最新初中数学四边形技巧及练习题

合集下载

中考数学复习《四边形》经典题型及测试题(含答案)

中考数学复习《四边形》经典题型及测试题(含答案)

中考数学复习《四边形》经典题型及测试题(含答案)命题点分类集训命题点1 平行四边形的判定与计算【命题规律】1.考查内容:①平行四边形的性质及其相关计算;②平行四边形的判定.2.考查形式:①根据平行四边形的性质考查结论判断;②利用平行四边形的性质求角度、线段或面积;③添加条件使四边形为平行四边形.3.考查题型:性质在选择和填空题中考查居多,判定题近年来多在解答题中考查,有时会在二次函数压轴题中探究平行四边形的存在问题.【命题预测】平行四边形是四边形中主要的图形之一,性质与判定常常考查,是近年命题的重点. 1. 已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OC C . ∠BOE =∠OBA D . ∠OBE =∠OCE1. D第1题图 第2题图2. 如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC =2,▱ABCD 的周长是14,则DM 等于( )A . 1B . 2C . 3D . 42. C 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABM =∠CMB ,∵BM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠CBM =∠CMB ,∴CB =MC =2,∴AD =BC =2,∵▱ABCD 的周长是14,∴AB =CD =5,∴DM =DC -MC =3.3. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形. 3. AD ∥BC (答案不唯一)第3题图 第4题图 第5题图 4. 如图,▱ABCD 中,AC =8,BD =6,AD =a ,则a 的取值范围是________.4. 1<a <7 【解析】如解图,对角线AC ,BD 相交于点O ,则OA =12AC =4,OD =12BD =3,在△OAD中,OA -OD <AD <OA +OD ,即1<a <7.5. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________. 5. 50°6. 如图,将▱ABCD 的AD 边延长至点E ,使DE =12AD ,连接CE ,F 是BC 边的中点,连接FD.(1)求证:四边形CEDF 是平行四边形; (2)若AB =3,AD =4,∠A =60°,求CE 的长.6. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴DE ∥FC.∵F 是BC 的中点, ∴FC =12BC =12AD ,∵DE =12AD ,∴FC =DE ,∴四边形CEDF 是平行四边形. (2)解:如解图,过点D 作DH ⊥BC 于点H. 由(1)知四边形DECF 是平行四边形,∴DF =CE.∵四边形ABCD 是平行四边形,∠A =60°,AB =3,AD =4, ∴BC =4,CD =3,∠BCD =60°, 在Rt △DHC 中,HC =DC·cos ∠HCD =32,DH =DC ·sin ∠HCD =332,∵F 是BC 的中点, ∴FC =2,∴FH =FC -HC =2-32=12,在Rt △DFH 中,由勾股定理得DF =DH 2+FH 2=(332)2+(12)2=7,∴CE =7.命题点2 矩形的判定与计算【命题规律】考查形式:①利用矩形性质,结合勾股定理求线段长或面积;②矩形的判定,一般在解答题中考查,也常在二次函数综合题中考查矩形的存在性问题;③矩形折叠的相关计算与证明(见命题点6:图形折叠的相关计算).【命题预测】矩形性质将勾股定理、全等、相似等重要知识综合考查,是全国命题趋势之一. 7. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是( )A . △AFD ≌△DCEB . AF =12AD C . AB =AF D . BE =AD -DF7. B 【解析】逐项分析如下表:选项逐项分析正误A∵四边形ABCD 是矩形,AF ⊥DE ,∴∠C =90°=∠AFD ,AD ∥BC ,∴∠ADF =∠CED ,∵AD =DE ,∴△AFD ≌△DCE (AAS)√B只有当∠ADF =30°时,才有AF =12AD 成立×C由△AFD ≌△DCE 可知,AF =DC ,∵矩形ABCD 中,AB =DC ,∴AB =AF√D∵△AFD ≌△DCE ,∴DF =CE ,∴BE =BC -CE =AD -DF √8. 已知矩形的对角线AC 与BD 相交于点O ,若AO =1,那么BD =________. 8. 2第7题图 第8题图 第9题图 9. 如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是________.9. 3 【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3. 10. 如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线AF 交CE 的延长线于F ,且AF =BD ,连接BF. (1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.10. (1)证明:∵点E 是AD 的中点, ∴AE =DE. ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE , ∴△EAF ≌△EDC(AAS ), ∴AF =DC. ∵AF =BD , ∴BD =DC ,即D 是BC 的中点.(2)解:四边形AFBD 是矩形.证明如下: ∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形.∵AB =AC ,又由(1)可知D 是BC 的中点, ∴AD ⊥BC ,∴四边形AFBD 是矩形.11. 如图,点P 在矩形ABCD 的对角线AC 上,且不与点A ,C 重合,过点P 分别作边AB ,AD 的平行线,交两组对边于点E ,F 和点G ,H. (1)求证:△PHC≌△CFP;(2)证明四边形PEDH 和四边形PFBG 都是矩形,并直接写出它们面积之间的关系.11. (1)证明:∵四边形ABCD 是矩形,∴DC ∥AB ,AD ∥BC ,∠DCB =90°.∵EF ∥AB ,GH ∥AD ,∴EF ∥CD ,GH ∥BC , ∴四边形PFCH 是矩形, ∴∠PHC =∠PFC =90°,PH =CF ,HC =PF , ∴△PHC ≌△CFP(SAS ).(2)证明:由(1)知AB ∥EF ∥CD , AD ∥GH ∥BC ,∴四边形PEDH 和四边形PGBF 都是平行四边形, ∵四边形ABCD 是矩形, ∴∠D =∠B =90°,∴四边形PEDH 和四边形PGBF 都是矩形, ∴S 矩形PEDH =S 矩形PGBF .命题点3 菱形的判定与计算【命题规律】1.考查内容和形式:①根据菱形性质判断结论正误;②菱形的判定;③根据菱形的性质求角度、周长和面积;④与二次函数压轴题结合考查菱形的存在性问题.2.三大题型均会出现.【命题预测】菱形是特殊平行四边形中的重要内容,是中考常考知识,对菱形的性质与判定应做到牢固掌握.12. 如图,在▱ABCD 中,对角线AC 与BD 交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是( ) A . AB =AD B . AC ⊥BD C . AC =BD D . ∠BAC =∠DAC12. C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.第12题图 第13题图13. 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12) C . (65,35) D . (107,57)13. D 【解析】如解图,连接CA 、AD ,CA 与OB 相交于点E ,过点E 作EF ⊥OA ,交OA 于点F .由题知点C 关于OB 的对称点是点A ,AD 与BO 的交点即为点P .根据菱形的性质,菱形的对角线互相垂直且平分两组对角,可知△COE ∽△EOF ,∴CO EO =EO OF ,∵OC =OA =5,OE =OB 2=25,∴OF =OE 2CO =(25)25=4,根据勾股定理可得EF =OE 2-OF 2=(25)2-42=2,点E 的坐标为(4,2),易得直线OE 的函数解析式为y =12x ,直线AD 的函数解析式是y =-15x +1,联立得:⎩⎨⎧y =12x y =-15x +1,解得⎩⎨⎧x =107y =57,∴点P 的坐标为(107,57).14. 如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________. 14. 16 【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.第14题图 第15题图15. 如图,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是________.15. 24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB 中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD=12×8×6=24. 16. 在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为________.16. 105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°;(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.17. 如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF∥BC,连接DE 并延长交AF 于点F ,连接FC. 求证:四边形ADCF 是菱形.17. 证明:∵∠B =90°,AC =2AB , ∴sin ∠ACB =12,∴∠ACB =30°, ∴∠CAB =60°, ∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30°,∠CAD =∠ACD ,∴AD =CD , ∵AF ∥CD ,∴∠DCE =∠FAE ,∠AFE =∠CDE , 又∵AE =CE ,∴△AFE ≌△CDE(AAS ), ∴AF =CD , 又AF ∥CD ,∴四边形ADCF 是平行四边形, 又AD =CD ,∴四边形ADCF 是菱形.命题点4 正方形的判定与计算【命题规律】正方形的考查相对比较综合,难度较大,常在选择或填空的压轴题位置出现,考查知识点综合性强,涉及到正方形面积、边长和周长的计算.【命题预测】正方形综合了所有特殊四边形的性质,因此以正方形为背景出题更具有对知识的检验性,倍受命题人青睐,考生应加以关注.18. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为( )A . 2B . 2 2C . 2+1D . 22+118. B 【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF=(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2. 19. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC⊥BD,请添加一个条件:________,使得▱ABCD 为正方形. 19. ∠BAD =90°(答案不唯一)20. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS 正方形AEFG的值等于________.20. 89【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM=MB ,∴正方形MNPQ 的边长为a ,正方形AEFG 的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a ×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a 2=89.第20题图 第21题图21. 如图,正方形ABCD 的边长为22,对角线AC ,BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM⊥BE 于点M ,交BD 于点F ,则FM 的长为________. 21.55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO 中,⎩⎪⎨⎪⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO ,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD 的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM1=15,∴FM =55.22. 如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一条直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H. (1)求sin ∠EAC 的值; (2)求线段AH 的长.22.解:(1)由题意知EC =2,AE =10,如解图,过点E 作EM ⊥AC 于点M , ∴∠EMC =90°,易知∠ACD =45°, ∴△EMC 是等腰直角三角形, ∴EM =2,∴sin ∠EAC =EM AE =55.(2)在△GDC 与△EDA 中,⎩⎪⎨⎪⎧DG =DE ∠GDC =∠EDA DC =DA, ∴△GDC ≌△EDA(SAS ),∴∠GCD =∠EAD , 又∵∠HEC =∠DEA ,∴∠EHC =∠EDA =90°, ∴AH ⊥GC ,∵S △AGC =12×AG ×DC =12×GC ×AH ,∴12×4×3=12×10×AH , ∴AH =6510.命题点5 多边形及其性质【命题规律】1.考查内容:①多边形的内外角和公式;②正多边形的有关计算.2.考查形式:①已知正多边形一个内角或外角的度数或内角之间的关系求边数;②已知正多边形的边数求内角度数;③求多边形的内外角和.【命题预测】多边形是三角形和四边形的延伸拓展,也是中考命题不容忽视的知识点. 23. 六边形的内角和是( )A . 540°B . 720°C . 900°D . 1080°23. B24. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A . 7B . 7或8C . 8或9D . 7或8或924. D 【解析】分类讨论:(1)切去一个角,减少一条边,设减少一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是9;(2)切去一个角,增加一条边,设增加一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是7;(3)切去一个角,边数无改变,设边数没有改变时的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是8,综上所述,原多边形的边数是9,7,8都符合题意,答案选择D.25. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.25. 6 【解析】设这个多边形的边数为n ,则内角和为(n -2)·180°,外角和为360°,则根据题意有:(n -2)·180°=2×360°,解得n =6. 26. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.26. 8 【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.命题点6 图形折叠的相关证明与计算【命题规律】考查内容和形式:图形折叠计算以矩形折叠考查居多,常考查:①图形的折叠计算角度;②图形的折叠计算线段长或边长;③图形折叠的证明和计算结合;④图形折叠的操作探究.【命题预测】图形折叠将原有图形变得可操作化,且又很好地引入了对称知识,使问题升华,有效地考查学生的知识迁移能力和掌握程度,是全国命题的主流趋势之一,值得每位考生关注.27. 如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .∠DAB ′=∠CAB′ B .∠ACD =∠B′CDC .AD =AE D .AE =CE27. D28. 如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A . 2B . 3C . 2D . 128. B第28题图 第29题图29. 如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处.若∠2=40°,则图中∠1的度数为( )A . 115°B . 120°C . 130°D . 140°29. A 【解析】由折叠的性质知∠EA ′B ′=∠A =90°,∵∠2=40°,∴∠B ′A ′C =50°,∴∠EA ′D =40°,∠DEA ′=50°,∴∠AEA ′=130°,∴∠AEF =∠FEA ′=12∠AEA ′=65°,∵AD ∥BC ,∴∠1=180°-65°=115°.30. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°30. C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎪⎨⎪⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.第30题图 第31题图 第32题图31. 如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB =7,BC =6,则△BCD 的周长为________. 31. 13 【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC +CD +BD =BC +AD +BD =BC +BA =6+7=13.32. 如图,在▱ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,A D′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.32. 36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED=180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.33.如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.33. 解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,此时CE最小,且CE=CD=3;如解图②,当点G与点A重合时,CE最大.设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.34.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.34. (1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D=60°,由折叠性质可知,∠D=∠AD′E=60°,∴∠AD′E=∠B=60°,∴ED′∥BC,又∵EC∥D′B,∴四边形BCED′是平行四边形,∴ED′=BC=AD=1,∴DE=ED′=1,又DC=AB=2,∴EC =1, ∴EC =ED′,∴四边形BCED′是菱形. (2)解:如解图所示,由折叠性质PD′=PD ,BD 之长即为所求, 作DG ⊥BA 的延长线于点G , ∵∠DAB =120°, ∴∠DAG =60°, ∵∠G =90°, ∴∠ADG =30°,在Rt △ADG 中,AD =1, ∴AG =12,DG =32,∵AB =2, ∴BG =52,在Rt △BDG 中,由勾股定理得:BD 2=BG 2+DG 2=7, ∴BD =7,即PD′+PB 的最小值为7.方法指导“将军饮马”模型:直线同侧两定点,在直线上确定一点使该点到两定点的距离和最小.作法:作其中一点关于直线的对称点,连接另一点和对称点的线段即是最短距离和;最短距离计算方法:构造以最短距离线段为斜边的直角三角形,利用勾股定理求解.中考冲刺集训一、选择题1.关于▱ABCD 的叙述,正确的是( )A . 若A B⊥BC,则▱ABCD 是菱形B . 若AC⊥BD,则▱ABCD 是正方形C . 若AC =BD ,则▱ABCD 是矩形 D . 若AB =AD ,则▱ABCD 是正方形2.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A . a >bB . a =bC . a <bD . b =a +180°3.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m).则点E 的坐标是( )A . (2,-3)B . (2,3)C . (3,2)D . (3,-2)第3题图 第4题图4.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( )A . 10B . 14C . 20D . 225.菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AD ,CD 边上的中点,连接EF.若EF =2,BD =2,则菱形ABCD 的面积为( )A . 2 2B . 4 2C . 6 2D . 8 2第5题图 第6题图 第7题图6.如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( )A . 3 cmB . 4 cmC . 5 cmD . 8 cm7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE∶EC =2∶1,则线段CH 的长是( )A . 3B . 4C . 5D . 68.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF∥AD,与AC 、DC 分别交于点G 、F2H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题9.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为________.10.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =8,BD =6,则菱形ABCD 的高DH =________.第9题图 第10题图 第11题图11.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE.如果∠ADB=30°,则∠E=________度. 12.如图,正方形ABCO 的顶点C ,A 分别在x 轴,y 轴上,BC 是菱形BDCE 的对角线,若∠D=60°,BC =2,则点D 的坐标是________.第12题图 第13题图 第14题图 13.如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________°.14.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为________cm . 15.如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论: ①∠EBG =45°;②△DEF∽△ABG;③S △ABG =32S △FGH ;④AG +DF =FG.其中正确的是______________.(把所有正确结论的序号都选上)第15题图 第16题图16.如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm . 三、解答题17.如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF 、CE. 求证:AF∥CE.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形;(2)已知DE=4,FN=3,求BN的长.20.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ长.22.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.23.如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE,连接BD 、CE 交于点F. (1)求证:△AEC≌△ADB;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.24.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG. (1)求证:四边形EFDG 是菱形;(2)探究线段EG 、GF 、AF 之间的数量关系,并说明理由; (3)若AG =6,EG =25,求BE 的长.答案与解析:1. C2. B3. C4. B5. A 【解析】∵E ,F 分别是 AD ,CD 边上的中点,即EF 是△ACD 的中位线,∴AC =2EF =22,则菱形ABCD 的面积=12AC ·BD =12×22×2=2 2.6. B 【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.7. B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.8. D 【解析】逐项分析如下表:序号逐项分析正误难点突破对于多选项判断正误性的题目,几乎每个选项之间都是紧密联系的,单独判断其中每个的正误或跳跃式判断往往使题目变得复杂而无法求解,本题目难点在于④中,需将S △FDH 与已知条件AE AB =23联系起来,并用含相同未知数的代数式分别表示出S △EDH 和S △DHC ,继而求解.9. 110° 【解析】 ∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠CAB =∠1=20°,∵BE ⊥AB 交对角线AC 于点E ,∴∠ABE =90°,∴∠2=∠CAB +∠ABE =20°+90°=110°.10. 4.8 【解析】∵S =1AC·BD =2AB·DH ,∴AC ·BD =2AB·DH.∵四边形ABCD 是菱形,∴∠AOB =90°,AO =12AC =4,BO =12BD =3,∴在Rt △AOB 中,AB =42+32=5,∴DH =8×62×5=4.8.第11题解图11. 15 【解析】如解图,连接AC.∵四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又∵AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =∠ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =∠CAE =12∠ACB=15°.第12题解图12. (3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).13. 75 【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.第14题解图14. 13 【解析】如解图,连接AC 、BD 交于O ,则有12AC·BD =120,∴AC ·BD =240,又∵菱形对角线互相垂直平分,∴2OA ·2OB =240,∴ OA ·OB =60,∵AE 2=50, OA 2+OE 2= AE 2,OA =OE ,∴OA =5,∴OB =12,∴AB =OA 2+OB 2=122+52=13.15. ①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴ED FD =43≠ABAG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG =5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.第16题解图16.233或33【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎪⎨⎪⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm . 17. 证明:∵四边形ABCD 是平行四边形,第17题解图∴AD ∥BC ,AD =BC , ∴∠1=∠2, 又∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.∴△ADF ≌△CBE(SAS ). ∴∠AFD =∠CEB ,∴AF ∥CE.18. (1)【思路分析】根据四边形ABCD 是菱形,∠ABC ∶∠BAD =1∶2,可求出∠DBC 的度数,其正切值可求出.解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC ,∴∠ABC +∠BAD =180°, 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan 30°=33. (2)【思路分析】由BE ∥AC ,CE ∥BD 可知四边形BOCE 是平行四边形,再结合菱形对角线垂直的性质即可证明四边形BOCE 是矩形.证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,即∠BOC =90°, ∵BE ∥AC ,CE ∥BD , ∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,且∠BOC =90°,∴四边形OBEC 是矩形.19. (1)证明:∵AE ⊥BD ,CF ⊥BD , ∴AM ∥CN ,又∵四边形ABCD 是平行四边形, ∴MC ∥AN ,∴四边形CMAN 是平行四边形.(2)解:∵四边形ABCD 是平行四边形, ∴∠ADE =∠CBF ,AD =CB , 又∵∠AED =∠CFB =90°, ∴△AED ≌△CFB(AAS ), ∴DE =BF =4,∴在Rt △BFN 中,BN =32+42=5.20. (1)【思路分析】要证∠CEB =∠CBE ,结合CE ∥DB ,可得到∠CEB =∠DBE ,从而只需证明∠CBE =∠DBE ,结合△ABC ≌△ABD 即可得证.证明:∵△ABC ≌△ABD , ∴∠ABC =∠ABD , ∵CE ∥BD ,∴∠CEB =∠DBE ,∴∠CEB =∠CBE.(2)证明:∵△ABC ≌△ABD ,∴BC =BD , 由(1)得∠CEB =∠CBE , ∴CE =CB , ∴CE =BD , ∵CE ∥BD ,∴四边形BCED 是平行四边形, ∵BC =BD ,∴四边形BCED 是菱形.21. (1)证明:∵四边形ABCD 是正方形, ∴AB =AD, ∠BAQ +∠DAP =90°=∠DAB , ∵DP ⊥AQ ,∴∠DAP +∠ADP =90°, ∴∠BAQ =∠ADP.在△DAP 和△ABQ 中, ⎨⎪⎧∠APD =∠AQB =90°∠ADP =∠BAQ ,∴△DAP ≌△ABQ(AAS ),∴AP =BQ.(2)解:①AQ 和AP ;②DP 和AP ;③AQ 和BQ ;④DP 和BQ.【解法提示】①由题图直接得:AQ -AP =PQ ;②∵△ABQ ≌△DAP ,∴AQ =DP ,∴DP -AP = AQ -AP =PQ ;③∵△ABQ ≌△DAP ,∴BQ =AP ,∴AQ -BQ =AQ -AP =PQ ;④∵△ABQ ≌△DAP ,∴DP =AQ ,BQ =AP ,∴DP -BQ =AQ -AP =PQ.22. (1)证明:在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AB =AD ∠ABE =∠ADF =90°EB =FD, ∴△ADF ≌△ABE(SAS ).(2)解:∵AB =3,BE =1,∴AE =10,EC =4,∴ED =CD 2+EC 2=5,设AH =x ,EH =y ,在Rt △AHE 和Rt △AHD 中,⎩⎪⎨⎪⎧x 2+y 2=10x 2+(5-y )2=9, 解得,x =1.8,y =2.6,∴tan ∠AED =AH EH =x y =1.82.6=913. 23. (1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,AE =AC ,∠BAC =∠DAE ,∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB ,在△AEC 和△ADB 中∵⎩⎪⎨⎪⎧AD = AE ∠EAC =∠DAB AB =AC, ∴△AEC ≌△ADB(SAS ).(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF ,∴∠BAC =∠ABD ,又∵∠BAC =45°,∴∠ABD =45°,又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,∴∠DAB =90°,又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.24. (1)【思路分析】根据折叠的性质,易得DF =EF ,DG =EG ,∠AFD =∠AFE ,再由EG ∥DC ,可得∠EGF =∠AFD ,从而得出EG =EF.根据四条边都相等的四边形是菱形得证;证明:由折叠的性质可得,EF =FD ,∠AEF =∠ADF =90°,第24题解图∠EFA =∠DFA ,EG =GD.∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形.(2)【思路分析】由(1)可知EG =EF ,连接DE ,则DE 与GF 相互垂直平分,证得Rt △FHE ∽Rt △FEA ,列比例式,结合FH =12GF 得到EG 、GF 、AF 的关系; 解:如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE. ∵∠FEH =∠FAE =90°-∠EFA ,∴Rt △FEH ∽Rt △FAE ,∴EF FH =AF EF,即EF 2=FH·AF , ∴EG 2=12GF·AF. (3)【思路分析】把AG ,EG 代入(2)中的关系式,求得GF ,AF 的值,根据勾股定理求得AD ,DE ,再证Rt △ADF ∽Rt △DCE ,可求出EC ,从而可求出BE 的值.解:∵AG =6,EG =25,EG 2=12GF·AF , ∴(25)2=12(6+GF)·GF ,∴GF =4, ∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8. ∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∴Rt △ADF ∽Rt △DCE ,∴EC DF =DE AF ,即EC 25=810, ∴EC =855, ∴BE =BC -EC =AD -EC =45-855=1255.。

四边形的性质及计算练习解析

四边形的性质及计算练习解析

四边形的性质及计算练习解析四边形是平面几何中最基本的图形之一,具有丰富的性质和计算方法。

本文将详细介绍四边形的性质,并通过一系列计算练习来解析四边形相关的问题。

一、四边形的性质1. 对角线:四边形的对角线是相邻顶点之间的线段。

任意四边形有两条对角线,可分为两组:一组是相交于一点的非垂直对角线,另一组是不相交的垂直对角线。

2. 对顶角:四边形的对顶角是相对的内角,连接相邻边的射线夹角称为对顶角。

对顶角的和为180度。

3. 平行四边形:具有两对平行边的四边形称为平行四边形。

平行四边形的对边相等,对角线互相平分。

4. 矩形:具有四个直角的平行四边形称为矩形。

矩形的对边相等,对角线相等。

5. 正方形:具有四个相等边和四个直角的矩形称为正方形。

正方形的对边相等,对角线相等且相互垂直。

6. 菱形:具有四个相等边的平行四边形称为菱形。

菱形的对边相等,对角线相互垂直且互相平分。

二、四边形的计算练习解析1. 计算四边形的面积:四边形的面积可以通过不同的方法进行计算,取决于已知条件。

以下是常见的计算方法:- 根据高和底边长计算:面积 = 高 ×底边长- 根据对角线和夹角计算:面积 = 0.5 ×对角线1 ×对角线2 × sin(夹角)- 根据边长计算(仅适用于特殊四边形):面积 = 0.5 ×边长1 ×边长2 × sin(对角线夹角)2. 计算四边形的周长:四边形的周长是四个边长的总和,可根据已知条件直接相加得出。

3. 解析四边形的角度问题:根据四边形的性质和已知条件,可以解析出四边形中各个角度的度数。

- 矩形的角度:矩形的四个角均为直角,每个角度为90度。

- 正方形的角度:正方形的四个角均为直角,每个角度为90度。

- 菱形的角度:菱形的对角线相互垂直,可以根据已知的夹角推导出其余角的度数。

- 平行四边形的角度:平行四边形的对角线互相平分,对边角度相等。

中考数学四边形求解题技巧

中考数学四边形求解题技巧

中考数学四边形求解题技巧中考数学中,四边形是一个非常重要的知识点,也是考试中常出现的题型之一。

四边形题目涉及到求解角度、边长、面积等方面的知识,掌握一些解题技巧能够有效提高解题速度和准确性。

下面我将介绍一些中考数学四边形求解题的技巧。

1. 利用图形性质分析题目在解决四边形问题时,首先要观察给出的图形,分析各个角的大小关系以及边长的关系。

根据图形的特点,我们可以推导出一些性质,这些性质可以帮助我们解决问题。

例如,互补角的性质:如果两个角的和等于90度,则它们是互补角。

利用这个性质,我们可以求解出两个互补角中的一个。

2. 利用角的性质在解四边形题时,经常需要求解各个角的大小。

对于平行四边形和矩形来说,对角线之间的夹角都是相等的;对于菱形来说,它的所有内角都是直角;对于等腰梯形来说,它的两个底角是相等的。

利用这些角的特点,我们可以通过已知条件求解出其他角的大小。

同时,还需要掌握计算角度的方法,如180度减去一个角的度数可以求出另一个角的度数。

3. 利用截线性质在解四边形问题时,有时会用到线段的截线性质。

截线性质是指当一条直线截断两条平行线时,所得截线与平行线之间的对应角是相等的。

利用这个性质,我们可以推导出两条平行线之间的一些角的大小关系,然后通过已知条件求解其他角的大小。

4. 利用边长的性质在解决四边形问题时,有时需要求解各个边的长度。

根据已知条件和图形的特点,我们可以列方程,然后求解出未知边长。

例如,如果题目已知一个矩形的长和宽之比为3:2,并且矩形的周长为40,我们可以设矩形的长为3x,宽为2x,列出方程3x + 2x + 3x + 2x = 40,然后解方程求解出x 的值,进而求解出长和宽的值。

5. 利用面积的性质在解决四边形问题时,有时需要求解图形的面积。

对于矩形、正方形、菱形来说,我们可以利用边长或对角线的性质求解出面积。

例如,对于矩形来说,我们可以用长和宽的乘积求解出面积;对于菱形来说,我们可以用对角线的乘积除以2求解出面积。

人教版初中数学四边形技巧及练习题附答案

人教版初中数学四边形技巧及练习题附答案

人教版初中数学四边形技巧及练习题附答案一、选择题∆绕点A顺时针旋转90︒到1.如图,点E是正方形ABCD的边DC上一点,把ADE∆的位置.若四边形AECF的面积为20,DE=2,则AE的长为()ABFA.4 B.25C.6 D.26【答案】D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】∆绕点A顺时针旋转90︒到ABFADE∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,∴==,AD DC25DE=,2∴∆中,2226Rt ADEAE AD DE=+=故选:D.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.2.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.9【答案】A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF ∥BC ,交AB 于点F ,∴EF 是△ABC 的中位线,∴BC=2EF=2×3=6,∴菱形ABCD 的周长是4×6=24,故选A .【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.3.如图,足球图片正中的黑色正五边形的内角和是( ).A .180°B .360°C .540°D .720°【答案】C【解析】【分析】 根据多边形内角和公式2180()n -⨯︒即可求出结果.【详解】解:黑色正五边形的内角和为:5218540(0)-⨯︒=︒,故选:C .【点睛】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.4.如图所示,点E 是矩形ABCD 的边AD 延长线上的一点,且AD=DE ,连结BE 交CD 于点O ,连结AO ,下列结论不正确的是( )A .△AOB ≌△BOCB .△BOC ≌△EOD C .△AOD ≌△EOD D .△AOD ≌△BOC【答案】A【解析】根据矩形的性质和全等三角形的性质找出全等三角形应用排它法求欠妥 即可:∵AD=DE ,DO ∥AB ,∴OD 为△ABE 的中位线.∴OD=OC .∵在Rt △AOD 和Rt △EOD 中,AD=DE ,OD=OD ,∴△AOD ≌△EOD (HL ).∵在Rt △AOD 和Rt △BOC 中,AD=BC ,OD=OC ,∴△AOD ≌△BOC (HL ).∴△BOC ≌△EOD .综上所述,B 、C 、D 均正确.故选A .5.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是( )A .8B .9C .10D .12【答案】A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数. 解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A .考点:多边形内角与外角.6.如图,在矩形ABCD 中,AB m =,6BC =,点E 在边CD 上,且23CE m .连接BE ,将BCE 沿BE 折叠,点C 的对应点C '恰好落在边AD 上,则m =( )A .33B .3C 3D .4【答案】A【解析】【分析】设AC′=x ,在直角三角形ABC′和直角三角形DEC′中分别利用勾股定理列出关于x 和m 的关系式,再进行求解,即可得出m 的值.【详解】解:设AC′=x ,∵AB=m ,BC=6,23CEm , 根据折叠的性质可得:BC′=6,EC′=23CE m , ∴C ′D=6-x ,DE=13m ,在△ABC ′中,AB 2+AC′2=BC′2,即2226x m +=,在△DEC ′中,C′D 2+DE 2=C′E 2,即()22212633x m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭, 化简得:()2236x m -=,代入2226x m +=中,得:()222366x x -=-,解得:x=3或x=6,代入2226x m +=,可得:当x=3时,m=33或33-(舍),当x=6时,m=0(舍),故m 的值为33,故选A.【点睛】本题考查了折叠的性质,勾股定理,解一元二次方程,有一定难度,解题的关键是根据折叠的性质运用勾股定理求解.7.如图,在菱形ABCD 中,对角线AC =8,BD =6,点E ,F 分别是边AB ,BC 的中点,点P 在AC 上运动,在运动过程中,存在PE +PF 的最小值,则这个最小值是( )A .3B .4C .5D .6【答案】C【解析】【分析】 先根据菱形的性质求出其边长,再作E 关于AC 的对称点E′,连接E′F ,则E′F 即为PE+PF 的最小值,再根据菱形的性质求出E′F 的长度即可.【详解】解:如图∵四边形ABCD 是菱形,对角线AC=6,BD=8,∴AB=2234+=5,作E 关于AC 的对称点E′,连接E′F ,则E′F 即为PE+PF 的最小值,∵AC 是∠DAB 的平分线,E 是AB 的中点,∴E ′在AD 上,且E′是AD 的中点,∵AD=AB ,∴AE=AE ′,∵F 是BC 的中点,∴E ′F=AB=5.故选C .8.如图,平行四边形ABCD 的周长是26,cm 对角线AC 与BD 交于点,,O AC AB E ⊥是BC 中点,AOD △的周长比AOB 的周长多3cm ,则AE 的长度为( )A .3cmB .4cmC .5cmD .8cm【答案】B【解析】【分析】 根据题意,由平行四边形的周长得到13AB AD +=,由AOD △的周长比AOB 的周长多3cm ,则3AD AB -=,求出AD 的长度,即可求出AE 的长度.【详解】解:∵平行四边形ABCD 的周长是26cm ,∴126132AB AD +=⨯=, ∵BD 是平行四边形的对角线,则BO=DO ,∵AOD △的周长比AOB 的周长多3cm ,∴()()3AO OD AD AO OB AB AD AB ++-++=-=,∴5AB =,8AD =,∴8BC AD ==,∵AC AB ⊥,点E 是BC 中点, ∴118422AE BC ==⨯=; 故选:B .【点睛】 本题考查了平行四边形的性质,直角三角形斜边上的中线等于斜边的一半,解题的关键是熟练掌握平行四边形的性质进行解题.9.如图,小莹用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,BC 长为10cm .当小莹折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).则此时EC =( )cmA .4B 2C .22D .3【答案】D【解析】【分析】 根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF ,在Rt △ABF 中,利用勾股定理计算出BF=6,则CF=BC ﹣BF=4,设CE=x ,则DE=EF=8﹣x ,在Rt △CEF 中利用勾股定理得到:42+x 2=(8﹣x )2,然后解方程即可.【详解】解:∵四边形ABCD 为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.∵长方形纸片ABCD 折纸,顶点D 落在BC 边上的点F 处(折痕为AE ),∴AF=AD=10,DE=EF ,在Rt △ABF 中,AB=8,AF=10,∴226AF AB -=∴CF=BC ﹣BF=4.设CE=x ,则DE=EF=8﹣x ,在Rt △CEF 中,∵CF 2+CE 2=EF 2,∴42+x 2=(8﹣x )2,解得x=3∴EC 的长为3cm .故选:D【点睛】本题考查了折叠的性质、矩形的性质、勾股定理的综合运用;熟练掌握折叠的性质和矩形的性质,根据勾股定理得出方程是解题关键.10.如图,菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(0,23),∠DOB=60°,点P是对角线OC上的一个动点,已知A(﹣1,0),则AP+BP的最小值为()A.4 B.5 C.33D.19【答案】D【解析】【分析】点B的对称点是点D,连接AD,则AD即为AP+BP的最小值,求出点D坐标解答即可.【详解】解:连接AD,如图,∵点B的对称点是点D,∴AD即为AP+BP的最小值,∵四边形OBCD是菱形,顶点B(0,23DOB=60°,∴点D的坐标为(33∵点A的坐标为(﹣1,0),∴22+=(3)419故选:D.【点睛】此题考查菱形的性质,关键是根据两点坐标得出距离.11.如图,在△ABC中,点D为BC的中点,连接AD,过点C作CE∥AB交AD的延长线于点E,下列说法错误的是()A .△ABD ≌△ECDB .连接BE ,四边形ABEC 为平行四边形 C .DA =DED .CE =CD【答案】D【解析】【分析】 根据平行线的性质得出∠B=∠DCE ,∠BAD=∠E ,然后根据AAS 证得△ABD ≌△ECD ,得出AD=DE ,根据对角线互相平分得到四边形ABEC 为平行四边形,CE=AB ,即可解答.【详解】∵CE ∥AB ,∴∠B=∠DCE ,∠BAD=∠E ,在△ABD 和△ECD 中,===B DCE BAD E BD CD ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△ECD (AAS ),∴DA=DE ,AB=CE ,∵AD=DE ,BD=CD ,∴四边形ABEC 为平行四边形,故选:D .【点睛】此题考查平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解题的关键是证明△ABD ≌△ECD .12.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72【答案】B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点,∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFCABCDS S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.13.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AB,∵AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质14.如图,在ABCD 中,8AC =,6BD =,5AD =,则ABCD 的面积为( )A .6B .12C .24D .48【答案】C【解析】【分析】 由勾股定理的逆定理得出90AOD ∠=,即AC BD ⊥,得出ABCD 是菱形,由菱形面积公式即可得出结果.【详解】∵四边形ABCD 是平行四边形, ∴142OC OC AC ===,132OB OD BD ===, ∴22225OA OD AD +==,∴90AOD ∠=,即AC BD ⊥,∴ABCD 是菱形,∴ABCD 的面积11862422AC BD =⨯=⨯⨯=; 故选C .【点睛】本题考查平行四边形的性质、勾股定理的逆定理、菱形的判定与性质,熟练掌握平行四边形的性质,证明四边形ABCD 是菱形是解题的关键.15.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、B 与D 两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如图2)观察所得到的四边形,下列判断正确的是( )A .∠BCA =45°B .AC =BDC.BD的长度变小D.AC⊥BD【答案】B【解析】【分析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.35B.23C.38D.45【答案】A【解析】试题分析:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.试题解析:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=4b3,∴MD=MB=2a-b=53 b,∴3553AM b MD b ==. 故选A.考点:1.矩形的性质;2.勾股定理;3.菱形的性质.17.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标轴为()4,1, 点D 的坐标为()0,1, 则菱形ABCD 的周长等于( )A .5B .43C .45D .20【答案】C【解析】【分析】 如下图,先求得点A 的坐标,然后根据点A 、D 的坐标刻碟AD 的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC 、BD ,交于点E∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴()()2220015-+-=∴菱形ABCD的周长为:45故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A的坐标,从而求得菱形周长.18.如图点P是矩形ABCD的对角线AC上一点,过点P作//EF BC,分别交AB、CD于点E、F,连接PB、PD,若1AE=,8PF=,则图中阴影部分的面积为()A.5B.6C.8D.9【答案】C【解析】【分析】由矩形的性质可证明S△PEB=S△PFD,即可求解.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=12×1×8=4,∴S阴=4+4=8,故选:C.【点睛】此题考查矩形的性质、三角形的面积,解题的关键是证明S△PEB=S△PFD.19.如图,在□ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G.下列结论中:①DE=DF;②AG=GF;③AF=DF;④BG=GC;⑤BF=EF,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】由AAS证明△ABF≌△DEF,得出对应边相等AF=DF,BF=EF,即可得出结论,对于①②④不一定正确.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,即AB∥CE,∴∠ABF=∠E,∵DE=CD,∴AB=DE,在△ABF和△DEF中,∵===ABF EAFB DFE AB DE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABF≌△DEF(AAS),∴AF=DF,BF=EF;可得③⑤正确,故选:B.【点睛】此题考查平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.20.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【答案】D【解析】试题分析:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选D.考点:多边形内角与外角.。

解四边形基础练习题(含答案)

解四边形基础练习题(含答案)

解四边形基础练习题(含答案)以下是一些基础的四边形练题,每个题目附带答案。

这些题目可帮助你巩固对四边形的理解和解题能力。

1. 问题给定一个四边形ABCD,其中AB和CD是平行线段。

若∠A 和∠B的和为120°,∠C和∠D的和为70°,求∠A和∠C的和。

1. 解答设∠A为x°,则∠B为120°-x°(∵∠A和∠B的和为120°)由于AB和CD是平行线段,所以∠A和∠C的和等于∠B和∠D的和,即∠A和∠C的和等于∠B和∠D的和。

∠B和∠D的和为70°(∵∠C和∠D的和为70°)所以,∠A和∠C的和也为70°。

2. 问题在一个四边形ABCD中,已知AB = BC = CD,且∠B = 90°,求∠A和∠C的度数。

2. 解答由题可知,四边形ABCD是一个等腰直角梯形。

在等腰直角梯形中,对角线和底边垂直且平分底边。

因此,∠A和∠C的度数相等,且它们的和为90°。

所以,∠A和∠C的度数分别为45°。

3. 问题在一个四边形ABCD中,已知∠A = 70°,∠B = 110°,AC为对角线,求∠C。

3. 解答由题可知,四边形ABCD是一个非平行四边形。

根据非平行四边形的性质,对角线的夹角等于四边形的内角之差。

所以,∠C = |∠A - ∠B| = |70° - 110°| = 40°。

所以,∠C的度数为40°。

4. 问题在一个平行四边形ABCD中,已知AB = 12 cm,BC = 8 cm,求平行四边形的面积。

4. 解答由题可知,平行四边形的底边为AB,高为BC。

平行四边形的面积可以通过底边乘以高来计算。

所以,平行四边形的面积为12 cm × 8 cm = 96 cm²。

以上是解四边形基础练习题的内容。

希望这些题目能够帮助你加深对四边形的理解和掌握解题技巧。

初中数学解四边形题练习题及答案

初中数学解四边形题练习题及答案

初中数学解四边形题练习题及答案在初中数学中,四边形是一个重要的几何形状,而解四边形题是数学练习中常见的一项任务。

解四边形题需要我们运用几何知识和数学技巧,灵活运用各种公式和定理,以求正确地解出问题。

下面为大家提供一些初中数学解四边形题的练习题及答案,希望对你的学习有所帮助。

1. 问题描述:在四边形ABCD中,已知AB = 5cm,BC = 6cm,CD = 8cm,DA = 9cm,求解四边形ABCD的周长和面积。

解答:首先,计算四边形的周长。

根据题意已知AB = 5cm,BC = 6cm,CD = 8cm,DA = 9cm,因此周长为:周长 = AB + BC + CD + DA = 5cm + 6cm + 8cm + 9cm = 28cm接下来,计算四边形的面积。

根据题意已知AB = 5cm,BC = 6cm,CD = 8cm,DA = 9cm,可以将四边形划分为两个三角形。

设AC为对角线,由正弦定理可知:sin∠A = BC / ACAC = BC / sin∠A = 6cm / sin∠A同理,由正弦定理可知:sin∠C = AB / ACAC = AB / sin∠C = 5cm / sin∠C由此得出:6cm / sin∠A = 5cm / sin∠Csin∠A / sin∠C = 6cm / 5cm根据三角恒等式可知:sin∠A / sin∠C = 1因此,6cm / 5cm = 1解得AC = 5cm进而,根据海伦公式可得到四边形的面积。

设半周长s为:s = (AB + BC + CD + DA) / 2 = 28cm / 2 = 14cm面积S = √(s(s - AB)(s - BC)(s - CD)(s - DA))= √(14cm (14cm - 5cm)(14cm - 6cm)(14cm - 8cm)(14cm - 9cm)) = √(14cm × 9cm × 8cm × 6cm × 5cm)= √(15120cm²)≈ 123cm²因此,四边形ABCD的周长为28cm,面积约为123cm²。

第18章:《四边形》八大专题训练

第18章:《四边形》八大专题训练

第18章:《四边形》八大专题训练专训1 判定平行四边形的五种常用方法◐名师点金◑判定平行四边形的方法通常有四种,即定义和四种判定定理,选择判定方法时,一定要结合题目的条件,选择恰当的方法,从而简化解题过程.方法1:利用两组对边分别平行判定平行四边形1.如图,在□ABCD中,E,F分别为AD,BC上的点,且BF=DE,连结AF,CE,BE,DF,AF与BE相交于M点,DF与CE相交于N点.求证:四边形FMEN为平行四边形.方法2:利用两组对边分别相等判定平行四边形2.如图,已知△ABD,△BCE,△ACF都是等边三角形.求证:四边形ADEF是平行四边形.方法3:利用一组对边平行且相等判定平行四边形3.如图,AB∥CD,AB=CD,点E,F在BC上,且BE=CF.(1)求证:△ABE≌△DCF;(2)试证明:以A,F,D,E为顶点的四边形是平行四边形.方法4:利用两组对角分别相等判定平行四边形4.如图,在□ABCD中,BE平分∠ABC,交CD于点E,DF平分∠ADC,交AB于点F,那么四边形BFDE是平行四边形吗?请说明理由。

方法5:利用对角线互相平分判定平行四边形5.如图①,□ABCD中,点O是对角线AC的中点,E F过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连结EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图②,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图②中与四边形AGHD 面积相等的所有平行四边形(四边形AGHD除外).专训2 平行四边形的性质与判定的四种常见应用题型◐名师点金◑平行四边形的性质与判定定理的应用是中考的重点内容之一,从平行四边形的边、角、对角线等方面进行考查,题型多样,一般以简单题为主,有向解决实际问题方面发展的趋势.题型1:利用性质与判定判定平行四边形1.如图,在□ABCD中,AE,CF分别是∠DAB,∠BCD的平分线.求证:四边形AFCE是平行四边形.题型2:利用性质与判定探究线段的关系2.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连结DE,线段DE与AB之间有怎样的位置和数量关系?请说明理由.题型3:利用性质与判定探究四边形的动点问题3.如图,在四边形ABCD中,AD∥BC,AD=5,BC=8,M是CD的中点,P是BC边上的一个动点(点P 与点B,C不重合),连结PM并延长交AD的延长线于点Q.问:当BP取何值时,四边形ABPQ是平行四边形?请说明理由.题型4:利用性质与判定解决翻折问题4.如图,在长方形纸片ABCD中,翻折∠B,∠D,使BC,AD都恰好落在AC上,F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.(1)求证:四边形AECG是平行四边形;(2)若AB=4 cm,BC=3 cm,求线段EF的长.专训3 特殊平行四边形间的关系的综合应用◐名师点金◑菱形、矩形、正方形都是特殊的平行四边形,其性质除具有平行四边形的一切性质外,还都有各自的性质.它们的判定方法也各不相同,它们的性质和判定的应用很广泛,在应用中常常将不同的特殊平行四边形综合在同一题中进行考查,因此需正确区分各种特殊平行边形的性质和判定。

初中数学四边形求解题技巧

初中数学四边形求解题技巧

初中数学四边形求解题技巧初中数学中关于四边形的求解题目有很多,下面我将介绍一些常见的求解四边形题目的技巧和方法。

一、平行四边形的性质和求解平行四边形是指具有两组对边平行的四边形。

在求解平行四边形的问题中,我们可以利用以下性质和方法:1. 对角线等分性质:平行四边形的两条对角线互相等分。

应用技巧:利用对角线等分性质,可方便地求解平行四边形的各边长。

2. 交错角性质:平行四边形的两组对边交错相等。

应用技巧:根据交错角性质,可求解平行四边形的角度。

3. 逆用:若两组对边都平行,则是平行四边形。

应用技巧:当题目给出两组对边都平行时,可直接判定为平行四边形。

二、矩形和正方形的性质和求解矩形是指具有四个直角的四边形,而正方形是一种特殊的矩形,它具有四个相等的边和四个直角。

在求解矩形和正方形的问题中,我们可以利用以下性质和方法:1. 特殊对角线性质:矩形和正方形的对角线相等。

应用技巧:利用特殊对角线性质,可方便地求解矩形和正方形的对角线长度。

2. 邻边和对角线关系:矩形的邻边和对角线之间存在特定的关系。

应用技巧:根据邻边和对角线的关系,可求解矩形的边长和对角线长度。

3. 邻边与对角线之间的关系:正方形的邻边和对角线之间存在特定的关系。

应用技巧:根据邻边和对角线的关系,可求解正方形的边长和对角线长度。

三、菱形的性质和求解菱形是指具有四个相等边的四边形,它具有一些特殊的性质。

在求解菱形的问题中,我们可以利用以下性质和方法:1. 对角线垂直性质:菱形的对角线相互垂直。

应用技巧:利用对角线垂直性质,可方便地求解菱形的对角线长度。

2. 对角线和邻边的关系:菱形的对角线和邻边之间存在特定的关系。

应用技巧:根据对角线和邻边的关系,可求解菱形的边长和对角线长度。

四、梯形的性质和求解梯形是指具有一对平行边的四边形。

在求解梯形的问题中,我们可以利用以下性质和方法:1. 对角线平分性质:梯形的对角线互相平分。

应用技巧:利用对角线平分性质,可方便地求解梯形的对角线长度。

2020-2021初中数学四边形技巧及练习题附解析

2020-2021初中数学四边形技巧及练习题附解析

2020-2021 初中数学四边形技巧及练习题附分析一、选择题1.如图, Y ABCD 的对角线AC 与 BD 订交于点 O , ADBD , ABD30 ,若AD 2 3 .则 OC 的长为()A .3B .4 3C . 21D . 6【答案】 C 【分析】 【剖析】先依据勾股定理解 Rt △ABD 求得 BD 6 ,再依据平行四边形的性质求得 OD3,而后依据勾股定理解 Rt △ AOD 、平行四边形的性质即可求得 OC OA21.【详解】解:∵ AD BD∴ADB 90∵在 Rt △ABD 中, ABD 30 , AD2 3∴ AB 2AD 43∴BDAB 2 AD 26∵四边形 ABCD 是平行四边形∴ OBOD1BD3,OA OC1 AC22∴在 Rt △ AOD 中, AD 2 3 , OD 3∴ OAAD 2 OD 221∴OC OA 21.应选: C 【点睛】本题考察了含 30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,娴熟掌握有关知识点是解决问题的重点.2.如图,四边形ABCD 是菱形, ACD 30 , BD 2,则 AC 的长度为()A.23B.22C.4D.2【答案】 A【分析】【剖析】由菱形的性质,获得 AC⊥BD,由直角三角形的性质,获得 BO=1, BC=2,依据勾股定理求出CO,即可求出 AC 的长度 .【详解】解,如图,∵四边形 ABCD 是菱形,AC BD AO=CO BO=DO∴ ⊥,,,∵ BD 2 ,∴B O=1,在Rt OBCBCO ACD 30 ,△中,∴B C=2,∴CO2212 3;∴ AC 2 3;应选: A.【点睛】本题考察了菱形的性质,勾股定理解直角三角形,解题的重点是娴熟掌握菱形的性质,利用勾股定理求出 OC的长度 .3.如图,□ ABCD的对角线AC与BD 订交于点O, AB⊥AC.若AB4,AC 6 ,则BD 的长为()A.11B.10C.9D.8【答案】 B【分析】【剖析】依据勾股定理先求出BO 的长,再依据平行四边形的性质即可求解.【详解】∵AC 6,∴A O=3,∵AB⊥ AC,∴B O= 3242 =5∴B D=2BO=10,应选 B.【点睛】本题主要考察平行四边形的性质,解题的重点是熟知勾股定理的应用.4.如图,在平行四边形ABCD 中,AD2AB ,CE均分BCD交 AD于点 E,且BC 8 ,则AB的长为()5A.4B.3C.D.22【答案】 A【分析】【剖析】AE=DE=AB即可得出答案.利用平行四边形的对边相等且相互平行,从而得出【详解】∵CE 均分∠ BCD交 AD 边于点 E,∴∠ ECD=∠ECB,∵在平行四边形ABCD中, AD∥ BC,AB=CD,∴∠ DEC=∠ECB,∠DEC=∠ DCE,∴DE=DC,∵A D=2AB,∴A D=2CD,∴A E=DE=AB.∵ AD BC 8,AD2AB∴A B=4,应选:A.【点睛】本题考察了平行四边形的性质,得出∠DEC=∠ DCE是解题重点.5.若菱形的对角线分别为6 和 8 ,则这个菱形的周长为()A .10B . 20C . 40D . 48【答案】 B【分析】【剖析】依据菱形的对角线相互垂直均分的性质,利用对角线的一半,依据勾股定理求出菱形的边长,再依据菱形的四条边相等求出周长即可.【详解】如下图,依据题意得 AO= 1 × 8=4, BO= 1× 6=3,2 2∵四边形 ABCD 是菱形,∴ A B=BC=CD=DA , AC ⊥ BD ,∴△ AOB 是直角三角形,∴AB=AO 2 BO 216 9 =5,∴此菱形的周长为: 5×4=20. 应选: B . 【点睛】本题考察菱形的性质,利用勾股定理求出菱形的边长是解题的重点.6.如图 ,矩形 ABCD 中, AB >AD , AB=a ,AN 均分∠ DAB , DM ⊥AN 于点 M ,CN ⊥ AN 于点 N.则 DM+CN 的值为(用含 a 的代数式表示) ( )A . a4 C .2 a D .3 aB . a522【答案】 C【分析】【剖析】依据 “AN 均分∠ DAB , DM ⊥ AN 于点 M , CN ⊥ AN 于点 N ”得∠ MDC=∠ NCD=45°,cos45 =°DMCN,因此 DM+CN=CDcos45°;再依据矩形 ABCD ,AB=CD=a ,DM+CN 的值即DECE可求出.【详解】∵AN 均分∠ DAB , DM ⊥ AN 于点 M , CN ⊥ AN 于点 N ,∴∠ ADM=∠ MDC=∠ NCD=45°,∴ DMCN=CDcos450 cos450,在矩形 ABCD 中, AB=CD=a ,∴DM+CN=acos45° =2a.2应选 C. 【点睛】本题考察矩形的性质,解直角三角形,解题重点在于获得cos45°=DMCNDECE7.如图,足球图片正中的黑色正五边形的内角和是( ).A .180 °B . 360 °C . 540 °D . 720 °【答案】 C 【分析】 【剖析】依据多边形内角和公式 (n 2)180 即可求出结果.【详解】解:黑色正五边形的内角和为: (5 2) 180 540 ,应选: C .【点睛】本题考察了多边形的内角和公式,解题重点是切记多边形的内角和公式.8.在平面直角坐标系中, A , B , C 三点坐标分别是( 0,0),( 4,0),( 3, 2),以A ,B ,C 三点为极点画平行四边形,则第四个极点不行能在( ) .A .第一象限B .第二象限C .第三象限D .第四象限【答案】 C【分析】A 点在原点上,B 点在横轴上,C 点在第一象限,依据平行四边形的性质:两组对边分别平行,可知第四个极点可能在第一、二、四象限,不行能在第三象限,应选C9.已知,如图,在V ABC中,ACB90, A 30,求证:BC 1AB.在证明2该结论时,需增添协助线,则作法不正确的选项是()A.延伸BC至点D,使CD BC ,连结 AD.在 ACB 中作BCE B,CE交 AB于点 EBC.取AB的中点P,连结CPD.作 ACB 的均分线CM,交AB于点M【答案】 D【分析】【剖析】分别依据各选项的要求进行证明,推出正确结论,则问题可解.【详解】解:选项 A:如图,由协助线可知,VABC ; ADC ,则有 AB=AD,再由ACB 90 ,由 BAC 30,则 B 60,∴△ABD 是等边三角形∴ BC1 DB 1 AB22应选项 A 正确;选项 B:如图,由协助线可知, △ EBD 是等边三角形则BECEAC ECA 60 ,BE=EC∵A 30∴ECAA 30∴ A E=EC∴ BC 1AB2应选项 B 正确选项 C 如图,有协助线可知, CP 为直角三角形斜边上的中线∴ A P=CP=BP ∵A 30∴B 60∴ VPBC 是等边三角形1∴BCBP AB综上可知选项 D 错误故应选 D【点睛】本题主要考察了全等三角形的判断,等边三角形的判断与性质的综合应用,依据条件选择正确的证明方法是解题的重点.10. 如图,菱形 ABCD 中,对角线 AC = 6, BD = 8,M 、 N 分别是 BC 、 CD 上的动点, P 是线段 BD 上的一个动点,则 PM + PN 的最小值是( )A .9 12 16 24B .5C .D .555【答案】 D【分析】【剖析】作 M 对于 BD 的对称点 Q ,连结 NQ ,交 BD 于 P ,连结 MP ,此时 MP+NP=NQ 最小, NQ 为所求,当 NQ ⊥ AB 时, NQ 最小,既而利用面积法求出 NQ 长即可得答案 .【详解】作 M 对于 BD 的对称点 Q ,连结 NQ ,交 BD 于 P ,连结 MP ,此时 MP+NP=NQ 最小, NQ 为所求,当 NQ ⊥ AB 时, NQ 最小,∵四边形 ABCD 是菱形, AC=6,DB=8,∴ O A=3,OB=4, AC ⊥ BD ,在 Rt △AOB 中, AB= OA 2 OB 2 =5,∵S 菱形 ABCD = 1AC gBDABgNQ ,2∴18 6 5NQ ,2∴NQ=24,5∴PM+PN 的最小值为24 ,5应选 D.【点睛】本题考察了菱形的性质,轴对称确立最短路线问题,熟记菱形的轴对称性和利用轴对称确立最短路线的方法是解题的重点.11. 如图 a 是长方形纸带,∠ DEF=20°,将纸带沿 E F 折叠成图 b ,再沿 BF 折叠成图 c ,则图 c 中的∠ CFE的度数是()A.110 °B. 120 °C. 140 °D. 150 °【答案】 B【分析】【详解】解:∵ AD∥BC,∴∠ DEF=∠EFB=20°,图 b 中∠ GFC=180°-2∠ EFG=140°,在图 c 中∠ CFE=∠ GFC-∠EFG=120°,应选 B.12.如图,在菱形ABCD中, AB=10,两条对角线订交于点O,若 OB= 6,则菱形面积是()A. 60B. 48C. 24D. 96【答案】 D【分析】【剖析】由菱形的性质可得AC⊥BD, AO= CO, BO= DO=6,由勾股定理可求AO 的长,即可求解.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD, AO= CO, BO= DO= 6,∴AO=AB2OB2100 368,∴AC=16,BD=12,∴菱形面积=1216=96,2应选: D.【点睛】本题考察了菱形的性质,勾股定理,掌握菱形的对角线相互垂直均分是本题的重点.13.用三种边长相等的正多边形地砖铺地,其极点拼在一同,恰好能完整铺满地面.已知1 1 1 正多边形的边数为 x , y , z ,则y的值为()xzA .121 1B .C .D .323【答案】 C 【分析】剖析:依据边数求出各个多边形的每个内角的度数,联合镶嵌的条件列出方程,从而即可求出答案.详解:由题意知,这 3 种多边形的 3 个内角之和为 360 度,已知正多边形的边数为 x 、 y 、z ,那么这三个多边形的内角和可表示为:( x 2) 180 ( y2) 180 ( z 2) 1802 2+y+=360,两边都除以180 得: 1﹣ +1﹣+1﹣xz xy2 =2,两边都除以 2 得: 11+ 1 = 1 . + zx y z 2应选 C .点睛:解决本题的重点是知道这 3 种多边形的3 个内角之和为360 度,据此进行整理剖析得解.14. 如图,点 E 是正方形ABCD 的边 DC 上一点,把 ADE 绕点 A 顺时针旋转 90 到ABF 的地点.若四边形AECF 的面积为 20, DE=2,则 AE 的长为( )A .4B .2 5C .6D .2 6【答案】 D【分析】【剖析】利用旋转的性质得出四边形 AECF 的面积等于正方形 ABCD 的面积,从而可求出正方形的边长,再利用勾股定理得出答案.【详解】Q ADE 绕点 A 顺时针旋转 90 到 ABF 的地点.四边形 AECF 的面积等于正方形 ABCD 的面积等于20,AD DC 25,Q DE2 ,Rt ADE 中, AE AD 2DE 22 6应选: D .【点睛】本题主要考察了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题重点.15. 如图 11-3-1,在四边形 ABCD 中,∠ A=∠ B=∠ C ,点 E 在边 AB 上,∠ AED=60°,则必定有( )A .∠ ADE=20°B .∠ ADE=30°C .∠ ADE=1 ∠ ADCD .∠ ADE=1∠ ADC23【答案】 D 【分析】【剖析】【详解】设∠ ADE=x ,∠ ADC=y ,由题意可得,∠ ADE+∠AED+∠ A=180°,∠ A+∠ B+∠C+∠ADC=360°,即 x+60+∠ A=180① , 3∠ A+y=360② ,由①×3-② 可得 3x-y=0,1y ,即∠ ADE= 1 ∠ ADC . 因此 x3 3故答案选 D .考点:三角形的内角和定理;四边形内角和定理. 16. 如图,在矩形连结 BH 并延伸交ABCD 中, AD=CD 于点 F ,连结2 AB ,∠ BAD 的均分线交 BC 于点 E ,DH ⊥ AE 于点DE 交 BF 于点 O ,以下结论: ① ∠ AED=∠ CED ;H ,② OE=OD ;③ BH=HF ;④ BC ﹣ CF=2HE ; ⑤ AB=HF ,此中正确的有()A.2 个B.3 个C.4 个D.5 个【答案】 C【分析】【剖析】【详解】试题剖析:∵在矩形ABCD中, AE 均分∠ BAD,∴∠ BAE=∠ DAE=45°,∴△ ABE 是等腰直角三角形,∴A E= 2AB,∵AD= 2 AB,∴A E=AD,又∠ ABE=∠ AHD=90°∴△ ABE≌△ AHD(AAS),∴BE=DH,∴A B=BE=AH=HD,∴∠ ADE=∠ AED= 1( 180°﹣45°)=67.5 °,2∴∠ CED=180°﹣ 45°﹣ 67.5 °=67.5 °,∴∠ AED=∠ CED,故①正确;∵∠ AHB=1( 180°﹣ 45°) =67.5 °,∠ OHE=∠AHB(对顶角相等),2∴∠ OHE=∠ AED,∴OE=OH,∵∠ OHD=90°﹣ 67.5 °=22.5 °,∠ ODH=67.5°﹣45°=22.5 °,∴∠ OHD=∠ ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠ EBH=90°﹣ 67.5 °=22.5 °,∴∠ EBH=∠ OHD,又 BE=DH,∠ AEB=∠HDF=45°∴△ BEH≌△ HDF( ASA),∴BH=HF,HE=DF,故③正确;由上述①、② 、③可得 CD=BE、 DF=EH=CE, CF=CD-DF,∴BC-CF=(CD+HE) -( CD-HE)=2HE,因此④正确;∵A B=AH,∠ BAE=45°,∴△ABH 不是等边三角形,∴AB≠BH,∴即 AB≠HF,故⑤错误;综上所述,结论正确的选项是①②③④共4个.应选 C.【点睛】3、角均分线的性质;4、等腰三角考点: 1、矩形的性质;2、全等三角形的判断与性质;形的判断与性质,17.如图,在V ABC中,D,E是AB,AC中点,连结DE并延伸至F,使EF DE 连结 AF, CD,CF.增添以下条件,可使四边形ADCF 为菱形的是()A.AB AC B.AC BC C.CD AB D.AC BC【答案】 D【分析】【剖析】依据 AE= CE, EF= DE 可证得四边形A DCF为平行四边形,再利用中位线定理可得DE∥ BC 联合 AC⊥ BC 可证得 AC⊥ DF,从而利用对角线相互垂直的平行四边形是菱形即可得证.【详解】解:∵点 E 是 AC 中点,∴AE= CE,∵AE= CE, EF= DE,∴四边形ADCF为平行四边形,∵点 D、 E 是 AB、 AC中点,∴DE 是△ABC的中位线,∴DE∥BC,∴∠ AED=∠ ACB,∵AC⊥BC,∴∠ ACB= 90°,∴∠ AED=90°,∴AC⊥ DF,∴平行四边形ADCF为菱形【点睛】本题考察了菱形的判断,三角形的中位线性质,娴熟掌握有关图形的性质及判断是解决本题的重点.18.为了研究特别四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在 A 与 C、 B 与 D 两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推进框架至AB⊥BC(如图 2)察看所获得的四边形,以下判断正确的选项是()A.∠ BCA= 45°B.AC= BDC. BD 的长度变小D. AC⊥ BD【答案】B【分析】【剖析】依据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵ AB⊥ BC,∴∠ ABC= 90°,∴四边形ABCD是矩形,∴AC=BD.应选 B.【点睛】本题考察平行四边形的性质.矩形的判断和性质等知识,解题的重点是娴熟掌握基本知识,属于中考常考题型.19.如图,在菱形ABCD 中,BCD60 , BC 的垂直均分线交对角线AC 于点F,垂足为 E ,连结BF 、DF,则∠ DFC 的度数是()A.130B.120C.110D.100【答案】 A【剖析】第一求出∠ CFB=130°,再依据对称性可知∠CFD=∠ CFB即可解决问题;【详解】∵四边形ABCD是菱形,∴∠ ACD=∠ ACB=1∠ BCD=25°,2∵E F 垂直均分线段 BC,∴FB=FC,∴∠ FBC=∠ FCB=25°,∴∠ CFB=180°-25 °-25 °=130°,依据对称性可知:∠CFD=∠CFB=130°,应选: A.【点睛】本题考察菱形的性质、线段的垂直均分线的性质,解题的重点是娴熟掌握基本知识,属于中考常考题型.20.如图,在菱形ABCD中,对角线P 在 AC上运动,在运动过程中,存在AC= 8, BD= 6,点 E,F 分别是边AB, BC 的中点,点PE+ PF 的最小值,则这个最小值是()A.3B.4C.5D.6【答案】 C【分析】【剖析】先依据菱形的性质求出其边长,再作 E 对于 AC 的对称点E′,连结 E′F,则 E′F即为 PE+PF 的最小值,再依据菱形的性质求出E′F的长度即可.【详解】解:如图∵四边形ABCD是菱形,对角线AC=6, BD=8,∴A B= 3242 =5,作 E 对于 AC 的对称点 E′,连结 E′F,则 E′F即为 PE+PF的最小值,∵AC 是∠ DAB 的均分线, E 是 AB 的中点,∴E′在 AD 上,且 E′是 AD 的中点,∵AD=AB,∴AE=AE′,∵F 是 BC的中点,∴E′F=AB=5.应选 C.。

中考数学四边形专题训练50题(含答案)

中考数学四边形专题训练50题(含答案)

中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.若正多边形的一个外角是24°,则这个正多边形( )A .正十二边形B .正十五边形C .正十八边形D .正二十边形 2.若平行四边形中两个相邻内角的度数比为1:2,则其中较小的内角是( ) A .120︒ B .90︒ C .60︒ D .45︒ 3.如图,四边形ABCD ∽四边形EFGH ,80E ∠=︒,90G ∠=︒,120D ∠=︒,则B ∠等于( )A .50︒B .60︒C .70︒D .80︒ 4.已知三角形的3条中位线分别为3cm 、4cm 、6cm ,则这个三角形的周长是( )A .13cmB .26cmC .24cmD .65cm 5.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于G ,若34AE ED =,DF CF =,则AG GF 的值是( )A .59B .611C .713D .1115 6.在平行四边形ABCD 中,∠B =60°,那么下列各式中,不能成立的是( ) A .∠D =60° B .∠A =120° C .∠C +∠D =180° D .∠C +∠A =180°7.下列说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形8.对角线互相平分且相等的四边形是()A.菱形B.矩形C.正方形D.等腰梯形9.如图,过O外一点P作O的两条切线PD、PB,切点分别为D、B,作直径∠的度数为()AB,连接AD、BD,若80P∠=︒,则AA.50°B.60°C.70°D.80°10.如图,在∠ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE∠AB于E,PF∠AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.5∠=︒,11.如图,将平行四边形ABCD沿对角线AC折叠,使点B落在点B'处,若148∠=︒,则B232∠的度数为().A.124°B.114°C.104°D.56°12.下列说法正确的是()A.矩形的对角线相互垂直B.菱形的对角线相等C.平行四边形是轴对称图形D.等腰梯形的对角线相等13.如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:∠△EAG=45°:∠CE=3DE;∠AG∠CF;∠S△FGC=725,其中正确结论的个数是()A.1个B.2个C.3个D.4个14.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8B.10C.12D.1415.如图,在四边形ABCD中,∠A=90°,AB=AD=3,M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),E、F分别为D M,MN的中点,则EF长度的最大值为() .A.4B.3C.D.16.下列说法错误的是()A.菱形的面积等于两条对角线乘积的一半B.矩形的对角线相等C.对角线互相垂直的平行四边形是矩形D.对角线相等的菱形是正方形17.如图所示,将正六边形与正五边形按此方式摆放,正六边形与正五边形的公共顶点为O,且正六边形的边AB与正五边形的边DE共线,则∠COF的度数是()A.86°B.84°C.76°D.74°18.如图,在矩形ABCD中,点E、F分别在边AD、DC上,ABE DEF,AB=,26DF=,则BE的长是()DE=,3D.A.12B.15C.19.如图,在一张矩形纸片ABCD中4BC=,点E,F分别在AD,BC上,AB=,8将纸片ABCD沿直线EF折叠,点C落在AD上的点H处,点D落在点G处,连接CE,CH.有以下四个结论:∠四边形CFHE是菱形;∠CE平分∠DCH;∠线段BF的EF=.以上结论中,其中正确结取值范围为34BF≤≤;∠当点H与点A重合时,5论的个数有()A.1个B.2个C.3个D.4个二、填空题=,连接AE交CD于F,那么20.四边形ABCD是正方形,延长BC至E,使CE AC∠的度数为________.AFC21.M为矩形ABCD中AD的中点,P为BC上一点,PE∠MC,PF∠MB,当AB、BC 满足_________时,四边形PEMF为矩形.22.如图,在矩形ABCD中,E,F分别是边AB,BC上的点.将∠A,∠B,∠C按如图所示的方式向内翻折,EQ ,EF ,DF 为折痕.若A ,B ,C 恰好都落在同一点P 上,AE =1,则ED =___.23.如图,△ABC 内接于∠O ,∠BAC =120°,AB =AC ,BD 为∠O 的直径,CD =8,OA 交 BC 于点 E ,则 AE 的长度是________.24.如图,在正五边形ABCDE 中,AC 为对角线,以点A 为圆心,AE 为半径画圆弧交AC 于点F ,连结EF ,则∠1的度数为__.25.如图,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形∠的边GD 在边AD 上,若图1正方形中MN=1,则CD=____.26.如图,在正方形ABCD 中,点E ,F 分别是BC ,CD 上的点,连接AE ,EF ,AF ,若DF BE EF +=,则EAF ∠=______︒.27.如图,已知抛物线24=-+的顶点为D,与y轴交于点C,过点C作x轴的y x x c平行线AC交抛物线于点A,过点A作y轴的平行线AB交射线OD于点B,若OA OB=,则c的值为_____________.28.如图,点E、F、G、H分别是矩形ABCD边AB、BC、CD、DA上的点,且HG 与EF交于点I,连接HE、FG,若AB=7,BC=6,EF//AD,HG//AB,则HE+FG的最小值是______.29.在□ABCD中,∠A:∠B=2:3,则∠B=____,∠C=_____,∠D=____.30.如图,菱形ABCD中,∠BCD=50°,BC的垂直平分线交对角线AC于点F,垂足为E,连接BF、DF,则∠DFC的度数是_____.'沿对角线AC折叠,得到如图所示的图形.若∠BAO=34°,则31.把长方形AB CD∠BAC的大小为_______.32.如图,M 是▭ABCD 的AB 的中点,CM 交BD 于E ,则图中阴影部分的面积与▱ABCD 的面积之比为_____.33.如图,矩形ABCD 中,AD=6,P 为边AD 上一点,且AP=2,在对角线BD 上寻找一点M ,使AM+PM 最小,则AM+PM 的最小值为_____.34.如图,在▱ABCD 中,BE 、CE 分别平分∠ABC 、∠BCD ,E 在AD 上,BE=12cm ,CE=5cm .则▱ABCD 的周长为_____,面积为_____.35.在平面直角坐标系中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,Q y x ⎛⎫ ⎪⎝⎭称为点P 的“逆倒数点”.如图,在矩形OABC 中,点B 的坐标为(48),,反比例函数()0k y x x =>的图象经过矩形对角线交点M .点D 是该反比例函数图象上的点,点E 是对角线上的一点,且点E 是点D 的“逆倒数点”,点E 的坐标为______.36.如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 作ON ∠OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为 _____.37.如图,点E 为正方形ABCD 外一点,且ED CD =,连接AE ,交BD 于点F .若40CDE ∠=,则∠DCF 的度数为_______.38.如图,在矩形ABCD 中,5,3AB BC ==,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 _____ .39.如图,点E 、F 分别为正方形ABCD 的边AB 、BC 上的点,满足∠EDF =45°.连接DE 、DF 分别交正方形对角线AC 于点H 、G ,再连接EG ,有如下结论:∠AE CF EF +>;∠ED 始终平分∠AEF ;∠∠AEH ∠∠DGH ;∠DE ;∠14DGH DEF S S =△△.在上述结论中,正确的有______.(请填正确的序号)三、解答题40.如图,方格纸中每个小正方形的边长均为1,ABC 的顶点和线段的端点均在小正方形的顶点上.(利用格点和没有刻度的直尺作图,保留作图痕迹)(1)在方格纸1中画出ADC △,使ADC △与ABC 关于直线AC 对称;(2)在方格纸2中画出以EF 线段为一边的平行四边形(点G ,点H 均在小正方形的顶点上),且平行四边形面积为4;(3)在方格纸3中,连接FM ,在FM 上确定一点P ,使得点P 为FM 中点. 41.如图,在平行四边形ABCD 中,∠BAD 的平分线交CD 于点E ,连接BE 并延长交AD 延长线于点F ,若AB =AF .(1)求证:点D 是AF 的中点;(2)若∠F =60︒,CD =6,求∠ABF 的面积.42.如图1,在等腰ABO 中,AB AO =,分别延长AO 、BO 至点C 、点D ,使得CO AO =、DO BO =,连接AD 、BC .()1如图1,求证:AD BC =;()2如图2,分别取边AD 、CO 、BO 的中点E 、F 、H ,猜想EFH 的形状,并说明理由.43.如图,在矩形ABCD 中,M ,N 分别是AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点,若AB=8,AD=12,则四边形ENFM 的周长是多少?44.如图∠,在矩形OACB 中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,点C 在第一象限,8OA =,6OB =.(1)直接写出点C 的坐标:________;(2)如图∠,点G 在BC 边上,连接AG ,将ACG 沿AG 折叠,点C 恰好与线段AB 上一点C '重合,求线段CG 的长度;(3)如图∠,P 是直线26y x =-上一点,PD PB ⊥交线段AC 于D .若P 在第一象限,且PB PD =,试求符合条件的所有点P 的坐标.45.直线443y x =-+与x 轴交于点A ,与y 轴交于点B ,菱形ABCD 如图放置在平面直角坐标系中,其中点D 在x 轴负半轴上,直线y =x +m 经过点C ,交x 轴于点E .(1)请直接写出点C ,点D 的坐标,并求出m 的值;(2)点P (0,t )是线段OB 上的一个动点(点P 不与O 、B 重合),经过点P 且平行于x 轴的直线交AB 于M ,交CE 于N .当四边形NEDM 是平行四边形时,求点P 的坐标;(3)点P (0,t )是y 轴正半轴上的一个动点,Q 是平面内任意一点,t 为何值时,以点C 、D 、P 、Q 为顶点的四边形是菱形?46.如图,在Rt ∠ABC 中,∠C =90°,AC =8,BC =6.动点P 从点A 出发,沿AB 以每秒5个单位长度的速度向终点B 运动.当点P 不与点A 重合时,过点P 作PD ∠AC 于点D ,以AP ,AD 为边作▱APED .设点P 的运动时间为t 秒.(1)线段AD的长为(用含t的代数式表示).(2)当点E落在BC边上时,求t的值.(3)连结BE,当tan∠CBE=13时,求t的值.(4)若线段PE的中点为Q,当点Q落在∠ABC一边垂直平分线上时,直接写出t的值.47.如图,BC为∠O的直径,BD平分∠ABC交∠O于点D,DA∠AB于点A.(1)求证:AD是∠O的切线;(2)∠O交AB于点E,若AD=2AE,求sin ABC∠的值.48.如图1,已知在四边形ABCD中,AB//CD,90ABC∠=︒,8BC=,6CD=,1tan2A=.动点P从点D DA方向运动,到A点结束;点Q同时从点A出发,以3个单位的速度沿射线AB运动,点P停止运动后,点Q 也随之停止.以AP,AQ为边作平行四边形AQGP.设运动时间为t.(1)求AB的长;(2)连接GC 、GB ,当CGB △为等腰三角形时,求t 的值;(3)如图2,以PQ 为直径作圆与AD 、PG 分别交于点M 、N ,连接MQ 交PG 于点F ,连接NQ 、DG ,∠当点N 为弧MQ 的中点时,求PMQPNQ S S △△的值;∠当PQM CDG ∠=∠时,求PQ =______(请直接写出答案).49.思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作CD∠AB 交AP 的延长线于点D ,此时测得CD =100米,那么A ,B 间的距离是_____米.思维探索:(2)在∠ABC 和∠ADE 中,AC =BC ,AE =DE ,且AE <AC ,∠ACB =∠AED =90°,将∠ADE 绕点A 逆时针方向旋转,把点E 在AC 边上时∠ADE 的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点M 是线段BD 的中点,连接MC ,ME .∠如图2,当∠ADE 在起始位置时,猜想:MC 与ME 的数量关系和位置关系分别是______;∠如图3,当α=90°时,点D 落在AB 边上,请判断MC 与ME 的数量关系和位置关系,并证明你的结论;参考答案:1.B【详解】分析:利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.详解:∠多边形的每个外角相等,且其和为360°,∠这个正多边形的边形为3602415o o ÷=,∠这个正多边形是正十五边形.故选B.点睛:考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,用360除以一个外角的度数,结果即为正多边形的边形.2.C【分析】根据平行四边形的性质来解答即可.【详解】解:∠平行四边形,∠两个相邻内角互补,又∠两个相邻内角的度数比为1:2,∠两个相邻的内角为60°、120°,∠较小的内角为60°.故选:C .【点睛】本题考查平行四边形的性质,熟练掌握平行四边形的相关性质是解题的关键. 3.C【分析】根据相似多边形的对应角相等以及四边形的内角和为360︒解答即可.【详解】解:∠四边形ABCD ∽四边形EFGH∠120H D ∠=∠=︒∠360()70B F E G H ∠=∠=︒-∠+∠+∠=︒故选:C .【点睛】本题考查了相似多边形的性质、多边形的内角和;理解相似多边形的对应角相等是解题的关键.4.B【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出三角形的三边,再求解即可.【详解】解:∠三角形的三条中位线分别为3cm、4cm、6cm,∠三角形的三边分别为6cm,8cm,12cm,∠这个三角形的周长=6+8+12=26cm.故选:B.【点睛】本题考查了三角形中位线的性质,解题的关键是熟记三角形中位线的性质定理.5.B【分析】延长AF交BC的延长线于点H,证明∠ADF∠∠HCF,得到CH=AD,设AE=3x,则DE=4x,AD=7x,证得∠AEG∠∠HBG,得到AE AGBH HG==314,即可求出AGGF【详解】解:延长AF交BC的延长线于点H,∠四边形ABCD是正方形,∠∠D=∠DCH=90°,AD∥BC,∠∠DAF=∠H,∠DF CF=,∠∠ADF∠∠HCF(AAS),∠CH=AD,设AE=3x,则DE=4x,AD=7x,∠CH=AD=BC=7x,∠AD∥BC,∠∠AEG∠∠HBG,∠AE AGBH HG==314,∠AGGF =6 11,故选:B.【点睛】此题考查了正方形的性质,相似三角形的性质,全等三角形的判定及性质,熟记各定理是解题的关键.6.D【详解】解:∠四边形ABCD是平行四边形,∠∠D=∠B=60°.故A成立;∠AD△BC,∠∠A+∠B=180°,∠∠A=180°-∠B=120°,故B成立;∠AD△BC,∠∠C+∠D=180°,故C成立;∠四边形ABCD是平行四边形,∠∠C=∠A=120°,故D不成立,故选D.7.B【分析】根据各四边形的性质对各个选项进行分析从而得出最后答案.【详解】解:A、对角线互相平分的四边形是平行四边形,正确;B、错误,对角线相等的四边形不一定是矩形,对角线相等的平行四边形才是矩形;C、对角线互相垂直的矩形是正方形,正确;D、对角线互相垂直的平行四边形是菱形,正确.故选:B.【点睛】本题主要考查了正方形、平行四边形、菱形的判定方法.解决此题的关键是熟练掌握运用这些判定.8.B【分析】根据平行四边形的判定与矩形的判定定理,即可求得答案.【详解】∠对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,∠对角线相等且互相平分的四边形一定是矩形.故选B.【点睛】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理.此题比较简单,解题的关键是熟记定理.9.A【分析】如图,连接OD ,可得90ODP OBP ∠=∠=︒,再利用四边形的内角和定理求解BOD ∠,从而可得答案.【详解】解:如图,连接OD ,∠过O 外一点P 作O 的两条切线PD 、PB ,∠90ODP OBP ∠=∠=︒,∠80P ∠=︒,∠360909080100DOB ∠=︒-︒-︒-︒=︒, ∠1502A DOB ∠=∠=︒, 故选A .【点睛】本题考查的是切线的性质,四边形的内角和定理的应用,圆周角定理的应用,作出过切点的半径是解本题的关键.10.C【分析】首先证明四边形AEPF 为矩形,可得AM =12AP ,最后利用垂线段最短确定AP 的位置,利用面积相等求出AP 的长,即可得AM .【详解】在△ABC 中,因为AB 2+AC 2=BC 2,所以△ABC 为直角三角形,∠A =90°,又因为PE ∠AB ,PF ∠AC ,故四边形AEPF 为矩形,因为M 为 EF 中点,所以M 也是 AP 中点,即AM =12AP ,故当AP ∠BC 时,AP 有最小值,此时AM 最小, 由1122ABC S AB AC BC AP ∆=⨯⨯=⨯⨯,可得AP =125,AM =12AP =6 1.25= 故本题正确答案为C.【点睛】本题考查了矩形的判定和性质,确定出AP ∠BC 时AM 最小是解题关键.11.A【分析】根据折叠、平行四边形的性质,三角形的内角和定理,即可求出答案.【详解】解:由折叠得,45∠=∠,∠四边形ABCD 是平行四边形,∠AB CD ,∠53∠=∠,∠3=4∠∠,又∠13448∠=∠+∠=︒, ∠154348242∠=∠=∠=⨯︒=︒, 在ABC 中,180521802432124B ∠=︒-∠-∠=︒-︒-︒=︒,故选:A .【点睛】本题考查折叠的性质、平行四边形的性质,三角形的内角和定理等知识,由图形直观得出各个角之间的关系是正确解答的关键.12.D【分析】根据矩形、菱形、平行四边形、等腰梯形的性质进行逐一分析解答即可.【详解】A 、错误,矩形的对角线相等;B 、错误,菱形的对角线相互垂直;C 、错误,平行四边形是中心对称图形;D 、正确,等腰梯形的对角线相等.故选D . 【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉其性质定理.13.C【分析】∠由正方形的性质和翻折的性质可证明Rt△ABG∠Rt△AFG(HL),推出∠BAG=∠F AG,根据∠DAE=∠F AE,可得∠EAG=12∠BAD=45°;∠由题意得EF=DE,GB=CG=GF=6,设DE=EF=x,则CE=12-x,在Rt△ECG中,(12-x)2+36=(x+6)2,求出x,则可得到CE=2DE;∠由CG=BG,BG=GF,可得CG=GF,则∠GFC=∠GCF,因为∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,可推出∠AGB=∠GCF,则AG∠CF;∠由S△GCE=12×GC×CE,又因为△GFC和△FCE等高,可得S△GFC:S△FEC=3:2,S△GFC=3 5×24=725.【详解】解:∠∠正方形ABCD,∠AB=BC=CD=AD=12,∠B=∠GCE=∠D=90°,由折叠的性质可得,AF=AD,∠AFE=∠D=90°,∠∠AFG=90°=∠B,AB=AF,又∠AG=AG,∠Rt△ABG∠Rt△AFG(HL),∠∠BAG=∠F AG,∠∠DAE=∠F AE,∠∠EAG=12∠BAD=45°,故∠正确;∠由题意得EF=DE,GB=CG=GF=6,设DE=EF=x,则CE=12-x,在Rt∠ECG中,(12-x)2+62=(x+6)2,∠x=4,∠DE=4,CE=8,∠CE=2DE,故∠错误;∠∠CG=BG,BG=GF,∠CG=GF,∠∠GFC=∠GCF,∠Rt∠ABG∠Rt∠AFG,∠∠AGB=∠AGF,∠∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,∠∠AGB=∠GCF,∠AG∠CF,故∠正确;∠∠S△GCE=12×GC×CE=12×6×8=24,又∠GF=6,EF=4,∠GFC和∠FCE等高,∠S△GFC:S△FEC=3:2,∠S△GFC=35×24=725,故∠正确;综上,正确的是∠∠∠,共3个.故选:C.【点睛】本题考查翻折变换的性质、正方形的性质,本题综合性很强,熟练掌握全等三角形的判定和性质,勾股定理,三角形面积的计算方法是解题的关键.14.B【详解】试题分析:根据平行四边形的性质可知AB=CD,AD∠BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.15.B【分析】根据三角形的中位线定理得出EF=12DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.【详解】解:∠ED=EM,MF=FN,∠EF=12DN,∠DN最大时,EF最大,∠N与B重合时DN最大,此时DN=DB=6,∠EF的最大值为3.故选:B.【点睛】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.16.C【分析】根据有关的定理和定义找到错误的命题即可得到答案;【详解】A、菱形的面积等于对角线乘积的一半,故正确,不符合题意;B、矩形的对角线相等,正确,不符合题意;C、对角线平分且相等的平行四边形是矩形,错误,符合题意;D、对角线相等的菱形是正方形,正确,不符合题意;故选C.【点睛】考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.17.B【分析】利用正多边形的性质求出∠EOF,∠BOC,∠BOE即可解决问题.【详解】解:由题意:∠EOF=108°,∠BOC=120°,∠OEB=72°,∠OBE=60°,∠∠BOE=180°﹣72°﹣60°=48°,∠∠COF=360°﹣108°﹣48°﹣120°=84°,故选:B.【点睛】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于常考题型.18.C【分析】利用相似三角形的性质求出AE的长,再利用勾股定理求解即可.【详解】解:∠ABE DEF,∠AB AE DE DF,∠623AE =,∠9AE=,∠矩形ABCD中,90A∠=︒,∠BE故选:C.【点睛】本题考查了矩形的性质、相似三角形的性质、勾股定理,解题关键是求出AE的长后利用勾股定理求解.19.B【分析】先根据翻折的性质可得CF=FH,∠HFE=∠CFE,可证∠FEH是等腰三角形,可得HE=HF=FC,判断出四边形CFHE是平行四边形,然后根据邻边相等的平行四边形是菱形证明,判断出∠正确;根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时CE平分∠DCH,判断出∠错误;过点F作FM∠AD于M,点H与点A 重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=FM=MD=CD,求出BF=4,然后写出BF的取值范围,判断出∠正确;求出ME,再利用勾股定理列式求解得到EF,判断出∠正确.【详解】解:∠将纸片ABCD沿直线EF折叠,∠FC=FH,∠HFE=∠CFE,∠AD△BC,∠∠HEF=∠EFC=∠HFE,HE△FC,∠∠HFE为等腰三角形,∠HE=HF=FC,∠EH与CF都是矩形ABCD的对边AD、BC的一部分,∠EH△CF,且HE=FC,∠四边形CFHE是平行四边形,∠FC=FH,∠四边形CFHE是菱形,故∠正确;∠HC为菱形的对角线,∠∠BCH=∠ECH,∠BCD=90°,∠只有∠DCE=30°时CE平分∠DCH,故∠错误;过点F作FM∠AD于M,点H与点A重合时,BF最小,设BF=x,则AF=FC=8﹣x,在Rt∠ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得:x=3,点G与点D重合时,点H与点M重合,BF最大,CF=FM=DM=CD=4,∠BF=4,∠线段BF的取值范围为3≤BF≤4,故∠正确;当点H与点A重合时,由∠中BF=3,∠AF=AE=CF=EC=8-3=5,则ME=5﹣3=2,由勾股定理得,EF=∠错误;综上所述,结论正确的有∠∠共2个,故B正确.故选:B.【点睛】本题考查矩形折叠性质,等腰三角形的判定,菱形的判定与性质,勾股定理,掌握矩形折叠性质,菱形的判定与性质,勾股定理是解题关键.20.112.5【分析】根据正方形的性质有∠ACD=∠ACB=45°=∠CAE+∠AEC,根据CE=AC就可以求出∠CAE=22.5°,在△AFC中由三角形的内角和就可以得出∠AFC的度数.【详解】解:∠四边形ABCD是正方形,∠∠ACD=∠ACB=45°.∠∠ACB═∠CAE+∠AEC,∠∠CAE+∠AEC=45°.∠CE=AC,∠∠CAE=∠AEC,∠∠CAE=22.5°.∠∠CAE+∠ACD+∠AFC=180°,∠∠AFC=180°-22.5°-45°=112.5°.故答案为112.5°.【点睛】本题考查了正方形的性质的运用,等腰三角形的性质的运用,三角形的外角与内角的关系的运用及三角形内角和定理的运用.21.12AB BC =##2BC AB =【详解】∠在矩形ABCD 中,M 为AD 边的中点,AB=12BC ,∠AB =DC =AM =MD ,∠A =∠D =90°,∠∠ABM =∠MCD =45°,∠∠BMC =90°,又∠PE ∠MC ,PF ∠MB ,∠∠PFM =△PEM =90°,∠四边形PEMF 是矩形.故答案为:AB =12BC .22.3【分析】连接,EP DP ,根据折叠的性质得出三角形全等,根据三角形全等的性质得出对应边相等,由ED EP PD =+,利用等量代换分别求出,EP PD .【详解】解:连接,EP DP 如下图所示:根据A ,B ,C 恰好都落在同一点P 上及折叠的性质,有,,AQE PQE EBF EPF FPD FCD ≌≌≌,1,1,AE PE EB EP CD PD ∴=====,2AB AE EB =+=,根据正方形的性质得:2AB DC ==,2PD ∴=,ED EP PD =+,123ED ∴=+=,故答案是:3.【点睛】本题考查了翻折的性质,三角形全等的性质,解题的关键是添加辅助线,通过等量代换的思想进行解答.23.4【分析】证明△OAB 是等边三角形,OA ∠BC 即可推出OE =AE ,再利用三角形中位线定理即可解决问题.【详解】解:∠AB =AC ,∠AB AC =,∠OA ∠BC ,BE =EC ,AB =AC∠∠ABC 是等腰三角形∠∠BAE =∠CAE =12∠BAC =60°,∠OA =OB ,∠∠OAB 是等边三角形,∠BE ∠OA ,∠OE =AE ,∠OB =OD ,BE =EC ,∠ OE是△BCD的中位线∠OE=AE=12CD=4.故答案为:4.【点睛】本题考查三角形的外接圆与外心,圆周角定理,垂径定理,三角形的中位线定理,等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.54°【分析】根据五边形的内角和公式求出∠ABC,根据等腰三角形的性质,三角形内角和的定理计算∠BAC,再求∠EAF,利用圆的性质得AE=AF,最后求出∠1即可.【详解】解:∠五边形ABCDE是正五边形,∠∠EAB=∠ABC=()5-21805⨯︒=108°,∠BA=BC,∠∠BAC=∠BCA=180-1082︒︒=36°,∠∠EAF=108°﹣36°=72°,∠以点A为圆心,AE为半径画圆弧交AC于点F,∠AE=AF,∠∠1=180-722︒︒=54°.故答案为:54°.【点睛】本题考查了正多边形的内角与圆,熟练掌握正多边形的内角的计算公式、和圆的性质,等腰三角形的性质是解题的关键.25122【分析】根据七巧板中图形分别是等腰直角三角形和正方形计算PH的长,即FF'的长,作高线GG',根据直角三角形斜边中线的性质可得GG'的长,即AE的长,可得结论.【详解】解:如图:∠四边形MNQK是正方形,且MN=1,∠∠MNK=45°,在Rt△MNO中,OM=ON∠NL=PL=OL∠PN=12,∠PQ=12,∠∠PQH是等腰直角三角形,∠PH=FF'BE,过G作GG'∠EF',∠GG'=AE=12MN=12,∠CD=AB=AE+BE=12122.故答案为122.【点睛】本题主要考查了正方形的性质、七巧板、等腰直角三角形的性质及勾股定理等知识.熟悉七巧板是由七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形、一块中形三角形和两块大形三角形)、一块正方形和一块平行四边.26.45【分析】延长CB到G,使BG=DF,根据正方形的性质得到AD=AB,∠D=∠ABE=90°,求得∠ABG=∠D=90°,根据全等三角形的性质得到AG=AF,∠GAB=∠DAF,求得GE=EF,推出∠AGE∠∠AFE(SSS),根据全等三角形的性质得到∠GAE=∠EAF,根据全等三角形的性质即可得到结论.【详解】解:延长CB到G,使BG=DF,∠四边形ABCD是正方形,∠AD=AB,∠D=∠ABE=90°,∠∠ABG =∠D =90°,在∠ADF 与∠ABG 中,AB AD ABG D BG DF =⎧⎪∠=∠⎨⎪=⎩,∠∠ADF ∠∠ABG (SAS ),∠AG =AF ,∠GAB =∠DAF ,∠DF +BE =EF ,EG =BG +BE =DF +BE ,∠GE =EF ,在∠AGE 与∠AFE 中,AG AF AE AE GE EF =⎧⎪=⎨⎪=⎩,∠∠AGE ∠∠AFE (SSS ),∠∠GAE =∠EAF ,∠∠GAE =∠GAB +∠BAE =∠DAF +∠BAE =∠EAF ,∠∠BAD =90°,∠∠EAF =45°,故答案为:45.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.27.83【分析】根据抛物线的解析式求得4DH c =-,BF AF OC c ===,然后根据三角形中位线定理得到142c c -=,解得即可. 【详解】解:作抛物线的对称轴,交OA 于E ,交x 轴于H ,∠224()42y x x c x c =-+=-+-,∠顶点为(2)4c -,,∠4DH c =-,∠AC x ∥轴,∠AF OC c AB x ==⊥,轴,∠OA OB =,∠AF BF c ==,∠OH FH =, ∠12DH BF =, ∠142c c -= ∠83c =, 故答案为:83. 【点睛】本题考查了二次函数与几何的综合运用,熟练掌握三角形的中位线定理是解决本题的关键.28【分析】由EF ∠AD ,HG ∠AB ,结合矩形的性质可得四边形AHIE 和四边形IFCG 为矩形,然后根据矩形的性质可的HE +FG 的长度即为AI +CI 的长度,最后利用两点之间,线段最短,求出AC 的长即可.【详解】解:如图所示,连接AI ,CI ,AC ,在矩形ABCD 中,∠BAD =∠BCD =∠B =90°,AB ∠CD ,AD ∠BC ,又∠EF ∠AD ,HG ∠AB ,∠四边形AHIE和四边形IFCG为矩形,∠HE=AI,FG=CI,∠HE+FG的长度即为AI+CI的长度,又∠AI+CI≥AC,∠当A,I,C三点共线时,AI+CI最小值等于AC的长度,在Rt∠ABC中,AC∠HE+FG【点睛】本题考查矩形的判定和性质以及两点之间,线段最短的运用,正确判定四边形AHIE和四边形IFCG为矩形,运用矩形的对角线相等是解题的关键.29.108º,72º,108º【详解】解:∠平行四边形ABCD中,∠A+∠B=180°,又∠∠A:∠B=2:3,∠∠A=72°,∠B=108°,∠∠D=∠B=108°,∠C=∠A=72°.故答案为108º,72º,108º.30.130°【分析】首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB即可解决问题.【详解】∠四边形ABCD是菱形,∠BCD=25°,∠∠ACD=∠ACB=12∠EF垂直平分线段BC,∠FB=FC,∠∠FBC=∠FCB=25°,∠∠CFB=180°﹣25°﹣25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故答案为130°.【点睛】本题考查菱形的性质、线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.31.62°【分析】先利用AAS 证明∠AOB∠∠COD ,得出∠BAO=∠DCO=34°,∠B′CO=68°,结合折叠的性质得出∠B′CA=∠BCA=34°,则∠BAC=∠B′AC=56°.【详解】由题意,得∠B′CA∠∠BCA ,∠AB′=AB ,∠B′CA=∠BCA ,∠B′AC=∠BAC .∠长方形AB′CD 中,AB′=CD ,∠AB=CD .在∠AOB 与∠COD 中,90B D AOB COD AB CD ∠∠︒⎧⎪∠∠⎨⎪⎩==== , ∠∠AOB∠∠COD (AAS ),∠∠BAO=∠DCO=34°,∠∠B′CO=90°-∠DCO=56°,∠∠B′CA=∠BCA=28°,∠∠B′AC=90°-∠B′CA=62°,∠∠BAC=∠B′AC=62°.【点睛】考查了折叠的性质、矩形的性质和全等三角形的判定与性质,解题关键是证明∠AOB∠∠COD ,得出∠BAO=∠DCO=34°是解题的关键.32.1:3【详解】试题解析:设平行四边形的面积为1,∠四边形ABCD 是平行四边形, ∠12DAB ABCD S S =,又∠M 是ABCD 的AB 的中点, 则1124DAM DAB ABCD S S S ==,1,2BE MB DE CD == ∠EMB △上的高线与DAB 上的高线比为1.3BE BD ==∠1113212 EMB DABS S=⨯=,∠143 DEC MEBS S,==S阴影面积1111141233 =---=,则阴影部分的面积与▱ABCD的面积比为13.故填空答案:13.33.【详解】分析:作DH平分∠BDC交BC于H.连接AH交BD于M.首先证明P、H关于BD对称,连接AH交BD于M,则AM+PM的值最小,最小值=AH.详解:作DH平分∠BDC交BC于H.连接AH交BD于M.∠四边形ABCD是矩形,∠∠C=∠BAD=∠ADC=90°,∠tan∠ADB=ABAD∠∠ADB=30°,∠∠BDC=60°,∠∠CDH=30°,∠CD∠CH2,△DH=2CH=4,∠DP=DH,∠∠MDP=∠MDH,∠P、H关于BD对称,连接AH交BD于M,则AM+PM的值最小,最小值=AH=点睛:本题考查了矩形的性质,解直角三角形,勾股定理,含30º角的直角三角形的性质,轴对称的性质,作DH平分∠BDC交BC于H.连接AH交BD于M.说明P和H关于BD成轴对称是解答本题的关键.34.39cm60cm2【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13cm,根据等腰三角形的性质得到AB=CD=12AD=12CD=6.5cm,从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【详解】∠BE、CE分别平分∠ABC、∠BCD,∠∠1=∠3=12∠ABC,∠DCE=∠BCE=12∠BCD,在▱ABCD中,AB=CD,AD=BC,AD∠BC,AB∠CD,∠AD∠BC,AB∠CD,∠∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∠∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∠AB=AE,CD=DE,∠BEC=90°,在Rt△BCE中,根据勾股定理得:BC=13cm,∠平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm;作EF∠BC于F,根据直角三角形的面积公式得:EF=·6013BE CEBC=cm,∠平行四边形ABCD的面积=BC·EF=601313⨯=60cm2,故答案为39cm,60cm2.【点睛】本题考查了平行四边形的性质、等腰三角形的判定与性质、勾股定理等,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.。

初中数学四边形技巧及练习题附答案解析

初中数学四边形技巧及练习题附答案解析

初中数学四边形技巧及练习题附答案解析一、选择题1.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.3D.3【答案】C【解析】【分析】点P、Q的速度比为33x=2,y=3P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q的速度为3aT,故点P、Q的速度比为33故设点P、Q的速度分别为:3v3,由图2知,当x=2时,y=3P到达点A的位置,即AB=2×3v=6v,BQ=3=3,y=12⨯AB×BQ=12⨯6v3v=3v=1,故点P、Q的速度分别为:33AB=6v=6=a,则AC=12,BC=3如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ3=3CQ=BC﹣BQ=33=3,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=33,则HQ=CH﹣CQ=33﹣23=3,PQ=22PH HQ+=39+=23,故选:C.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.2.如图,把矩形ABCD沿EF对折后使两部分重合,若150∠=o,则AEF∠=()A.110°B.115°C.120°D.130°【答案】B【解析】【分析】根据翻折的性质可得∠2=∠3,再求出∠3,然后根据两直线平行,同旁内角互补列式计算即可得解.【详解】∵矩形ABCD沿EF对折后两部分重合,150∠=o,∴∠3=∠2=180-502︒︒=65°,∵矩形对边AD∥BC,∴∠AEF=180°-∠3=180°-65°=115°.故选:B.【点睛】本题考查了矩形中翻折的性质,两直线平行的性质,平角的定义,掌握翻折的性质是解题的关键.3.如图,四边形ABCD 是菱形,30ACD ∠=︒,2BD =,则AC 的长度为( )A .23B .22C .4D .2【答案】A【解析】【分析】 由菱形的性质,得到AC ⊥BD ,由直角三角形的性质,得到BO=1,BC=2,根据勾股定理求出CO ,即可求出AC 的长度.【详解】解,如图,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵2BD =,∴BO=1,在Rt △OBC 中,30BCO ACD ∠=∠=︒,∴BC=2,∴22213CO =-=;∴23AC =故选:A.【点睛】本题考查了菱形的性质,勾股定理解直角三角形,解题的关键是熟练掌握菱形的性质,利用勾股定理求出OC 的长度.4.如图,在菱形ABCD 中,点E 在边AD 上,30BE ADBCE ⊥∠=︒,.若2AE =,则边BC 的长为( )A .5B .6C .7D .22【答案】B【解析】【分析】 由菱形的性质得出AD ∥BC ,BC=AB=AD ,由直角三角形的性质得出AB=BC=3BE ,在Rt △ABE 中,由勾股定理得:BE 2+22=(3BE )2,解得:BE=2,即可得出结果.【详解】∵四边形ABCD 是菱形,∴AD BC BC AB =,∥.∵BE AD ⊥.∴BE BC ⊥.∴30BCE ∠=︒,∴2EC BE =,∴223AB BC EC BE BE ==-=.在Rt ABE △中,由勾股定理得()22223BE BE +=, 解得2BE =,∴36BC BE ==.故选B.【点睛】 此题考查菱形的性质,含30°角的直角三角形的性质,勾股定理,熟练掌握菱形的性质,由勾股定理得出方程是解题的关键.5.如图,在平行四边形ABCD 中,2=AD AB ,CE 平分BCD ∠交AD 于点E ,且8BC =,则AB 的长为( )A .4B .3C .52D .2【答案】A【解析】【分析】 利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB 即可得出答案.【详解】∵CE 平分∠BCD 交AD 边于点E ,∴∠ECD=∠ECB ,∵在平行四边形ABCD 中,AD ∥BC ,AB=CD ,∴∠DEC=∠ECB ,∠DEC=∠DCE ,∴DE=DC ,∵AD=2AB ,∴AD=2CD ,∴AE=DE=AB .∵8AD BC ==,2=AD AB∴AB=4,故选:A .【点睛】此题考查了平行四边形的性质,得出∠DEC=∠DCE 是解题关键.6.如图 ,矩形 ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点 M ,CN ⊥AN 于点 N .则 DM +CN 的值为(用含 a 的代数式表示)( )A .aB .45 aC .22aD .32a 【答案】C【解析】【分析】 根据“AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N”得∠MDC=∠NCD=45°,cos45°=DM CN DE CE= ,所以DM+CN=CDcos45°;再根据矩形ABCD ,AB=CD=a ,DM+CN 的值即可求出.【详解】∵AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N ,∴∠ADM=∠MDC=∠NCD=45°, ∴00cos 4545D CNMcos +=CD ,在矩形ABCD中,AB=CD=a,∴DM+CN=acos45°=2 a.故选C.【点睛】此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CN DE CE7.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8 B.9 C.10 D.12【答案】A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.考点:多边形内角与外角.8.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD上的动点,P是线段BD上的一个动点,则PM+PN的最小值是()A.95B.125C.165D.245【答案】D【解析】【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP=NQ最小,NQ为所求,当NQ⊥AB时,NQ最小,继而利用面积法求出NQ长即可得答案.【详解】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP=NQ最小,NQ为所求,当NQ⊥AB时,NQ最小,∵四边形ABCD 是菱形,AC=6,DB=8,∴OA=3,OB=4,AC ⊥BD ,在Rt △AOB 中,AB=22OA OB +=5,∵S 菱形ABCD =12AC BD AB NQ =g g , ∴18652NQ ⨯⨯=, ∴NQ=245, ∴PM+PN 的最小值为245, 故选D.【点睛】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.9.如图,在四边形ABCD 中,90,150,BAD BCD ADC ∠=∠=︒∠=o 连接对角线BD ,过点D 作//DE BC 交AB 于点,E 若23,AB AD CD =+=,则CD =( )A .2B .1C .13+D 3【答案】B【解析】【分析】 先根据四边形的内角和求得∠ABC 30︒=,再根据平行线的性质得到∠AED 30︒=,∠EDB=∠DBC ,然后根据三角形全等得到∠ABD=∠DBC ,进而得到EB=ED ,最后在Rt ADE V 中,利用勾股定理即可求解.【详解】解:在四边形ABCD 中∵90,150,BAD BCD ADC ∠=∠=︒∠=o∴∠ABC 30︒=∵//DE BC∴∠AED 30︒=,∠EDB=∠DBC在Rt ABD V 和Rt BCD △中 ∵AD CD BD BD =⎧⎨=⎩∴Rt ABD Rt BCD ≅V V∴∠ABD=∠DBC∴∠EDB=∠ABD∴EB=ED ∵23AB =+在Rt ADE △中,设AD=x,那么DE=2x,AE=232x +-()2222322x x x ++-=解得:121;73x x ==+(舍去)故选:B .【点睛】此题主要考查四边形的内角和、全等三角形的判断、平行线的性质和勾股定理的应用,熟练进行逻辑推理是解题关键.10.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE △,BCF V ,CDG V ,DAH V 全等,AEH △,BEF V ,CFG △,DGH V 也全等,中间小正方形EFGH 的面积与ABE △面积相等,且ABE △是以AB 为底的等腰三角形,则AEH △的面积为( )A .2B .169C .32D 2【答案】C【分析】【详解】解:如图,连结EG 并向两端延长分别交AB 、CD 于点M 、N ,连结HF ,∵四边形EFGH 为正方形,∴EG FH =,∵ABE △是以AB 为底的等腰三角形,∴AE BE =,则点E 在AB 的垂直平分线上,∵ABE △≌CDG V ,∴CDG V 为等腰三角形,∴CG DG =,则点G 在CD 的垂直平分线上,∵四边形ABCD 为正方形,∴AB 的垂直平分线与CD 的垂直平分线重合,∴MN 即为AB 或CD 的垂直平分线,则,EM AB GN CD ^^,EM GN =,∵正方形ABCD 的边长为4,即4AB CD AD BC ====,∴4MN =,设EM GN x ==,则42EG FH x ==-,∵正方形EFGH 的面积与ABE △面积相等, 即2114(42)22x x ?-,解得:121,4x x ==, ∵4x =不符合题意,故舍去,∴1x =,则S 正方形EFGH 14122==⨯⨯=V ABE S , ∵ABE △,BCF V ,CDG V ,DAH V 全等,∴2====V V V V ABE BCF CDG DAH S S S S ,∵正方形ABCD 的面积4416=⨯=,AEH △,BEF V ,CFG △,DGH V 也全等, ∴1(4=V AEH S S 正方形ABCD − S 正方形EFGH 134)(16242)42-=⨯--⨯=V ABE S ,【点睛】本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得ABE △的面积.11.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC 长度2205OB C +=,∵O 点为AB 的中点,E 点为AD 的中点,∴OE 为△ABD 的中位线,即:OE=12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∴BD 的最小值为4,∴OE=12BD=2, 即OE 的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.12.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x ,y ,z ,则111x y z ++的值为( ) A .1B .23C .12D .13【答案】C【解析】分析:根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.详解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x 、y 、z ,那么这三个多边形的内角和可表示为:2180x x -⨯()+2180y y -⨯()+2180z z ()-⨯=360,两边都除以180得:1﹣2x+1﹣2y +1﹣2z =2,两边都除以2得:1x +1y +1z =12. 故选C .点睛:解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.13.如图,在矩形ABCD 中,AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( )A.2个B.3个C.4个D.5个【答案】C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴2AB,∵2AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE )-(CD-HE )=2HE ,所以④正确;∵AB=AH ,∠BAE=45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB≠HF ,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C .【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质14.如图,四边形ABCD 的对角线为AC 、BD ,且AC=BD ,则下列条件能判定四边形ABCD 为矩形的是( )A .BA=BCB .AC 、BD 互相平分C .AC ⊥BDD .AB ∥CD【答案】B【解析】试题分析:根据矩形的判定方法解答.解:能判定四边形ABCD 是矩形的条件为AC 、BD 互相平分.理由如下:∵AC 、BD 互相平分,∴四边形ABCD 是平行四边形,∵AC=BD ,∴▱ABCD 是矩形.其它三个条件再加上AC=BD 均不能判定四边形ABCD 是矩形.故选B .考点:矩形的判定.15.如图,在ABC V 中,D E ,是AB AC ,中点,连接DE 并延长至F ,使EF DE ,连接AF CD ,,CF .添加下列条件,可使四边形ADCF 为菱形的是( )A .AB AC =B .AC BC = C .CD AB ⊥ D .AC BC ⊥【答案】D【解析】【分析】 根据AE =CE ,EF =DE 可证得四边形ADCF 为平行四边形,再利用中位线定理可得DE ∥BC 结合AC ⊥BC 可证得AC ⊥DF ,进而利用对角线互相垂直的平行四边形是菱形即可得证.【详解】解:∵点E 是AC 中点,∴AE =CE ,∵AE =CE ,EF =DE ,∴四边形ADCF 为平行四边形,∵点D 、E 是AB 、AC 中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,∴∠AED =∠ACB ,∵AC ⊥BC ,∴∠ACB =90°,∴∠AED =90°,∴AC ⊥DF ,∴平行四边形ADCF 为菱形故选:D .【点睛】本题考查了菱形的判定,三角形的中位线性质,熟练掌握相关图形的性质及判定是解决本题的关键.16.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB =,则EFGH 的面积是( )A.6 B.8 C.9 D.12【答案】B【解析】【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE=22EH=22EF,EF=22AE,即可得到结论.【详解】解:∵在正方形ABCD中,∠D=90°,AD=CD=AB,∴∠DAC=∠DCA=45°,∵四边形EFGH为正方形,∴EH=EF,∠AFE=∠FEH=90°,∴∠AEF=∠DEH=45°,∴AF=EF,DE=DH,∵在Rt△AEF中,AF2+EF2=AE2,∴AF=EF 2 AE,同理可得:DH=DE=22EH又∵EH=EF,∴DE 2EF22AE=12AE,∵AD=AB=6,∴DE=2,AE=4,∴EH2DE=2,∴EFGH的面积为EH2=(2)2=8,故选:B.本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.17.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45°B.AC=BDC.BD的长度变小D.AC⊥BD【答案】B【解析】【分析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.35B.23C.38D.45【答案】A试题分析:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.试题解析:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=4b3,∴MD=MB=2a-b=53b,∴3553AM bMD b==.故选A.考点:1.矩形的性质;2.勾股定理;3.菱形的性质.19.如图,在菱形ABCD中,60BCD∠=︒,BC的垂直平分线交对角线AC于点F,垂足为E,连接BF、DF,则DFC∠的度数是()A.130︒B.120︒C.110︒D.100︒【答案】A【解析】【分析】首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB即可解决问题;【详解】∵四边形ABCD是菱形,∴∠ACD=∠ACB=12∠BCD=25°,∵EF垂直平分线段BC,∴FB=FC,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.20.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,23AD =∴243AB AD ==∴226BD AB AD =-=∵四边形ABCD 是平行四边形∴132OB OD BD ===,12OA OC AC == ∴在Rt AOD △中,23AD =3OD = ∴2221OA AD OD +=∴21OC OA ==故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.。

新初中数学四边形知识点总复习附答案解析(2)

新初中数学四边形知识点总复习附答案解析(2)

新初中数学四边形知识点总复习附答案解析(2)一、选择题1.如图,在ABC V 中,D E ,是AB AC ,中点,连接DE 并延长至F ,使EF DE =,连接AF CD ,,CF .添加下列条件,可使四边形ADCF 为菱形的是( )A .AB AC =B .AC BC = C .CD AB ⊥ D .AC BC ⊥【答案】D【解析】【分析】 根据AE =CE ,EF =DE 可证得四边形ADCF 为平行四边形,再利用中位线定理可得DE ∥BC 结合AC ⊥BC 可证得AC ⊥DF ,进而利用对角线互相垂直的平行四边形是菱形即可得证.【详解】解:∵点E 是AC 中点,∴AE =CE ,∵AE =CE ,EF =DE ,∴四边形ADCF 为平行四边形,∵点D 、E 是AB 、AC 中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,∴∠AED =∠ACB ,∵AC ⊥BC ,∴∠ACB =90°,∴∠AED =90°,∴AC ⊥DF ,∴平行四边形ADCF 为菱形故选:D .【点睛】本题考查了菱形的判定,三角形的中位线性质,熟练掌握相关图形的性质及判定是解决本题的关键.2.如图,在平行四边形ABCD 中,2=AD AB ,CE 平分BCD ∠交AD 于点E ,且8BC =,则AB 的长为( )A .4B .3C .52D .2【答案】A【解析】【分析】 利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB 即可得出答案.【详解】∵CE 平分∠BCD 交AD 边于点E ,∴∠ECD=∠ECB ,∵在平行四边形ABCD 中,AD ∥BC ,AB=CD ,∴∠DEC=∠ECB ,∠DEC=∠DCE ,∴DE=DC ,∵AD=2AB ,∴AD=2CD ,∴AE=DE=AB .∵8AD BC ==,2=AD AB∴AB=4,故选:A .【点睛】此题考查了平行四边形的性质,得出∠DEC=∠DCE 是解题关键.3.如图,四边形ABCD 和四边形AEFG 均为正方形,连接CF ,DG ,则DG CF=( )A.23B.22C.33D.32【答案】B 【解析】【分析】连接AC和AF,证明△DAG∽△CAF可得DGCF的值.【详解】连接AC和AF,则22 AD AGAC AF==,∵∠DAG=45°-∠GAC,∠CAF=45°-GAC,∴∠DAG=∠CAF.∴△DAG∽△CAF.∴22 DG ADCF AC==.故答案为:B.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.4.如图,正方形ABDC中,AB=6,E在CD上,DE=2,将△ADE沿AE折叠至△AFE,延长EF交BC于G,连AG、CF,下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S∆FCG=3,其中正确的有().A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用折叠性质和HL 定理证明Rt △ABG ≌Rt △AFG ,从而判断①;设BG=FG=x ,则CG=6-x ,GE=x+2,根据勾股定理列方程求解,从而判断②;由②求得△FGC 为等腰三角形,由此推出1802FGC FCG -∠∠=o ,由①可得1802FGC AGB -∠∠=o ,从而判断③;过点F 作FM ⊥CE ,用平行线分线段成比例定理求得FM 的长,然后求得△ECF 和△EGC 的面积,从而求出△FCG 的面积,判断④.【详解】解:在正方形ABCD 中,由折叠性质可知DE=EF=2,AF=AD=AB=BC=CD=6,∠B=∠D=∠AFG=∠BCD=90°又∵AG=AG∴Rt △ABG ≌Rt △AFG ,故①正确;由Rt △ABG ≌Rt △AFG∴设BG=FG=x ,则CG=6-x ,GE=GF+EF=x+2,CE=CD-DE=4∴在Rt △EGC 中,222(6)4(2)x x -+=+解得:x=3∴BG =3,CG=6-3=3∴BG =CG ,故②正确;又BG =CG , ∴1802FGC FCG -∠∠=o 又∵Rt △ABG ≌Rt △AFG∴1802FGC AGB -∠∠=o ∴∠FCG=∠AGB∴AG ∥CF ,故③正确;过点F 作FM ⊥CE ,∴FM ∥CG∴△EFM ∽△EGC∴FM EF GC EG =即235FM =解得65 FM=∴S∆FCG=116344 3.6225ECG ECFS S-=⨯⨯-⨯⨯=V V,故④错误正确的共3个故选:C.【点睛】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.5.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.10【答案】B【解析】【分析】【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.6.在四边形ABCD中,两对角线交于点O,若OA=OB=OC=OD,则这个四边形( )A.可能不是平行四边形B.一定是菱形C.一定是正方形D.一定是矩形【答案】D【解析】【分析】根据OA=OC, OB=OD,判断四边形ABCD是平行四边形.然后根据AC=BD,判定四边形ABCD是矩形.【详解】解:这个四边形是矩形,理由如下:∵对角线AC、BD交于点O,OA= OC, OB=OD,∴四边形ABCD是平行四边形,又∵OA=OC=OD=OB,∴AC=BD,∴四边形ABCD是矩形.故选D.【点睛】本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.7.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,这个长方形的面积为()A.45 B.48 C.63 D.64【答案】C【解析】【分析】由中央小正方形的边长为1厘米,设这7个正方形中最大的一个边长为x厘米,其余几个边长分别是x-1、x-2、x-3,根据长方形中几个正方形的排列情况,列方程求出最大正方形的边长,从而求得长方形长和宽,进而求出长方形的面积.【详解】因为小正方形边长为1厘米,设这7个正方形中最大的一个边长为x厘米,因为图中最小正方形边长是1厘米,所以其余的正方形边长分别为x−1,x−2,x−3,3(x-3)-1=x解得:x=5;所以长方形的长为x+x−1=5+5-1=9,宽为x-1+x−2=5-1+5-2=7长方形的面积为9×7=63(平方厘米);故选:C【点睛】本题考查了对拼组图形面积的计算能力,利用了正方向的性质和长方形面积的计算公式.8.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.3D.3【答案】C【解析】【分析】点P、Q的速度比为33x=2,y=3P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q3a,故点P、Q的速度比为33故设点P、Q的速度分别为:3v3,由图2知,当x=2时,y=3P到达点A的位置,即AB=2×3v=6v,BQ=3=3,y =12⨯AB ×BQ =12⨯6v ×23v =63,解得:v =1, 故点P 、Q 的速度分别为:3,3,AB =6v =6=a ,则AC =12,BC =63,如图当点P 在AC 的中点时,PC =6,此时点P 运动的距离为AB +AP =12,需要的时间为12÷3=4,则BQ =3x =43,CQ =BC ﹣BQ =63﹣43=23,过点P 作PH ⊥BC 于点H ,PC =6,则PH =PC sin C =6×12=3,同理CH =33,则HQ =CH ﹣CQ =33﹣23=3,PQ =22PH HQ +=39+=23,故选:C .【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.9.如图,四边形ABCD 是菱形,30ACD ∠=︒,2BD =,则AC 的长度为( )A .3B .2C .4D .2【答案】A【解析】【分析】 由菱形的性质,得到AC ⊥BD ,由直角三角形的性质,得到BO=1,BC=2,根据勾股定理求出CO ,即可求出AC 的长度.【详解】解,如图,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵2BD =,∴BO=1,在Rt △OBC 中,30BCO ACD ∠=∠=︒,∴BC=2, ∴22213CO =-=;∴23AC =;故选:A.【点睛】本题考查了菱形的性质,勾股定理解直角三角形,解题的关键是熟练掌握菱形的性质,利用勾股定理求出OC 的长度.10.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 【答案】B【解析】【分析】 根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE ,∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =,∴14EFC BCDD S S =V V , ∴18EFCABCD S S =V 四边形, ∴1176824AGH EFC ABCD S S S +=+=V V 四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.11.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°, 图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .12.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB =,则EFGH 的面积是( )A.6 B.8 C.9 D.12【答案】B【解析】【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE=22EH=22EF,EF=22AE,即可得到结论.【详解】解:∵在正方形ABCD中,∠D=90°,AD=CD=AB,∴∠DAC=∠DCA=45°,∵四边形EFGH为正方形,∴EH=EF,∠AFE=∠FEH=90°,∴∠AEF=∠DEH=45°,∴AF=EF,DE=DH,∵在Rt△AEF中,AF2+EF2=AE2,∴AF=EF 2 AE,同理可得:DH=DE=22EH又∵EH=EF,∴DE 2EF22AE=12AE,∵AD=AB=6,∴DE=2,AE=4,∴EH2DE=2,∴EFGH的面积为EH2=(2)2=8,故选:B.本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.13.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是()A.100°B.160°C.80°D.60°【答案】D【解析】【分析】由四边形ABCD是平行四边形,可得∠A=∠C,AD∥BC,又由∠A+∠B=180°,求得∠A的度数,继而求得答案.【详解】∵四边形ABCD是平行四边形,如图,∴∠A=∠C,AD∥BC,∴∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=180°﹣∠A=60°.故选D.【点睛】此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等、邻角互补的知识.14.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45°B.AC=BDC.BD的长度变小D.AC⊥BD【答案】B【解析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.16.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分【答案】C【解析】【分析】根据矩形和平行四边形的性质进行解答即可.【详解】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.矩形的对角线相等,而平行四边形的对角线不一定相等.故选C.【点睛】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.17.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.35B.23C.38D.45【答案】A【解析】试题分析:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.试题解析:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=4b3,∴MD=MB=2a-b=53b,∴3553AM bMD b==.故选A.考点:1.矩形的性质;2.勾股定理;3.菱形的性质.18.如图,在菱形ABCD中,点A在x轴上,点B的坐标轴为()4,1, 点D的坐标为()0,1,则菱形ABCD的周长等于()A5B.3C.45D.20【答案】C【解析】【分析】如下图,先求得点A的坐标,然后根据点A、D的坐标刻碟AD的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC、BD,交于点E∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴AD=()()2220015-+-=∴菱形ABCD 的周长为:45故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.19.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )A .130︒B .120︒C .110︒D .100︒【答案】A【解析】【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;【详解】∵四边形ABCD 是菱形,∴∠ACD =∠ACB =12∠BCD=25°, ∵EF 垂直平分线段BC ,∴FB=FC ,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A.【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.∆绕点A顺时针旋转90︒到20.如图,点E是正方形ABCD的边DC上一点,把ADE∆的位置.若四边形AECF的面积为20,DE=2,则AE的长为()ABFA.4 B.5C.6 D.26【答案】D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】Q绕点A顺时针旋转90︒到ABFADE∆∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,∴==25AD DCDE=Q,2∴∆中,2226Rt ADE=+=AE AD DE故选:D.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.。

初中数学四边形专题训练50题含参考答案

初中数学四边形专题训练50题含参考答案

初中数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.如果从某个多边形的一个顶点出发,可以作2条对角线,则这个多边形的边数是( )A .4B .5C .6D .7 2.如图,用一根绳子检查一平行四边形书架的侧边是否和上、下底都垂直,只需要用绳子分别测量比较书架的两条对角线AC ,BD 就可以判断,其推理依据是( )A .矩形的对角线相等B .矩形的四个角是直角C .对角线相等的四边形是矩形D .对角线相等的平行四边形是矩形3.在Rt ABC 中,90,30,4,C A BC D E ∠=︒∠=︒=、分别为AC AB 、边上的中点,连接DE 到F ,使得2EF ED =,连接BF ,则BF 长为( )A .2B .C .4D .4.一个多边形的内角和是外角和的5倍,这个多边形边数为( ) A .14 B .12 C .10 D .8 5.在平面直角坐标系中,矩形ABCD 的位置如图所示,其中(1,1)B --,点A 在第二象限,//AB y 轴,3,4AB BC ==,则顶点D 的坐标为( )A.(3,2)B.(2,2)C.(3,3)D.(2,3)6.下列选项中,能判定四边形ABCD是平行四边形的是()A.AB//CD,AD=BC B.∠A=∠D,∠B=∠CC.AB//CD,∠A+∠B=180°D.∠A=∠C,∠B+∠D=180°7.下列命题正确的是()A.同一边上两个角相等的梯形是等腰梯形B.一组对边平行,一组对边相等的四边形是平行四边形C.如果顺次连接一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形D.对角线互相垂直的四边形面积等于对角线乘积的一半8.下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能互相垂直D.平行四边形的对角线可以互相垂直9.如图,已知点D、E分别是△ABC的边AB、CB的中点,若AB=8,CE=6,AC=10,则△BDE的周长为()A.12B.15C.19D.2410.一个正多边形的每个外角都等于36°,那么它是()A.正五边形B.正六边形C.正八边形D.正十边形11.如图,将一边长AB为4的矩形纸片折叠,使点D与点B重合,折痕为EF,若EF=)A .32B .28C .30D .36 12.将如图甲所示的长方形沿着虚线剪开得到两个全等三角形,现拼成如图乙所示的图形,取BC 的中点O ,连接OA ,OD ,AD ,若22.5ACB ∠=︒,4BC =,则AOD △的周长是( )A .4B .C .4D .4+13.如图,ABD △是等边三角形,CBD △是等腰三角形,且BC DC =,点E 是边AD 上的一点,满足//CE AB ,如果8AB =,6CE =,那么BC 的长是( )A .6B .CD .14.如图,在矩形ABCD 中,3AB =,6BC =,点O 为对角线AC 和BD 的交点,延长BA 至E ,使AE AB =,以AE 为边向右侧作矩形AEFG ,点G 在AD 上,若4AG =,过点O 的一条直线平分该组合图形的面积,并分别交EF 、BC 于点P 、Q ,则2PQ 的值为( )A .39B .40C .41D .42 15.凸n 边形恰好只有三个内角是钝角,这样的多边形边数n 的最大值是( ) A .7 B .6 C .5 D .4 16.如图,点E 为菱形ABCD 边上的一个动点,并沿A →B →C →D 的路径移动,设点E 经过的路径长为x ,∠ADE 的面积为y ,则下列图象能大致反映y 与x 的函数关系的是( )A .B .C .D .17.如图,AB CD =,AD BC =,4=AD ,6BE =,DCE △的面积为3,则四边形ABCD 的面积为( )A .10B .12C .15D .2018.如图,在矩形纸片ABCD 中,5AB =,3BC =,将BCD △沿BD 折叠到BED 位置,DE 交AB 于点F ,则cos ADF ∠的值为( )A .817B .715C .1517D .815 19.如图,矩形ABCD 中,2AB =,4BC =.点E ,G 分别在边BC ,AD 上,点F ,H 在对角线AC 上.若四边形EFGH 是菱形,则AG 的长是( )A .2BC .52D 20.如图,矩形ABCD 中,6,8AB BC ==.点E 、F 分别为边BC 、AD 上一点,连接EF ,将矩形ABCD 沿着EF 折叠,使得点A 落到边CD 上的点A '处,且2DA A C '=',则折痕EF 的长度为( )A .B .C D二、填空题21.▱ABCD 中,AC 、BD 交于点O ,已知6AB =,8AC =,10BD =,则DOC 的周长为______.22.如图,平行四边形OABC 的边OA 在x 轴上,顶点C 在反比例函数y =k x的图象上,BC 与y 轴相交于点D ,且D 为BC 的中点,若平行四边形OABC 的面积为6,则k =_____.23.四边形具有不稳定性.如图,矩形ABCD 按箭头方向变形成平行四边形A B C D '''',当变形后图形面积是原图形面积的一半时,则A '∠=________.24.如图,ABCD 的对角线交于点O .点M ,N ,P ,Q 分别是ABCD 四条边上不重合的点.下列条件能判定四边形MNPQ 是平行四边形的有_____(填序号). ∠,AQ CN AM CP ==;∠,MP NQ 均经过点O :∠NQ 经过点O ,AQ CN =.25.如图,DE 为ABC ∆的中位线,点F 在DE 上,且AFC ∠为直角,若6AC cm =,8BC cm =,则DF 的长为__________cm .26.在ABCD 中,3AD =,2AB =,则ABCD 的周长是______.27.如图,在▱ABCD 中,对角线 AC 、BD 相交于 O ,E 为 DC 边的中点,如果▱ABCD 的周长为 24, 且12AB BC =,则 OE 的长为_______.28.矩形纸片ABCD ,长8cm AD =,宽4cm AB =,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点A '处,展平后得到折痕BE ,同时得到线段BA ',EA ',不再添加其它线段,当图中存在30角时,AE 的长为__________厘米.29.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B 落在边AD 的中点G 处,则BE 的长为________.30.各角都相等的十五边形的每个内角的度数是_____度.31.如图,在Rt ABC 中,90ACB ∠=︒,以斜边AB 为边向下作正方形ADEB ,过点E 作EF BC ∥交AC 于点F ,过点C 作CG BE ∥交EF 于点G ,连接DG ,若3AF =,15DE =,则四边形CGEB 的面积为______.32.如图,矩形ABCD的两条对角线相交于点O,CD=A为圆心,AD长为半径画弧,此弧恰好经过点O,并与AB交于点E,则图中阴影部分的面积为_____.33.如图,在平行四边形ABCD中,AD=5,AB=3,BE平分∠ABC,则DE=_____.34.在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B,在AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,则此正方形落在x轴正半轴的顶点坐标为_____.35.如图,在矩形ABCD中,点E在BC上,连接AE、DE,若2==,AD DE∠=︒,则CE的长为______________.BAE15AE=,四边形ABCD是平行四边形,且顶点A、B、36.如图,在半圆O中,直径10C在半圆上,点D在直径AE上,连接CE,若8AD=,则CE长为________.37.如图,正方形ABCD内接于圆O,点E为BC上一点,连接BE,若15∠=,CBE5BE =,则正方形ABCD 的边长为________,BE 的长为________.38.如图,ABCD 的顶点A 、B 的坐标分别是()1,0-、()0,2-,顶点C 、D 均在函数(0,0)k y k x x =>>的图象上,AD 交y 轴于点E ,若612ABE ABCD S S ==四边形,则k 的值为_____________.39.如图,将边长为4的正方形ABCD 纸片沿EF 折叠,点C 落在AB 边上的点G 处,点D 与点H 重合, CG 与EF 交于点P ,取GH 的中点Q ,连接PQ ,则GPQ 的周长最小值是__________.40.在ABC 中,已知45ABC ∠=,BD AC ⊥于D ,2CD =,3AD =,则BD 的长为________.三、解答题41.如图,二次函数2y x bx c =-++的图像经过()0A 1,,()03B -,两点.(1)求这个抛物线的解析式及顶点坐标;(2)在抛物线的对称轴上是否存在一点P ,使得O 、B 、C 、P 四点为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.42.如图,点A 在双曲线y=(x >0)上,点B 在双曲线y=﹣(x <0)上,且AB 平行于x 轴,BC∠AO 交x 轴于点C ,交双曲线y=﹣(x <0)于点D ,连接AD . (1)设点A 的纵坐标为n ,用n 表示AB 的长为_________;(2)当OC=3时,求点D 的坐标.43.已知:如图,四边形DEBF 是平行四边形,且AE CF =.求证:四边形ABCD 是平行四边形.44.已知:点D 是ABC ∆的边BC 的中点,DE AB ⊥,DF AC ⊥,垂足分别为E 、F ,且BE CF =.(1)如图1,求证:AE AF =;(2)如图2,若90BAC ︒∠=,连接AD 交EF 于M ,连接BM 、CM ,在不添加任何辅助线的情况下,直接写出图中所有与AEF ∆面积相等的等腰三角形.45.已知:如图,已知∠O 的半径为1,菱形ABCD 的三个顶点A 、B 、D 在∠O 上,且CD 与∠O 相切.(1)求证:BC 与∠O 相切;(2)求阴影部分面积.46.在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.【动手操作】某数学小组对图1的矩形纸片ABCD 进行如下折叠操作:第一步:如图2,把矩形纸片ABCD 对折,使AD 与BC 重合,得到折痕MN ,然后把纸片展开;第二步:如图3,将图2中的矩形纸片沿过点B 的直线折叠,使得点A 落在MN 上的点A '处,折痕与AD 交于点E ,然后展开纸片,连接AA ',BA ',EA .【问题解决】(1)观察猜想:A BC '∠=______度(2)请判断图3中ABA '△的形状,并说明理由;(3)如图4,折痕BE 与MN 交于点F ,BA '的延长线交直线CD 于点P ,若1MF =,7BC =,请求出PD 的长.47.如图,在矩形ABCD 中,E 是对角线AC 上一点(不与A 、C 重合),过点E 作EF //CD ,且EF =DC ,连接DE 、BF 、CF .(1)如图1,若AE=AB,求证:四边形ABFE是菱形.DE∠AC时,求线段BF的长.(2)如图2,若AB=2,BC48.已知:ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点.(1)如图∠,求证:DF=BE;(2)如图∠,连接DE、BF,求证:四边形DEBF是平行四边形.49.如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP∠AB交边CD于点P,连接NM,NP.(1)若∠B=60°,这时点P与点C重合,则∠NMP= 度;(2)求证:NM=NP;(3)当∠NPC为等腰三角形时,求∠B的度数.参考答案:1.B【分析】根据n 边形从一个顶点出发可引出()3n -条对角线,得出32n -=,求出n 即可.【详解】解:设这个多边形的边数是n ,由题意得32n -=,解得5n =.故选:B .【点睛】本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.掌握n 边形从一个顶点出发可引出()3n -条对角线是解题的关键.2.D【分析】根据矩形的判定定理:对角线相等的平行四边形是矩形即可判定.【详解】解:这种做法的依据是对角线相等的平行四边形为矩形,故选D .【点睛】本题主要考查对矩形的性质和判定的理解和掌握,能熟练地运用矩形的性质解决实际问题是解此题的关键.3.C【分析】根据直角三角形的性质求出AB ,进而求出AE 、EB ,根据三角形中位线定理得到DE ∠BC ,得到∠AED =∠AED =60°,根据等边三角形的判定定理和性质定理解答即可.【详解】解:在Rt ∠ABC 中,∠C =90°,∠A =30°,BC =4,∠AB =2BC =8,∠ABC =60°,∠E 为AB 边上的中点,∠AE =EB =4,∠D 、E 分别为A C 、AB 边上的中点,∠DE ∠BC ,∠∠AED =∠AED =60°,∠∠BEF =∠ABC =60°,在Rt ∠AED 中,∠A =30°,∠AE =2DE ,∠EF =2DE ,∠AE =EF ,∠∠BEF 为等边三角形,∠BF =BE =4,故选:C .【点睛】本题考查的是三角形中位线定理、等边三角形的判定和性质、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. 4.B【分析】设这个多边形有n 条边,根据内角和是它的外角和的5倍,列出方程,然后解方程即可.【详解】解:设这个多边形有n 条边.由题意得:(2)1803605n -⨯︒=︒⨯,解得n =12.故这个多边形的边数是12.故选B【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握多边形的内角和公式为:2180()n -⨯︒,外角和为360°.5.A【分析】由矩形的性质可得3AB CD ==,4CB AD ==,////AD BC x 轴,////AB CD y 轴,则可求点D 坐标. 【详解】解:四边形ABCD 是矩形3AB CD ∴==,4CB AD ==,//AD BC ,//AB CD ,且//AB y 轴,////AD BC x ∴轴,////AB CD y 轴,(1,1)B --,3AB =,4BC =,∴点C 横坐标为3,点A 纵坐标为2,∴点D 坐标为(3,2),故选:A .【点睛】本题考查了矩形的性质,坐标与图形性质,熟练运用矩形的性质是本题的关键. 6.C【分析】平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定定理逐个分析即可解答.【详解】解:A、AB//CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;B、∠A=∠D,∠B=∠C不能判定四边形ABCD是平行四边形,故此选项错误;C、因为∠A+∠B=180°,所以AD//BC,又因为AB//CD,所以四边形ABCD是平行四边形,故此选项正确;D、∠A=∠C,∠B+∠D=180°不能判定四边形ABCD是平行四边形,故此选项错误;故选C.【点睛】本题主要考查平行四边形的判定定理,解决本题的关键是要熟练掌握平行四边形的判定定理.7.D【详解】试题分析:A、同一底上两个角相等的梯形可能是等腰梯形也可能是直角梯形,故A选项错误;B、一组对边平行且相等的四边形不一定是平行四边形,故B选项错误;C、如果顺次连接一个四边形各边中点得到的是一个正方形,那么原四边形对角线相等且互相垂直,不是任意的四边形,故C选项错误;D、对角线互相垂直的四边形面积等于对角线乘积的一半,故D选项正确.故选D.考点:1.等腰梯形的判定;2.平行四边形的判定;3.正方形的判定.8.D【详解】试题分析:根据特殊四边形的性质逐一作出判断:A .梯形的对角线不一定相等,命题错误;B.当菱形满足一个角是直角,即为正方形时,菱形的对角线相等,命题错误;C.当矩形满足一组邻边相等,即为正方形时,矩形的对角线互相垂直,命题错误;D.当平行四边形满足一组邻边相等,即为菱形时,平行四边形的对角线可以互相垂直,命题正确.故选D.考点:特殊四边形的性质.9.B【分析】根据三角形中位线定理得到DE=12AC=5,根据中点定义可得BE=CE=6,BD=12AB=4,再根据三角形的周长公式得到BD+BE+DE,计算即可.【详解】解:∠点D、E分别是△ABC的边AB、CB的中点,∠DE=12AC=5,BE=CE=6,BD=12AB=4,∠△BDE的周长=BD+BE+DE=4+6+5=15,故选:B.【点睛】本题考查三角形中位线性质,熟练掌握三角形中位线性质是解题的关键.10.D【详解】试题分析:正多边形的边数=外角和÷每个外角的度数.考点:多边形的外角11.A【分析】连接BD交EF于O,由折叠的性质可推出BD∠EF,BO=DO,然后证明∠EDO∠∠FBO,得到OE=OF,设BC=x,利用勾股定理求BO,再根据∠BOF∠∠BCD,列出比例式求出x,即可求矩形面积.【详解】解:连接BD交EF于O,如图所示:∠折叠纸片使点D与点B重合,折痕为EF,∠BD∠EF,BO=DO,∠四边形ABCD是矩形,∠AD∠BC∠∠EDO=∠FBO在∠EDO和∠FBO中,∠∠EDO=∠FBO,DO=BO,∠EOD=∠FOB=90°∠∠EDO∠∠FBO(ASA)∠OE =OF =12EF ∠四边形ABCD 是矩形,∠AB =CD =4,∠BCD =90°,设BC =x ,BD∠BO , ∠∠BOF =∠C =90°,∠CBD =∠OBF ,∠∠BOF ∠∠BCD , ∠OB BC =OF CD,即:2x 解得:x =8,∠BC =8,∠S 矩形ABCD =AB •BC =4×8=32,故选:A .【点睛】本题考查矩形的折叠问题,熟练掌握折叠的性质,全等三角形的判定,以及相似三角形的判定与性质是解题的关键.12.D【分析】根据直角三角形斜边的中线等于斜边的一半可得AOC 和BOD 均为等腰三角形,由22.5ACB ∠=︒,可得:45AOB DOC ∠=∠=︒,证得AOD △为等腰直角三角形,根据勾股定理求得AD =【详解】解:由题意可知ABC 与DBC △全等,且都为直角三角形,∠点O 是BC 的中点, ∠122OA OD BC BO CO =====, ∠AOC 和BOD 均为等腰三角形,∠22.5ACB ∠=︒,∠22.5OAC ∠=︒,∠45AOB OAC ACB ∠=∠+∠=︒,同理可得:45DOC ∠=︒,∠18090AOD AOB COD ∠=︒-∠-∠=︒,在Rt AOD 中,AD∠AOD △的周长是224AD OA OD ++=+=+故选:D .【点睛】本题考查了矩形的性质,全等三角形的性质,直角三角形斜边的中线,勾股定理等知识,根据题意证出AOD △为等腰直角三角形是解题的关键.13.B【分析】连结AC ,过E 作EF ∠AB 于F ,过C 作CG ∠AB 于G ,先确定AC 为对称轴,得到∠BAC =∠DAC ,∠ACB =∠ACD ,由CE∥AB ,可得∠ECA =∠BAC =∠EAC ,得等腰三角形AE =CE =6,求出AF =AE cos60°=3,EF =AE sin60°=EFGC 为矩形,求出GB = AF +FG -AB =1,在Rt △BCG 中,由勾股定理BC【详解】解:连结AC ,过E 作EF ∠AB 于F ,过C 作CG ∠AB 于G ,∠△ABC 为等边三角形,△BCD 为等腰三角形,AC 为对称轴,∠∠BAC =∠DAC ,∠ACB =∠ACD ,∠CE∥AB ,∠∠ECA =∠BAC =∠EAC ,∠AE =CE =6,∠AF =AE cos60°=61=32⨯,∠EF =AE sin60°=6 ∠CE∥AB ,EF ∠AB , CG ∠AB ,∠FE ∠EC ,CG ∠EC ,∠∠EFG =∠FEC =∠CGF =90°∠四边形EFGC 为矩形,∠EF =CG CE =FG =6,∠GB = AF +FG -AB =3+6-8=1,在Rt ∠BCG 中,由勾股定理BC =故选择:B .【点睛】本题考查等边三角形性质,等腰三角形判定与性质,锐角三角函数,矩形判定与性质,勾股定理,掌握等边三角形性质,等腰三角形判定与性质,锐角三角函数,矩形判定与性质,勾股定理是解题关键.14.B【分析】根据题意可得PQ 必过矩形EFGA 的对角线交点,连接AF ,EG 交于点H ,取AE 的中点M ,AB 的中点N ,连接HM ,ON ,过点H 作HT ∠ON 于T ,设PQ 与AD 的交点为S ,根据三角形中位线定理可得133,22ON BC AN ===,∠ANO =∠ABC =90°,32,2NH AM ==,∠AMH =90°,再由勾股定理可得OH 的长,再证明∠ASO ∠∠CQO ,可得SO =OQ ,即可求解.【详解】解:∠过点O 的一条直线平分该组合图形的面积,∠PQ 必过矩形EFGA 的对角线交点,连接AF ,EG 交于点H ,取AE 的中点M ,AB 的中点N ,连接HM ,ON ,过点H 作HT ∠ON 于T ,设PQ 与AD 的交点为S ,∠四边形ABCD 是矩形,∠AO =CO ,又∠点N 是AB 的中点,∠133,22ON BC AN ===,ON ∠BC , ∠∠ANO =∠ABC =90°,同理:32,2NH AM ==,∠AMH =90°,∠HT∠NO,∠四边形MHTN为矩形,∠MH=NT=2,MT=MN=3,∠TO=1,∠HO=∠AD∠BC,∠∠DAC=∠BCA,∠ASO=∠CQO,在∠ASO和∠CQO中,∠DAC ACBASO CQOAO CO∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ASO∠∠CQO(AAS),∠SO=OQ,同理PH=SH,∠2PQ HO==∠240PQ=.故选:B【点睛】本题考查了矩形的性质,三角形中位线定理,全等三角形的判定和性质,勾股定理,灵活运用这些性质解决问题是本题的关键.15.B【分析】由题意知在n边形的外角中恰好有3个锐角,则其余(n-3)个外角是直角或钝角,而n个外角中最多只能有4个直角或3个钝角,而4个直角已不可能,所以n-3≤3,由此即得答案.【详解】解:因为n 边形恰好只有三个内角是钝角,所以在n 边形的外角中恰好有3个锐角,所以其余(n -3)个外角是直角或钝角,又由于n 边形的外角和是360°,其n 个外角中最多只能有4个直角或3个钝角,而4个直角显然已不可能,所以n -3≤3,解得n ≤6,即n 的最大值为6.故选B.【点睛】本题考查了多边形的内角、外角的概念与外角和,从多边形的外角的角度入手分析是解题的关键.16.D【分析】分三段来考虑点E 沿A→B 运动,∠ADE 的面积逐渐变大;点E 沿B→C 移动,∠ADE 的面积不变;点E 沿C→D 的路径移动,∠ADE 的面积逐渐减小,据此选择即可.【详解】解:点E 沿A →B 运动,∠ADE 的面积逐渐变大,设菱形的边长为a ,∠A =β, ∠AE 边上的高为AB sinβ=a •sinβ,∠y =12•a •sinβ,点E 沿B →C 移动,∠ADE 的面积不变;点E 沿C →D 的路径移动,y =12(3a ﹣x )•sinβ,∠ADE 的面积逐渐减小.故选:D .【点睛】本题考查了动点问题的函数图像,分析判断几何动点问题的函数图象的题目一般有两种类型:(1)观察型(函数的图象有明显的增减性差异):根据题目描述,只需确定函数值在每段函数图象上随自变量的增减情况或变化的快慢即可得解.(2)计算型:先根据自变量的取值范围对函数进行分段,再求出每段函数的解析式,最后由每段函数的解析式确定每段函数的图象.17.B【分析】根据两组对边分别相等的四边形是平行四边形证明四边形ABCD 是平行四边形,再根据DCE △的面积为3计算出DH ,最后根据平行四边形的面积公式即可得到答案.【详解】解:过点D 作DH CE ⊥,垂足为H ,∠AB CD =,AD BC =,∠四边形ABCD 是平行四边形,∠2CE BE BC BE AD =-=-=, ∠112322DCE S CE DH DH =⨯=⨯⨯=, ∠3DH =,∠4312ABCD S BC DH =⨯=⨯=,故选:B .【点睛】本题考查平行四边形的判断,解题的关键是熟知两组对边分别相等的四边形是平行四边形.18.C【分析】先根据矩形的性质和折叠的性质,利用“AAS”证明AFD EFB ∆∆≌,得出AF EF =,DF BF =,设AF EF x ==,则5BF x =-,根据勾股定理列出关于x 的方程,解方程得出x 的值,最后根据余弦函数的定义求出结果即可.【详解】解:∠四边形ABCD 为矩形,∠CD =AB =5,AB =BC =3,90A C ∠=∠=︒,根据折叠可知,3BE BC ==,5DE DE ==,90∠=∠=︒E C ,∠在∠AFD 和∠EFB 中903A E AFD EFB AD BE ∠=∠=︒⎧⎪∠=∠⎨⎪==⎩,∠AFD EFB ∆∆≌(AAS ),∠AF EF =,DF BF =,设AF EF x ==,则5BF x =-,在Rt BEF ∆中,222BF EF BE =+,即()22253x x -=+, 解得:85x =,则817555DF BF ==-=, ∠315cos 17175AD ADF DF ∠===,故C 正确.故选:C .【点睛】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明AFD EFB ∆∆≌,是解题的关键.【分析】连接EG 交AC 于O ,根据菱形和矩形的性质证明∠CEO ∠∠AGO ,推出AO=CO ,由勾股定理求出AC 得到AO ,再证明∠AOG ∠∠ADC ,得到AG AO AC AD=,代入数值即可求出AG .【详解】解:连接EG 交AC 于O ,∠四边形EFGH 是菱形,∠EG ∠FH ,OE=OG ,∠四边形ABCD 是矩形,∠∠B =∠D =90°,AD BC ∥,∠∠ACB =∠CAD ,∠∠CEO ∠∠AGO ,∠AO=CO ,∠AC ==∠12AO AC == ∠∠AOG =∠D =90°,∠OAG =∠CAD ,∠∠AOG ∠∠ADC , ∠AG AO AC AD=,=, ∠AG =52故选:C .【点睛】此题考查了菱形的性质,矩形的性质,勾股定理,全等三角形的判定及性质,相似三角形的判定及性质,是图形类的综合题,熟练掌握各知识点是解题的关键.【分析】由2DA A C '=',6DC =,可求出DA ',A C '的长,再根据折叠和勾股定理可求出DF 和FA ',依据三角形相似可求出NC 、NA ',进而求出MF ,最后根据勾股定理求出EF .【详解】解:如图,过点E 作EM AD ⊥,垂足为M ,2DA A C ''=,6DC =, 243DA DC '==,123A C DC '==, 由折叠得,AF FA =',6AB A B =''=,设DF x =,则8FA FA x ='=-,在Rt DFA ∆'中,由勾股定理得,2224(8)x x +=-,解得3x =,即3DF =,835FA FA ∴='=-=,1809090NAC DA F ∠'+∠'=︒-︒=︒,90NAC A NC ∠'+∠'=︒,DA F A NC ∴∠'=∠',90C D ∴∠=∠=︒,∴∠A NC '∽∠FA D ',∴A C NC A N FD A D FA ''=='',即2345NC A N '==, 解得83NC =,103A N '=, 108633B N A B A N NC ∴'=''-'=-==, ∴∠()A CN ENB AAS '≅∆',103EN A N ∴='=, 108633EC EN NC MD ∴=+=+==, 633MF ∴=-=,在Rt EFM ∆中,EF故选:A .【点睛】本题考查矩形的性质、折叠轴对称、相似三角形、全等三角形以及勾股定理等知识,掌握折叠的性质和直角三角形的边角关系是得出答案的前提,建立图形中线段之间的关系是解决问题的关键.21.15【分析】根据平行四边形的对角线互相平分,求得OC 与OD 的长,继而可求得答案. 【详解】解:四边形ABCD 是平行四边形,142OC AC ∴==,152OD BD ==,6CD AB ==, OCD ∴△的周长为:64515CD OC OD ++=++=.故答案为:15.【点睛】本题重点考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:∠平行四边形两组对边分别平行;∠平行四边形的两组对边分别相等;∠平行四边形的两组对角分别相等;∠平行四边形的对角线互相平分.22.3-【分析】由D 为BC 的中点,平行四边形OABC 的面积为6,可得∠OCD 的面积为平行四边形OABC 的面积的14,再根据反比例函数系数k 的几何意义即可求出答案. 【详解】解:∠D 为BC 的中点,平行四边形OABC 的面积为6,∠∠OCD 的面积为6×14=1.5, ∠12|k |=1.5, ∠k <0,∠3k =-.故答案为:3-.【点睛】本题考查了反比例函数k 的几何意义,平行四边形的性质,求得∠OCD 的面积是解题的关键.23.30︒【分析】根据矩形和平行四边形的面积公式可知,平行四边形A 'B 'C 'D '的底边A D ''边上的高等于A B ''的一半,据此可得∠A '为30°.【详解】解:如图,过点B '作B E A D '⊥''于点E .设矩形ABCD 的边AD 长为a ,AB 长为b ,B E '长为c ,则ABCD S ab =矩形,A B C D Sac ''''=. ∠12A B C D ABCDS S ''''=矩形, ∠12ac ab =, ∠12c b =, ∠sin A '12c b ==, ∠30A ∠'=︒.【点睛】本题主要考查了四边形的不稳定性、矩形与平行四边形的面积公式、解直角三角形等相关知识,熟记特殊角的三角函数值是解答本题的关键.24.∠∠##∠∠【分析】∠根据平行四边形的性质结合已知条件,证明AMQ CPN ≌,DQP BNM ≌,可得MQ NP =,MN PQ =,根据两组对边相等的四边形是平行四边形,即可判断∠,∠根据平行四边形是中心对称图形,即可判断∠,根据已知条件不能判断∠.【详解】解:∠四边形ABCD 是平行四边形A C ∴∠=∠,B D ∠=∠,,AD BC AB CD == ∠,AQ CN AM CP ==∠AMQ CPN ≌∠MQ NP =,AQ CN AM CP ==∴,DQ BN DP BM ==又B D ∠=∠DQP BNM ∴≌MN PQ ∴=∴四边形MNPQ 是平行四边形故∠正确 ∠四边形ABCD 的对角线交于点O ,,MP NQ 均经过点O :,OQ ON OM OP ∴==∴四边形MNPQ 是平行四边形故∠正确∠NQ 经过点O ,AQ CN =,,M P 的位置未知,不能判断四边形MNPQ 是平行四边形 故∠不正确故答案为:∠∠【点睛】本题考查了平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.25.1【分析】根据三角形中位线定理求出DE ,根据直角三角形的性质求出EF ,结合图形计算即可.【详解】∠DE 为△ABC 的中位线, ∠DE=12BC=4(cm), ∠∠AFC 为直角,E 为AC 的中点, ∠FE=12AC=3(cm),∠DF=DE−FE=1(cm),故答案为1cm.【点睛】此题考查三角形中位线定理,解题关键在于掌握其性质定义.26.10【分析】平行四边形的两组对边相等,以此便可求解.【详解】解:如图:平行四边形ABCD 的周长为:2()2(32)10AD AB +=⨯+=.故答案是:10.【点睛】本题考查平行四边形两组对边相等的性质,解题的关键是掌握其性质. 27.4【分析】直接利用三角形中位线的性质,证明EO =AB ,然后根据平行四边形的性质列方程得出答案.【详解】解:∠四边形ABCD 是平行四边形,∠AB =DC ,BO =DO ,又∠E 为DC 边的中点,∠EO 是△DBC 的中位线,∠EO =12BC , ∠EO =AB∠▱ABCD 的周长为24,∠设AB =x ,则BC =2x ,则2(x +2x )=24,解得:x =4,故EO =4.故答案为4.【点睛】此题主要考查了平行四边形的性质、三角形中位线的性质等,正确得出EO 是△DBC 的中位线是解题关键.28 8-【分析】分∠ABE=30°或∠AEB=30°或∠ABA′=30°时三种情况,利用锐角三角函数进行求解即可.【详解】解:当∠ABE=30°时,∠AB=4cm ,∠A=90°,; 当∠AEB=30°时,则∠ABE=60°,∠AB=4cm ,∠A=90°,∠AE=AB·tan60°=;当∠ABE=15°时,∠ABA′=30°,延长BA′交AD 于F ,如下图所示,设AE=x ,则EA′=x ,sin 60x EF ==︒∠x +=∠8x =-∠8AE =-cm .8- 【点睛】本题考查了矩形与折叠,以及分类讨论的数学思想,分类讨论是解答本题的关键.29.2.5【分析】由折叠的性质可得CF=HF ,BE=GE ,设BE=GE=x ,则AE=4-x ,在Rt △AEG 中利用勾股定理求出x 的值.【详解】解:由题意,点C 与点H ,点B 与点G 分别关于直线EF 对称,∠CF=HF ,BE=GE ,设BE=GE=x ,则AE=4-x ,∠四边形ABCD 是正方形,∠∠A=90°,∠AE 2+AG 2=EG 2,∠B 落在边AD 的中点G 处,∠AG=2,∠(4-x )2+22=x 2,解得:x=2.5,∠BE=2.5.故答案为:2.5.【点睛】本题考查了折叠问题与勾股定理以及正方形的性质,掌握翻折的性质是解题的关键.30.156【分析】根据多边形的内角和公式即可得出结果.【详解】解:∠十五边形的内角和=(15﹣2)•180°=2340°,又∠十五边形的每个内角都相等,∠每个内角的度数=2340°÷15=156°.故答案为156.【点睛】本题考查了多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n ﹣2)•180°.31.81【分析】先证明四边形CGBE 是平行四边形, 然后证明CGF BAC ≌,再解直角三角形即可求得BH 的长度,进而根据BE BH ⨯即可求得答案.【详解】如图,设,AB CG 交于点H ,四边形ADEB 是正方形,15AB BE ∴==,EF BC ∥,CG BE ∥,∴四边形CGBE 是平行四边形,15CG BE AB ∴===,BE AB ⊥,CG AB ∴⊥,90ABC HCB ∴∠+∠=︒,90ACB ∠=︒,∴90ABC CAB ∠+∠=︒,HCB CAB ∴∠=∠,EF BC ∥,HCB CGF ∴∠=∠,90GFC ACB ∠=∠=︒,CGF BAC ∴∠=∠,∴CGF BAC ≌,CB FC ∴=,设CB x =,则3AC AF FC x =+=+,Rt ABC 中,222AB AC BC =+,即()222153x x =++,解得9x =或12x =-(舍), 9312,9AC BC ∴=+==,93cos 155BC CBA AB ∴∠===, 327cos 955HB BC CBA ∴=⋅∠=⨯=, ∴平行四边形CGEB 的面积为BE BH ⨯2715815BE BH =⨯=⨯=, 故答案为:81.【点睛】本题考查了正方形的性质,平行四边形的判定,全等三角形的性质与判定,勾股定理,解直角三角形等知识,熟练掌握知识间的联系,是解答本题的关键.32.43π 【分析】根据题意得到ADO ∆是等边三角形,从而得到角度,再结合特殊角的直角三角形三边关系得到4=AD ,8AC =,分别求出ACD S ∆=83AOD S π=扇形,43AOE S π=扇形,最后根据图形得到=ACD AOD AOE S S S S ∆-+阴影扇形扇形,代值求解即可. 【详解】解:矩形ABCD 的两条对角线相交于点O ,OA OB OC OD ∴===,以点A 为圆心,AD 长为半径画弧,此弧恰好经过点O ,AO AD OD ∴==,即ADO ∆是等边三角形,60DAO ∴∠=︒,30OAE ∠=︒,在Rt ACD ∆中,30ACD OAE ∠=∠=︒,90ADC ∠=︒,CD =4=AD ,8AC =, 11422ACD S AD CD ∆∴==⨯⨯ 260843603AOD S ππ︒=⨯⨯=︒扇形, 230443603AOE S ππ︒=⨯⨯=︒扇形, 844=333ACD AOD AOE S S S S πππ∆∴-+=+=阴影扇形扇形,故答案为:43π 【点睛】本题考查阴影图形面积,对于不规则图形面积求解,我们要根据题中图形转化为规则图形面积间接表示出来,在求解此题过程中涉及到矩形的性质、等边三角形的判定与性质、特殊角度的直角三角形三边关系、三角形面积公式和扇形面积公式,将阴影部分面积转化为常见图形面积来间接求解是解决问题的关键.33.2【分析】根据平行四边形性质求出AD∠BC ,由平行线的性质可得∠AEB=∠CBE ,然后由角平分线的定义知∠ABE=∠AEB ,所以∠ABE=∠AEB ,即可得AB=AE ,由此即可求出DE 的长.【详解】∠四边形ABCD 是平行四边形,∠AD∠BC ,∠∠AEB=∠CBE .∠BE 平分∠ABC ,∠∠ABE=∠CBE ,∠∠ABE=∠AEB ,∠AB=AE=3,∠DE=AD-AE=5-3=2.故答案是:2.【点睛】本题考查了平行四边形性质、三角形的角平分线的定义,平行线的性质的应用,证得AB=AE 是解题的关键.34.(1.5,0)或(1,0).。

初中数学几何题100条秘籍——四边形篇

初中数学几何题100条秘籍——四边形篇

邻的两个三角形的面积之和等于平行四边形面积的一半.
1
A
D
如图:S△AOB + S△DOC = S△BOC+S△AOD = S□ABCD
2
O
B C
规律 48.任意一点与同一平面内的矩形各点的连线中,不相邻的两条线段的平方
和相等.
如图:AO2+OC2 = BO2 +DO2
O
A
DA
D
O
B
B C
C
规律 49.平行四边形四个内角平分线所围成的四边形为矩形.
∴∠BDA =∠CAD
∵AF⊥BD
E
∴∠ABD+∠ADB = ∠ABD+∠BAF = 90o
∴∠BAF =∠ADB =∠CAD
∵AE 为∠BAD 的平分线
∴∠BAE =∠DAE
∴∠BAE-∠BAF =∠DAE-∠DAC
即∠FAE =∠CAE
∴∠CAE =∠AEG
∴AC = EC
⑵ 作斜边中线,当有下列情况时常作斜边中线:
如图:四边形 GHMN 是矩形
A
D
N G
M H B
C
规律 50.有垂直时可作垂线构造矩形或平行线.
例:已知,如图,E 为矩形 ABCD 的边 AD 上一点,且 BE = ED,P 为对角线 BD 上一
点,PF⊥BE 于 F,PG⊥AD 于 G
求证:PF+PG = AB
证明:证法一:过 P 作 PH⊥AB 于 H,则四边形 AHPG 为矩形
1 有斜边中点时
例:已知,如图,AD、BE 是△ABC 的高, F 是 DE 的中点,G 是 AB 的中点
求证:GF⊥DE
A
证明:连结 GE、GD ∵AD、BE 是△ABC 的高,G 是 AB 的中点

临汾市初中数学四边形技巧及练习题附答案

临汾市初中数学四边形技巧及练习题附答案

临汾市初中数学四边形技巧及练习题附答案一、选择题1.如图,△ABC 中,AB =AC =10,BC =12,D 是BC 的中点,DE ⊥AB 于点E ,则DE 的长为( )A .65B .85C .125D .245【答案】D【解析】【分析】连接AD ,根据已知等腰三角形的性质得出AD ⊥BC 和BD=6,根据勾股定理求出AD ,根据三角形的面积公式求出即可.【详解】解:连接AD∵AB=AC ,D 为BC 的中点,BC=12, ∴AD ⊥BC ,BD=DC=6, 在Rt △ADB 中,由勾股定理得:22221068AB BD =+=, ∵S △ADB=12×AD×BD =12×AB×DE , ∴DE=8624105AD BD AB ⨯⨯==, 故选D .【点睛】本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD 的长是解此题的关键.2.如图,在菱形ABCD 中,点E 在边AD 上,30BE ADBCE ⊥∠=︒,.若2AE =,则边BC 的长为( )A .5B .6C .7D .22【答案】B 【解析】【分析】 由菱形的性质得出AD ∥BC ,BC=AB=AD ,由直角三角形的性质得出AB=BC=3BE ,在Rt △ABE 中,由勾股定理得:BE 2+22=(3BE )2,解得:BE=2,即可得出结果.【详解】∵四边形ABCD 是菱形,∴AD BC BC AB =,∥.∵BE AD ⊥.∴BE BC ⊥.∴30BCE ∠=︒,∴2EC BE =,∴223AB BC EC BE BE ==-=.在Rt ABE △中,由勾股定理得()22223BE BE +=, 解得2BE =,∴36BC BE ==.故选B.【点睛】 此题考查菱形的性质,含30°角的直角三角形的性质,勾股定理,熟练掌握菱形的性质,由勾股定理得出方程是解题的关键.3.如图1,点F 从菱形ABCD 的项点A 出发,沿A -D -B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (m 2)随时间x (s)变化的关系图象,则a 的值为( )A .5B .2C .52D .5【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =,进而求出BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴==∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中,2222(5)21BE BD DE =-=-=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+-解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.4.设四边形的内角和等于α,五边形的外角和等于β,则α与β的关系是( ) A .αβ>B .αβ=C .αβ<D .180βα=+o【答案】B【解析】【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【详解】解:∵四边形的内角和等于a ,∴a=(4-2)•180°=360°.∵五边形的外角和等于β,∴β =360°,∴a=β. 故选B .【点睛】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.5.正九边形的内角和比外角和多( )A .720︒B .900︒C .1080︒D .1260︒【答案】B【解析】【分析】根据多边形的内角和公式求出正九边形的内角和,减去外角和360°即可.【详解】∵正九边形的内角和是(92)1801260-⨯=o o ,∴1260360-=o o 900︒,故选:B.【点睛】此题考查多边形的内角和公式、外角和,熟记公式是解题的关键.6.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AB :BC =2:1,且BE ∥AC ,CE ∥DB ,连接DE ,则tan ∠EDC =( )A .14B .16C .26D .310【答案】B【解析】【分析】过点E 作EF ⊥直线DC 交线段DC 延长线于点F ,连接OE 交BC 于点G .根据邻边相等的平行四边形是菱形即可判断四边形OBEC 是菱形,则OE 与BC 垂直平分,易得EF=12x ,CF=x .再由锐角三角函数定义作答即可.【详解】解:∵矩形ABCD 的对角线AC 、BD 相交于点O ,AB :BC =2:1,∴BC =AD ,设AB =2x ,则BC =x .如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,∴四边形BOCE是平行四边形,∵四边形ABCD是矩形,∴OB=OC,∴四边形BOCE是菱形.∴OE与BC垂直平分,∴EF=12AD=12x,OE∥AB,∴四边形AOEB是平行四边形,∴OE=AB=2x,∴CF=12OE=x.∴tan∠EDC=EFDF=122xx x=16.故选:B.【点睛】本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.7.如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点,作BM⊥AE于点M,作KN⊥AE于点N,连结MO、NO,以下四个结论:①△OMN是等腰三角形;②tan∠OMN=3;③BP=4PK;④PM•PA=3PD2,其中正确的是()A.①②③B.①②④C.①③④D.②③④【答案】B【解析】【分析】根据菱形的性质得到AD∥BC,根据平行线的性质得到对应角相等,根据全等三角形的判定定理△ADP ≌△ECP ,由相似三角形的性质得到AD=CE ,作PI ∥CE 交DE 于I ,根据点P 是CD 的中点证明CE=2PI ,BE=4PI ,根据相似三角形的性质得到1=4KP PI KB BE =,得到BP=3PK ,故③错误;作OG ⊥AE 于G ,根据平行线等分线段定理得到MG=NG ,又OG ⊥MN ,证明△MON 是等腰三角形,故①正确;根据直角三角形的性质和锐角三角函数求出∠OMN=3,故②正确;然后根据射影定理和三角函数即可得到PM•PA=3PD 2,故④正确.【详解】解:作PI ∥CE 交DE 于I ,∵四边形ABCD 为菱形,∴AD ∥BC ,∴∠DAP=∠CEP ,∠ADP=∠ECP ,在△ADP 和△ECP 中, DAP CEP ADP ECP DP CP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADP ≌△ECP ,∴AD=CE , 则PI PD CE DC =,又点P 是CD 的中点, ∴1=2PI CE , ∵AD=CE , ∴1=4KP PI KB BE =, ∴BP=3PK ,故③错误;作OG ⊥AE 于G , ∵BM 丄AE 于M ,KN 丄AE 于N ,∴BM ∥OG ∥KN ,∵点O 是线段BK 的中点,∴MG=NG ,又OG ⊥MN ,∴OM=ON ,即△MON 是等腰三角形,故①正确;由题意得,△BPC ,△AMB ,△ABP 为直角三角形,设BC=2,则CP=1,由勾股定理得,则根据三角形面积公式,BM=2217, ∵点O 是线段BK 的中点,∴PB=3PO ,∴OG=13BM=22121, MG=23MP=27, tan ∠OMN=3=3OG MG ,故②正确; ∵∠ABP=90°,BM ⊥AP ,∴PB 2=PM•PA ,∵∠BCD=60°,∴∠ABC=120°,∴∠PBC=30°,∴∠BPC=90°,∴PB=3PC ,∵PD=PC ,∴PB 2=3PD ,∴PM•PA=3PD 2,故④正确.故选B .【点睛】本题考查相似形综合题.8.如图,在矩形ABCD 中,AB m =,6BC =,点E 在边CD 上,且23CE m =.连接BE ,将BCE V 沿BE 折叠,点C 的对应点C '恰好落在边AD 上,则m =( )A .B .CD .4【答案】A【解析】【分析】设AC′=x ,在直角三角形ABC′和直角三角形DEC′中分别利用勾股定理列出关于x 和m 的关系式,再进行求解,即可得出m 的值.【详解】解:设AC′=x ,∵AB=m ,BC=6,23CE m =, 根据折叠的性质可得:BC′=6,EC′=23CE m =, ∴C ′D=6-x ,DE=13m ,在△ABC ′中,AB 2+AC′2=BC′2,即2226x m +=,在△DEC ′中,C′D 2+DE 2=C′E 2,即()22212633x m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭, 化简得:()2236x m -=,代入2226x m +=中,得:()222366x x -=-,解得:x=3或x=6,代入2226x m +=,可得:当x=3时,m=-当x=6时,m=0(舍),故m 的值为故选A.【点睛】本题考查了折叠的性质,勾股定理,解一元二次方程,有一定难度,解题的关键是根据折叠的性质运用勾股定理求解.9.如图,四边形ABCD 是菱形,30ACD ∠=︒,2BD =,则AC 的长度为( )A .23B .22C .4D .2【答案】A【解析】【分析】 由菱形的性质,得到AC ⊥BD ,由直角三角形的性质,得到BO=1,BC=2,根据勾股定理求出CO ,即可求出AC 的长度.【详解】解,如图,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵2BD =,∴BO=1,在Rt △OBC 中,30BCO ACD ∠=∠=︒,∴BC=2,∴22213CO =-=;∴23AC =;故选:A.【点睛】本题考查了菱形的性质,勾股定理解直角三角形,解题的关键是熟练掌握菱形的性质,利用勾股定理求出OC 的长度.10.如图,平行四边形ABCD 的周长是26,cm 对角线AC 与BD 交于点,,O AC AB E ⊥是BC 中点,AOD △的周长比AOB V 的周长多3cm ,则AE 的长度为( )A .3cmB .4cmC .5cmD .8cm【答案】B【解析】【分析】根据题意,由平行四边形的周长得到13AB AD +=,由AOD △的周长比AOB V 的周长多3cm ,则3AD AB -=,求出AD 的长度,即可求出AE 的长度.【详解】解:∵平行四边形ABCD 的周长是26cm , ∴126132AB AD +=⨯=, ∵BD 是平行四边形的对角线,则BO=DO ,∵AOD △的周长比AOB V 的周长多3cm ,∴()()3AO OD AD AO OB AB AD AB ++-++=-=,∴5AB =,8AD =,∴8BC AD ==,∵AC AB ⊥,点E 是BC 中点,∴118422AE BC ==⨯=; 故选:B .【点睛】 本题考查了平行四边形的性质,直角三角形斜边上的中线等于斜边的一半,解题的关键是熟练掌握平行四边形的性质进行解题.11.如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上,连接BM 、DN .若四边形MBND 是菱形,则AM MD等于( )A .35B .23C .38D .45【答案】A【解析】试题分析:设AB=a,根据题意知AD=2a ,由四边形BMDN 是菱形知BM=MD ,设AM=b,则BM=MD=2a-b.在Rt △ABM 中,由勾股定理即可求值.试题解析:∵四边形MBND 是菱形,∴MD=MB .∵四边形ABCD 是矩形,∴∠A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=4b3,∴MD=MB=2a-b=53b,∴3553AM bMD b==.故选A.考点:1.矩形的性质;2.勾股定理;3.菱形的性质.12.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点()5,3D在边AB上,以C为中心,把CDB△旋转90︒,则旋转后点D的对应点'D的坐标是( )A.()2,10B.()2,0-C.()2,10或()2,0-D.()10, 2或()2,0-【答案】C【解析】【分析】先根据正方形的性质求出BD、BC的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q四边形OABC是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB△逆时针旋转90︒,此时旋转后点B的对应点B'落在y轴上,旋转后点D的对应点D¢落在第一象限由旋转的性质得:2,5,90B D BD BC BC CBD B'''''====∠=∠=︒10OB OC B C''∴=+=∴点D¢的坐标为(2,10)(2)如图,把CDB△顺时针旋转90︒,此时旋转后点B的对应点B''与原点O重合,旋转后点D的对应点D''落在x轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.13.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,23AD =∴243AB AD ==∴226BD AB AD =-=∵四边形ABCD 是平行四边形 ∴132OB OD BD ===,12OA OC AC == ∴在Rt AOD △中,23AD =,3OD =∴2221OA AD OD =+=∴21OC OA ==. 故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.14.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,这个长方形的面积为( )A .45B .48C .63D .64【答案】C【解析】【分析】 由中央小正方形的边长为1厘米,设这7个正方形中最大的一个边长为x 厘米,其余几个边长分别是x-1、x-2、x-3,根据长方形中几个正方形的排列情况,列方程求出最大正方形的边长,从而求得长方形长和宽,进而求出长方形的面积.【详解】因为小正方形边长为1厘米,设这7个正方形中最大的一个边长为x 厘米,因为图中最小正方形边长是1厘米,所以其余的正方形边长分别为x−1,x−2,x−3,3(x-3)-1=x解得:x=5;所以长方形的长为x+x−1=5+5-1=9,宽为x-1+x−2=5-1+5-2=7长方形的面积为9×7=63(平方厘米);故选:C【点睛】本题考查了对拼组图形面积的计算能力,利用了正方向的性质和长方形面积的计算公式.∆绕点A顺时针旋转90︒到15.如图,点E是正方形ABCD的边DC上一点,把ADE∆的位置.若四边形AECF的面积为20,DE=2,则AE的长为()ABFA.4 B.5C.6 D.26【答案】D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】Q绕点A顺时针旋转90︒到ABF∆ADE∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,∴==25AD DCDE=Q,2∴∆中,2226Rt ADE=+=AE AD DE故选:D.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.16.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案不能铺满地面的是()A.B.C.D.【答案】D【解析】【分析】分别计算各正多边形每个内角的度数,看是否能整除360°,即可判断.【详解】解:A.正六边形每个内角为120°,能够整除360°,不合题意;B.正三角形每个内角为60°,能够整除360°,不合题意;C.正方形每个内角为90°,能够整除360°,不合题意;D.正五边形每个内角为108°,不能整除360°,符合题意.故选:D.【点睛】能够铺满地面的图形是看拼在同一顶点的几个角是否构成周角.17.如图11-3-1,在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=12∠ADC D.∠ADE=13∠ADC【答案】D【解析】【分析】【详解】设∠ADE=x,∠ADC=y,由题意可得,∠ADE+∠AED+∠A=180°,∠A+∠B+∠C+∠ADC=360°,即x+60+∠A=180①,3∠A+y=360②,由①×3-②可得3x-y=0,所以13x y,即∠ADE=13∠ADC.故答案选D.考点:三角形的内角和定理;四边形内角和定理.18.如图,四边形ABCD的对角线为AC、BD,且AC=BD,则下列条件能判定四边形ABCD 为矩形的是()A.BA=BCB.AC、BD互相平分C.AC⊥BDD.AB∥CD【答案】B【解析】试题分析:根据矩形的判定方法解答.解:能判定四边形ABCD是矩形的条件为AC、BD互相平分.理由如下:∵AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴▱ABCD是矩形.其它三个条件再加上AC=BD均不能判定四边形ABCD是矩形.故选B.考点:矩形的判定.19.如图,将一个大平行四边形在一角剪去一个小平行四边形,如果用直尺画一条直线将其剩余部分分割成面积相等的两部分,这样的不同的直线一共可以画出()A.1条B.2条C.3条D.4条【答案】C【解析】【分析】利用平行四边形的性质分割平行四边形即可.【详解】解:如图所示,这样的不同的直线一共可以画出三条,故答案为:3.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的中心对称性.20.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD上的动点,P是线段BD上的一个动点,则PM+PN的最小值是()A.95B.125C.165D.245【答案】D【解析】【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP=NQ最小,NQ为所求,当NQ⊥AB时,NQ最小,继而利用面积法求出NQ长即可得答案.【详解】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP=NQ最小,NQ为所求,当NQ⊥AB时,NQ最小,∵四边形ABCD是菱形,AC=6,DB=8,∴OA=3,OB=4,AC⊥BD,在Rt△AOB中,,∵S菱形ABCD=12AC BD AB NQ=g g,∴18652NQ ⨯⨯=,∴NQ=245,∴PM+PN的最小值为245,故选D.【点睛】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.。

四边形最值问题解题技巧

四边形最值问题解题技巧

四边形最值问题解题技巧
1.确定四边形属性:确定四边形属性很重要,四边形属性指的是四边
形的特定性质,例如是否是矩形或平行四边形等。

根据属性分析,可以推
断出四边形其他性质,例如角度、边长等。

2.利用角度性质:四边形的角度性质非常重要,利用它可以得到很多
信息。

例如,矩形四个角度都是90度,对角线相等,平行四边形对角线
交点的角度相等等。

3.应用相似三角形:当四边形有相似三角形时,可以用相似三角形的
性质来解题。

例如,平行四边形的对角线交点分割成的四个三角形都是相
似的三角形,利用相似三角形的比例可以得到四边形的一些边长。

4.利用面积公式:四边形的面积公式有很多,其中最常用的是矩形和
平行四边形的面积公式。

利用面积公式可以得到四边形的面积,此时需要
注意单位统一。

5.利用勾股定理:当四边形是矩形或正方形时,可以利用勾股定理解题。

例如,矩形的对角线是勾股定理中的斜边,可以利用勾股定理求出其
长度。

6.利用平面几何知识:除了以上方法,还可以利用平面几何知识解题,例如平行线之间的夹角相等、对顶角相等等。

利用这些知识可以得到四边
形的一些性质。

人教版初中数学四边形技巧及练习题附答案

人教版初中数学四边形技巧及练习题附答案

人教版初中数学四边形技巧及练习题附答案一、选择题1.如图,点E是正方形ABCD 的边 DC 上一点,把ADE 绕点 A 顺时针旋转90 到ABF 的地点.若四边形AECF的面积为 20, DE=2,则 AE 的长为()A.4B.25C.6D.26【答案】 D【分析】【剖析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,从而可求出正方形的边长,再利用勾股定理得出答案.【详解】Q ADE 绕点 A 顺时针旋转 90 到 ABF 的地点.四边形 AECF 的面积等于正方形 ABCD 的面积等于20,AD DC 25,Q DE 2 ,Rt ADE 中,AE AD 2DE2 2 6应选: D.【点睛】本题主要考察了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题重点.2.如图,在菱形ABCD中, E 是 AC的中点, EF∥ CB,交 AB 于点 F,假如 EF=3,那么菱形ABCD的周长为()A.24B. 18C. 12D. 9【答案】 A【分析】【剖析】易得BC 长为 EF长的 2 倍,那么菱形ABCD的周长 =4BC 问题得解.【详解】∵ E 是 AC 中点,∵E F∥ BC,交 AB 于点 F,∴EF 是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形 ABCD的周长是 4×6=24,应选 A.【点睛】本题考察了三角形中位线的性质及菱形的周长公式,娴熟掌握有关知识是解题的重点 .3.如图,足球图片正中的黑色正五边形的内角和是().A.180 °B. 360 °C. 540 °D. 720 °【答案】 C【分析】【剖析】依据多边形内角和公式(n 2) 180 即可求出结果.【详解】解:黑色正五边形的内角和为:(5 2) 180540 ,应选: C.【点睛】本题考察了多边形的内角和公式,解题重点是切记多边形的内角和公式.AD 延伸线上的一点,且AD=DE,连结BE 交CD 于点4.以下图,点 E 是矩形ABCD的边O,连结AO,以下结论不正确的选项)是(A.△AOB≌△ BOC B.△BOC≌△ EOD C.△AOD≌△ EOD D.△AOD≌△ BOC 【答案】 A【分析】依据矩形的性质和全等三角形的性质找出全等三角形应用排它法求不妥即可:∵AD=DE, DO∥ AB,∴ OD 为△ABE的中位线.∴OD=OC.∵在 Rt△AOD 和 Rt△EOD 中, AD=DE,OD=OD,∴△ AOD≌△ EOD( HL).∵在 Rt△AOD 和 Rt△BOC中, AD=BC, OD=OC,∴△ AOD≌△ BOC( HL).∴△ BOC≌△ EOD.综上所述, B、 C、 D 均正确.应选A.5.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是 3: 1,这个多边形的边数是 ()A .8B . 9C . 10D . 12【答案】 A 【分析】试题剖析:设这个多边形的外角为 x °,则内角为 3x °,依据多边形的相邻的内角与外角互补可的方程 x+3x=180,解可得外角的度数,再用外角和除之外角度数即可获得边数.解:设这个多边形的外角为x °,则内角为 3x °,由题意得: x+3x=180,解得 x=45,这个多边形的边数: 360°÷45=8°,应选 A .考点:多边形内角与外角.6.如图,在矩形ABCD 中, AB m , BC 6 ,点 E 在边 CD 上,且 CE = 2m .连结3BE ,将 VBCE 沿 BE 折叠,点 C 的对应点 C 恰巧落在边AD 上,则m( )A .3 3B .2 3C . 3D . 4【答案】 A 【分析】 【剖析】设 AC ′=x ,在直角三角形 ABC ′和直角三角形 DEC ′中分别利用勾股定理列出对于 x 和 m 的关系式,再进行求解,即可得出 m 的值 .【详解】解:设 AC ′=x ,∵AB=m ,BC=6, CE = 2m ,3依据折叠的性质可得:BC ′ =6, EC ′=CE = 2m ,31∴C ′D=6-x , DE= m ,3在△ABC′中,222,AB +AC′=BC′即x2m262,在△DEC′中,22 2 ,C′D+DE =C′E即6 x 1 m22 2 m332,3 62m2,代入x2m262中,化简得:x得:3 6x 2x2,62解得: x=3 或 x=6,代入x2m262,可得:当 x=3 时, m= 3 3或3 3 (舍),当 x=6 时, m=0(舍),故 m 的值为3 3,应选 A.【点睛】本题考察了折叠的性质,勾股定理,解一元二次方程,有必定难度,解题的重点是依据折叠的性质运用勾股定理求解.7.如图,在菱形ABCD中,对角线AC= 8, BD= 6,点 E, F 分别是边A B, BC的中点,点P 在 AC上运动,在运动过程中,存在PE+ PF 的最小值,则这个最小值是()A.3B.4C.5D.6【答案】 C【分析】【剖析】先依据菱形的性质求出其边长,再作 E 对于 AC 的对称点E′,连结 E′F,则 E′F即为 PE+PF 的最小值,再依据菱形的性质求出E′F的长度即可.【详解】解:如图∵四边形ABCD是菱形,对角线AC=6, BD=8,∴A B= 3242 =5,作 E 对于 AC 的对称点 E′,连结 E′F,则 E′F即为 PE+PF的最小值,∵AC 是∠ DAB 的均分线, E 是 AB 的中点,∴E′在 AD 上,且 E′是 AD 的中点,∵AD=AB,∴AE=AE′,∵F 是 BC的中点,∴E′F=AB=5.应选 C.8.如图,平行四边形ABCD 的周长是26cm,对角线 AC 与 BD 交于点O, AC AB,E是BC 中点,△ AOD的周长比 VAOB 的周长多3cm ,则AE的长度为()A. 3cm B.4cm C.5cm D.8cm【答案】 B【分析】【剖析】依据题意,由平行四边形的周长获得AB AD13,由△ AOD 的周长比 VAOB 的周长多 3cm,则AD AB 3 ,求出AD的长度,即可求出AE 的长度.【详解】解:∵平行四边形ABCD 的周长是 26cm,126 13,∴AB AD2∵BD 是平行四边形的对角线,则BO=DO,∵△ AOD 的周长比 VAOB 的周长多3cm,∴ (AO OD AD ) (AO OB AB) AD AB3,∴ AB 5, AD 8,∴ BC AD 8,∵ AC AB ,点 E 是 BC 中点,∴ AE1BC1 8 4 ;22应选: B .【点睛】本题考察了平行四边形的性质,直角三角形斜边上的中线等于斜边的一半,解题的重点是娴熟掌握平行四边形的性质进行解题.9.如图,小莹用一张长方形纸片 ABCD 进行折纸,已知该纸片宽 AB 为 8cm ,BC 长为10cm .当小莹折叠时,极点D 落在 BC 边上的点 F 处 (折痕为 AE).则此时 EC=()cmA .4B .2 C .2 2D .3【答案】 D【分析】【剖析】依据矩形的性质得 AB=CD=8, BC=AD=10,∠ B=∠ C=90°,再依据折叠的性质得 AF=AD=10,DE=EF ,在 Rt △ABF 中,利用勾股定理计算出 BF=6,则 CF=BC ﹣ BF=4,设 CE=x ,则 DE=EF=8﹣ x ,在 Rt △CEF 中利用勾股定理获得 :42+x 2=( 8﹣ x ) 2,而后解方程即可.【详解】解:∵四边形 ABCD 为矩形,∴ AB=CD=8, BC=AD=10,∠ B=∠C=90°.∵长方形纸片 ABCD 折纸,极点 D 落在 BC 边上的点 F 处(折痕为 AE ),∴AF=AD=10, DE=EF ,在 Rt △ABF 中, AB=8, AF=10,∴ BF= AF 2 AB 2 6∴ C F=BC ﹣ BF=4.设 CE=x ,则 DE=EF=8﹣x ,在 Rt △CEF 中,∵ CF 2 2 2, +CE=EF∴ 42+x 2 =( 8﹣ x ) 2,解得 x=3 ∴EC 的长为 3cm .应选: D【点睛】本题考察了折叠的性质、矩形的性质、勾股定理的综合运用;娴熟掌握折叠的性质和矩形的性质,依据勾股定理得出方程是解题重点.10. 如图,菱形 OBCD 在平面直角坐标系中的地点以下图,极点B (0,23 ),∠DOB=60 °,点P 是对角线OC 上的一个动点,已知A (﹣ 1,0),则 AP+BP 的最小值为( )A .4B .5C .3 3D . 19【答案】 D【分析】【剖析】点 B 的对称点是点 D ,连结 AD ,则 AD 即为 AP+BP 的最小值,求出点 D 坐标解答即可.【详解】解:连结 AD ,如图,∵点 B 的对称点是点 D ,∴AD 即为 AP+BP 的最小值,∵四边形 OBCD 是菱形,极点 B ( 0, 2 3 ),∠ DOB=60°,∴点 D 的坐标为( 3,3 ),∵点 A 的坐标为(﹣ 1, 0), ∴AD= ( 3)24219,应选: D .【点睛】本题考察菱形的性质,重点是依据两点坐标得出距离.11. 如图,在 △ABC 中,点D 为 BC 的中点,连结AD ,过点C 作CE ∥ AB 交 AD 的延伸线于点 E ,以下说法错误的选项是()A.△ABD≌△ ECD B.连结BE,四边形ABEC为平行四边形C. DA= DED. CE= CD【答案】 D【分析】【剖析】依据平行线的性质得出∠B=∠ DCE,∠ BAD=∠ E,而后依据AAS证得△ABD≌△ ECD,得出AD=DE,依据对角线相互均分获得四边形ABEC为平行四边形,CE=AB,即可解答.【详解】∵CE∥ AB,∴∠ B=∠DCE,∠ BAD=∠E,在△ABD 和△ECD中,B=DCEBAD=EBD=CD∴△ ABD≌△ ECD(AAS),∴DA=DE, AB=CE,∵AD=DE, BD=CD,∴四边形ABEC为平行四边形,应选: D.【点睛】本题考察平行线的性质,三角形全等的判断和性质以及平行四边形的性判断,解题的重点是证明△ABD≌△ ECD.12.如图,在□ ABCD中, E、F 分别是边 BC、CD的中点, AE、 AF 分别交 BD 于点 G、 H,则图中暗影部分图形的面积与□ABCD的面积之比为()A.7 : 12B.7 : 24C.13 : 36D.13 : 72【答案】 B【分析】【剖析】依据已知条件想方法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形 ABCD 是平行四边形,∴AB ∥ CD , AD ∥ BC , AB=CD , AD=BC ,∵ D F=CF , BE=CE ,∴ DHDF1 , BG BE 1 , HBAB 2 DG AD 2∴ DHBG 1 , BDBD3∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形 ABCD =6 S △AGH ,∴S △AGH : S 平行四边形 ABCD =1: 6,∵E 、 F 分别是边 BC 、 CD 的中点 ,∴EF 1, BD 2S VEFC 1∴,SV BCDD4S VEFC1∴S 四边形 ABCD 8 ,SV AGHSVEFC1 1 7∴6 824 =7∶24,S 四边形 ABCD应选 B.【点睛】本题考察了平行四边形的性质、平行线分线段成比率定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.13. 如图,在矩形 ABCD 中, AD= 2 AB ,∠ BAD 的均分线交 BC 于点 E ,DH ⊥ AE 于点连结 BH 并延伸交 CD 于点 F ,连结 DE 交 BF 于点 O ,以下结论: ① ∠ AED=∠ CED ;H ,② OE=OD ;③ BH=HF ;④ BC ﹣ CF=2HE ; ⑤ AB=HF ,此中正确的有()A .2 个B .3 个C .4 个D .5 个【答案】 C【分析】【剖析】【详解】试题剖析:∵在矩形ABCD中, AE 均分∠ BAD,∴∠ BAE=∠ DAE=45°,∴△ ABE 是等腰直角三角形,∴A E= 2 AB,∵A D= 2 AB,∴AE=AD,又∠ ABE=∠ AHD=90°∴△ ABE≌△ AHD(AAS),∴BE=DH,∴A B=BE=AH=HD,∴∠ ADE=∠ AED= 1( 180°﹣45°)=67.5 °,2∴∠ CED=180°﹣ 45°﹣ 67.5 °=67.5 °,∴∠ AED=∠ CED,故①正确;∵∠ AHB=1( 180°﹣ 45°) =67.5 °,∠ OHE=∠AHB(对顶角相等),2∴∠ OHE=∠ AED,∴OE=OH,∵∠ OHD=90°﹣ 67.5 °=22.5 °,∠ ODH=67.5°﹣45°=22.5 °,∴∠ OHD=∠ ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠ EBH=90°﹣ 67.5 °=22.5 °,∴∠ EBH=∠ OHD,又 BE=DH,∠ AEB=∠HDF=45°∴△ BEH≌△ HDF( ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得 CD=BE、 DF=EH=CE, CF=CD-DF,∴BC-CF=(CD+HE) -( CD-HE)=2HE,因此④正确;∵AB=AH,∠ BAE=45°,∴△ABH 不是等边三角形,∴AB≠BH,∴即 AB≠HF,故⑤错误;综上所述,结论正确的选项是①②③④共4个.应选 C.【点睛】考点: 1、矩形的性质;2、全等三角形的判断与性质;3、角均分线的性质;4、等腰三角形的判断与性质14.如图,在Y ABCD中,AC8, BD 6,AD 5 ,则Y ABCD的面积为 ( )A.6B. 12C. 24D. 48【答案】 C【分析】【剖析】由勾股定理的逆定理得出积公式即可得出结果.【详解】∵四边形AOD 90o,即AC BD ,得出 Y ABCD 是菱形,由菱形面∴ OC OC 1AC4,OB OD1BD 3,22∴ OA2OD 225AD2,∴ AOD 90o,即AC BD ,∴Y ABCD 是菱形,∴ Y ABCD 的面积1AC BD186 24;22应选 C.【点睛】本题考察平行四边形的性质、勾股定理的逆定理、菱形的判断与性质,娴熟掌握平行四边形的性质,证明四边形ABCD 是菱形是解题的重点.15.为了研究特别四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架 ABCD,并在 A 与 C、 B 与 D 两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条 BC,用左手向右推进框架至 AB⊥BC(如图 2)察看所获得的四边形,以下判断正确的选项是()A.∠ BCA= 45°B.AC= BDABCD 是平行四边形,C . BD 的长度变小 D . AC ⊥ BD【答案】 B【分析】【剖析】依据矩形的性质即可判断;【详解】解:∵四边形 ABCD 是平行四边形,又∵ AB ⊥ BC ,∴∠ ABC = 90°,∴四边形 ABCD 是矩形,∴AC =BD .应选 B .【点睛】本题考察平行四边形的性质.矩形的判断和性质等知识,解题的重点是娴熟掌握基本知识,属于中考常考题型.16. 如图,在矩形 ABCD 中, AD=2AB ,点 M 、N 分别在边 AD 、 BC 上,连结 BM 、 DN .若 四边形 MBND 是菱形,则3 A .B .5【答案】 A【分析】AM等于( )MD2 C .3D . 4385试题剖析:设 AB=a,依据题意知 AD=2a ,由四边形 BMDN 是菱形知 BM=MD ,设 AM=b, 则BM=MD=2a-b. 在 Rt ABM中,由勾股定理即可求值 .△试题分析:∵四边形 MBND 是菱形,∴MD=MB .∵四边形 ABCD 是矩形,∴∠ A=90°.设 AB=a , AM=b ,则 MB=2a-b ,( a 、 b 均为正数).在 Rt △ABM 中, AB 2+AM 2=BM 2,即 a 2 +b 2=( 2a-b ) 2,解得 a= 4b ,3∴MD=MB=2a-b= 5b ,3AM b3∴MD5 5 .b3应选 A.考点: 1.矩形的性质; 2.勾股定理; 3.菱形的性质.17.如图,在菱形ABCD中,点A在x轴上,点B的坐标轴为4,1 ,点D的坐标为0,1 ,则菱形 ABCD 的周长等于()A.5B.43C.45D.20【答案】 C【分析】【剖析】以以下图,先求得点 A 的坐标,而后依据点 A、D 的坐标刻碟 AD 的长,从而得出菱形 ABCD 的周长 .【详解】以以下图,连结AC、 BD,交于点E∵四边形ABCD是菱形,∴ DB⊥ AC,且 DE=EB又∵ B 4,1,D 0,1∴E(2, 1)∴A(2, 0)∴AD= 2 0220 15∴菱形 ABCD的周长为: 4 5应选: C【点睛】本题在直角坐标系中考察菱形的性质,解题重点是利用菱形的性质得出点 A 的坐标,从而求得菱形周长 .18.如图点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF / /BC,分别交AB 、CD于点E 、F,连结PB 、PD ,若AE1, PF8 ,则图中暗影部分的面积为()A.5B.6C.8D.9【答案】 C【分析】【剖析】由矩形的性质可证明S△PEB=S△PFD,即可求解.【详解】作 PM⊥AD 于 M,交 BC于 N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,S△ADC=S△ABC,S△AMP=S△AEP, S△PBE=S△PBN, S△PFD=S△PDM, S△PFC=S△PCN,=S =× 1× 8=4,∴S△DFP△PBE12∴S 阴 =4+4=8,应选: C.【点睛】本题考察矩形的性质、三角形的面积,解题的重点是证明S△PEB=S△PFD.19.如图,在□ ABCD中,延伸CD到 E,使 DE= CD,连结 BE 交 AD 于点 F,交 AC于点G.以下结论中:① DE=DF;② AG=GF;③ AF=DF;④ BG=GC;⑤ BF=EF,此中正确的有()A.1 个B.2 个【答案】 B【分析】【剖析】C.3 个D.4 个由 AAS证明△ABF≌△ DEF,得出对应边相等 AF=DF, BF=EF,即可得出结论,对于①②④不必定正确.【详解】解:∵四边形 ABCD是平行四边形,∴AB∥CD,AB=CD,即AB∥CE,∴∠ ABF=∠ E,∵DE=CD,∴A B=DE,在△ABF 和△DEF中,ABF=E∵AFB= DFE ,AB=DE∴△ ABF≌△ DEF( AAS),∴A F=DF, BF=EF;可得③⑤正确,应选: B.【点睛】本题考察平行四边形的性质、全等三角形的判断与性质、平行线的性质;娴熟掌握平行四边形的性质,证明三角形全等是解题的重点.20.一个多边形切去一个角后,形成的另一个多边形的内角和为边数为()A.7B.7或8C.8或91080 °,那么原多边形的D.7或8或 9【答案】D【分析】试题剖析:设内角和为1080°的多边形的边数是n ,则( n﹣ 2) ?180°=1080,°解得:n=8.则原多边形的边数为7 或8 或9.应选D.考点:多边形内角与外角.。

初中数学四边形技巧及练习题附答案解析(1)

初中数学四边形技巧及练习题附答案解析(1)

初中数学四边形技巧及练习题附答案解析(1)一、选择题1.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-【答案】C【解析】【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q 四边形OABC 是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D ¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.2.若菱形的对角线分别为6和8,则这个菱形的周长为()A.10 B.20 C.40 D.48【答案】B【解析】【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】如图所示,根据题意得AO=12×8=4,BO=12×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴22169AO BO++,∴此菱形的周长为:5×4=20.故选:B.【点睛】此题考查菱形的性质,利用勾股定理求出菱形的边长是解题的关键.3.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠ 223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.4.设四边形的内角和等于α,五边形的外角和等于β,则α与β的关系是( ) A .αβ>B .αβ=C .αβ<D .180βα=+o【答案】B【解析】【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【详解】解:∵四边形的内角和等于a ,∴a=(4-2)•180°=360°.∵五边形的外角和等于β,∴β =360°, ∴a=β. 故选B .【点睛】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.5.如图 ,矩形 ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点 M ,CN ⊥AN 于点 N .则 DM +CN 的值为(用含 a 的代数式表示)( )A .aB .45 aC 2D 3 【答案】C【解析】【分析】根据“AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N”得∠MDC=∠NCD=45°,cos45°=DM CN DE CE = ,所以DM+CN=CDcos45°;再根据矩形ABCD ,AB=CD=a ,DM+CN 的值即可求出.【详解】∵AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N ,∴∠ADM=∠MDC=∠NCD=45°,∴00cos 4545D CNMcos +=CD ,在矩形ABCD 中,AB=CD=a ,∴DM+CN=acos45°=22a. 故选C.【点睛】此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CN DE CE =6.如图,点M 是正方形ABCD 边CD 上一点,连接AM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE ,若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )A .21313B .31313C .23D .1313【答案】B【解析】【分析】首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面积等于△ABE 的面积与△ADE 的面积之和得到12•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解.【详解】∵四边形ABCD 为正方形,∴BA =AD ,∠BAD =90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,∴∠ABF =∠EAD ,在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2, 在Rt △BEF中,BE∴cos 13BF EBF BE ∠===. 故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.7.在平面直角坐标系中,A ,B ,C 三点坐标分别是(0,0),(4,0),(3,2),以A ,B ,C 三点为顶点画平行四边形,则第四个顶点不可能在( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】A 点在原点上,B 点在横轴上,C 点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C8.如图,菱形ABCD 中,点P 是CD 的中点,∠BCD=60°,射线AP 交BC 的延长线于点E ,射线BP 交DE 于点K ,点O 是线段BK 的中点,作BM ⊥AE 于点M ,作KN ⊥AE 于点N ,连结MO 、NO ,以下四个结论:①△OMN 是等腰三角形;②tan ∠OMN=3;③BP=4PK ;④PM•PA=3PD 2,其中正确的是( )A .①②③B .①②④C .①③④D .②③④【答案】B【解析】【分析】 根据菱形的性质得到AD ∥BC ,根据平行线的性质得到对应角相等,根据全等三角形的判定定理△ADP ≌△ECP ,由相似三角形的性质得到AD=CE ,作PI ∥CE 交DE 于I ,根据点P 是CD 的中点证明CE=2PI ,BE=4PI ,根据相似三角形的性质得到1=4KP PI KB BE =,得到BP=3PK ,故③错误;作OG ⊥AE 于G ,根据平行线等分线段定理得到MG=NG ,又OG ⊥MN ,证明△MON 是等腰三角形,故①正确;根据直角三角形的性质和锐角三角函数求出∠OMN=33,故②正确;然后根据射影定理和三角函数即可得到PM•PA=3PD 2,故④正确.【详解】解:作PI ∥CE 交DE 于I ,∵四边形ABCD 为菱形,∴AD ∥BC ,∴∠DAP=∠CEP ,∠ADP=∠ECP ,在△ADP 和△ECP 中, DAP CEP ADP ECP DP CP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADP ≌△ECP ,∴AD=CE , 则PI PD CE DC =,又点P 是CD 的中点, ∴1=2PI CE , ∵AD=CE , ∴1=4KP PI KB BE =, ∴BP=3PK ,故③错误;作OG ⊥AE 于G ,∵BM丄AE于M,KN丄AE于N,∴BM∥OG∥KN,∵点O是线段BK的中点,∴MG=NG,又OG⊥MN,∴OM=ON,即△MON是等腰三角形,故①正确;由题意得,△BPC,△AMB,△ABP为直角三角形,设BC=2,则CP=1,由勾股定理得,BP=3,则AP=7,根据三角形面积公式,BM=2217,∵点O是线段BK的中点,∴PB=3PO,∴OG=13BM=22121,MG=23MP=27,tan∠OMN=3=OGMG,故②正确;∵∠ABP=90°,BM⊥AP,∴PB2=PM•PA,∵∠BCD=60°,∴∠ABC=120°,∴∠PBC=30°,∴∠BPC=90°,∴PB=3PC,∵PD=PC,∴PB2=3PD,∴PM•PA=3PD2,故④正确.故选B.【点睛】本题考查相似形综合题.9.如图,把矩形ABCD沿EF对折后使两部分重合,若150∠=o,则AEF∠=()A.110°B.115°C.120°D.130°【答案】B【解析】【分析】根据翻折的性质可得∠2=∠3,再求出∠3,然后根据两直线平行,同旁内角互补列式计算即可得解.【详解】∵矩形ABCD沿EF对折后两部分重合,150∠=o,∴∠3=∠2=180-502︒︒=65°,∵矩形对边AD∥BC,∴∠AEF=180°-∠3=180°-65°=115°.故选:B.【点睛】本题考查了矩形中翻折的性质,两直线平行的性质,平角的定义,掌握翻折的性质是解题的关键.10.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD上的动点,P是线段BD上的一个动点,则PM+PN的最小值是()A.95B.125C.165D.245【答案】D 【解析】【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP=NQ最小,NQ为所求,当NQ⊥AB时,NQ最小,继而利用面积法求出NQ长即可得答案.【详解】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP=NQ最小,NQ为所求,当NQ⊥AB时,NQ最小,∵四边形ABCD是菱形,AC=6,DB=8,∴OA=3,OB=4,AC⊥BD,在Rt△AOB中,22OA OB+,∵S菱形ABCD=12AC BD AB NQ=g g,∴18652NQ ⨯⨯=,∴NQ=245,∴PM+PN的最小值为245,故选D.【点睛】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.11.下列结论正确的是()A.平行四边形是轴对称图形B.平行四边形的对角线相等C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等【答案】C【解析】【分析】分别利用平行四边形的性质和判定逐项判断即可.【详解】A、平行四边形不一定是轴对称图形,故A错误;B、平行四边形的对角线不相等,故B错误;C、平行四边形的对边平行且相等,故C正确;D、平行四边形的对角相等,邻角互补,故D错误.故选:C.【点睛】此题考查平行四边形的性质,掌握特殊平行四边形与一般平行四边形的区别是解题的关键.12.如图,菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(0,23),∠DOB=60°,点P是对角线OC上的一个动点,已知A(﹣1,0),则AP+BP的最小值为()A.4 B.5 C.33D.19【答案】D【解析】【分析】点B的对称点是点D,连接AD,则AD即为AP+BP的最小值,求出点D坐标解答即可.【详解】解:连接AD,如图,∵点B的对称点是点D,∴AD即为AP+BP的最小值,∵四边形OBCD是菱形,顶点B(0,23DOB=60°,∴点D的坐标为(33∵点A的坐标为(﹣1,0),∴22+=(3)419故选:D.【点睛】此题考查菱形的性质,关键是根据两点坐标得出距离.13.如图,在ABCD Y 中,8AC =,6BD =,5AD =,则ABCD Y 的面积为( )A .6B .12C .24D .48【答案】C【解析】【分析】 由勾股定理的逆定理得出90AOD ∠=o ,即AC BD ⊥,得出ABCD Y 是菱形,由菱形面积公式即可得出结果.【详解】∵四边形ABCD 是平行四边形, ∴142OC OC AC ===,132OB OD BD ===, ∴22225OA OD AD +==,∴90AOD ∠=o ,即AC BD ⊥,∴ABCD Y 是菱形,∴ABCD Y 的面积11862422AC BD =⨯=⨯⨯=; 故选C .【点睛】本题考查平行四边形的性质、勾股定理的逆定理、菱形的判定与性质,熟练掌握平行四边形的性质,证明四边形ABCD 是菱形是解题的关键.14.已知ABCD Y (AB BC >),用尺规在ABCD 内作菱形,下列作法错误的是( )A .如图1所示,作对角线AC 的垂直平分线EF ,则四边形AECF 为所求B .如图2所示,在AB DC ,上截取AE AD DF DA ==,,则四边形AEFD 为所求 C .如图3所示,作ADC ABC ∠∠、的平分线DE BF ,,则四边形DEBF 为所求 D .如图4所示,作BDE BDC DBF DBA ∠=∠∠=∠,,则四边形DEBF 为所求【答案】C【解析】【分析】根据平行四边形的性质及判定、菱形的判定逐个判断即可.【详解】解:A、根据线段的垂直平分线的性质可知AB=AD,一组邻边相等的平行四边形是菱形;符合题意;B、根据四条边相等的四边形是菱形,符合题意;C、根据两组对边分别平行四边形是平行四边形,不符合题意;D、根据一组邻边相等的平行四边形是菱形,符合题意.故选:C.【点睛】本题考查了复杂作图,解决本题的关键是利用平行四边形的性质及判定、菱形的判定.15.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.16.如图,在菱形ABCD中,点A在x轴上,点B的坐标轴为()4,1, 点D的坐标为()0,1,则菱形ABCD的周长等于()A.5B.43C.45D.20【答案】C【解析】【分析】如下图,先求得点A的坐标,然后根据点A、D的坐标刻碟AD的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC、BD,交于点E∵四边形ABCD是菱形,∴DB⊥AC,且DE=EB又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴AD=()()2220015-+-=∴菱形ABCD 的周长为:45故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.17.如图,在 ABCD 中,CD=2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连结EF 、BF ,下列结论:①∠ABC=2∠ABF ;②EF=BF ;③S 四边形DEBC =2S △EFB ;④∠CFE=3∠DEF,其中正确结论的个数共有( ).A .1个B .2个C .3个D .4个【答案】D【解析】分析:如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .证明△DFE ≌△FCG 得EF=FG ,BE ⊥BG ,四边形BCFH 是菱形即可解决问题;详解:如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .∵CD=2AD ,DF=FC ,∴CF=CB ,∴∠CFB=∠CBF ,∵CD ∥AB ,∴∠CFB=∠FBH ,∴∠CBF=∠FBH ,∴∠ABC=2∠ABF .故①正确,∵DE ∥CG ,∴∠D=∠FCG ,∵DF=FC ,∠DFE=∠CFG ,∴△DFE ≌△FCG ,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选D.点睛:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.EF BC,分别交AB、18.如图点P是矩形ABCD的对角线AC上一点,过点P作//PF=,则图中阴影部分的面积为CD于点E、F,连接PB、PD,若1AE=,8()A.5B.6C.8D.9【答案】C【解析】【分析】由矩形的性质可证明S△PEB=S△PFD,即可求解.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=12×1×8=4,∴S阴=4+4=8,故选:C.【点睛】此题考查矩形的性质、三角形的面积,解题的关键是证明S△PEB=S△PFD.19.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.如图,正方形ABDC中,AB=6,E在CD上,DE=2,将△ADE沿AE折叠至△AFE,延长EF交BC于G,连AG、CF,下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S ∆FCG =3,其中正确的有( ).A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 利用折叠性质和HL 定理证明Rt △ABG ≌Rt △AFG ,从而判断①;设BG=FG=x ,则CG=6-x ,GE=x+2,根据勾股定理列方程求解,从而判断②;由②求得△FGC 为等腰三角形,由此推出1802FGC FCG -∠∠=o ,由①可得1802FGC AGB -∠∠=o ,从而判断③;过点F 作FM ⊥CE ,用平行线分线段成比例定理求得FM 的长,然后求得△ECF 和△EGC 的面积,从而求出△FCG 的面积,判断④.【详解】解:在正方形ABCD 中,由折叠性质可知DE=EF=2,AF=AD=AB=BC=CD=6,∠B=∠D=∠AFG=∠BCD=90°又∵AG=AG∴Rt △ABG ≌Rt △AFG ,故①正确;由Rt △ABG ≌Rt △AFG∴设BG=FG=x ,则CG=6-x ,GE=GF+EF=x+2,CE=CD-DE=4∴在Rt △EGC 中,222(6)4(2)x x -+=+解得:x=3∴BG =3,CG=6-3=3∴BG =CG ,故②正确;又BG =CG , ∴1802FGC FCG -∠∠=o 又∵Rt △ABG ≌Rt △AFG ∴1802FGC AGB -∠∠=o ∴∠FCG=∠AGB∴AG ∥CF ,故③正确;过点F 作FM ⊥CE ,∴FM∥CG∴△EFM∽△EGC∴FM EFGC EG=即235FM=解得65 FM=∴S∆FCG=116344 3.6225ECG ECFS S-=⨯⨯-⨯⨯=V V,故④错误正确的共3个故选:C.【点睛】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学四边形技巧及练习题一、选择题1.如图,平行四边形ABCD 的周长是26,cm 对角线AC 与BD 交于点,,O AC AB E ⊥是BC 中点,AOD △的周长比AOB V 的周长多3cm ,则AE 的长度为( )A .3cmB .4cmC .5cmD .8cm【答案】B【解析】【分析】 根据题意,由平行四边形的周长得到13AB AD +=,由AOD △的周长比AOB V 的周长多3cm ,则3AD AB -=,求出AD 的长度,即可求出AE 的长度.【详解】解:∵平行四边形ABCD 的周长是26cm , ∴126132AB AD +=⨯=, ∵BD 是平行四边形的对角线,则BO=DO ,∵AOD △的周长比AOB V 的周长多3cm ,∴()()3AO OD AD AO OB AB AD AB ++-++=-=,∴5AB =,8AD =,∴8BC AD ==,∵AC AB ⊥,点E 是BC 中点, ∴118422AE BC ==⨯=; 故选:B .【点睛】 本题考查了平行四边形的性质,直角三角形斜边上的中线等于斜边的一半,解题的关键是熟练掌握平行四边形的性质进行解题.2.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A.24 B.18 C.12 D.9【答案】A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.3.如图,在平行四边形ABCD中,2=AD AB,CE平分BCD∠交AD于点E,且8BC=,则AB的长为()A.4 B.3 C.52D.2【答案】A【解析】【分析】利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB即可得出答案.【详解】∵CE平分∠BCD交AD边于点E,∴∠ECD=∠ECB,∵在平行四边形ABCD中,AD∥BC,AB=CD,∴∠DEC=∠ECB,∠DEC=∠DCE ,∴DE=DC ,∵AD=2AB ,∴AD=2CD ,∴AE=DE=AB .∵8AD BC ==,2=AD AB∴AB=4,故选:A .【点睛】此题考查了平行四边形的性质,得出∠DEC=∠DCE 是解题关键.4.设四边形的内角和等于α,五边形的外角和等于β,则α与β的关系是( ) A .αβ>B .αβ=C .αβ<D .180βα=+o【答案】B【解析】【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【详解】解:∵四边形的内角和等于a ,∴a=(4-2)•180°=360°.∵五边形的外角和等于β,∴β =360°, ∴a=β. 故选B .【点睛】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.5.在平面直角坐标系中,A ,B ,C 三点坐标分别是(0,0),(4,0),(3,2),以A ,B ,C 三点为顶点画平行四边形,则第四个顶点不可能在( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】A 点在原点上,B 点在横轴上,C 点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C6.如图,已知矩形ABCD 中,BC =2AB ,点E 在BC 边上,连接DE 、AE ,若EA 平分∠BED,则ABE CDE S SV V 的值为( )A .23-B .233-C .233-D .23- 【答案】C【解析】【分析】过点A 作AF ⊥DE 于F ,根据角平分线上的点到角的两边距离相等可得AF=AB ,利用全等三角形的判定和性质以及矩形的性质解答即可. 【详解】解:如图,过点A 作AF ⊥DE 于F ,在矩形ABCD 中,AB =CD ,∵AE 平分∠BED ,∴AF =AB ,∵BC =2AB ,∴BC =2AF , ∴∠ADF =30°,在△AFD 与△DCE 中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD ≌△DCE (AAS ),∴△CDE 的面积=△AFD 的面积=2113AF DF AF 3AF 22⨯== ∵矩形ABCD 的面积=AB •BC =2AB 2,∴2△ABE 的面积=矩形ABCD 的面积﹣2△CDE 的面积=(23AB 2,∴△ABE的面积=()2 232AB-,∴2323323ABECDESS--==VV,故选:C.【点睛】本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB.7.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,且BE∥AC,CE∥DB,连接DE,则tan∠EDC=()A.14B.16C.26D.310【答案】B【解析】【分析】过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.根据邻边相等的平行四边形是菱形即可判断四边形OBEC是菱形,则OE与BC垂直平分,易得EF=12x,CF=x.再由锐角三角函数定义作答即可.【详解】解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,∴BC=AD,设AB=2x,则BC=x.如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,∴四边形BOCE是平行四边形,∵四边形ABCD是矩形,∴OB=OC,∴四边形BOCE是菱形.∴OE与BC垂直平分,∴EF=12AD=12x,OE∥AB,∴四边形AOEB是平行四边形,∴OE=AB=2x,∴CF=12OE=x.∴tan∠EDC=EFDF=122xx x+=16.故选:B.【点睛】本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.8.如图,正方形ABDC中,AB=6,E在CD上,DE=2,将△ADE沿AE折叠至△AFE,延长EF交BC于G,连AG、CF,下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S∆FCG=3,其中正确的有().A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用折叠性质和HL定理证明Rt△ABG≌Rt△AFG,从而判断①;设BG=FG=x,则CG=6-x,GE=x+2,根据勾股定理列方程求解,从而判断②;由②求得△FGC为等腰三角形,由此推出1802FGCFCG-∠∠=o,由①可得1802FGCAGB-∠∠=o,从而判断③;过点F作FM⊥CE,用平行线分线段成比例定理求得FM的长,然后求得△ECF和△EGC的面积,从而求出△FCG的面积,判断④.【详解】解:在正方形ABCD中,由折叠性质可知DE=EF=2,AF=AD=AB=BC=CD=6,∠B=∠D=∠AFG=∠BCD=90°又∵AG=AG∴Rt△ABG≌Rt△AFG,故①正确;由Rt △ABG ≌Rt △AFG∴设BG=FG=x ,则CG=6-x ,GE=GF+EF=x+2,CE=CD-DE=4∴在Rt △EGC 中,222(6)4(2)x x -+=+解得:x=3∴BG =3,CG=6-3=3∴BG =CG ,故②正确;又BG =CG , ∴1802FGC FCG -∠∠=o 又∵Rt △ABG ≌Rt △AFG∴1802FGC AGB -∠∠=o ∴∠FCG=∠AGB∴AG ∥CF ,故③正确; 过点F 作FM ⊥CE ,∴FM ∥CG∴△EFM ∽△EGC∴FM EF GC EG =即235FM = 解得65FM =∴S ∆FCG =116344 3.6225ECG ECF S S -=⨯⨯-⨯⨯=V V ,故④错误 正确的共3个故选:C .【点睛】 本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.9.已知,如图,在ABC V 中,90ACB ∠=︒,30A ∠=︒,求证:12BC AB =.在证明该结论时,需添加辅助线,则作法不正确的是( )A .延长BC 至点D ,使CD BC =,连接ADB .在ACB ∠中作BCE B ∠=∠,CE 交AB 于点EC .取AB 的中点P ,连接CPD .作ACB ∠的平分线CM ,交AB 于点M【答案】D【解析】【分析】分别根据各选项的要求进行证明,推出正确结论,则问题可解.【详解】解:选项A : 如图,由辅助线可知,ABC ADC ≅V ;,则有AB=AD ,再由90ACB ∠=︒,由30BAC ∠=︒,则60B ∠=︒,∴ABD △是等边三角形 ∴1122BC DB AB == 故选项A 正确;选项B:如图,由辅助线可知,EBD △是等边三角形则60BEC EAC ECA ∠=∠+∠=︒,BE=EC∵30A ∠=︒∴30ECA A ∠=∠=︒∴AE=EC ∴12BC AB =故选项B 正确选项C 如图,有辅助线可知,CP 为直角三角形斜边上的中线∴AP=CP=BP∵30A ∠=︒∴60B ∠=︒∴PBC V 是等边三角形∴12BC BP AB ==综上可知选项D 错误故应选D【点睛】 此题主要考查了全等三角形的判定,等边三角形的判定与性质的综合应用,根据条件选择正确的证明方法是解题的关键.10.如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF=6,AB=5,则AE 的长为( )A .4B .8C .6D .10【答案】B【解析】【分析】【详解】 解:设AG 与BF 交点为O ,∵AB=AF ,AG 平分∠BAD ,AO=AO ,∴可证△ABO ≌△AFO ,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF ∥BE ,∴可证△AOF ≌△EOB ,AO=EO ,∴AE=2AO=8,故选B .【点睛】本题考查角平分线的作图原理和平行四边形的性质.11.下列命题中是真命题的是()A.多边形的内角和为180°B.矩形的对角线平分每一组对角C.全等三角形的对应边相等D.两条直线被第三条直线所截,同位角相等【答案】C【解析】【分析】根据多边形内角和公式可对A进行判定;根据矩形的性质可对B进行判定;根据全等三角形的性质可对C进行判定;根据平行线的性质可对D进行判定.【详解】A.多边形的内角和为(n-2)·180°(n≥3),故该选项是假命题,B.矩形的对角线不一定平分每一组对角,故该选项是假命题,C.全等三角形的对应边相等,故该选项是真命题,D.两条平行线被第三条直线所截,同位角相等,故该选项是假命题,故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.熟练掌握矩形的性质、平行线的性质、全等三角形的性质及多边形的内角和公式是解题关键.12.如图,菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(0,23),∠DOB=60°,点P是对角线OC上的一个动点,已知A(﹣1,0),则AP+BP的最小值为()A.4 B.5 C.3D19【答案】D【解析】【分析】点B的对称点是点D,连接AD,则AD即为AP+BP的最小值,求出点D坐标解答即可.解:连接AD,如图,∵点B的对称点是点D,∴AD即为AP+BP的最小值,∵四边形OBCD是菱形,顶点B(0,23),∠DOB=60°,∴点D的坐标为(3,3),∵点A的坐标为(﹣1,0),∴AD=22+=,(3)419故选:D.【点睛】此题考查菱形的性质,关键是根据两点坐标得出距离.∆绕点A顺时针旋转90︒到13.如图,点E是正方形ABCD的边DC上一点,把ADE∆的位置.若四边形AECF的面积为20,DE=2,则AE的长为()ABFA.4 B.5C.6 D.26【答案】D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】Q绕点A顺时针旋转90︒到ABFADE∆∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,∴==25AD DCQ,DE=2∴∆中,2226Rt ADEAE AD DE=+=故选:D.本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.14.如图,将一个大平行四边形在一角剪去一个小平行四边形,如果用直尺画一条直线将其剩余部分分割成面积相等的两部分,这样的不同的直线一共可以画出()A.1条B.2条C.3条D.4条【答案】C【解析】【分析】利用平行四边形的性质分割平行四边形即可.【详解】解:如图所示,这样的不同的直线一共可以画出三条,故答案为:3.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的中心对称性.15.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是()A.100°B.160°C.80°D.60°【答案】D【解析】【分析】由四边形ABCD是平行四边形,可得∠A=∠C,AD∥BC,又由∠A+∠B=180°,求得∠A的度数,继而求得答案.【详解】∵四边形ABCD是平行四边形,如图,∴∠A=∠C,AD∥BC,∴∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=180°﹣∠A=60°.故选D.【点睛】此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等、邻角互补的知识.16.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分【答案】C【解析】【分析】根据矩形和平行四边形的性质进行解答即可.【详解】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.矩形的对角线相等,而平行四边形的对角线不一定相等.故选C.【点睛】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.17.在四边形ABCD中,AD∥BC,要使四边形ABCD是平行四边形,可添加的条件不正确的是()A.AB∥CD B.∠B=∠D C.AD=BC D.AB=CD【答案】D【解析】【分析】根据平行四边形的判定解答即可.【详解】∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,故A正确;∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,故C正确;∵AD∥BC,∴∠D+∠C=180°,∵∠B=∠D ,∴∠B+C=180°,∴AB ∥CD ,∴四边形ABCD 是平行四边形,故B 正确;故选:D .【点睛】此题考查平行四边形的判定,解题关键是根据平行四边形的判定解答.18.如图,在△ABC 中,点D 为BC 的中点,连接AD ,过点C 作CE ∥AB 交AD 的延长线于点E ,下列说法错误的是( )A .△ABD ≌△ECDB .连接BE ,四边形ABEC 为平行四边形 C .DA =DED .CE =CD【答案】D【解析】【分析】 根据平行线的性质得出∠B=∠DCE ,∠BAD=∠E ,然后根据AAS 证得△ABD ≌△ECD ,得出AD=DE ,根据对角线互相平分得到四边形ABEC 为平行四边形,CE=AB ,即可解答.【详解】∵CE ∥AB ,∴∠B=∠DCE ,∠BAD=∠E ,在△ABD 和△ECD 中,===B DCE BAD E BD CD ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△ECD (AAS ),∴DA=DE ,AB=CE ,∵AD=DE ,BD=CD ,∴四边形ABEC 为平行四边形,故选:D .【点睛】此题考查平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解题的关键是证明△ABD ≌△ECD .19.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC 长度2205OB C +=,∵O 点为AB 的中点,E 点为AD 的中点,∴OE 为△ABD 的中位线,即:OE=12BD , ∵D 点是圆上的动点,由图可知,BD最小值即为BC长减去圆的半径,∴BD的最小值为4,∴OE=12BD=2,即OE的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.20.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD上的动点,P是线段BD上的一个动点,则PM+PN的最小值是()A.95B.125C.165D.245【答案】D【解析】【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP=NQ最小,NQ为所求,当NQ⊥AB时,NQ最小,继而利用面积法求出NQ长即可得答案.【详解】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP=NQ最小,NQ为所求,当NQ⊥AB时,NQ最小,∵四边形ABCD是菱形,AC=6,DB=8,∴OA=3,OB=4,AC⊥BD,在Rt△AOB中,22OA OB+,∵S菱形ABCD=12AC BD AB NQ=g g,∴18652NQ ⨯⨯=,∴NQ=245,∴PM+PN的最小值为245,故选D.【点睛】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.。

相关文档
最新文档