论:
以上结果可以看到用最小二乘拟合来求解问题时,有时候他的结果很接近实际情况,有时候跟实际情况里的太远,因为所求得多项式次数太小时数据点之间差别很大,次数最大是误差最小但是有时后不符合实际情况,所以用最小二乘法时次数要取合适一点。

从上面的拟合中也可以得到多项式拟合误差平方和随着拟合多项式次数的增加而逐渐减小,拟合的曲线更靠近实际数据。

拟合更准确。

相关文档
最新文档