2020-2021学年北京市海淀区七年级上期末数学试卷及答案解析

合集下载

2020-2021学年北京市海淀区七年级上期末数学试卷(附答案解析)

2020-2021学年北京市海淀区七年级上期末数学试卷(附答案解析)

2020-2021学年北京市海淀区七年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分) 1.下列说法中,正确的是( ) A .绝对值等于他本身的数必是正数 B .若线段AC =BC ,则点C 是线段AB 的中点 C .角的大小与角两边的长度有关,边越长,则角越大 D .若单项式12x n y 与x 3y m﹣1是同类项,则这两个单项式次数均为42.近年来,我国5G 发展取得明显成效,截至2020年2月底,全国建设开通5G 基站达16.4万个,将数据16.4万用科学记数法表示为( ) A .164×103B .16.4×104C .1.64×105D .0.164×1063.在﹣5,﹣0.9,0,﹣0.01这四个数中,最大的负数是( ) A .﹣5B .﹣0.9C .0D .﹣0.014.下列运算正确的是( ) A .3a +2a =5a 2 B .3a ﹣a =3C .2a 3+3a 2=5a 5D .﹣0.25ab +14ab =05.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是2y +1=12y ﹣□,小明想了想后翻看了书后的答案,此方程的解是y =−53,然后小明很快补好了这个常数,这个常数应是( ) A .−32B .32C .52D .26.实数a ,b ,c ,d 在数轴上对应点的位置如图所示,正确的结论是( )A .a >cB .b +c >0C .|a |<|d |D .﹣b <d7.下列等式变形错误的是( ) A .若a =b ,则a 1+x 2=b 1+x 2B .若a =b ,则3a =3bC .若a =b ,则ax =bxD.若a=b,则am =b m8.如图,在A、B两处观测到C处的方位角分别是()A.北偏东65°,北偏西40°B.北偏东65°,北偏西50°C.北偏东25°,北偏西40°D.北偏东35°,北偏西50°9.根据如图所示的图形,下列语句中:①过A,B两点画直线l;②直线l过A,B两点;③点A,点B在直线l上;④A,B是直线l上的两点,其中,能正确表达图形的语句有()A.1个B.2个C.3个D.4个10.如图,O为圆锥的顶点,M为圆锥底面上一点,点P在OM上,一只蜗牛从点P出发,绕圆锥侧面沿最短路线爬行一圈回到点P,若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.二.填空题(共8小题,满分16分,每小题2分)11.(2分)如果收入100元记作+100,那么支出30元记作.12.(2分)观察下面的单项式:a,2a2,4a3,8a4,…,根据你发现的规律,第8个式子是.13.(2分)计算:。

2021-2022学年北京市海淀区七年级(上)期末数学试卷(含答案解析)

2021-2022学年北京市海淀区七年级(上)期末数学试卷(含答案解析)

2021-2022学年北京市海淀区七年级(上)期末数学试卷1.2022年北京冬奥会计划于2月4日开幕.作为2022年北京冬奥会雪上项目的主要举办地,张家口市崇礼区建成7家大型滑雪场,拥有169条雪道,共162000米.数字162000用科学记数法表示为( )A. 162×103B. 16.2×104C. 1.62×105D. 0.162×1062.如果a的相反数是1,则a2的值为( )A. 1B. 2C. −1D. −23.下列等式变形正确的是( )A. 若2x=7,则x=27B. 若x−1=0,则x=1C. 若3x+2=2x,则3x+2x=2D. 若x−12=3,则x−1=34.关于x的整式ax2+bx+c(a,b,c均为常数)的常数项为1,则( )A. a=1B. b=1C. c=1D. a+b+c=15.某地居民生活用水收费标准:每月用水量不超过20立方米,每立方米a元;超过部分每立方米(a+2)元.该地区某家庭上月用水量为25立方米,则应缴水费( )A. 25a元B. (25a+10)元C. (25a+50)元D. (20a+10)元6.已知点A,B,C,D在数轴上的位置如图所示,且相邻两点之间的距离均为1个单位长度.若点A,B,C,D分别表示数a,b,c,d,且满足a+d=0,则b的值为( )A. −1B. −12C. 12D. 17.中国有悠久的金石文化,印信是金石文化的代表之一,南北朝时期的官员独孤信的印信是迄今发现的中国古代唯一一枚楷书印.它的表面均由正方形和等边三角形组成(如图1),可以看成图2所示的几何体.从正面看该几何体得到的平面图形是( )A. B. C. D.8.几个人一起去购买物品,如果每人出8元,那么剩余3元;如果每人出7元,那么差4元.若设有x人,则下列方程中,符合题意的是( )A. 8x−3=7x+4B. 8x+3=7x−4C. x−38=x+47D. x+38=x+479.关于x的方程kx−3=2x的解是整数,则整数k的可能值有( )A. 1个B. 2个C. 3个D. 4个10.如图,三角尺COD的顶点O在直线AB上,∠COD=90∘.现将三角尺COD绕点O旋转,若旋转过程中顶点C始终在直线AB的上方,设∠AOC=α,∠BOD=β,则下列说法中,正确的是( )A. 若α=10∘,则β=70∘B. α与β一定互余C. α与β有可能互补D. 若α增大,则β一定减小11.计算:−13−(−1)=__________.12.关于x的方程ax=2的解是x=2,则a的值是__________.13.如图所示的正方形网格中,∠ABC__________ ∠DEF(填“>”,“=”或“<”)14.已知x=3−2y,则整式2x+4y−5的值为__________.15.某有理数满足它的绝对值等于它的相反数,写出一个符合该条件的数__________.16.如图,已知点C是线段AB的中点,点D是线段AB上的一点,若AD=1,CD=2,则AB的长度为__________ .17.如图,一艘货轮B在沿某小岛O北偏东60∘方向航行中,发现了一座灯塔A.某一时刻,灯塔A与货轮B分别到小岛O的距离恰好相等,用量角器度量得到此时∠ABO的度数是__________∘(精确到度).18.如图,若一个表格的行数代表关于x的整式的次数,列数代表关于x的整式的项数(规定单项式的项数为1),那么每个关于x的整式均会对应表格中的某个小方格.若关于x的整式A 是三次二项式,则A对应表格中标★的小方格.已知B也是关于x的整式,下列说法正确的有__________ .(写出所有正确的序号)①若B对应的小方格行数是4,则A+B对应的小方格行数一定是4;②若A+B对应的小方格列数是5,则B对应的小方格列数一定是3;③若B对应的小方格列数是3,且A+B对应的小方格列数是5,则B对应的小方格行数不可能是3.19.计算:(1)25÷23−25×(−12);(2)(−3)2×(12−56)+|−4|.20.解方程:(1)5(x−1)+3=3x−3;(2)x−15+x2=1.21.如图,已知平面上四个点A,B,C,D,请按要求完成下列问题:(1)画直线AB,射线BD,连接AC;(2)在线段AC上求作点P,使得CP=AC−AB;(保留作图痕迹)(3)请在直线AB上确定一点Q,使点Q到点P与点D的距离之和最短,并写出画图的依据.22.先化简,再求值:3mn2+m2n−2(2mn2−m2n),其中m=1,n=−2.23.如图,点O在直线AB上,∠COD=90∘,∠BOC=α,OE是∠BOD的平分线.(1)若α=20∘,求∠AOD的度数;(2)若OC为∠BOE的平分线,求α的值.24.某校初一(3)班组织生活小常识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了其中4个参赛者的得分情况.参赛者答对题数答错题数得分A200100B288C64D1040(2)补全表格,并写出你的研究过程.25.如果两个方程的解相差1,则称解较大的方程为另一个方程的“后移方程”.例如:方程x−2=0是方程x−1=0的后移方程.(1)判断方程2x+1=0是否为方程2x+3=0的后移方程______(填“是”或“否”);(2)若关于x的方程3x+m+n=0是关于x的方程3x+m=0的后移方程,求n的值.(3)当a≠0时,如果方程ax+b=0是方程ax+c=0的后移方程,用等式表达a,b,c满足的数量关系______.26.在科幻世界里有各种造型奇特的小山.如图1是一座三棱锥小山,侧面展开图如图2所示,每个侧面完全相同.一只小狐狸在半山腰点M处(MD=MA)想饱览四周风景,它沿路径“M−N−K−A”绕小山一周最终以最短路径到达山脚A处,当小狐狸沿侧面的路径运动时,若MA≤NB,则称MN这段路为“上坡路”;若MA>NB,则称MN这段路为“下坡路”;若NB≤KC,则称NK这段路为“上坡路”;若NB>KC,则称NK这段路为“下坡路”.(1)当∠ADB=45∘时,在图2中画出从点M沿侧面环绕一周到达山脚点A处的最短路径,并判断在侧面DAB、侧面DBC上走的是上坡路还是下坡路?(2)如果改变小山侧面顶角的大小,(1)中的结论是否发生变化呢?请利用量角器,刻度尺等工具画图探究,并把你的结论填入下表:情形∠ADB度数侧面DAB侧面DBC115∘230∘(3)记∠ADB=α(0∘<α<60∘),随着α逐渐增大,在侧面DAB、侧面DBC上走的这两段路上下坡变化的情况为______ .27.在数轴上,把原点记作点O,表示数1的点记作点A.对于数轴上任意一点P(不与点O,点,例如:A重合),将线段PO与线段PA的长度之比定义为点P的特征值,记作P̂,即P̂=POPA当点P是线段OA的中点时,因为PO=PA,所以P̂=1.(1)如图,点P1,P2,P3为数轴上三个点,点P1表示的数是−1,点P2与P1关于原点对称.4①P2̂=______ ;②比较P̂1,P̂2,P̂3的大小_____ (用“<”连接);OA,求M̂;(2)数轴上的点M满足OM=13(3)数轴上的点P表示有理数p,已知P̂<100且P̂为整数,则所有满足条件的p的倒数之和为______ .答案和解析1.【答案】C【解析】【分析】本题考查科学记数法表示绝对值较大的数的方法,准确确定a与n值是关键.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于162000有6位整数,所以可以确定n=6−1=5.【解答】解:162000=1.62×105.故选C.2.【答案】A【解析】【分析】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.根据相反数的定义得出a,再利用有理数的乘方运算法则直接求得结果.【解答】解:因为a的相反数是1,所以a=−1,所以a2=(−1)2=1,故选A.3.【答案】B【解析】【分析】本题考查等式的基本性质,熟练掌握等式的基本性质,对所求等式灵活变形是解题的关键.等式的基本性质:(1)等式的两边同时加上或减去同一个整式,等式仍成立;(2)等式的两边同时乘上同一个数或除以同一个不为0的数,等式仍成立.根据等式的基本性质解题即可.【解答】解:A.因为2x=7,,所以x=72故A不符合题意;B.因为x−1=0,所以x=1,故B符合题意;C.因为3x+2=2x,所以3x−2x=−2,故C不符合题意;=3,D.因为x−12所以x−1=6,故D不符合题意;故选B.4.【答案】C【解析】【分析】本题考查的是多项式,掌握多项式的概念是解决此题关键.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.据此解答即可.【解答】解:关于x的整式ax2+bx+c(a,b,c均为常数)的常数项为1,则c=1,故选C.5.【答案】B【解析】【分析】本题考查了用字母表示数,整式的加减,关键是能根据题意分别表示出各段的水费.分别求出前20立方米和超过20立方米部分的水费,再求和就能表示出总的水费了.【解答】解:20a+(25−20)(a+2)=20a+5a+10=(25a+10)(元),故选B.6.【答案】B【解析】【分析】本题主要考查数轴的应用,确定数轴原点的位置是解决此题的关键.根据题意:相邻两点之间的距离均为1个单位,可知:AB=BC=CD=1,由a+d=0可知原点在B和C中间,从而得结论.【解答】解:因为a+d=0,所以a与d互为相反数,如图所示,.所以b=−12故选B.7.【答案】D【解析】【分析】本题考查从不同方向看简单几何体,掌握从不同方向看简单几何体的图的画法是正确解答的关键.根据从不同方向看简单几何体的图形,画出从正面所得到的图形即可.【解答】解:这个组合体从正面看到的图形如下:故选:D.8.【答案】A【解析】【分析】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.根据“如果每人出8元,那么剩余3元;如果每人出7元,那么差4元”,即可得出关于x的一元一次方程,此题得解.【解答】解:依题意得:8x−3=7x+4.故选A.9.【答案】D【解析】【分析】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.方程变形后表示出x,根据x为整数,确定出整数k的值即可.【解答】解:kx−3=2x,kx−2x=3,x=3,k−2由x为整数,得到k−2=−3,k−2=−1,k−2=1,k−2=3,得到整数k的值为−1,1,3,5共4个.故选D.10.【答案】C【解析】【分析】本题考查了补角与余角,能熟记余角和补角的定义是解此题的关键.根据题意分类讨论,画出图形,再得出即可.【解答】解:①如图,当C、D在直线AB的同旁时,α+β=∠AOC+∠BOD=180∘−90∘=90∘,即α和β互余,此时若α增大,则β减小,②如图,当C和D不在直线AB的同旁,即D在直线AB的下方时,当∠AOC=135∘,∠BOD=45∘时,α+β=∠AOC+∠BOD=180∘,即α与β有可能互补,此时若α增大,则β增大,故选:C.11.【答案】23【解析】【分析】本题考查了有理数的减法,掌握有理数的减法法则是解答本题的关键.有理数减法法则:减去一个数,等于加上这个数的相反数.据此计算即可.【解答】解:−13−(−1)=−13+1=23.故答案为23.12.【答案】1【解析】【分析】本题考查了方程的解的定义,正确理解定义是关键.把x=2代入方程即可得到一个关于a的方程,解方程即可求解.【解答】解:把x=2代入方程得:2a=2,解得:a=1.故答案为1.13.【答案】>【解析】【分析】本题主要考查了在正方形网格中判断角的大小,熟练掌握,即可解题.依据角在网格中的位置,即可得到∠ABC=45∘,∠DEF<45∘,进而得出两个角的大小关系.【解答】解:由图可得,∠ABC=45∘,∠DEF<45∘,所以∠ABC>∠DEF,故答案为:>.14.【答案】1【解析】【分析】本题考查了用字母表示数,整式的加减,熟练掌握整体代入的数学思想是解题的关键.根据已知可得x+2y=3,再利用2x+4y是x+2y的2倍即可解答.【解答】解:因为x=3−2y,所以x+2y=3,所以2x+4y=2(x+2y)=6,所以2x+4y−5=6−5=1,故答案为1.15.【答案】−1(答案不唯一)【解析】【分析】本题考查了绝对值的定义,熟练掌握绝对值的定义即可解答.利用绝对值的定义即可得解.【解答】解:因为非正数的绝对值等于其相反数,故写一非正数即可,故答案为−1.(答案不唯一)16.【答案】6【解析】【分析】本题考查的是两点间的距离的计算,正确理解线段中点的概念和性质是解题的关键.根据线段中点的性质得到AC=BC,再计算出AC的长,再根据AB=AC+BC可得结论.【解答】解:因为点C是线段AB的中点,所以AC=BC,因为点D是线段AB上一点,AD=1,CD=2,所以AC=AD+CD=1+2=3,所以AC=BC=3,所以AB=AC+BC=3+3=6.故答案为6.17.【答案】53【解析】【分析】本题考查了方向角,根据题目的已知先画出图形,再用量角器量出∠ABO的度数即可解答.【解答】解:如图在射线OB上截取OB=OA,连接AB,用量角器量得∠ABO≈53∘.故答案为:53.18.【答案】①③【解析】【分析】本题主要考查整式的加减,多项式,掌握多项式的项数,次数的定义是解题的关键.根据多项式的次数的定义可判定A+B的次数,进而可判定①;由多项式的项数的定义可判定B 的项数,即可判定②;由A+B,A,B的项数可判定B的次数与A的次数不可能相同,进而可判定③.【解答】解:①A在第3行,表示最高次数为3次,B在第4行,表示B中最高次数为4次,A+B中最高次数即为4次,由整式的次数由最高次数决定,行代表次数可得A+B必在第4行,故正确;②A在第2列,表示整式A有2项,A+B对应的小方格列数是5,表示整式A+B有5项,故整式B最少有3项,而不确定就只有3项,故错误;③因为A+B对应的小方格列数是5,所以整式A+B有5项,因为A在第2列,B对应的小方格列数是3,所以整式A,B的次数不可能相同,所以B对应的小方格行数不可能是3.故正确,故答案为①③.19.【答案】解:(1)25÷23−25×(−12)=25×32+25×12=25×(32+12)=25×2=50;(2)(−3)2×(12−56)+|−4|=9×(−1 3)+4=−3+4=1.【解析】本题主要考查有理数的混合运算,解答本题的关键是对相应的运算法则的掌握.(1)先把除法转化为乘法,再逆用乘法的分配律进行求解即可;(2)先算乘方,括号里的减法,绝对值,再算乘法,最后算加法即可.20.【答案】解:(1)5(x−1)+3=3x−3,5x−5+3=3x−3,5x−3x=−3−3+5,2x=−1,x=−12;(2)x−15+x2=1,去分母得:2(x−1)+5x=10,去括号得:2x−2+5x=10,移项、整理得:2x+5x=10+2,7x=12,系数化为1得:x=127.【解析】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.(1)按照解一元一次方程的步骤进行解答即可;(2)按照解一元一次方程的步骤进行解答即可.21.【答案】解:(1)如图,直线AB,射线BD,线段AC即为所求;(2)如图,点P即为所求;(3)如图,点Q即为所求.依据是两点之间线段最短.【解析】本题考查作图,直线,射线,线段的定义等知识,解题的关键是理解直线,射线,线段的定义.(1)根据直线,射线,线段的定义画出图形即可;(2)以A为圆心,AB为半径作弧,交AC于点P,点P即为所求;(3)连接DP交AB于点Q,点Q即为所求,依据是两点之间线段最短.22.【答案】解:原式=3mn2+m2n−4mn2+2m2n=3m2n−mn2,当m=1,n=−2时,原式=3×12×(−2)−1×(−2)2=3×1×(−2)−1×4=−6−4=−10.【解析】本题考查整式的加减-化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“-”号,去掉“-”号和括号,括号里的各项都变号)是解题关键.原式去括号,合并同类项进行化简,然后代入求值.23.【答案】解:(1)因为∠COD=90∘,∠BOC=α=20∘,所以∠AOD=180∘−∠COD−∠BOC=180∘−90∘−20∘=70∘,答:∠AOD的度数为70∘;(2)因为OC是∠BOE的平分线,所以∠EOC=∠BOC=α,因为OE是∠BOD的平分线,所以∠DOE=∠EOB=∠EOC+∠BOC=α+α=2α,所以∠DOC=∠DOE+∠EOC=2α+α=3α,所以3α=90∘,所以α=30∘.答:α的值为30∘.【解析】本题考查了角平分线的定义、平角的定义及角的和与差,能根据图形确定所求角和已知各角的关系是解此题的关键.(1)由∠COD=90∘,∠BOC=α=20∘,结合∠AOD=180∘−∠COD−∠BOC,可得∠AOD度数;(2)由角平分线得出∠EOC=∠BOC,∠DOE=∠EOB,则可以用含α的式子表示∠DOC,解出α的值.24.【答案】解:(1)不可能,因为参赛者A答对20题,答错0题,得100分,100÷20=5(分)所以答对1题得5分,设答错1题扣x分,由参赛者B的得分可得,5×(20−2)−2x=88,解得x=1,所以答错1题扣1分,因为参赛者E说他错了10个题,所以他的得分为:5×(20−10)−10×1=40(分)所以参赛者E说他错了10个题,不可能得50分;(2)因为共有20题,参赛者B答错2题,故答对18题,因为参赛者D答对10题,故答错10题,设参赛者C答对y题,由题意得,5y−(20−y)=64,解得y=14.故参赛者C答对14题,答错6题.故答案为18;14;6;10.【解析】本题考查一元一次方程的应用,找到等量关系列出方程是解题关键.(1)根据表格可得答对1题得5分,再根据参赛者B的得分可得答错1题扣1分,进而可判断E的说法;(2)根据四位参赛者的得分和题目总数为20,可完成表格.25.【答案】解:(1)是;(2)方程3x +m +n =0,解得:x =−m+n 3, 方程3x +m =0,解得:x =−m 3,根据题意得:−m+n 3−(−m 3)=1,解得:n =−3;(3)a +b −c =0.【解析】【分析】本题考查了一元一次方程的解,弄清题中“后移方程”的定义是解本题的关键.(1)求出两个方程的解,利用“后移方程”的定义判断即可;(2)分别表示出两个方程的解,根据“后移方程”的定义,求出方程的解即可得到n 的值;(3)分别表示出两个方程的解,根据“后移方程”的定义列出关系式即可.【解答】解:(1)方程2x +1=0,解得:x =−12,方程2x +3=0,解得:x =−32,因为(−12)−(−32)=−12+32=1,所以方程2x +1=0是方程2x +3=0的后移方程;故答案为是;(2)见答案;(3)方程ax +b =0,解得:x =−b a ,方程ax +c =0,解得:x =−c a ,根据题意得:−b a −(−c a )=1,即c−b a =1,整理得:a +b −c =0.故答案为a +b −c =0.26.【答案】解:(1)连接AM,如图2,根据题意,在侧面DAB上走的是上坡路、侧面DBC上走的是下坡路;(2)下坡路;下坡路;上坡路;下坡路;(3)在侧面DAB先下坡路,在某一位置平缓,然后再上坡路;侧面DBC始终是下坡路.【解析】【分析】本题考查了立体图形侧面展开图,两点之间线段最短,线段长短的比较,理解题意是解题的关键.(1)连接AM,进而根据题意确定上坡路和下坡路;(2)根据题意画出图形,进而根据(1)的方法填表即可;(3)根据三个图形的情况分析,即可得出结论.【解答】解:(1)见答案;(2)结论填表如下:情形∠ADB度数侧面DAB侧面DBC115∘下坡路下坡路230∘上坡路下坡路(3)如图3,4,5,α逐渐增大,观察图形可知:随着α逐渐增大,在侧面DAB先下坡,然后再上坡,侧面DBC始终是下坡.故答案:在侧面DAB先下坡路,在某一位置平缓,然后再上坡路;侧面DBC始终是下坡路.27.【答案】解:(1)①1;3②P̂1<P ̂2<P ̂3;(2)分两种情况:当点M 在原点的右侧,因为OM =13OA ,所以OM =13,所以点M 表示的数为:13,所以MO =13,MA =1−13=23,所以M ̂=MO MA =1323=12, 当点M 在原点的左侧,因为OM =13OA ,所以OM =13,所以点M 表示的数为:−13,所以MO =13,MA =1−(−13)=43,所以M ̂=MO MA =1343=14,所以M ̂的值为:12或14; (3)198.【解析】【分析】本题考查了数轴,有理数的混合运算,理解题目中的定义,线段PO 与线段PA 的长度之比定义为点P 的特征值,记作P̂,是解题的关键,同时渗透了分类讨论的数学思想. (1)①根据定义求出线段P 2A 与P 2O 的值即可解答;②根据定义分别求出P̂1,P ̂3的值即可比较; (2)分两种情况,点M 在原点的右侧,点M 在原点的左侧;(3)根据题意可知,分两种情况,点P 在点A 的右侧,点P 在OA 之间,找到规律解答即可.【解答】解:(1)①因为点P 1表示的数是−14,点P 2与P 1关于原点对称,所以点P 2表示的数是14,因为点A 表示的数是1,所以P 2A =1−14=34,P 2O =14,所以P ̂2=P 2O P 2A =1434=13,②因为点P 1表示的数是−14,所以P 1A =1−(−14)=54,P 1O =14,所以P ̂1=P 1OP 1A =1454=15,因为1<P 3<2,所以1<P 3O <2,0<P 3A <1, 所以P ̂3=P 3OP 3A >1,所以P ̂1<P ̂2<P ̂3,故答案为①13;②P ̂1<P ̂2<P ̂3;(2)见答案;(3)因为P ̂<100且P ̂为整数, 所以P ̂=PO PA 为整数,所以PO ≥PA 且PO 为PA 的倍数, 当P ̂=PO PA =1时,所以PO =PA ,即点P 为OA 的中点,所以p =12,所以当P ̂=1时,p 的值为12,当P ̂=PO PA =2时,所以PO =2PA ,当点P 在OA 之间,所以p =2(1−p),所以p =23,当点P 在点A 的右侧,所以p =2(p −1),所以p =2,所以当P ̂=2时,p 的值为:2或23,当P ̂=PO PA =3时,所以PO =3PA ,当点P 在OA 之间,所以p =3(1−p),所以p =34,当点P 在点A 的右侧,所以p =3(p −1),所以p =32,所以当P ̂=3时,p 的值为:34或32, 当P ̂=PO PA =4时,所以PO =4PA ,当点P 在OA 之间,所以p =4(1−p),所以p =45,当点P 在点A 的右侧,所以p =4(p −1),所以p =43,所以当P̂=4时,p 的值为:45或43, …当P ̂=PO PA=99时, 所以PO =99PA ,当点P 在OA 之间,所以p =99(1−p),所以p =99100,当点P 在点A 的右侧,所以p =99(p −1),所以p =9998, 所以当P ̂=99时,p 的值为:99100或9998, 所以所有满足条件的p 的倒数之和为:2+32+12+43+23+54+34+...+10099+9899=2+(32+12)+(43+23)+(54+34)+...+(10099+9899)=2+2+2+2+...+2=2×99=198,故答案为198.。

北京市海淀区北京大学附属中学2020-2021学年七年级上学期期末数学试题

北京市海淀区北京大学附属中学2020-2021学年七年级上学期期末数学试题

北京市海淀区北京大学附属中学2020-2021学年七年级上学期期末数学试题一、选择题(本题共24分,每小题2分)第1-12题均有四个选项,符合题意的只有一个. 1. 如图,从直线EF 外一点P 向EF 引四条线段P A ,PB ,PC ,PD ,其中最短的是( )A. P AB. PBC. PCD. PD【答案】B 2. 2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30 成功定点于距离地球36 000公里的地球同步轨道.将36 000用科学记数法表示应为( )A. 0.36×105B. 3.6×105C. 3.6×104D. 36×103 【答案】C3. 下列计算正确的是( )A. 277a a a +=B. 532y y -=C. 32x x x -=D. 2222xy xy xy -= 【答案】D4. 下列是一元一次方程的是( )A. 2230x x --=B. 25x y +=C. 112x x+= D. 10x += 【答案】D5. 下列几何体中,从上面看得到的平面图形是三角形的是( )A. B.C. D.【答案】B6. 下列各式进行的变形中,不正确的是( )A. 若32a b =,则3222a b +=+B. 若32a b =,则3525a b -=-C. 若32a b =,则23a b =D. 若32a b =,则94a b = 【答案】D7. 将一副三角板按如图所示位置摆放,其中α∠与β∠一定互补的是( )A. B. C. D. 【答案】D8. 如图,OC 为AOB ∠内的一条射线,下列条件中不能确定OC 平分AOB ∠的是( )A. AOC BOC ∠=∠B. AOC COB AOB ∠+∠=∠C. 2AOB BOC ∠=∠D. 12AOC AOB ∠=∠ 【答案】B 9. 实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A. 2B. -1C. -2D. -3【答案】B10. 如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A. 85°B. 105°C. 125°D. 160°【答案】C 11. 如果2220x x --=,那么2631x x --的值等于( )A. 5B. 3C. -7D. -9【答案】A12. 按下面的程序计算:若输入100x =,输出结果是501,若输入25x =,输出结果是631,若开始输入的x 值为正整数,最后输出的结果为556,则开始输入的x 值可能有( )A. 1种B. 2种C. 3种D. 4种 【答案】B 二、填空题(本题共24分,每小题3分)13. 在一面墙上用两根钉子钉木条时,木条就会固定不动,用数学知识解释这种生活现象为________.【答案】两点确定一条直线14. 请写出一个系数为负数,次数为2的单项式,这个单项式可以为________.【答案】2x -(答案不唯一)15. 若4720α'∠=︒,则α∠的余角的度数为________.【答案】4240'︒16. 如果13m x y -与212n x y +是同类项,则mn 的值________. 【答案】017. 已知关于x 的方程()29a x -=与14x +=的解相同,则a 的值是________.. 【答案】518. 我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x 人,则可列方程为__________.【答案】8374x x -=+19. 已知线段6cm AB =,若M 是AB 的三等分点,N 是AM 的中点,则线段MN 的长度为________.【答案】1cm 或2cm20. 左图是一个没有完全剪开的正方体,若再剪开一条棱,则得到的平面展开图可能是下列六种图中的 .(填写字母)【答案】A 、B 、E三、解答题(本题共52分,第21题5分,第22题10分,第23题5分,第24题8分,第25题5分,第26题6分,第27题6分,第28题7分)21. 如图,点C 在AOB ∠的边OB 上,选择合适的画图工具按要求画图.(1)反向延长射线OA ,得到射线OD ,画BOD ∠的角平分线OE ;(2)在射线OD 上取一点F ,使得OF OC =;(3)在射线OE 上作一点P ,使得CP FP +最小;(4)写出你完成(3)的作图依据:________.【答案】(1)见解析;(2)见解析;(3)见解析;(4)两点之间,线段最短.22. 计算(1)()()()111218++--+(2)()()3234315⨯--⨯-+(3)3751412660⎛⎫⎛⎫+-÷- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-19;(2)-27;(3)-3023. 先化简再求值:()()2232322a a a +--+,当3a =-时,求代数式的值. 【答案】2210a -,824. 解方程:(1)37322x x +=- (2)21101324x x -+-= 【答案】(1)x=5;(2)x=-2.5.25. 如图,O 为直线AB 上一点,72AOC ∠=︒,OD 是AOC ∠的平分线,90DOE ∠=︒.(1)图中小于平角的角的个数是_____;(2)求BOD ∠的度数;(3)猜想OE 是否平分BOC ∠,并说明理由.【答案】(1)9;(2)144°;(3)平分,理由见解析26. 为鼓励节约能源,某电力公司特别出台了新的用电收费标准:每户每月用电量不超过210度 超过210度(超出部分的收费) 收费标准 每度0.5元 每度0.8元(1)小林家4月份用电180度,则小林家4月份应付的电费为:________;(2)小林家6月份用电x (210x >)度,请你用x 表示小林家6月份应付的电费:________; (3)小林家11月份交付电费181元,请利用方程的知识,求出小林家11月份的用电量.【答案】(1)90元;(2)()0.863x -元;(3)305度27. 点O 为数轴的原点,点A 、B 在数轴上的位置如图所示,点A 表示的数为5,线段AB 的长为线段OA 长的1.2倍.点C 在数轴上,M 为线段OC 的中点.(1)点B 表示的数为________;(2)若线段5BM =,则线段OM 的长为________;(3)若线段AC a =(05a <<),求线段BM 的长(用含a 的式子表示).【答案】(1)-1;(2)4或6;(3)1722a +或1722a -+. 28. 定义:数轴上给定不重合两点A ,B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.请解答下列问题:(1)若点A 表示的数为-3,点B 表示的数为1,点M 为点A 与点B 的“平衡点”,则点M 表示的数为_______; (2)若点A 表示的数为-3,点A 与点B 的“平衡点”M 表示的数为1,则点B 表示的数为________; (3)点A 表示的数为-5,点C ,D 表示的数分别是-3,-1,点O 为数轴原点,点B 为线段CD 上一点. ①设点M 表示数为m ,若点M 可以为点A 与点B 的“平衡点”,则m 的取值范围是________;②当点A 以每秒1个单位长度的速度向正半轴方向移动时,点C 同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t (0t >)秒,求t 的取值范围,使得点O 可以为点A 与点B 的“平衡点”.【答案】(1)-1;(2)5;(3)①43t -≤≤-;②26t ≤≤且 5t ≠。

北京市海淀区2020—2021学年七年级上期末数学试卷含答案解析

北京市海淀区2020—2021学年七年级上期末数学试卷含答案解析

北京市海淀区2020—2021学年七年级上期末数学试卷含答案解析一.选择题(本大题共30分,每小题3分)1.的相反数为()A.2 B.﹣C.D.﹣22.石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来确实是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A.300×104B.3×105C.3×106D.30000003.下列各式结果为负数的是()A.﹣(﹣1)B.(﹣1)4C.﹣|﹣1| D.|1﹣2|4.下列运算正确的是()A.a+a=a2B.6a3﹣5a2=aC.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b5.用四舍五入法对0.02020(精确到千分位)取近似数是()A.0.02 B.0.020 C.0.0201 D.0.02026.如图所示,在三角形ABC中,点D是边AB上的一点.已知∠ACB=90°,∠CDB=90°,则图中与∠A互余的角的个数是()A.1 B.2 C.3 D.47.若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A.﹣1 B.1 C.﹣D.﹣8.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,假如设这件夹克衫的成本价是x元,那么依照题意,所列方程正确的是()A.0.8(1+0.5)x=x+28 B.0.8(1+0.5)x=x﹣28C.0.8(1+0.5x)=x﹣28 D.0.8(1+0.5x)=x+289.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0 B.|b|<|c| C.|a|>|b| D.abc<010.已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点动身,沿着圆锥侧面通过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均在PB上)四个点中,它最有可能通过的点是()A.M B.N C.S D.T二.填空题(本大题共24分,每小题3分)11.在“1,﹣0.3,+,0,﹣3.3”这五个数中,非负有理数是.(写出所有符合题意的数)12.∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为°.13.运算:180°﹣20°40′=.14.某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,假如设此月人均定额是x件,那么这4名工人此月实际人均工作量为件.(用含x的式子表示)15.|a|的含义是:数轴上表示数a的点与原点的距离.则|﹣2|的含义是;若|x|=2,则x的值是.16.某小组几名同学预备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,依照题意可列方程为.17.如图所示,AB+CD AC+BD.(填“<”,“>”或“=”)18.已知数轴上动点A表示整数x的点的位置开始移动,每次移动的规则如下:当点A所在位置表示的数是7的整数倍时,点A向左移动3个单位,否则,点A向右移动1个单位,按此规则,点A移动n次后所在位置表示的数记做x n.例如,当x=1时,x3=4,x6=7,x7=4,x8=5.①若x=1,则x14=;②若|x+x1+x2+x3+…+x20|的值最小,则x3=.三.解答题(本大题共21分,第19题7分,第20题4分,第21题10分)19.运算:(1)3﹣6×;(2)﹣42÷(﹣2)3﹣×.20.如图,已知三个点A,B,C.按要求完成下列问题:(1)取线段AB的中点D,作直线DC;(2)用量角器度量得∠ADC的大小为(精确到度);(3)连接BC,AC,则线段BC,AC的大小关系是;关于直线DC上的任意一点C′,请你做一做实验,猜想线段BC′与AC′的大小关系是.21.解方程:(1)3(x+2)﹣2=x+2;(2)=1﹣.四.解答题(本大题共13分,第22、23题各4分,第24题5分)22.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.23.如图所示,点A在线段CB上,AC=,点D是线段BC的中点.若CD=3,求线段AD的长.24.列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,靠近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由运算机精准操纵,每一只小球能够“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机操纵.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),操纵电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?五.解答题(本大题共12分,第25题6分,第26题各6分)25.一样情形下不成立,但有些数能够使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.26.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,连续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,连续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始连续旋转2α至OA2;第3步,从OA2开始连续旋转3α至OA3,∁….例如:当α=30°时,OA1,OA2,OA3,OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°;当α=20°时,OA1,OA2,OA3,OA4,OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是.(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问关于任意角α(α的度数为正整数,且α=180°),旋转是否能够停止?写出你的探究思路.2020-2021学年北京市海淀区七年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共30分,每小题3分)1.的相反数为()A.2 B.﹣C.D.﹣2【考点】相反数.【分析】依照只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数为﹣,故选:B.2.石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来确实是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A.300×104B.3×105C.3×106D.3000000【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:300万用科学记数法表示为3×106.故选C.3.下列各式结果为负数的是()A.﹣(﹣1)B.(﹣1)4C.﹣|﹣1| D.|1﹣2|【考点】正数和负数.【分析】依照小于零的数是负数,可得答案.【解答】解:A、﹣(﹣1)=1是正数,故A错误;B、(﹣1)4=1是正数,故B错误;C、﹣|﹣1|=﹣1是负数,故C正确;D、|1﹣2|=1,故D错误;故选:C.4.下列运算正确的是()A.a+a=a2B.6a3﹣5a2=aC.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b【考点】合并同类项.【分析】依照合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、合并同类项是解题关键,故A错误;B、不是同类项不能合并,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.5.用四舍五入法对0.02020(精确到千分位)取近似数是()A.0.02 B.0.020 C.0.0201 D.0.0202【考点】近似数和有效数字.【分析】把万分位上的数字1进行四舍五入即可.【解答】解:0.02020≈0.020(精确到千分位).故选B.6.如图所示,在三角形ABC中,点D是边AB上的一点.已知∠ACB=90°,∠CDB=90°,则图中与∠A互余的角的个数是()A.1 B.2 C.3 D.4【考点】余角和补角.【分析】依照图形和余角的概念解答即可.【解答】解:∵∠ACB=90°,∴∠A+∠B=90°,∵∠CDB=90°,∴∠A+∠ACD=90°,∴∠A互余的角的个数是2.故选:B.7.若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A.﹣1 B.1 C.﹣D.﹣【考点】同解方程.【分析】依照解方程,可得x的值,依照同解方程,可得关于a的方程,依照解方程,可得答案.【解答】解:解2x+1=﹣1,得x=﹣1.把x=﹣1代入1﹣2(x﹣a)=2,得1﹣2(﹣1﹣a)=2.解得a=﹣,故选:D.8.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,假如设这件夹克衫的成本价是x元,那么依照题意,所列方程正确的是()A.0.8(1+0.5)x=x+28 B.0.8(1+0.5)x=x﹣28C.0.8(1+0.5x)=x﹣28 D.0.8(1+0.5x)=x+28【考点】由实际问题抽象出一元一次方程.【分析】设这件夹克衫的成本价是x元,依照题意可得,利润=标价×80%﹣成本价,据此列出方程.【解答】解:设这件夹克衫的成本价是x元,由题意得,0.8(1+50%)x﹣x=28,即0.8(1+0.5)x=28+x.故选A.9.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0 B.|b|<|c| C.|a|>|b| D.abc<0【考点】数轴.【分析】依照数轴和ac<0,b+a<0,能够判定选项中的结论是否成立,从而能够解答本题.【解答】解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴假如a=﹣2,b=0,c=2,则b+c>0,故选项A错误;假如a=﹣2,b=﹣1,c=0,则|b|>|c|,故选项B错误;假如a=﹣2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选C.10.已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点动身,沿着圆锥侧面通过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均在PB上)四个点中,它最有可能通过的点是()A.M B.N C.S D.T【考点】线段的性质:两点之间线段最短;几何体的展开图;平面展开-最短路径问题.【分析】依照圆锥画出侧面展开图,依照两点之间线段最短可得它最有可能通过的点是N.【解答】解:如图所示:依照圆锥侧面展开图,此蚂蚁所走的路线最短,那么M,N,S,T (M,N,S,T均在PB上)四个点中,它最有可能通过的点是N,,故选B.二.填空题(本大题共24分,每小题3分)11.在“1,﹣0.3,+,0,﹣3.3”这五个数中,非负有理数是1,+,0.(写出所有符合题意的数)【考点】有理数.【分析】依照大于或等于零的有理数是非负有理数,可得答案.【解答】解:非负有理数是1,+,0.故答案为:1,+,0.12.∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为120°.【考点】余角和补角.【分析】先依照图形得出∠AOB=60°,再依照和为180度的两个角互为补角即可求解.【解答】解:由题意,可得∠AOB=60°,则∠AOB的补角的大小为:180°﹣∠AOB=120°.故答案为120.13.运算:180°﹣20°40′=159°20′.【考点】度分秒的换算.【分析】先变形得出179°60′﹣20°40′,再度、分分别相减即可.【解答】解:180°﹣20°40′=179°60′﹣20°40′=159°20°.故答案为:159°20′.14.某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,假如设此月人均定额是x件,那么这4名工人此月实际人均工作量为件.(用含x的式子表示)【考点】列代数式.【分析】依照4名工人3月份完成的总工作量比此月人均定额的4倍多15件得到总工作量是(4x+15)件,再把总工作量除以4可得这4名工人此月实际人均工作量.【解答】解:(4x+15)÷4=(件).答:这4名工人此月实际人均工作量为件.故答案为:.15.|a|的含义是:数轴上表示数a的点与原点的距离.则|﹣2|的含义是数轴上表示﹣2的点与原点的距离;若|x|=2,则x的值是±2.【考点】绝对值;数轴.【分析】直截了当利用绝对值的定义得出|﹣2|的含义以及求出x的值.【解答】解:|﹣2|的含义是数轴上表示﹣2的点与原点的距离;|x|=2,则x的值是:±2.故答案为:数轴上表示﹣2的点与原点的距离;±2.16.某小组几名同学预备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,依照题意可列方程为+=1.【考点】由实际问题抽象出一元一次方程.【分析】设该小组共有x名同学,依照题意可得,全体同学整理8小时完成的任务+(x﹣2)名同学整理4小时完成的任务=1,据此列方程.【解答】解:设该小组共有x名同学,由题意得,+=1.故答案为:+=1.17.如图所示,AB+CD<AC+BD.(填“<”,“>”或“=”)【考点】线段的性质:两点之间线段最短.【分析】AC与BD的交点为E,由两点之间线段最短可知AE+BE>AB,同理得到CE+DE >DC,从而得到AB+CD<AC+BD.【解答】解:如图所示:由两点之间线段最短可知AE+BE>AB.同理:CE+DE>DC.∴AE+BE+CE+DE>AB+DC.∴AC+BD>AB+DC,即AB+DC<AC+BD.故答案为:<.18.已知数轴上动点A表示整数x的点的位置开始移动,每次移动的规则如下:当点A所在位置表示的数是7的整数倍时,点A向左移动3个单位,否则,点A向右移动1个单位,按此规则,点A移动n次后所在位置表示的数记做x n.例如,当x=1时,x3=4,x6=7,x7=4,x8=5.①若x=1,则x14=7;②若|x+x1+x2+x3+…+x20|的值最小,则x3=﹣3.【考点】规律型:图形的变化类.【分析】(1)按照规律写出x14即可.(2)当x=﹣6时,|x+x1+x2+x3+…+x20|的值最小,由此能够解决问题.【解答】解:①由题意:x1=2,x2=3,x3=4,x4=5,x5=6,x6=7,x7=4,x8=,5,x9=6,x10=7,x11=4,x12=5,x13=6,x14=7.故答案为x14=7.②由题意当x=﹣6时,x1=﹣5,x2=﹣4,x3=﹣3,x4=﹣2,x5=﹣1,x6=0,x7=1,x8=2,x9=3,x10=4,x11=5,x12=6,x13=7,x14=4,x15=5,x16=6,x17=7,x18=4,x19=5,x20=6,|x+x1+x2+x3+…+x20|=50最小,∴x3=﹣3.故答案为﹣3.三.解答题(本大题共21分,第19题7分,第20题4分,第21题10分)19.运算:(1)3﹣6×;(2)﹣42÷(﹣2)3﹣×.【考点】有理数的混合运算.【分析】(1)依照有理数的乘法和减法进行运算即可;(2)依照有理数的乘方、除法、乘法和减法进行运算即可.【解答】解:(1)3﹣6×=3﹣6×=3﹣1=2;(2)﹣42÷(﹣2)3﹣×=﹣16÷(﹣8)﹣=2﹣1=1.20.如图,已知三个点A,B,C.按要求完成下列问题:(1)取线段AB的中点D,作直线DC;(2)用量角器度量得∠ADC的大小为90°(精确到度);(3)连接BC,AC,则线段BC,AC的大小关系是BC=AC;关于直线DC上的任意一点C′,请你做一做实验,猜想线段BC′与AC′的大小关系是BC′=AC′.【考点】作图—复杂作图.【分析】(1)利用线段垂直平分线的作法得出D点位置,进而得出答案;(2)利用量角器得出∠ADC的大小;(3)利用线段垂直平分线的性质得出线段BC,AC的大小关系以及线段BC′与AC′的大小关系.【解答】解:(1)如图所示:直线DC即为所求;(2)90°(只要相差不大都给分).故答案为:90°;(3)BC=AC,BC′=AC′,(若(2)中测得的角不等于90°,则相应地得出线段的不等关系(注意:要分类讨论),同样给分.)21.解方程:(1)3(x+2)﹣2=x+2;(2)=1﹣.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)去括号得:3x+6﹣2=x+2,移项合并得:2x=﹣2,解得:x=﹣1;(2)去分母得:2(7﹣5y)=12﹣3(3y﹣1),去括号得:14﹣10y=12﹣9y+3,移项合并得:﹣y=1,解得:y=﹣1.四.解答题(本大题共13分,第22、23题各4分,第24题5分)22.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【考点】整式的加减—化简求值.【分析】第一依照整式的加减运算法则将原式化简,再代入求值.注意去括号时,假如括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=(﹣1﹣1+2)a2b+(3﹣4)ab2=﹣ab2,当a=1,b=﹣2时,原式=﹣1×(﹣2)2=﹣4.23.如图所示,点A在线段CB上,AC=,点D是线段BC的中点.若CD=3,求线段AD的长.【考点】两点间的距离.【分析】依照点A在线段CB上,AC=,点D是线段BC的中点,CD=3,能够求得BC的长,从而能够求得CA的长,从而得到AD的长.【解答】解:∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵AC=,AC+AB=CB,∴AC=2,AB=4,∴AD=CD﹣AC=3﹣2=1,即线段AD的长是1.24.列方程解应用题:为了丰富社会实践活动,引导学生科学探究,学校组织七年级同学走进中国科技馆,靠近科学,感受科技魅力.来到科技馆大厅,同学们就被大厅里会“跳舞”的“小球矩阵”吸引住了(如图1).白色小球全部由运算机精准操纵,每一只小球能够“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等各种动态造型.已知每个小球分别由独立的电机操纵.图2,图3分别是9个小球可构成的两个造型,在每个造型中,相邻小球的高度差均为a.为了使小球从造型一(如图2)变到造型二(如图3),操纵电机使造型一中的②,③,④,⑥,⑦,⑧号小球同时运动,②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒,当每个小球到达造型二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,问②号小球运动了多少米?【考点】一元一次方程的应用.【分析】设②号小球运动了x米,依照图中的造型和“②,③,④号小球向下运动,运动速度均为3米/秒;⑥,⑦,⑧号小球向上运动,运动速度均为2米/秒”列出方程并解答.【解答】解:设②号小球运动了x米,由题意可得方程:=,解方程得:x=2答:从造型一到造型二,②号小球运动了2米.五.解答题(本大题共12分,第25题6分,第26题各6分)25.一样情形下不成立,但有些数能够使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.【考点】整式的加减;代数式求值.【分析】(1)利用“相伴数对”的定义化简,运算即可求出b的值;(2)写出一个“相伴数对”即可;(3)利用“相伴数对”定义得到9m+4n=0,原式去括号整理后代入运算即可求出值.【解答】解:(1)∵(1,b)是“相伴数对”,∴+=,解得:b=﹣;(2)(2,﹣)(答案不唯独);(3)由(m,n)是“相伴数对”可得:+=,即=,即9m+4n=0,则原式=m﹣n﹣4m+6n﹣2=﹣n﹣3m﹣2=﹣﹣2=﹣2.26.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,连续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,连续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始连续旋转2α至OA2;第3步,从OA2开始连续旋转3α至OA3,∁….例如:当α=30°时,OA1,OA2,OA3,OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°;当α=20°时,OA1,OA2,OA3,OA4,OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是45°;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是,,,.(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问关于任意角α(α的度数为正整数,且α=180°),旋转是否能够停止?写出你的探究思路.【考点】角的运算.【分析】(1)依照题意,明确每次旋转的角度,运算即可;(2)依照各角的度数,找出等量关系式,列出方程,求出α的度数即可;(3)类比第(2)小题的算法,分三种情形讨论,求出α的度数即可;(4)不管a为多少度,旋转专门多次,总会出一次OA i是∠A i OA K是的角平分线,但当a=120度时,只有两条射线,可不能显现OA i是∠A i OA K是的角平分线,因此旋转会中止.【解答】解:(1)解:如图所示.aφ=45°,(2)解:如图所示.∵α<30°,∴∠A0OA3<180°,4α<180°.∵OA4平分∠A2OA3,∴2+=4α,解得:.(3),,(4)关于角α=120°不能停止.理由如下:不管a为多少度,旋转过若干次后,一定会显现OA i是∠A i OA K是的角平分线,因此旋转会停止.但专门的,当a为120°时,第一次旋转120°,∠MOA1=120°,第二次旋转240°时,与OM 重合,第三次旋转360°,又与OM重合,第四次旋转480°时,又与OA1重合,…依此类推,旋转的终边只会显现“与OM重合”或“与OA1重合”两种情形,可不能出第三条射线,因此可不能显现OA i是∠A i OA K是的角平分线这种情形,旋转可不能停止.2021年6月9日。

2020~2021学年北京海淀区北京市中关村中学初一(七年级)上学期期末数学试卷-学生用卷(含答案)

2020~2021学年北京海淀区北京市中关村中学初一(七年级)上学期期末数学试卷-学生用卷(含答案)

2020~2021学年北京海淀区北京市中关村中学初一(七年级)上学期期末数学试卷-学生用卷(含答案)一、选择题(本大题共12小题,每小题2分,共24分)1、据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338600000亿次.将数字338600000用科学记数法可表示为().A. 3.386×108B. 3.386×109C. 0.3386×109D. 33.86×1072、如图所示,∠MON的大小可由量角器测得,则∠MON的余角..大小为().A. 70°B. 20°C. 110°D. 120°3、下列图形中,∠1与∠2是对顶角的是().A. B. C. D.4、下列运算正确的是().A. 4m−m=3B. a3−a2=aC. a2b−ab2=0D. 2xy−yx=xy5、下列变形正确的是().;A. 由−3+2x=1,得2x=1−3;B. 由3y=−4,得y=−34C. 由3=x+2,得x=3+2;D. 由x−4=9,得x=9+4.6、如图,下列结论正确的是().A. c>a>bB. b+a>0C. |a|>|b|D. abc>07、如图,测量运动员跳远成绩选取的是AB的长度,其依据是().A. 两点确定一条直线B. 两点之间直线最短C. 两点之间线段最短D. 垂线段最短8、已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°,则∠AOC的度数是().A. 78°B. 68°C. 46°D. 22°9、已知多项式2x2+4y的值是−2,则多项式x2+2y−6的值是()A. −7B. −1C. 1D. 710、在以下形状不规则的组件中,图1不可能是下面哪个组件的视图().A. B. C. D.11、“☆”表示一种运算符号,其定义是a☆b=−2a+b,例如:3☆7=−2×3+7,如果x☆(−5)=3,那么x等于().A. −1B. −4C. 7D. 112、下图是某区2019年1月份每天的最低和最高气温,观察此图,下列说法正确的是().A. 在1月份中,最高气温为10°C,最低气温为−2°CB. 在10号至16号的气温中,每天温差最大为7°CC. 1月份每天的最高气温均高于0°C,最低气温均低于0°CD. 从27日开始到月底,每天的最高气温持续走低二、填空题(本大题共8小题,每小题3分,共24分)13、34.24°=°′′′.14、如图所示的网格是正方形网格,∠COD∠AOB.(填“>”,“=”或“<”)15、写出一个一元一次方程,使它的解为x=5,方程为.16、右图是一所住宅的建筑平面图(长度单位:m),用式子表示这所住宅的建筑面积是m2.17、点A,B,C在直线l上,线段AB=6cm,AB=2AC,则BC的长度为cm.18、如图,AD是∠EAC的平分线,AD//BC,∠B=30°,则∠C=.19、《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”译文:“有几个人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:有几个人共同出钱买鸡?”设有x个人共同买鸡,根据题意列一元一次方程.20、在2021年迎新联欢会上,数学老师和同学们做了一个游戏.她在A,B,C三个盘子里分别放了一些小球,小球数依次为a0,b0,c0,记为G0=(a0,b0,c0).游戏规则如下:三个盘子中的小球数a0≠b0≠c0,则从小球最多的一个盘子中拿出两个,给另外两个盘子各放一个,记作一次操作;n次操作后的小球数记为G n=(a n,b n,c n).若G0=(3,5,19),则G 3= ,G 2021= .三、解答题(本大题共5小题,共32分)21、计算:(1) (−12)×(−8)+(−6)2. (2) −14+(−2)÷(+13)+|−9|. 22、解方程:(1) 2(x +1)=7−(x −4). (2) 4x−16=1−3x−13. 23、先化简,再求值:3(a 2b +ab 2)−(3a 2b −1)−ab 2−1,其中a =1,b =−3. 24、如图,根据下列要求画图:(1) 画线段BC ,射线BA .(2) 画出点A 到线段BC 的垂线段AD .(3) 用量角器(半圆仪)测量∠ABC 的度数是 °.(精确到度) 25、如图,已知:BE 平分∠ABC ,CF 平分∠BCD ,且BE//CF ,求证:AB//CD .证明:∵BE 平分∠ABC ,∴∠1=12∠ABC ,∵CF 平分∠BCD ,∴ ∠2=12 (),又∵BE//CF ,∴∠1= (),∴∠ABC=,∴AB//CD().四、解答题(本大题共3小题,共20分)26、暑假里某班同学相约一起去某公园划船,在售票处了解到该公园划船项目收费标准如下:(1) 其中,两人船项目和八人船项目单价模糊不清,通过询问,了解到以下信息:①一只八人船每小时的租金比一只两人船每小时的租金的2倍少30元.②租2只两人船,3只八人船,游玩一个小时,共需花费630元.请根据以上信息,求出两人船项目和八人船项目每小时的租金.(2) 若该班本次共有18名同学一起来游玩,每人乘船的时间均为1小时,且每只船均坐满,试列举出可行的方案(至少四种),通过观察和比较,找到所有方案中最省钱的方案.27、点O是直线AB上的一点,射线OC从OA出发绕点O顺时针方向旋转,旋转到OB停止,设∠AOC=α(0∘⩽α⩽180∘),射线OD⊥OC,作射线OE平分∠BOD.(1) 如图1,若α=40∘,且OD在直线AB的上方,依题意补全图形,求∠DOE度数(要求写出几何推理过程).(2) 射线OC顺时针旋转一定的角度得到图2,当射线OD在直线AB的下方时,其他条件不变,请你直接用含α的代数式表示∠DOE的度数.(3) 射线OC从OA出发绕点O顺时针方向旋转到OB,在旋转过程中你发现∠DOE与∠AOC(0∘⩽∠AOC⩽180∘,0∘⩽∠DOE⩽180∘)之间有怎样的数量关系?请你直接用含α的代数式表示∠DOE的度数.,19},我们28、把几个互不相等的数用大括号围起来,中间用逗号断开,如:{1,2,−3}、{−2,7,34称之为集合,其中的数称其为集合的元素.如果一个集合满足:当有理数a是集合的元素时,代数式的值6−a也必是这个集合的元素,这样的集合我们称为“完美”集合.例如集合{6,0}就是一个“完美”集合.因为:a=6时,6−a=0;a=0时,6−a=6;即这个集合中两个元素对应的代数式的值6,0也都是这个集合的元素.(1) 判断集合{1,2},{−2,1,3,5,8}中,是“完美”集合的是.(2) 已知有理数a,b,c(a<b<c)在数轴上分别对应为A,B,C三点,若{a,b,c}为“完美”集合,则称A,B,C为“完美点”:①若A,B,C为“完美点”,则b=,A,B,C在数轴上的位置关系是:.②数轴上P、Q两点对应的有理数为−10、30.动点A从P出发以每秒1个单位的速度沿数轴在P、Q两点之间往返运动,同时动点C从Q出发以每秒2个单位的速度沿数轴在Q、P两点之间往返运动,当运动时间为t秒时,存在点B使A,B,C为“完美点”(0<t<40),求t的值.1 、【答案】 A;【解析】将数字338600000用科学记数法可表示为3.386×108.故选A.2 、【答案】 B;【解析】由图可知,∠MON=70°,∴∠MON的余角大小为90°−70°=20°.故选B.3 、【答案】 C;【解析】A选项:∠1与∠2没有公共点,故A不是对顶角,故A错误;B选项:∠1与∠2的两边没有互为反向延长线,故B不是对顶角,故B错误;D选项:∠1与∠2的两边没有互为反向延长线,故D不是对顶角,故D错误;故选C.4 、【答案】 D;【解析】 A选项 : 原式=3m,所以本选项运算错误,不符合题意;B选项: a3和a2的次数不同,不是同类型,不能直接加减合并,所以本选项运算错误,不符合题意;C选项 : a2b和ab2相同字母的次数不同,不是同类型,不能直接加减合并,所以本选项运算错误,不符合题意;D选项 : 原式=xy,所以本选项运算正确,符合题意.5 、【答案】 D;【解析】 A选项 : 由−3+2x=1,得2x=1+3,故A错误.B选项 : 由3y=−4,得y=−4,故B错误.3C选项 : 由3=x+2,得x=2−3,故C错误.D选项 : 由x−4=9,得x=9+4,正确.6 、【答案】 C;【解析】由a、b、c在数轴上的关系可知c>b>a;b+a<0;|a|>|b|;abc<0,故选C.7 、【答案】 D;【解析】垂线段的长度即为点到直线的距离,垂线段最短,故选D.8 、【答案】 B;【解析】∵BO⊥AO,∴∠AOB=90°,∵OB平分∠COD,∴∠BOC=∠BOD=22°,∴∠AOC=90°−22°=68°,故选B.9 、【答案】 A;【解析】解:∵2x2+4y=−2,∴2(x2+2y)=−2,∴x2+2y=−1,∴x2+2y−6=−1−6=−7,故选:A.10 、【答案】 C;【解析】观察图形可发现不可能是C项的视图.11 、【答案】 B;【解析】由题意可知:−2x−5=3,∴−2x=8,∴x=−4.故选B.12 、【答案】 D;【解析】 A选项 : 如图所示,在一月份中,最高气温是10°C,最低气温是−10°C,所以本选项说法错误,不符合题意;B选项 : 如图所示,14号时,最高气温是6°C,最低气温是−8°C,温差是14°C,所以本选项说法错误,不符合题意;C选项 : 如图所示,9号时,最高气温是0°C,15号时,最高气温是−2°C,所以本选项说法错误,不符合题意;D选项 : 如图所示,从27号开始,每天的气温持续走低,所以本选项说法正确,符合题意.13 、【答案】34;14;24;【解析】0.24°×60=14.4′,0.4′×60=24′′,34.24°=34°14′24′′.14 、【答案】<;【解析】取格点E,连接OE,由图可知∠AOB=∠DOE,∠DOE>∠COD,∴∠AOB>∠COD,即∠COD<∠AOB,故答案为:<.15 、【答案】2x−3=7;【解析】写出一个一元一次方程,使它的解为x=5,方程可以是2x−3=7,故答案为:2x−3=7(答案不唯一).16 、【答案】22.5a;【解析】建筑面积=4×6a−(6a−3a−1.5a)=24a−1.5a=22.5a,故答案为:22.5a.17 、【答案】3或9;【解析】分两种情况,第一种情况如下图:∵AB=6,AB=2AC,∴AC=12AB=12×6=3,∴BC=AB−AC=6−3=3(cm),第二种情况如下图:∵AB=6,AB=2AC,AC=12AB=12×6=3,∴BC=AB+AC=6+3=9(cm),故答案为:3或9.18 、【答案】30°;【解析】∵AD//BC,∠B=30°,∴∠EAD=∠B=30°.又∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.∵∠EAC =∠B +∠C ,∴∠C =∠EAC −∠B =30°.19 、【答案】 9x −11=6x +16;【解析】 等量关系为:9×买鸡人数−11=6×买鸡人数+16,即可解答.20 、【答案】 (6,8,13);(8,10,9);【解析】 ∵G 0=(3,5,19),∴G 1=(4,6,17),G 2=(5,7,15),G 3=(6,8,13),G 4=(7,9,11),G 5=(8,10,9),G 6=(9,8,10),G 7=(10,9,8),G 8=(8,10,9),G 9=(9,8,10),G 10=(10,9,8),⋯⋯∴从G 5开始每3次为一个周期循环,∵(2021−4)÷3=672⋯⋯1,∴G 2021=G 5=(8,10,9),故答案为:(6,8,13),(8,10,9),21 、【答案】 (1) 40.(2) 2.【解析】 (1) 原式=4+36=40.(2) 原式=−1+(−2)×(+3)+9=−1−6+9=2.22 、【答案】 (1) x =3.(2) x =910. 【解析】 (1) 2(x +1)=7−(x −4)2x +2=7−x +42x +x =7+4−23x=9x =3.(2) 4x−16=1−3x−134x −1=6−2(3x −1)4x −1=6−6x +24x +6x =6+2+110x=9x =910. 23 、【答案】 见解析【解析】 解:原式=3a 2b +3ab 2−3a 2b +1−ab 2−1=2ab 2,当a =1,b =−3时,原式=2×1×(−3)2=2×9=18.24 、【答案】 (1) 画图见解析.(2) 画图见解析.(3) 70;【解析】 (1) 线段BC :以点B 和点C 为端点,连接起来.射线BA :以点B 为端点,过点A 画射线BA .如图所示:(2) 过点A 向线段BC 作垂线,垂足为点D .如图所示:(3) 经测量∠ABC 的度数为70°.如图所示:25 、【答案】∠BCD;角平分线的定义;∠2;两直线平行,内错角相等;∠BCD;内错角相等,两直线平行.【解析】∵BE平分∠ABC,∠ABC,∴∠1=12∵CF平分∠BCD,∠BCD(角平分线的定义),∴∠2=12又∵BE//CF,∴∠1=∠2(两直线平行,内错角相等),∴∠ABC=∠BCD,∴AB//CD(内错角相等,两直线平行).26 、【答案】 (1) 见解析;(2) 见解析【解析】 (1) 解:设两人船每艘x元/小时,则八人船每艘(2x−30)元/小时,由题意,可列方程2x+3(2x−30)=630,解得:x=90,∴2x−30=150,答:两人船每艘90元/小时,则八人船每艘150元/小时.(2) 解:如下表所示:27 、【答案】 (1) ∠DOE=25∘,画图见解析,证明见解析.−45∘.(2) ∠DOE=α2α−45∘|.(3) ∠DOE=|12【解析】 (1) 如图1所示,依题意补全图形,∵点O是直线AB上一点,∴∠AOB=180∘,∵OD⊥OC,∴∠COD=90∘,∵∠AOC=α=40∘,∴∠BOD=∠AOB−∠AOC−∠COD=180∘−40∘−90∘=50∘,∵射线OE平分∠BOD,∴∠BOD=2∠DOE,则∠DOE=25∘.(2) 如图2所示,射线OD在直线AB下方,∵点O是直线AB上一点,∴∠AOB=180∘,∵OD⊥OC,∴∠COD=90∘,∵∠AOC=α,∴∠BOC=∠AOB−∠AOC=180∘−α,∴∠BOD=∠COD−∠BOC=90∘−(180∘−α)=α−90∘,∵射线OE平分∠BOD,∴∠BOD=2∠DOE,则∠DOE=α2−45∘.(3) 当射线OD在直线AB上方时,∠BOD=∠AOB−∠AOC−∠COD=180∘−α−90∘=90∘−α,∵OE平分∠BOD,∴∠DOE=12∠BOD=45∘−α2,即∠DOE=45∘−12∠AOC;当射线OD在直线AB下方时,∠BOC=∠AOB−∠AOC=180∘−α,∠BOD=∠COD−∠BOC=90∘−(180∘−α)=α−90∘.∵OE平分∠BOD,∴∠DOE=12∠BOD=12α−45∘,∠AOC−45∘,即∠DOE=12∠AOC−45∘|,∴∠DOE=|12α−45∘|.∠DOE=|1228 、【答案】 (1) {−2,1,3,5,8};(2)①3;点A在最左侧,点B在中间,点C在最右侧,且点A与点C关于点B对称②14或22.【解析】 (1) 由题意得:“完美集合”即当a是集合内的元素时,6−a也是集合内的元素,(新概念问题,理解题意),{1,2}中,当a=1时,6−a=5不在集合{1,2}内,故不是,而{−2,1,3,5,8}中,a=−2时,6−a=8,a=1时,6−a=5,a=3时,6−a=3,a=5时6−a=1,a=8时,6−a=−2,此时6−a均在集合内,故是“完美集合”.(2)①∵“完美集合”a与6−a要一一对应,而集合内仅有a、b、c且规定a<b<c,∴当B是在b=6−b时的点,那b=3时,明显b也是6−b,才会是奇数个的元素,而无论a取任何值时,c总是为6−a,故两者关于3对称,那关于点B对称,∴点A在最左侧,点B在中间,点C在最右侧,且点A与点C关于点B对称.②由题意得P=−10+1×t,Q=30−2×t(0<t<40),当点A与点C关于3对称,存在点B,∴−10+t+30−2t=6或−10+t+−10+2(t−20)=6,∴t=14或22.。

2020-2021学年北京市七年级(上)期末数学试卷 (word版含答案)

2020-2021学年北京市七年级(上)期末数学试卷 (word版含答案)

2020-2021学年北京市七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)1.在下列数π,+1,6.7,﹣15,0,,﹣1,25%中,属于整数的有()A.2个B.3个C.4个D.5个2.直线AB,线段CD,射线EF的位置如图所示,下图中不可能相交的是()A.B.C.D.3.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为()A.0.5×1011千克B.50×109千克C.5×109千克D.5×1010千克4.下列说法一定正确的是()A.a的倒数是B.a的相反数是﹣aC.﹣a是负数D.2a是偶数5.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是()A.B.C.D.6.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.a=b+D.=+7.下列方程中,解为x=﹣3的是()A.3x﹣=0B.x+=0C.x﹣1=0D.6x+=08.若单项式3x2m﹣1y5与单项式﹣5x3y n是同类项,则m,n的值分别为()A.3,5B.2,3C.2,5D.3,﹣29.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy ﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.﹣7xy B.+7xy C.﹣xy D.+xy10.如图,有一块表面刷了红漆的立方体,长为4cm,宽为5cm,高为3cm,现在把它切分成边长为1厘米的小正方形,能够切出两面刷了红漆的正方体有()个.A.48B.36C.24D.12二、填空题(本题共16分,每小题2分)11.数a的位置如图,化简|a|+|a+4|=.12.计算:48°47'+53°35'=.13.已知|x+1|+(y+2)2=0,则x+y=.14.有理数5.614精确到百分位的近似数为.15.已知方程(a﹣2)x2+2ax﹣12=0是关于x的一元一次方程,则a=.16.已知一个角的补角是它余角的3倍,则这个角的度数为.17.如图,点A在点O的北偏西15°方向,点B在点O的北偏东30°方向,若∠1=∠AOB,则点C在点O的方向.18.已知数轴上A、B两点所对应的数分别是1和3,P为数轴上任意一点,对应的数为x.(1)则A、B两点之间的距离为;(2)式子|x﹣1|+|x﹣3|+…+|x﹣2017|+|x﹣2019|的最小值为.三、解答题:19.(8分)计算:(1)﹣(﹣1)3+[(﹣2)2﹣(3﹣4)×5];(2)(﹣+﹣)÷(﹣).20.(8分)解方程:(Ⅰ)2(x﹣2)﹣(1﹣3x)=x+3;(Ⅱ)﹣x=﹣121.(5分)先化简,再求值:2(3x2+y)﹣(2x2﹣y),其中,y=﹣1.22.(4分)如图所示,工厂A与工厂B想在公路m旁修建一座共用的仓库O,并且要求O 到A与O到B的距离之和最短,请你在m上确定仓库应修建的O点位置,同时说明你选择该点的理由.23.(4分)如图,AB∥CD,∠B=∠D,试说明∠1=∠2.请你完成下列填空,把解答过程补充完整.解:∵AB∥CD,∴∠BAD+∠D=180°().∵∠B=∠D,∴∠BAD+=180°(等量代换).∴(同旁内角互补,两直线平行).∴∠1=∠2()24.(6分)如图,将连续的偶数2,4,6,8,10,…排成一数阵,有一个能够在数阵中上下左右平移的T字架,它可以框出数阵中的五个数.试判断这五个数的和能否为426?若能,请求出这五个数;若不能,请说明理由.25.(6分)如图,点B是线段AC上一点,且AB=21cm,BC=AB.(1)试求出线段AC的长;(2)如果点O是线段AC的中点,请求线段OB的长.26.(6分)阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a﹣b=a÷b,那么a与b就叫做“差商等数对”,记为(a,b).例如:4﹣2=4÷2;﹣3=÷3;(﹣)﹣(﹣1)=(﹣)÷(﹣1);则称数对(4,2),(,3),(﹣,﹣1)是“差商等数对”.根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是(填序号);①(﹣8.1,﹣9);②(,);③(﹣3,﹣6).(2)如果(x,4)是“差商等数对”,请求出x的值;(3)如果(m,n)是“差商等数对”,那么m=(用含n的代数式表示).27.(7分)如图,某校的“图书码”共有7位数字,它是由6位数字代码和校验码构成,其结构分别代表“种类代码、出版社代码、书序代码和校验码”.其中校验码是用来校验图书码中前6位数字代码的正确性,它的编制是按照特定的算法得来的.以上图为例,其算法为:步骤1:计算前6位数字中偶数位数字的和a,即a=9+1+3=13;步骤2:计算前6位数字中奇数位数字的和b,即b=6+0+2=8;步骤3:计算3a与b的和c,即c=3×13+8=47;步骤4:取大于或等于c且为10的整数倍的最小数d,即d=50;步骤5:计算d与c的差就是校验码X,即X=50﹣47=3.请解答下列问题:(1)《数学故事》的图书码为978753Y,则“步骤3”中的c的值为,校验码Y 的值为.(2)如图①,某图书码中的一位数字被墨水污染了,设这位数字为m,你能用只含有m 的代数式表示上述步骤中的d吗?从而求出m的值吗?写出你的思考过程.(3)如图②,某图书码中被墨水污染的两个数字的差是4,这两个数字从左到右分别是多少?请直接写出结果.2020-2021学年北京市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.在下列数π,+1,6.7,﹣15,0,,﹣1,25%中,属于整数的有()A.2个B.3个C.4个D.5个【分析】根据整数的定义,可得答案.【解答】解:在数π,+1,6.7,﹣15,0,,﹣1,25%中,属于整数的有+1,﹣15,0,﹣1,一共4个.故选:C.2.直线AB,线段CD,射线EF的位置如图所示,下图中不可能相交的是()A.B.C.D.【分析】依据图形中的直线、射线或线段有无交点,即可得到结论【解答】解:A选项中,直线AB与线段CD无交点,符合题意;B选项中,直线AB与射线EF有交点,不合题意;C选项中,线段CD与射线EF有交点,不合题意;D选项中,直线AB与射线EF有交点,不合题意;故选:A.3.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为()A.0.5×1011千克B.50×109千克C.5×109千克D.5×1010千克【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:50 000 000 000=5×1010,故选:D.4.下列说法一定正确的是()A.a的倒数是B.a的相反数是﹣aC.﹣a是负数D.2a是偶数【分析】依据倒数、相反数、负数及偶数的定义逐一判断可得.【解答】解:A.a的倒数是(a≠0),此选项错误;B.a的相反数是﹣a,此选项正确;C.﹣a(a>0)是负数,此选项错误;D.2a(a为整数)是偶数,此选项错误;故选:B.5.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是()A.B.C.D.【分析】根据主视图的概念求解可得.【解答】解:该几何体的主视图如下:故选:C.6.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.a=b+D.=+【分析】分别利用等式的基本性质判断得出即可.【解答】解:由等式3a=2b+5,可得:3a﹣5=2b,3a+1=2b+6,a=,当c=0时,无意义,不能成立,故选:D.7.下列方程中,解为x=﹣3的是()A.3x﹣=0B.x+=0C.x﹣1=0D.6x+=0【分析】依次解各个选项的一元一次方程,选出解为x=﹣3的选项即可.【解答】解:A.解方程3x﹣=0得:x=,即A项错误,B.解方程x+=0得:x=﹣3,即B项正确,C.解方程得:x=3,即C项错误,D.解方程6x+=0得:x=﹣,即D项错误,故选:B.8.若单项式3x2m﹣1y5与单项式﹣5x3y n是同类项,则m,n的值分别为()A.3,5B.2,3C.2,5D.3,﹣2【分析】直接利用同类项的定义分析得出答案.【解答】解:∵单项式3x2m﹣1y5与单项式﹣5x3y n是同类项,∴2m﹣1=3,n=5,解得:m=2,故m,n的值分别为:2,5.故选:C.9.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy ﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.﹣7xy B.+7xy C.﹣xy D.+xy【分析】根据题意得出整式相加减的式子,再去括号,合并同类项即可.【解答】解:由题意得,被墨汁遮住的一项=(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)﹣(﹣x2+y2)=﹣x2+3xy﹣y2+x2﹣4xy+y2+x2﹣y2=﹣xy.故选:C.10.如图,有一块表面刷了红漆的立方体,长为4cm,宽为5cm,高为3cm,现在把它切分成边长为1厘米的小正方形,能够切出两面刷了红漆的正方体有()个.A.48B.36C.24D.12【分析】根据立方体表面刷了红漆,由两面刷了红漆的正方体分布比较特殊,延四周找出即可.【解答】解:∵一块表面刷了红漆的立方体,长为4cm,宽为5cm,高为3cm,现在把它切分成边长为1厘米的小正方形,∴能够切出两面刷了红漆的正方体只在上下两个底面的四周上和4条棱的中间一个,且每个面上4个角上的立方体有3个面刷了漆,∴符合要求的立方体有:(3+3+2+2)×2+4=24,故选:C.二、填空题(本题共16分,每小题2分)11.数a的位置如图,化简|a|+|a+4|=4.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴得:﹣1<a<0,∴a<0,a+4>0,则原式=﹣a+a+4=4.故答案为:4.12.计算:48°47'+53°35'=102°22'.【分析】利用1°=60′,1′=60″进行计算即可.【解答】解:48°47'+53°35'=101°82′=102°22′,故答案为:102°22′.13.已知|x+1|+(y+2)2=0,则x+y=﹣3.【分析】先根据非负数的性质求出x、y,然后代入代数式进行计算即可得解.【解答】解:由题意得x+1=0,y+2=0,解得x=﹣1,y=﹣2,所以x+y=(﹣1)+(﹣2)=﹣3.故答案为:﹣3.14.有理数5.614精确到百分位的近似数为 5.61.【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【解答】解:5.614可看到1在百分位上,后面的4不能进.所以有理数5.614精确到百分位的近似数为5.61.故答案为:5.61.15.已知方程(a﹣2)x2+2ax﹣12=0是关于x的一元一次方程,则a=2.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:依题意得:a﹣2=0且a≠0,解得a=2.故答案是:2.16.已知一个角的补角是它余角的3倍,则这个角的度数为45°.【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【解答】解:设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°﹣α=3(90°﹣α),解得α=45°.故答案为:45°.17.如图,点A在点O的北偏西15°方向,点B在点O的北偏东30°方向,若∠1=∠AOB,则点C在点O的南偏东45°(或东南方向)方向.【分析】根据方向角的表示方法,可得答案.【解答】解:由题意知,∠AOB=15°+30°=45°.∵∠1=∠AOB,∴∠1=45°.∴点C在点O的南偏东45°(或东南方向)方向.故答案是:南偏东45°(或东南方向).18.已知数轴上A、B两点所对应的数分别是1和3,P为数轴上任意一点,对应的数为x.(1)则A、B两点之间的距离为2;(2)式子|x﹣1|+|x﹣3|+…+|x﹣2017|+|x﹣2019|的最小值为510050.【分析】(1)根据两点间的距离公式即可求解;(2)观察已知条件可以发现,|x﹣a|表示x到a的距离.要是题中式子取得最小值,则应该找出与最小数和最大数距离相等的x的值,此时式子得出的值则为最小值.【解答】解:(1)A、B两点之间的距离为3﹣1=2.故答案为:2;(2)由已知条件可知,|x﹣a|表示x到a的距离,只有当x到1的距离等于x到2019的距离时,式子取得最小值.∴当x==1010时,式子取得最小值,此时原式=1009+1007+1005+…+1+1+…+1007+1009=510050.故答案为:510050.三、解答题:19.(8分)计算:(1)﹣(﹣1)3+[(﹣2)2﹣(3﹣4)×5];(2)(﹣+﹣)÷(﹣).【分析】(1)先算乘方,再算乘除,最后算加减即可;(2)先将除法转化为乘法,再根据乘法分配律计算即可.【解答】解:(1)原式=﹣(﹣1)+[4﹣(﹣1)×5]=1+[4﹣(﹣5)]=1+9=10;(2)原式===18﹣24+9=3.20.(8分)解方程:(Ⅰ)2(x﹣2)﹣(1﹣3x)=x+3;(Ⅱ)﹣x=﹣1【分析】(Ⅰ)依次去括号、移项、合并同类项、系数化为1可得;(Ⅱ)依次去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(Ⅰ)2x﹣4﹣1+3x=x+3,2x+3x﹣x=3+4+1,4x=8,x=2;(Ⅱ)4(2x﹣1)﹣12x=3(2x+1)﹣12,8x﹣4﹣12x=6x+3﹣12,8x﹣12x﹣6x=3﹣12+4,﹣10x=﹣5,x=.21.(5分)先化简,再求值:2(3x2+y)﹣(2x2﹣y),其中,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=6x2+2y﹣2x2+y=4x2+3y,当,y=﹣1时,原式=1﹣3=﹣2.22.(4分)如图所示,工厂A与工厂B想在公路m旁修建一座共用的仓库O,并且要求O 到A与O到B的距离之和最短,请你在m上确定仓库应修建的O点位置,同时说明你选择该点的理由.【分析】根据两点之间线段最短,连接AB与直线m的交点即为所求.【解答】解:如图,连接AB交直线m于点O,则O点即为所求的点.理由如下:根据连接两点的所有线中,线段最短,∴OA+OB最短.23.(4分)如图,AB∥CD,∠B=∠D,试说明∠1=∠2.请你完成下列填空,把解答过程补充完整.解:∵AB∥CD,∴∠BAD+∠D=180°(两直线平行,同旁内角互补).∵∠B=∠D,∴∠BAD+∠B=180°(等量代换).∴AD∥BC(同旁内角互补,两直线平行).∴∠1=∠2(两直线平行,内错角相等)【分析】根据平行线的性质和平行线的判定解答.【解答】解:∵AB∥CD,∴∠BAD+∠D=180°(两直线平行,同旁内角互补).∵∠B=∠D,∴∠BAD+∠B=180°(等量代换).∴AD∥BC(同旁内角互补,两直线平行).∴∠1=∠2(两直线平行,内错角相等).24.(6分)如图,将连续的偶数2,4,6,8,10,…排成一数阵,有一个能够在数阵中上下左右平移的T字架,它可以框出数阵中的五个数.试判断这五个数的和能否为426?若能,请求出这五个数;若不能,请说明理由.【分析】根据题意结合图形设最小数为x,则其余数为:x+10,x+12,x+14,x+20,进而求出即可.【解答】解:可以求出这五个数.理由如下:设最小数为x,则其余数为:x+10,x+12,x+14,x+20.由题意得,x+(x+10)+(x+12)+(x+14)+(x+20)=426,解方程得:x=74.所以这五个数为74,84,86,88,94.25.(6分)如图,点B是线段AC上一点,且AB=21cm,BC=AB.(1)试求出线段AC的长;(2)如果点O是线段AC的中点,请求线段OB的长.【分析】(1)由B在线段AC上可知AC=AB+BC,把AB=21cm,BC=AB代入即可得到答案;(2)根据O是线段AC的中点及AC的长可求出CO的长,由OB=CO﹣BC即可得出答案.【解答】解:(1)∵AB=21cm,BC=AB=7cm,∴AC=AB+BC=21+7=28(cm);(2)由(1)知:AC=28cm,∵点O是线段AC的中点,∴CO=AC=×28=14(cm),∴OB=CO﹣BC=14﹣7=7(cm).26.(6分)阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a﹣b=a÷b,那么a与b就叫做“差商等数对”,记为(a,b).例如:4﹣2=4÷2;﹣3=÷3;(﹣)﹣(﹣1)=(﹣)÷(﹣1);则称数对(4,2),(,3),(﹣,﹣1)是“差商等数对”.根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是①(填序号);①(﹣8.1,﹣9);②(,);③(﹣3,﹣6).(2)如果(x,4)是“差商等数对”,请求出x的值;(3)如果(m,n)是“差商等数对”,那么m=(用含n的代数式表示).【分析】(1)利用题中的新定义判断即可;(2)根据题中的新定义列出方程,求出方程的解即可得到x的值;(3)利用题中的新定义得到等式,表示出m即可.【解答】解:(1)①∵﹣8.1﹣(﹣9)=﹣8.1+9=0.9,﹣8.1÷(﹣9)=0.9,∴﹣8.1﹣(﹣9)=﹣8.1÷(﹣9),∴(﹣8.1,﹣9)是“差商等数对”;②∵,,∴,∴不是“差商等数对”;③∵﹣3﹣(﹣6)=﹣3+6=3,,∴﹣3﹣(﹣6)≠﹣3÷(﹣6),∴(﹣3,﹣6)不是“差商等数对”;故答案为:①;(2)由题意得:,解得;(3)由题意得:,解得,故答案为:.27.(7分)如图,某校的“图书码”共有7位数字,它是由6位数字代码和校验码构成,其结构分别代表“种类代码、出版社代码、书序代码和校验码”.其中校验码是用来校验图书码中前6位数字代码的正确性,它的编制是按照特定的算法得来的.以上图为例,其算法为:步骤1:计算前6位数字中偶数位数字的和a,即a=9+1+3=13;步骤2:计算前6位数字中奇数位数字的和b,即b=6+0+2=8;步骤3:计算3a与b的和c,即c=3×13+8=47;步骤4:取大于或等于c且为10的整数倍的最小数d,即d=50;步骤5:计算d与c的差就是校验码X,即X=50﹣47=3.请解答下列问题:(1)《数学故事》的图书码为978753Y,则“步骤3”中的c的值为73,校验码Y的值为7.(2)如图①,某图书码中的一位数字被墨水污染了,设这位数字为m,你能用只含有m 的代数式表示上述步骤中的d吗?从而求出m的值吗?写出你的思考过程.(3)如图②,某图书码中被墨水污染的两个数字的差是4,这两个数字从左到右分别是多少?请直接写出结果.【分析】(1)根据特定的算法代入计算即可求解;(2)根据特定的算法依次求出a,b,c,d,再根据d为10的整数倍即可求解;(3)根据校验码为8结合两个数字的差是4即可求解.【解答】解:(1)∵《数学故事》的图书码为978753Y,∴a=7+7+3=17,b=9+8+5=22,则“步骤3”中的c的值为3×17+22=73,校验码Y的值为80﹣73=7.故答案为:73,7;(2)依题意有a=m+1+2=m+3,b=6+0+0=6,c=3a+b=3(m+3)+6=3m+15,d=c+X=3m+15+6=3m+21,∵d为10的整数倍,∴3m的个位数字只能是9,∴m的值为3;(3)可设这两个数字从左到右分别是p,q,依题意有a=p+9+2=p+11,b=6+1+q=q+7,c=3(p+11)+(q+7)=3p+q+40,则3p+q的个位是2,∵|p﹣q|=4,∴p=4,q=0或p=9,q=5或p=2,q=6.故这两个数字从左到右分别是4,0或9,5或2,6.。

2020-2021学年七年级上学期期末考试数学试题含参考答案

2020-2021学年七年级上学期期末考试数学试题含参考答案

2020年秋学期期末测试七年级数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.﹣3的相反数是()A.1 3B.13-C.3 D.﹣3 2.下列几何体,都是由平面围成的是()A.圆柱B.三棱柱C.圆锥D.球3.下列各式中,正确的是()A.22a b ab+=B.224235x x x+=C.()3434x x--=--D.2222a b a b a b-+= 4.已知关于x的一元一次方程3240x a--=的解是2x=,则a的值为()A.﹣5 B.﹣1 C.1 D.55.如图,是一个正方体的表面展开图.若该正方体相对面上的两个数和为0,则a b c+-的值为()A.﹣6 B.﹣2 C.2 D.46.如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16 B.30 C.32 D.34二、填空题(本大题共有10小题,每小题3分,共30分)7.2021的绝对值是.8.双十一购物狂欢节,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,2020年双十一购物狂欢节全网销售额高达267 400 000 000元,将267 400 000 000用科学记数法表示为_____________.9.若∠A=34°,则∠A的补角等于____________°.10.请写出一个系数是﹣3、次数是4的单项式:_______________.11.如图是某个几何体的三视图,则该几何体的名称是_______________.12.已知2320x y-+=,则22(3)5x y-+的值为_______________.13.若一个等腰三角形的两边长分别为4cm 和9cm,则这个等腰三角形的周长是_______cm.14.若多项式23352x kxy--与2123xy y-+的和中不含xy项,则k的值是_________.15.如图,在ΔABC中,BD平分∠ABC交AC于点D,EF∥BC交BD于点G,若∠BEG=130°,则∠DGF=________°.16.如图,是一个长、宽、高分别为a、b、c(a>b>c)长方体纸盒,将此长方体纸盒沿不同的棱剪(第5题图)(第6题图)(第11题图)(第15题图)(第16题图)开,展成的一个平面图形是各不相同的.则在这些不同的平面图形中,周长最大的值是_______________.(用含a 、b 、c 的代数式表示)三、解答题(本大题共有8小题,共102分.解答时应写出必要的步骤)17.(本题12分)计算: (1)213(4)33⎛⎫---+-+ ⎪⎝⎭; (2)()2020112(3)2---+-÷.18.(本题8分)解下列方程:(1)43211x x -=+; (2)21)1323(x x --=-.19.(本题8分)先化简,再求值:22222(5)2(2)a b ab a b a b ab +-+--,其中1a =-,3b =.20.(本题8分)若方程2(31)12x x +=+的解与关于x 的方程622(3)3kx -=+的解互为倒数,求k 的值.21.(本题10分)如图是由相同边长的小正方形组成的网格图形,小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,△ABC 的三个顶点都在格点上,利用网格画图.(注:所画格点、线条用黑色水笔描黑)(1)过点A 画BC 的垂线,并标出垂线所过格点P ;(2)过点A 画BC 的平行线,并标出平行线所过格点Q ; (3)画出△ABC 向右平移8个单位长度后△A ′B ′C ′的位置;(4)△A ′B ′C ′的面积为________.22.(本题10分)用“※”定义一种新运算:对于任意有理数a 和b ,规定a ※b =a (a +b ). 例如:1※2=1×(1+2)=1×3=3. (1)求(﹣3) ※5的值;(2)若(﹣2) ※(3x -2)=x +1,求x 的值.23.(本题10分)如图,已知直线AB,CD相交于点O,∠AOE与∠AOC互余.(1)若∠BOD=32°,求∠AOE的度数;(2)若∠AOD:∠AOC=5∶1,求∠BOE的度数.24.(本题10分)如图1,直线MN∥PQ、ΔABC按如图放置,∠ACB=90°,AC、BC分别与MN、PQ相交于点D、E,若∠CDM=40°.(1)求∠CEP的度数;(2)如图2,将△ABC绕点C逆时针旋转,使点B落在PQ上得△A'B'C,若∠CB'E=22°,求∠A'CB的度数.25.(本题12分)全球新冠疫情爆发后,口罩成了急需物资,中国企业积极采购机械生产口罩,为全球抗击疫情作出了贡献.某企业准备采购A、B两种机械共15台,用于生产医用口罩和N95医用防护口罩,A种机械每天每台可以生产医用口罩7万个,B种机械每天每台可以生产N95医用防护口罩2万个,根据疫情需要每天生产的医用口罩要求是N95医用防护口罩的4倍.(1)求该企业A、B两种机械各需要采购多少台?(2)设该企业每天生产数量相同的同一类型口罩,每天销售9万元,并提供优惠政策:购买不超过10天不优惠,超过10天不超过20天的部分打九折,超过20天不超过30天的部分打8折,超过30天的部分打7折.①某国内医疗机构购买了该企业2周的口罩产量,问应付多少钱?②某国外医疗机构一次性付款207万元,问医疗机构购买了多少天的口罩产量?26.(本题14分)两个完全相同的长方形ABCD 、EFGH ,如图所示放置在数轴上. (1)长方形ABCD 的面积是__________.(2)若点P 在线段AF 上,且PE +PF =10,求点P 在数轴上表示的数.(3)若长方形ABCD 、EFGH 分别以每秒1个单位长度、3个单位长度沿数轴正方向移动.设两个长方形重叠部分的面积为S ,移动时间为t .①整个运动过程中,S 的最大值是____________,持续时间是__________秒. ②当S 是长方形ABCD 面积一半时,求t 的值.附加题1.如图①,在长方形 A BCD 中, E 点在 A D 上,并且∠ABE = 28︒ ,分别以 B E 、CE 为折痕进行折叠并压平,如图②,若图②中∠A ED =n ︒,则∠D E C 2. 如上图,已知点A 是射线BE 上一点,过A 作AC ⊥BF ,垂足为C ,CD ⊥BE ,垂足为D ,给出下列结论:①∠1是∠ACD 的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF ;④与∠ADC 互补的角共有3个.其中正确结论有_____. 3.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长. (2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒, ①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由. (3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?2020年秋学期期末学业质量测试七年级数学参考答案题号 1 2 3 4 5 6 答案CBDCBD(本大题共有10题,每小题3分,共30分)7. 2021 8. 2.674×1011 9. 146 10.﹣3x 4(答案不唯一) 11. 六棱柱 12. 1 13. 22 14. 8 15. 25 16. 8a +4b +2c三、解答题(本大题共有8题,共102分.解答时应写出必要的步骤)17.(1)解:原式213433=-+-+(2分) 21(34)33⎛⎫=--++ ⎪⎝⎭(2分)71=-+6=- (2分)(2)解:原式12(3)2=-+-⨯(3分) 16=-- (1分) 7=- (2分) 18.(1)解:42311x x -=+ (2分) 214x = (1分) 7x = (1分)(2)解:()32196x x --=- (1分) 32196x x -+=- (1分) 1110x -=- (1分)1011x = (1分) 19.解:原式22222524a b ab a b a b ab =-+-+(2分)22222254a b a b a b ab ab =+--+2ab =- (3分) 当1a =-,3b =时,()2213ab -=--⨯ (2分)9= (1分)20.解: ()23112x x +=+6212x x +=+41x =-14x =- (2分)14-的倒数是4-(2分) 将4-代入方程()62233kx -=+ 则6223k-=-(2分)626k -=- 212k -=-6k = (2分)21.(1)画出垂线(1分) (2)标出格点P (1分) (2)画出平行线(1分)只要标出1个格点Q (1分) (3)画出三角形(2分)标出字母(1分) (4)9.5 (3分)22.解:(1)由题意知,()3-※5()()335=-⨯-+⎡⎤⎣⎦ (2分)()32=-⨯ 6=- (2分)(2)由题意知,()2-※(32)x -()()()2232x =-⨯-+-⎡⎤⎣⎦(2分)()()234x =-⨯- 68x =-+(2分)因为()2-※(32)1x x -=+ 所以681x x -+=+(1分)77x -=-1x = (1分)23.解:(1)因为∠AOC 与∠BOD 是对顶角所以∠AOC =∠BOD =32°(1分) 因为∠AOE 与∠AOC 互余所以∠AOE +∠AOC =90°(1分) 所以∠AOE =90°-∠AOC (1分)=90°-32° =58° (2分)(2)因为∠AOD :∠AOC =5:1所以∠AOD =5∠AOC (1分) 因为∠AOC +∠AOD =180°(1分) 所以6∠AOC =180°∠AOC =30°(1分) 由(1)知∠BOD =∠AOC =30°∠COE =∠DOE =90°(1分)所以∠BOE =∠DOE +∠BOD=90°+30° =120°(1分)24.解:(1)连接DE因为MN ∥PQ所以∠MDE +∠PED =180°(2分)即∠CDM +∠CEP +∠CDE +∠CED =180° 因为∠CDE +∠CED +∠DCE =180°所以∠CDM +∠CEP =∠DCE =90°(1分) 所以∠CEP =90°-∠CDM=90°-40° =50°(2分)(2)由(1)知∠CEP =50°因为∠CEP +∠CEB '=180° 所以∠CEB '=180°-∠CEP=180°-50° =130°(1分)因为∠ECB '+∠CEB '+∠CB 'E =180° 所以∠ECB '=180°-∠CEB '-∠CB 'E=180°-130°-22° =28°(1分)因为∠A 'CB '是由∠ACB 旋转得到 所以∠A 'CB '=∠ACB =90°(1分) 所以∠A 'CB =∠A 'CB '+∠ECB '=90°+28° =118°(2分)25.解:(1)设采购A 种机械x 台,则采购B 种机械(15-x )台.(1分)由题意得742(15)x x =⨯-(3分)解得8x =151587x -=-=答:采购A 种机械8台,采购B 种机械7台.(2分) (2)①两周=14天9×10+9×0.9×4 (1分) =90+32.4=122.4(万元)答:应付122.4万元.(1分)②购买20天费用:9×10+8.1×10=171(万元)购买30天费用:9×10+8.1×10+7.2×10=243(万元) 171<207<243设国外医疗机构购买了y 天的口罩产量(20<y <30) 则9×10+8.1×10+7.2×(y -20)=207(2分) 解得y =25答:国外医疗机构购买了25天的口罩产量.(2分)26.(1)48 (3分)(2)设点P 在数轴上表示的数是x , 则(10)10PE x x =--=+(4)4PF x x =--=+ (1分) 因为10PE PF +=所以(10)(4)10x x +++= (1分) 解得2x =-答:点P 在数轴上表示的数是﹣2.(1分)(3)①36;1 (4分) ②由题意知移动t 秒后,点E 、F 、A 、B 在数轴上分别表示的数是 103t -+、43t -+、2t +、10t + 情况一:当点A 在E 、F 之间时(43)(2)26AF t t t =-+-+=- 由题意知148242AF AD S ⋅==⨯= 所以()62624t ⋅-=解得5t =(2分)情况二:当点B 在E 、F 之间时()()10103202BE t t t =+--+=-由题意知148242BE BC S ⋅==⨯=所以()620224t ⋅-= 解得8t =(1分)综上所述,当S 是长方形ABCD 面积一半时,5t =或8.(1分)附加题1.(28+1/2 n )°2. 答案为①④.3. 【答案】解:(1)∵OA =10cm ,OB =5cm ,∴AB =OA +OB =15cm . ∵点C 是线段 AB 的中点,∴AC =12AB =7.5cm ,∴CO =AO -AC =10-7.5=2.5(cm ). (2)①∵PQ =1,∴|15-(4x -3x )|=1,∴|15-x |=1,∴15-x =±1,解得:x =14或16.②∵PM =10+7x -4x =10+3x ,OQ =5+3x ,OM =7x ,∴4PM +3OQ ﹣mOM =4(10+3x )+3(5+3x )-7mx =55+(21-7m )x ,要使4PM +3OQ ﹣mOM定值,则21-7m =0,解得:m =3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t -2t =90,解得:t =22.5; ②如图2,根据题意得:6t +90=360+2t ,解得:t =67.5.综上所述:当t =22.5秒和67.5秒时,射线 OC ⊥OD .。

2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)

2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)

2020—2021学年七年级上期数学期末质量监测试题注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.12.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A 重合的点是()A.点B ,IB.点C ,EC.点B ,ED.点C ,H8.下列各组数中,相等的是()A.()23-与23- B.()32-与32-C.23与23- D.32-与()32-9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.9410.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +-> D.0b c a +->11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +312.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x⨯++= D.3(20)5109x x ⨯++=+二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.14.若5a =,3b =-,且0a b +>,则ab =_______.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg 4741体重与平均体重的差值/kg+302-+416.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.20.如图,已知点A ,B ,C ,利用尺规,按要求作图:(1)作线段AB ,AC ,过B ,C 作射线BQ ;在射线CQ 上截取CD=BC ,在射线DQ 上截取DE=BD ;(2)连接AE ,在线段AE 上截取AF=AC ,作直线AD 、线段DF ;(3)比较BC 与DF 的大小,直接写出结果.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.22.解方程:(1)()235x x +=-;(2)325123y y ---=.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/325.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h,骑车速度是步行速度的4倍,从学校到家有2km的路程,通过计算发现,方案1比方案2多用6min.(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km,用含x的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.-和10的位置上,沿数轴做向东、向西移动的游戏.26.如图,甲、乙两人(看成点)分别在数轴10移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m次,乙猜对了n次.(1)请用含m,n的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.2020—2021学年七年级上期数学期末质量监测试题答案解析注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.1【答案】B【解析】【分析】直接利用有理数的加法法则计算即可.-+=-【详解】211故选:B.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.2.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,根据“面动成体”可得答案.【详解】解:根据“面动成体”可得,旋转后的几何体为两个底面重合的圆锥的组合体,因此选项B中的几何体:符合题意,故选:B.【点睛】本题考查“面动成体”,解题的关键是明确点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.【答案】D【解析】【分析】根据主视图定义,由此观察即可得出答案.【详解】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为D【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱【详解】解:上述四个几何体中,圆柱、圆锥和球的截面图都有可能是圆;只有棱柱的截面图不可能是圆.故选D .5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+【答案】A 【解析】【分析】根据绝对值的性质化简化简求解.【详解】A.()()94---=9455-+=-=,故正确;B.()()94941313-+-=--=-=,故错误;C.949413-+-=+=,故错误;D .9+4-+=9413+=,故错误;故选A .【点睛】此题主要考查绝对值的运算,解题的关键是熟知绝对值的定义.6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③ B.①③⑤C.②③④D.②④⑤【答案】C 【解析】【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.【详解】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【点睛】此题主要考查统计调查的应用,解题的关键是熟知体育运动项目的定义.7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A重合的点是()A.点B,IB.点C,EC.点B,ED.点C,H【答案】B【解析】【分析】首先能想象出来正方形的展开图,然后作出判断即可.【详解】由正方形的展开图可知A、C、E重合,故选B.【点睛】本题考查了正方形的展开图,比较简单.8.下列各组数中,相等的是()A.()23-与23-B.()32-与32-C.23与23-D.32-与()32-【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】∵(-3)2=9,-32=-9,故选项A不符合题意,-=,故选项B不符合题意,∵(-2)3=-8,328∵32=9,-32=-9,故选项C不符合题意,∵-23=-8,(−2)3=-8,故选项D 符合题意,故选D .【点睛】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.94【答案】B 【解析】【分析】根据给出的※的含义,以及有理数的混合运算的运算法则,即可得出答案.【详解】解: a ※2(1)b a b =÷-,∴()3-※4()()2=341933-÷-=÷=,故选B .【点睛】本题考查了新定义的运算以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,后算加减;同级运算,应按从左往右的顺序进行计算,如果有括号,要先计算括号里的.10.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +->D.0b c a +->【答案】D 【解析】【分析】根据数轴上点的位置确定出a ,b ,c 的正负及绝对值大小,利用有理数的加减法则判断即可.【详解】解:根据数轴上点的位置得:a <0<b <c ,且|b|<|a|<|c|,∴a+b <0,故选项A 错误,不符合题意;0a c +>,故选项B 错误,不符合题意;0a b c +-<,故选项C 错误,不符合题意;0b c a +->,故选项D 正确,符合题意;故选:D .【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +3【答案】C 【解析】【分析】先求出从甲盒子中取出2枚后剩下的棋子数,再求出从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数,把它们相减即可求解.【详解】解:依题意可知,乙盒中的围棋子的枚数是n +2+3-(n -2)=7.故选:C .【点睛】考查了列代数式,关键是得到从甲盒子中取出2枚后剩下的棋子数,从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数.12.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x ⨯++=D.3(20)5109x x ⨯++=+【答案】D 【解析】【分析】直接利用表示十位数的方法进而得出等式即可.【详解】解:设“”内数字为x ,根据题意可得:3×(20+x )+5=10x+9.故选:D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.【答案】2;【解析】【分析】方程移项合并后,将x 的系数化为1,即可求出方程的解.【详解】解:213x -=23+1x =2x=4,解得:x=2.故答案为:2.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,将x 的系数化为1,求出解.14.若5a =,3b =-,且0a b +>,则ab =_______.【答案】15-;【解析】【分析】根据绝对值的意义及a+b>0,可得a ,b 的值,再根据有理数的乘法,可得答案.【详解】解:由|a|=5,b=-3,且满足a+b >0,得a=5,b=-3.当a=5,b=-3时,ab=-15,故答案为:-15.【点睛】本题考查了绝对值、有理数的加法、有理数的乘法,确定a 、b 的值是解题的关键.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg4741体重与平均体重+302-+4的差值/kg【答案】7;【解析】【分析】根据题目中的平均体重即可分别求出体重与平均体重的差值及体重,然后填表即可得出最重的和最轻的同学体重,再相减即可得出答案.【详解】解: 某中学七年级学生的平均体重是44kg,∴小润的体重与平均体重的差值为4744=3-kg;+kg;小华的体重为443=47+kg;小颖的体重为440=44-kg;小丽的体重为442=42--kg;小惠的体重与平均体重的差值为4144=3+kg;小胜的体重为444=48填表如下:姓名小润小华小颖小丽小惠小胜体重/kg474744424148体重与平均体重+3+302--3+4的差值/kg可知,最重的同学的体重是48kg,最轻的同学的体重是41kg∴最重和最轻的同学体重相差4841=7-kg.故答案为:7.【点睛】本题考查了有理数加减的应用,熟练掌握有理数的加减运算法则是解题的关键.16.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).【答案】2αβ-【解析】【分析】由,AOD AOC DOC ∠=∠+∠,DOC BOD BOC ∠=∠-∠可得:,AOD AOC BOD BOC ∠=∠+∠-∠从而可得答案.【详解】解:,AOD AOC DOC ∠=∠+∠ ,DOC BOD BOC ∠=∠-∠,AOD AOC BOD BOC ∴∠=∠+∠-∠,,AOC BOD BOC αβ∠=∠=∠= 2.AOD ααβαβ∴∠=+-=-故答案为:2.αβ-【点睛】本题考查的是角的和差关系,掌握利用角的和差关系进行计算是解题的关键.17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).【答案】20125400x π-+;【解析】【分析】根据题意和图形可知,水池的面积是长方形的面积减去两个扇形的面积,本题得以解决.【详解】解:由图可得,水池的面积为:20×(x +20)−π×102×14−π×202×14=20125400x π-+(m 2),故答案为:20125400x π-+.【点睛】本题考查列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.【答案】66.【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为1,3,5,6可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4,5.丁所购票数最多,即可得出丁应该为6,8,10,12,14,16,再将所有数相加即可.【详解】解: 甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.∴丙选座要尽可能得小,选择:1,2,3,4,5.此时左边剩余5个座位,右边剩余6个座位,∴丁选:6,8,10,12,14,16.∴丁所选的座位号之和为681012141666+++++=;故答案为:66.【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.【答案】(1)-6;(2)5【解析】【分析】(1)根据有理数的混合运算法则先算乘除后算加减即可;(2)根据有理数混合运算法则先算括号里面的再算乘除.【详解】解:(1)原式=93-+6=-;(2)原式123+12234⎛⎫=-⨯ ⎪⎝⎭12312+×1212234=⨯-⨯6+89=-5=.【点睛】此题考查了有理数混合运算的运算法则,难度一般,认真计算是关键,注意能简便运算的尽量简便运算.20.如图,已知点A,B,C,利用尺规,按要求作图:(1)作线段AB,AC,过B,C作射线BQ;在射线CQ上截取CD=BC,在射线DQ上截取DE=BD;(2)连接AE,在线段AE上截取AF=AC,作直线AD、线段DF;(3)比较BC与DF的大小,直接写出结果.【答案】(1)见解析;(2)见解析;(3)BC=DF【解析】【分析】(1)利用几何语言画出对应的图形即可;(2)利用几何语言画出对应的图形即可;(3)利用作图特征和等量代换即可得出答案.【详解】解:(1)、(2)如图所示,要求有作图痕迹;(3)BC=DF.证明:由作图知CD=DF ,又 CD=BC ,∴BC=DF .【点睛】本题考查了尺规作图-线段,利用圆规和直尺的特征作图是解题的关键.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.【答案】(1)2ab c -;(2)236x xy --+【解析】【分析】(1)原式先去括号,然后合并同类项即可得到答案;(2)原式先去括号,然后合并同类项即可得到答案.【详解】解:(1)()()222ab c ab c -+-+242ab c ab c =--+2ab c =-.(2)()22233(2)x xy x xy --+-+2262+336x xy x xy =-+-+236x xy =--+.【点睛】本题考查整式的加法运算,要先去括号,然后合并同类项.运用去括号法则进行多项式化简.合并同类项时,注意只把系数想加减,字母与字母的指数不变.22.解方程:(1)()235x x +=-;(2)325123y y ---=.【答案】(1)11x =-;(2)5y =-【解析】【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可;(2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y 系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).【答案】(1)6至11月三种品牌电脑销售量总量最多是B 品牌,11月份,A 品牌的销售量为270台;(2)221台;(3)答案不唯一,如,建议买C 品牌电脑;或建议买A 品牌电脑,或建议买B 产品,见解析【解析】【分析】(1)从条形统计图、折线统计图可以得出答案;(2)根据A品牌电脑销售量及A品牌电脑所占百分比即可求出11月份电脑的总的销售量,再减去A、B、C品牌的销售量即可得出答案;(3)从所占的百分比、每月销售量增长比等方面提出建议即可.【详解】解:(1)6至11月三种品牌电脑销售量总量最多是B品牌;11月份,A品牌的销售量为270台;(2)11月,A品牌电脑销售量为270台,A品牌电脑占27%,÷=(台).所以,11月份电脑的总的销售量为27027%1000---=(台).其它品牌的电脑有:1000234270275221(3)答案不唯一.如,建议买C品牌电脑.销售量从6至11月,逐月上升;11月份,销售量在所有品牌中,占的百分比最大.或:建议买A品牌电脑.销售量从6至11月,逐月上升,且每月销售量增长比C品牌每月的增长量要快.或:建议买B产品.因为B产品6至11月的总的销售量最多.【点睛】本题考查了条形图、折线统计图、扇形统计图,熟练掌握和理解统计图中各个数量及数量之间的关系是解题的关键.24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/3【答案】(1)见解析;(2)()22v b a b =-;(3)见解析,剪去的小正方形的边长可能是3cm 【解析】【分析】(1)将正方形的四个角的小正方形大小要一致即可;(2)根据图形中的字母表示的长度即可得出()22v b a b =-;(3)将18a =cm 结合容积公式及表格即可得出答案.【详解】解:(1)如图所示(可以不标出a ,b ,但四个角上的正方形大小要一致).(2)无盖厂长方体盒子的容积v 为()22v b a b =-(3)当18a =,b=1时,()2221(1821)256v b a b =-=⨯-⨯=,当18a =,b=2时,()2222(1822)392v b a b =-=⨯-⨯=,当18a =,b=3时,()2223(1832)432v b a b =-=⨯-⨯=,当18a =,b=4时,()2224(1842)400v b a b =-=⨯-⨯=,当18a =,b=5时,()2225(1825)320v b a b =-=⨯-⨯=,当18a =,b=6时,()2226(1826)216v b a b =-=⨯-⨯=,填表如下:剪去小正方形的边长/cm 123456……无盖长方体的容积/3cm 256392432400320216……有表可知,无盖长方体容积取得最大值时,剪去的小正方形的边长可能是3cm .【点睛】本题考查了代数式求值的实际应用,结合题意得到等量关系是解题的关键.25.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km ,用含x 的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.【答案】(1)见解析;(2)2210=52020x x +++,或62156010x x --=;(3)需要的时间为48min 【解析】【分析】(1)根据题意可知小区在学校的左边,标出即可;(2)根据“步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .”解答即可;(3)设学校到图书馆的路程为x km ,根据题意得出226554560x x +=++⨯,求解后即可得出方案1需要的时间.【详解】解:(1)如图所示;(2)根据题意,得2210=52020x x +++,或62156010x x --=(3)设学校到图书馆的路程为x km ,根据题意,得226554560x x +=++⨯解方程,得4x =.所以,455x =.460=485⨯.答:方案1中,需要的时间为48min .【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找到命题中隐含的等量关系式是解题的关键.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.26.如图,甲、乙两人(看成点)分别在数轴10-和10的位置上,沿数轴做向东、向西移动的游戏.移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m 次,乙猜对了n 次.(1)请用含m ,n 的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.【答案】(1)甲在数轴上的位置上的点代表的数为:640m -,其中010m ≤≤,且m 为整数;乙在数轴上的位置上的点代表的数为:405n -,其中010n ≤≤,且n 为整数;(2)n 的值2n =或6n =【解析】【分析】(1)甲猜对了m 次,则猜错了()10m -次,根据“如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位”即可表示出甲在数轴上的位置上的点;乙猜对了n 次,则猜错了()10n -次,根据“如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位”即可表示出乙在数轴上的位置上的点;(2)分两种情况:当甲在乙西面,甲乙相距10个单位及当甲在乙东面,甲乙相距10个单位,列关于m 、n 的方程,将10m =求n 的值即可.【详解】解:(1)甲猜对了m 次,则猜错了()10m -次,10次游戏结束后,甲在数轴上的位置上的点,代表的数为:()103310640m m m -+--=-,其中010m ≤≤,且m 为整数;乙猜对了n 次,则猜错了()10n -次,10次游戏结束后,乙在数轴上的位置上的点,代表的数为:()102310405n n n -+-=-,其中010n ≤≤,且n 为整数.(2)当甲在乙西面,甲乙相距10个单位,可得64010405m n -+=-,其中,=10m ,010n ≤≤,即60570n +=,解得2n =.当甲在乙东面,甲乙相距10个单位,可得。

2020学年北京市海淀区人教版七年级上期末数学考试题含答案

2020学年北京市海淀区人教版七年级上期末数学考试题含答案

海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 2020.1学校 班级 姓名 成绩 一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置.1.根据国家旅游局数据中心综合测算,今年国庆期间全国累计旅游收入4 822亿元,用科学记数法表示4 822亿正确的是A .8482210⨯ B . 114.82210⨯ C . 1048.2210⨯ D . 120.482210⨯ 2.从正面观察如图的两个立体图形,得到的平面图形是3.若30a +=,则a 的相反数是 A .3 B .13 C .13-D .3- 4.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是5.下列运算结果正确的是A. 55=-x xB. 532422x x x =+ C. b b b 34-=+- D. 022=-ab b a6.西山隧道段是上庄路南延工程的一部分,将穿越西山山脉,隧道全长约4km .隧道贯通后,往来海淀山前山后地区较之前路程有望缩短一半,其主要依据是 A .两点确定一条直线 B .两点之间,线段最短 C .直线比曲线短 D .两条直线相交于一点7.已知线段10AB =cm ,点C 在直线AB 上,且2AC =cm ,则线段BC 的长为 A .12 cm B .8 cm C .12 cm 或8 cm D .以上均不对 8.若关于x 的方程042=-+a x 的解是2=x ,则a 的值等于 A . 8- B .0 C .2 D .89.下表为某用户银行存折中2020年11月到2020年5月间代扣水费的相关数据,其中扣缴水费最多的一次的金额为 A .738.53元 B .125.45元 C .136.02元 D .477.58元 10.如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是A .0ab >B .0a b +>C .0a b -< D .0a b -<11.已知点A 、B 、C 、D 、E 的位置如图所示,下列结论中正确的是A .=130AOB ∠︒ B .AOB ∠=DOE ∠C .DOC ∠与BOE ∠互补D .AOB ∠与COD ∠互余日期 摘要 币种 存/取款金额 余额 操作员备注151101 北京水费 RMB 钞 -125.45 874.55 010005B25 折 160101 北京水费 RMB 钞 -136.02 738.53 010005Y03折160301 北京水费 RMB 钞 -132.36 606.17 010005D05 折 160501北京水费RMB 钞-128.59477.5801000K19折12. 小博表演扑克牌游戏,她将两副牌分别交给观众A 和观众B ,然后背过脸去,请他们各自按照她的口令操作:a .在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b .从第2堆拿出4张牌放到第1堆里;c .从第3堆牌中拿出8张牌放在第1堆里;d .数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e .从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A 说5张,观众B 说8张,小博猜两人最初每一堆里放的牌数分别为 A .14,17 B .14,18 C .13,16 D .12,16二、填空题(本题共24分,每小题3分)13. 用四舍五入法,精确到百分位,对2.017取近似数是 . 14. 请写出一个只含有字母m 、n ,且次数为3的单项式 . 15.已知()2120x y ++-=,则yx 的值是 .16.已知2=-b a ,则多项式233--b a 的值是 .17. 若一个角比它的补角大3648'︒,则这个角为 ︒ '. 18.下面的框图表示解方程320425x x +=-的流程.第1步的依据是 .19.如图,在正方形网格中,点O 、A 、B 、C 、D 均是格点.若OE 平分∠BOC ,则∠DOE 的度数为 ︒.2020面是一道尚未编完的应用题,请你补充完整,使列出的方程为24(35)94x x +-=. 七年级一班组织了“我爱阅读”读书心得汇报评比活动,为了倡导同学们多读书,读好书,老师为所有参加比赛的同学都准备了奖品,. 三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题5分,第27题7分) 21.计算: (1)111()12462+-⨯. (2)1031(1)2()162-÷+-⨯.22.解方程:12324x x+--=.23.设11324()()2323A x x y x y =---+-+. (1)当1,13x y =-=时,求A 的值;(2)若使求得的A 的值与(1)中的结果相同,则给出的x 、y 的条件还可以是 .24.如图,平面上有四个点A ,B ,C ,D .(1)根据下列语句画图: ①射线BA ;②直线AD ,BC 相交于点E ;③在线段DC 的延长线上取一点F ,使CF=BC ,连接EF . (2)图中以E 为顶点的角中,小于平角的角共有 个.25.以下两个问题,任选其一作答,问题一答对得4分,问题二答对得5分. 如图,OD 是∠AOC 的平分线,OE 是∠BOC 的平分线. 问题一:若∠AOC =36°,∠BOC =136°,求∠DOE 的度数. 问题二:若∠AOB =100°,求∠DOE 的度数.26.如图1,由于保管不善,长为40米的拔河比赛专用绳AB 左右两端各有一段(AC 和BD )磨损了,COAD E磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足2020只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长2020拔河比赛专用绳EF .请你按照要求完成下列任务:(1)在图1中标出点E 、点F 的位置,并简述画图方法; (2)说明(1)中所标EF 符合要求.图1 图227.在数轴上,把表示数1的点称为基准点,记作点O •. 对于两个不同的点M 和N ,若点M 、点N到点O •的距离相等,则称点M 与点N 互为基准变换点. 例如:图1中,点M 表示数1-,点N 表示数3,它们与基准点O •的距离都是2个单位长度,点M 与点N 互为基准变换点.图1(1)已知点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点.① 若a,则b = ;若4a =,则b = ;② 用含a 的式子表示b ,则b = ; (2)对点A 进行如下操作:先把点A 表示的数乘以52,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B . 若点A 与点B 互为基准变换点,则点A 表示的数是 ;(3)点P 在点Q 的左边,点P 与点Q 之间的距离为8个单位长度.对P 、Q 两点做如下操作:点P 沿数轴向右移动k (k >0)个单位长度得到1P ,2P 为1P 的基准变换点,点2P 沿数轴向右移动k 个单位长度得到3P ,4P 为3P 的基准变换点,……,依此顺序不断地重复,得到5P ,6P ,…,n P . 1Q 为Q 的基准变换点,将数轴沿原点对折后1Q 的落点为2Q ,3Q 为2Q 的基准变换点, 将数轴沿原点对折后3Q 的落点为4Q ,……,依此顺序不断地重复,得到5Q ,6Q ,…,n Q .若无论k 为何值,n P 与n Q 两点间的距离都是4,则n = .海 淀 区 七 年 级 第 一 学 期 期 末 练 习数 学 参 考 答 案 2020.1一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)13.2.02 ; 14. 22m n -(答案不唯一); 15.1; 16. 4; 17.108 ,24; 18.等式两边加(或减)同一个数(或式子),结果仍相等;19.22.5 ; 2020品为两种书签,共35份,单价分别为2元和4元,共花费94元,则两种书签各多少份.(答案不唯一)三、解答题(本题共40分,第21题8分,每小题各4分,第22-26题,每小题5分,第27题7分) 21.(1)解:原式326=+- ----------------------3分1=-. ----------------------4分(2)解:原式11()1628=+-⨯ --------------------2分 122=- --------------------3分 32=-. ----------------------4分22.解:()2+1122x x -=- . ---------------------2分2+2122x x -=-. ----------------------3分 312x =. ---------------------- 4分4x =. ---------------------- 5分23.解:(1)143242323A x x y x y =--+-+ ---------------------2分62x y =-+ . ---------------------3分当1,13x y =-=时,16()213A =-⨯-+⨯=4.∴A 的值是4. ----------------4分(2)32x y -+= .(答案不唯一) ---------------5分 24.(1)---------------4分(2)8. ---------------5分25.解:问题一:∵ OD 平分AOC ∠,36AOC ∠=︒, ∴ 1182DOC AOC ∠=∠=︒. …………………2分 ∵ OE 平分BOC ∠,136BOC ∠=︒, ∴ 1682EOC BOC ∠=∠=︒. …………………3分 ∴ 50DOE EOC DOC ∠=∠-∠=︒. ……………… 4分 问题二:∵ OD 平分AOC ∠, ∴ 12DOC AOC ∠=∠. …………………1分 ∵ OE 平分BOC ∠, ∴ 12EOC BOC ∠=∠. …………………2分∴ DOE EOC DOC ∠=∠-∠1122BOC AOC =∠-∠ 12AOB =∠. ……………… 4分 ∵ 100AOB ∠=︒,∴ 50DOE ∠=︒. ……………… 5分 (注:无推理过程,若答案正确给2分)26.解:(1)(解法不唯一)……………… 2分如图,在CD 上取一点M ,使CM =CA , F 为BM 的中点,点 E 与点C 重合. …3分 (2)∵F 为BM 的中点, ∴MF =BF .∵AB =AC +CM +MF +BF ,CM =CA , ∴AB =2CM +2MF =2(CM +MF )=2EF . ∵AB =40m ,∴EF =2020……………… 4分∵20AC BD +<m ,40AB AC BD CD =++=m , ∴CD >20m.∵点E 与点C 重合,20EF =m , ∴20CF =m.∴点F 落在线段CD 上.∴EF 符合要求.……………… 5分27.解:(1)①2,-2;……………… 2分②2a -;……………… 4分(2)107;……………… 5分(3)4或12.……………… 7分。

北京2020-2021学年七年级上册期末数学试卷及答案(5份)

北京2020-2021学年七年级上册期末数学试卷及答案(5份)

北京2020秋丰台区第一学期期末练习初一数学一、选择题(每小题3分,共30分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 如图,数轴上有A ,B ,C ,D 四个点,其中绝对值最小的数对应的点是DC B A A .点A B .点B C .点CD .点D2. 由美国主题景点协会(TEA )和国际专业技术与管理咨询服务提供商AECOM 的经济部门合作撰写的2016年《主题公园指数和博物馆指数报告》中显示,中国国家博物馆以7550000的参观人数拔得头筹,成为全世界人气最旺、最受欢迎的博物馆.请将7550000用科学记数法表示为 A .755×104 B .75.5×105 C .7.55×106 D .0.755×1073. 比5.4-大的负整数有 A .3个B .4个C .5个D .无数个4. 下列运算正确的是 A .33323a a a =- B .34-=-m m C .022=-ab b aD .2532x x x =+5. 将一副直角三角尺按如图所示摆放,则图中∠ABC 的度数是 A .120°B .135°C .145°D .150°6. 如果y x =,那么根据等式的性质下列变形正确的是 A .0=+y xB .yx 55= C .y x -=-22 D .77-=+y x7.如果53=x 是关于x 的方程05=-m x 的解,那么m 的值为 A. 3 B. 31 C.3- D. 31-DCBA8.如果()0232=++-n m ,那么mn 的值为A. 1-B. 23- C. 6 D.6-9. 小华家要进行室内装修,设计师提供了如下四种图案的地砖,爸爸希望灰白两种颜色的地砖面积比例大致相同,那么下面最符合要求的是A. B. C. D.10.用8个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如右图所示,那么从左面看它得到的平面图形一定不是..A. B. C. D.二、填空题(每小题3分,共24分)11. 有理数2018的相反数是 . 12. 写出一个系数为32-且次数为3的单项式 . 13. 计算:12°20'×4= .14. 如图,OC 是∠AOB 的平分线,如果∠AOB =130°,∠BOD =25°,那么∠COD = °. 15. 方程241=-x 的解是 . 16. 已知1=a ,2=b ,如果b a >,那么=+b a .CBOD A17.阅读下面材料:在数学课上,老师提出如下问题:下面是班内三位同学提交的设计方案:根据以上信息,你认为 同学的方案最正确,理由是 . 18. 我国明代著名数学家程大位的《算法统宗》一书中记载了一些诗歌形式的算题,其中有一个“百羊问题”:甲赶群羊逐草茂,乙拽肥羊一只随其后;戏问甲及一百否?甲云所说无差谬,若得这般一群凑,再添半群小半群,得你一只来方凑.玄机奥妙谁猜透.题目的意思是:甲赶了一群羊在草地上往前走,乙牵了一只肥羊紧跟在甲的后面.乙问甲:“你这群羊有一百只吗?”甲说:“如果再有这么一群,再加半群,又加四分之一群,再把你的一只凑进来,才满100只.”请问甲原来赶的羊一共有多少只?如果设甲原来赶的羊一共有x 只,那么可列方程...为 .三、解答题(共46分,第19题3分,第20 — 27题,每小题4分,第28题5分, 第29题6分)19. 计算:()376-+--.20. 计算:⎪⎭⎫ ⎝⎛+-⨯-32652118.C COA BBC COA B BC C OA B B小玲的方案 小平的方案 小伟的方案 如图,在一个圆锥形状的包装盒的底部A 处有一只壁虎, 在侧面B 处有一只小昆虫,壁虎沿着什么路线爬行,才能以 最短的路线接近小昆虫? OCAB21. 计算:()4832116+-⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛-÷.22. 计算:⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛-⨯-⨯-23234332.23. 解方程:()2325-=-x x .24. 解方程:2133531+=--x x .25. 先化简,再求值:()[]xy y x xy xy y x ---+2223275,其中1-=x ,32-=y .26. 如图,已知直线AB 及直线AB 外一点P ,按下列要求完成画图和解答: (1)连接P A ,PB ,用量角器画出∠APB 的平分线PC ,交AB 于点C ; (2)过点P 作PD ⊥AB 于点D ;(3)用刻度尺取AB 中点E ,连接PE ;(4)根据图形回答:点P 到直线AB 的距离是线段 的长度.A P B27. 已知:线段AB = 2,点D 是线段AB 的中点,延长线段AB 到C ,BC = 2AD .求线段DC 的长.28. 列方程解应用题:快放寒假了,小宇来到书店准备购买一些课外读物在假期里阅读.在选完书结账时,收银员告诉小宇,如果花20元办理一张会员卡,用会员卡结账买书,可以享受8折优惠.小宇心算了一下,觉得这样可以节省13元,很合算,于是采纳了收银员的意见.请根据以上信息解答下列问题:(1)你认为小宇购买 元以上的书,办卡就合算了; (2)小宇购买这些书的原价是多少元.29. 如图,正方形ABCD 的边AB 在数轴上,数轴上点A 表示的数为-1,正方形ABCD 的面积为16.(1)数轴上点B 表示的数为 ;(2)将正方形ABCD 沿数轴水平移动,移动后的正方形记为''''D C B A ,移动后的正方形''''D C B A 与原正方形ABCD 重叠部分的面积记为S. ① 当S =4时,画出图形,并求出数轴上点'A 表示的数;② 设正方形ABCD 的移动速度为每秒2个单位长度,点E 为线段'AA 的中点,点F 在线段'BB 上,且B B BF '=41. 经过t 秒后,点E ,F 所表示的数互为相反数,直接写出t 的值.BA备用图丰台区第一学期期末练习初一数学评分标准及参考答案二、填空题(每小题3分,共24分)11.-2018 12.答案不唯一,如332a -13.49°20' 14.4015.8-=x16.–1或–317.小伟;两点之间,线段最短18.100142=++++xx x x 三、解答题(共46分,第19题3分,第20—27题,每小题4分,第28题5分,第29题6分)19.解:原式= 6–7–3……2分 = – 4.……3分 20.解:原式= – 9+15–12……3分 = – 6.……4分21.解:原式=()()483216+-⎪⎭⎫⎝⎛-⨯-⨯……2分=12– 4 ……3分 =8.……4分22.解:原式=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯-⨯-2278943……2分 =⎪⎭⎫ ⎝⎛-⨯-23843……3分 =3243⨯- =21-.……4分 23.解:6325-=-x x……1分 5632--=--x x……2分 115-=-x……3分 511=x . ∴511=x 是原方程的解. ……4分24.解:()()1335326+=--x x……1分 391066+=+-x x……2分663910+-=-x x ……3分3=x .∴3=x 是原方程的解. ……4分25.解:原式=()xy y x xy xy y x -+-+224675=y x y x 2245+=y x 29. ……3分当1-=x ,32-=y 时, 原式=()⎪⎭⎫⎝⎛-⨯-⨯32192= – 6.……4分26.解:(1)(2)(3)如图:……3分(4)PD .……4分27.解:根据题意正确画出图形.CDBA∵点D 是线段AB 的中点,AB =2,∴AD =BD =21AB =1.∵BC =2AD =2,∴DC =BC +BD =2+1=3.28. 解:(1)100;(2)设小宇购买这些书的原价是x 元,根据题意列方程,得13%8020-=+x x 解得x =165 答:小宇购买这些书的原价是165元.29.解:(1)–5;(2)∵正方形ABCD 的面积为16,∴边长为4.①当S=4时,若正方形ABCD 向左平移,如图1, 重叠部分中的A 'B =1,∴AA '=3. 则点A '表示–1–3= – 4.若正方形ABCD 向右平移,如图2, 重叠部分中的AB '=1,∴AA '=3. 则点A '表示–1+3= 2.∴点A '表示的数为– 4或2.图1 ②t =4.①锐角的补角一定是钝角; ②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等; ④锐角和钝角互补. A .①②B .①③C .①④D .②③6.在运用有理数加法法则求两个有理数的和时,下列的一些思考步骤中最先进行的是A .求两个有理数的绝对值,并比较大小B .确定和的符号C .观察两个有理数的符号,并作出一些判断D .用较大的绝对值减去较小的绝对值7.分别从正面、左面和上面这三个方向看下面的四个几何体中的一个,得到如图所示的平面图形,那么这个几何体是A B CD8.如果一些体积为1cm 3的小立方体恰好可以组成体积为1m 3的大立方体,把所有这些小立方体一个接一个向上摞起来,大概有多高呢?以下选项中最接近这一高度的是A .天安门城楼高度B .未来北京最高建筑“中国尊”高度C .五岳之首泰山高度D .国际航班飞行高度二、填空题(本题共24分,每小题3分)9.计算:1138()842-⨯+-= .10.写出312xy -的一个同类项: . 11.如图,在利用量角器画一个40°的∠AOB 的过程中,对于先找点B ,再画射线OB 这一步骤的画图依据,喜羊羊同学认为是两点确定一条直线,懒羊羊同学认为是两点之间线段最短.你认为______同学的说法是正确的.12.若一个多项式与2m n -的和等于2m ,则这个多项式是 . 13.若2x =是关于x 的方程23ax +=的解,则a 的值为 . 14.如果一个数的实际值为a ,测量值为b ,我们把b a -称为绝对误差,ab a -称为相对误差.若有一种零件实际长度为5.0 cm ,测量得4.8 cm ,则测量所产生的绝对误差是cm ,相对误差是 .绝对误差和相对误差都可以用来衡量测量的准确程度,它们的区别是 .15.如图,射线OA 的方向是北偏东20°,射线OB 的方向是北偏西40°,OD 是OB 的反向延长线.若OC 是∠AOD 的平分线,则∠BOC =__________°,射线OC 的方向是________________.第15题图16.如图,这是一个运算的流程图,输入正整数x 的值,按流程图进行操作并输出y 的值.例如,若输入10x =,则输出5y =.若输出3y =,则输入的x的值为 .三、解答题(本题共52分,第17-21题每小题4分,第22-25题每小题5分,第26-27题每小题6分)17.如图,点C 是线段AB 外一点.按下列语句画图:(1)画射线CB ; (2)反向延长线段AB ; (3)连接AC ;(4)延长AC 至点D ,使CD =AC .18.计算:)42()213(22---÷-. 19.计算:)213(214+-+ab ab .20.解方程:25(1)x x +=--. 21.解方程:52323x x-++=.22.先化简,再求值:22222()2(1)2a b ab a b ab +----,其中1a =,3b =-.23.暖羊羊有5张写着不同数字的卡片,请你按要求选择卡片,完成下列各问题:(1)从中选择两张卡片,使这两张卡片上数字的乘积最大.这两张卡片上的数字分别是 ,积为 _. (2)从中选择两张卡片,使这两张卡片上数字相除的商最小.这两张卡片上的数字分别是 ,商为 .(3)从中选择4张卡片,每张卡片上的数字只能用一次,选择加、减、乘、除中的适当方法(可加括号),使其运算结果为24,写出运算式子.(写出一种即可)24.填空,完成下列说理过程如图,已知△ACD 和△BCE 是两个直角三角形,90ACD ∠=︒,90BCE ∠=︒. (1)求证:ACE BCD ∠=∠;(2)如果150ACB ∠=︒,求DCE ∠的度数.(1)证明:如图,因为90ACD ∠=︒,90BCE ∠=︒,所以ACE ∠+________BCD =∠+_________90=︒, 所以_________=__________.(2)解: 因为150ACB ∠=︒,90ACD ∠=︒, 所以BCD ∠=_________-__________=_________︒-__________︒ =_________︒.所以DCE ∠=________BCD -∠=__________︒ .25.列方程解应用题我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?26.探究规律,完成相关题目沸羊羊说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(5)+❈(2)7+=+;(3)-❈(5)8-=+;(3)-❈(4)7+=-;(5)+❈(6)11-=-; 0❈(8)8+=;(6)-❈06=.智羊羊看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,_________________________________________________________.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,_________________.(2)计算:(2)-❈[0❈(1)]-=.(括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个....运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)27.阅读材料,并回答问题如图,有一根木棒MN 放置在数轴上,它的两端M 、N 分别落在点A 、B .将木棒在数轴上水平移动,当点M 移动到点B 时,点N 所对应的数为20,当点N 移动到点A 时,点M 所对应的数为5. (单位:cm )由此可得,木棒长为__________cm .借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?请你画出示意图,求出村长爷爷和美羊羊现在的年龄,并说明解题思路.2425=-⨯+ ……………………………………………………………………2分825=-+ …………………………………………………………………………3分…………………………………………………………………………………4分114322ab ab =+-- …………………………………………………………2分ab =. …………………………………………………………………………分55x x +=-+ …………………………………………………………………1分52- ………………………………………………………………………2分………………………………………………………………………………3分…………………………………………………………………………………4分 3(5)2(2)x x +-=+ ……………………………………………………………分1831542x x +-=+ ……………………………………………………………分43- ………………………………………………………………………3分…………………………………………………………………………4分2222)2(1)2a b ab a b ab +----222222222a b ab a b ab =+-+--……………………………………………………2分2ab =. …………………………………………………………………………………3分当1a =,3b =-时, 原式21(3)=⨯-=9. ………………………………………………………………………5分23. (1) 5-,3- (1)分15 (2)分(2)5-,3+ ……………………………………………………………………………………3分53- (4)分(3)3[5(3)]0-⨯--++(答案不唯一) ………………………………………………………5分24. (1)证明:如图,因为90ACD ∠=︒,90BCE ∠=︒,所以ACE ∠+DCE ∠BCD =∠+DCE ∠90=︒,……………………………1分所以ACE ∠=BCD ∠. (2)分(2)解: 因为150ACB ∠=︒,90ACD ∠=︒, 所以BCD ∠=ACB ∠-ACD ∠ ………………………………………………3分=150︒-90︒=60︒. (4)分所以DCE ∠=BCE ∠BCD -∠=30︒ . (5)分25. 解:设快马x 天可以追上慢马.由题意,得24015015012x x -=⨯. …………………………………………………2分解得20x =. …………………………………………………………………4分答:快马20天可以追上慢马. (5)分26. 解:(1)同号得正,异号得负,并把绝对值相加 (1)分等于这个数的绝对值…………………………………………………………………2分(2)3- ……………………………………………………………………………………4分(3)交换律在有理数的❈(加乘)运算中还适用. (5)分由❈(加乘)运算的运算法则可知,(5)+❈(2)+7=+,(2)+❈(5)+7=+,所以(5)+❈(2)+=(2)+❈(5)+. …………………………………………………6分即交换律在有理数的❈(加乘)运算中还适用.27. 解:5 (2)分64 ………………………………………………………………………………………3分12 …………………………………………………………………………………………4分……………………5分如图,点A 表示美羊羊现在的年龄,点B 表示村长爷爷现在的年龄,木棒MN 的两端分别落在点A B 、.由题意可知,当点N 移动到点A 时,点M 所对应的数为40-,当点M 移动到点B 时,点N 所对应的数为116.可求52MN =.所以点A 所对应的数为12,点B 所对应的数为64.即美羊羊今年12岁,村长爷爷今年64岁.…………………………………………6分北京2019-2020学年顺义区第一学期七年级教学质量检测数学试卷一、选择题(共10个小题,每小题2分,共20分)下列各题均有四个选项,其中只有一个符合题意,请把对应题目答案的相应字母填在括号内 .1. 2017年1月份某天的最高气温是4℃,最低气温是-9℃,那么这天的温差(最高气温减最低气温)是( ).A .-5℃B .13℃C .一13℃D . 5℃2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将这个数用科学记数法表示为( ) A .84410⨯ B .84.410⨯C . 94.410⨯D .104.410⨯3.用代数式表示“a 的2倍与b 的差的平方”,正确的是( ) A .2(2)a b - B . 22()a b -C .22a b -D .2(2)a b -4.在下列式子中变形正确的是( )A. 如果a b =,那么a c b c +=-B. 如果a b =,那么33a b= C. 如果63=a,那么2a = D. 如果0a b c -+=,那么a b c =+ 5.下列各式中运算正确的是( )A. 422a a a =+ B. 134=-a a C.b a ba b a 22243-=- D.532523a a a =+6. 若3x =-是关于x 的一元一次方程250x m ++=的解,则m 的值为( )A. 1- B .0 C. 1 D. 11 7. 下列叙述错误的是( )A. 经过两点有一条直线,并且只有一条直线B. 在同一平面内不相交的两条直线叫做平行线C. 连接两点的线段的长,叫做这两点间的距离D.从直线外一点到这条直线的垂线段,叫做点到直线的距离8.有理数a b ,在数轴上的位置如图所示,以下说法正确的是( ) A. 0a b += B. b a < C. 0ab > D.b a <9.如图,是正方体的平面展开图,每个面上都标有一个汉字, 与“信”字相对的面上的字为( )A. 文B.明C. 法D. 治10.计算20172016(0.125)8-⨯结果正确的是( )A .18- B .18C .8D .8-二、填空题 (共6个小题,每小题3分,共18分)N M B A 116-40文 明 法治诚 信11.-312. 计算:(5-+ 13.北京市的“过180的部分,吨.14. 换算:65.24°15.如图,平角的角.16上所贴的剪纸为,三、解答题(共17.(418.(519.(520.(5分)计算:3221332()()()224-⨯-+-÷-()21.(4分)解方程:262(35)x x-=-22.(5分) 解方程:221134x x+--=23.(5分)已知x,y为有理数,且满足2121(1)03x y++-=,求代数式xy的值.24.(4分)如图,A,B,C,D为4个居民小区,现要在4个居民小区之间建一个购物中心,试问应把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?画出购物中心的位置,并说明理由.25.(5分)已知平面上三点A、B、C.按下列要求画出图形:(1)画直线AB,射线BC,线段AC;(2)过点C画直线CD,使CD AB;(3)画出点C到直线AB的垂线段CE.26.(5分)某中学举办中学生安全知识竞赛中共有20道题,每一题答对得5分,答错或不答都扣3分.小强考了68分,求小强答对了多少道题?27.(5分) 已知:90AOB∠=︒,20BOC∠=︒,OM平分AOB∠,求MOC∠的度数.1DBAC BA28.(5分)阅读材料:求2342017122222++++++…的值.解:设234201620171222222S =+++++++…,将等式两边同时乘以2得:23452017201822222222S =+++++++…将下式减去上式得2018221S S -=- 即201821S =-即2342017201812222221++++++=-…请你仿照此法计算:(1)2349122222++++++…;(2)234155555n ++++++…(其中n 为正整数). 29.(5分)新华书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠; ②一次性购书超过100元但不超过200元一律打九折; ③一次性购书满200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是多少元?选做题(5分)1.(2分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是天.2.(3分)设-3a =,15b =,试确定20162017a b +的末位数字是几?顺义区第一学期七年级教学质量检测数学试题参考答案及评分参考一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 BCABCCDDBA二、填空题 题号 11 1213141516 答案3、2-、22-、29、12- 22165度14分24秒 6、717、32n +三、解答题 17.解:原式=3312+4484--+ ………………………………………………………1分 =3132++4448-- ……………………………………………………2分 =318-- ………………………………………………………………3分 =118-……………………………………………………………4分18.解:原式=8153()+)3495-⨯-⨯(- …………………………………………………3分=21()33+- =13………………………………………………………………5分19.解:原式=620+27---3 …………………………………………………………4分 =2- …………………………………………………………………5分20.解:原式=1948()443-⨯+⨯- ………………………………………………………4分 =23--=5- …………………………………………………………………5分21. 解:去括号,得 26610x x -=- ………………………………………1分移项, 得 26106x x -=-+ ………………………………………2分 合并同类项,得 44x -=- …………………………………………3分 系数化为1,得 1x = ……………………………………………4分 所以,1x =是方程的解 …………………………………………… 5分22. 解:去分母 ,得 4(2)123(21)x x +-=-………………………………………2分去括号, 得 481263x x +-=- …………………………………………3分 移项, 得 463812x x -=--+ …………………………………………4分 合并同类项,得 21x -= 系数化为1, 得 12x =- 所以 ,12x =-是方程的解 …………………………………………5分 23. 解:因为210x +≥,21(1)03y -≥,且满足2121(1)03x y ++-=,…………1分所以210x += 且 1103y -=. ………………………………………………3分 所以12x =-,3y = ………………………………………………4分 所以代数式xy 的值是32-………………………………………………………5分 24.解:连结AC 和BD ,AC 和BD 相交于点M ,则点M 即是购物中心的位置 .……………………………………………………2分 MA MC MB MD AC BD +++=+理由是两点之间线段最短. ……………………………………………………4分25.略 (每个图形各一分) ………………………………………………………5分26.解:设小李答对了x 道题. ……………………………………………………1分依题意,列方程得53(20)68x x --=. (3)分解得16x =. (4)分答:小李答对了16道题. ………………………………………………………………5分27.解: ∵90AOB ∠=︒,OM 平分AOB ∠,∴︒=∠45BOM ………………………………………………………………1分又∵20BOC ∠=︒①当OC 在AOB ∠内部时,452025MOC BOM BOC ∠=∠-∠=︒-︒=︒ ……………………………3分② 当OC 在AOB ∠外部时452065MOC BOM BOC ∠=∠+∠=︒+︒=︒……………………………5分∴MOC ∠的度数是25︒.或65︒28.解:(1)设29122+2S =+++…则23102222+2S =+++…10221S S ∴-=-即1021S =- ……………………………………………2分2910122+2=21∴+++-…(2)设21555n S =++++…则23155555n S +=++++…1551n S S +∴-=-即1451n S +=-1514n S +-∴= ………………………………………………………………5分29.解:设小丽第一次购书的原价为x 元,则第二次购书的原价为3x 元,依题意得:① 当10003x <≤时, 3229.4x x +=,解得:57.35x =(舍去); ……………………………………………………… 1分② 当100200<33x ≤时, 9+3229.410x x ⨯=,解得:62x =,此时两次购书原价总和为:4462248x =⨯=; …………………………………… 3分③ 当2001003x <≤时,73229.410x x +⨯=,解得:74x =,此时两次购书原价总和为:4=474=296x ⨯.综上可知:小丽这两次购书原价的总和是248或296元.………………………… 5分选做题(选做题得分可以加入总分中,加到满分100分止) 1. 5102. 解:∵15b =∴2017201715b =的末位数字一定是5 -----------------------------------------1分 ∵3a =- ∴201620162016(3)3a=-=∵133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,∴推算20163的末位数字一定是1 ----------------------------------------------2分 ∴2016a 与2017b 的末位数字之和是16∴20162017a b +的末位数字是6 -----------------------------------------------3分2019-2020学年北京市西城区七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分) 1.(3分)﹣4的倒数是( ) A .B .﹣C .4D .﹣42.(3分)在国庆70周年的联欢活动中,参与表演的3290名群众演员,每人手持一个长和宽都为80厘米的光影屏,每一块光影屏上都有1024颗灯珠,约3369000颗灯珠共同构成流光溢彩的巨幅光影图案,给观众带来了震撼的视觉效果.将3369000用科学记数法表示为( ) A .0.3369×107B .3.369×106C .3.369×105D .3369×1033.(3分)下列计算正确的是()A.5a+6b=11ab B.9a﹣a=8C.a2+3a=4a2D.3ab+4ab=7ab4.(3分)如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是()A.两点之间,线段最短B.两点确定一条直线C.两点之间,直线最短D.直线比线段长5.(3分)下列解方程的步骤中正确的是()A.由x﹣5=7,可得x=7﹣5B.由8﹣2(3x+1)=x,可得8﹣6x﹣2=xC .由x=﹣1,可得x =﹣D .由,可得2(x﹣1)=x﹣36.(3分)已知3a2﹣a=1,则代数式6a2﹣2a﹣5的值为()A.﹣3B.﹣4C.﹣5D.﹣77.(3分)有理数a,b,c在数轴上的对应点的位置如图所示,有如下四个结论:①|a|>3;②ab>0;③b+c<0;④b﹣a>0.上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④8.(3分)下列说法中正确的是()A.如果|x|=7,那么x一定是7B.﹣a表示的数一定是负数C.射线AB和射线BA是同一条射线D.一个锐角的补角比这个角的余角大90°9.(3分)下列图形中,可能是右面正方体的展开图的是()A .B .C .D .10.(3分)居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.据统计,从2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率如图所示:根据上图提供的信息,下列推断中不合理的是()A.2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变B.2018年11月与2018年10月相比,全国居民消费价格降低0.3%C.2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是﹣0.4%D.2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率一直持续变大二、填空题(本题共16分,第11~15题每小题2分,第16~18题每小题2分)11.(2分)如图所示的网格式正方形网格,∠ABC∠DEF(填“>”,“=”或“<”)12.(2分)用四舍五入法将0.0586精确到千分位,所得到的近似数为.13.(2分)已知x=3是关于x的一元一次方程ax+b=0的解,请写出一组满足条件的a,b的值:a=,b=.14.(2分)若(x+1)2+|y﹣2020|=0,则x y=.15.(2分)《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章.《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为.16.(3分)我们把称为二阶行列式,且=ad﹣bc如:=1×(﹣4)﹣3×2=﹣10.(1)计算:=;(2)若=6,则m的值为.17.(3分)已知线段AB如图所示,延长AB至C,使BC=AB,反向延长AB至D,使AD=BC,点E是线段CD的中点.(1)依题意补全图形;(2)若AB的长为30,则BE的长为.18.(3分)一件商品的包装盒是一个长方体(如图1),它的宽和高相等.小明将四个这样的包装盒放入一个长方体大纸箱中,从上面看所得图形如图2所示,大纸箱底面长方形未被覆盖的部分用阴影表示.接着小明将这四个包装盒又换了一种摆放方式,从上面看所得图形如图3所示,大纸箱底面未被覆盖的部分也用阴影表示.设图1中商品包装盒的宽为a,则商品包装盒的长为,图2中阴影部分的周长与图3中阴影部分的周长的差为(都用含a的式子表示).三、计算题(本题共16分,每小题8分)19.(8分)计算:(1)(﹣5)+12﹣(﹣8)﹣21(2)20.(8分)计算:(1)(2)四、解答题(本题共35分,第24题4分,第26题6分,其余每小题5分)21.(5分)先化简,再求值:6y3+4(x3﹣2xy)﹣2(3y3﹣xy),其中x=﹣2,y=3.22.(5分)解方程:.23.(5分)解方程组:.24.(4分)24、已知:如图,O是直线AB上一点,OD是∠AOC的平分线,∠COD与∠COE互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整:证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=°∵OD是∠AOC的平分线∴∠AOD=∠(理由:)∴∠BOE=∠COE(理由:)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补25.(5分)某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在4×4的正方形网格中,黑色正方形表示数字1,白色正方形变式数字0.如图1是某个学生的身份识别图案.约定如下:把第i行,第j列表示的数字记为a ij(其中i,j=1,2,3,4),如图1中第2行第1列的数字a ij=0;对第i行使用公式A i=8a i1+4a i2+2a i3+a i4进行计算,所得结果A1表示所在年级,A2表示所在班级,A3表示学号的十位数字,A4表示学号的个位数字.如图1中,第二行A2=8×0+4×1+2×0+1=5,说明这个学生在5班.(1)图1代表的学生所在年级是年级,他的学号是;(2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案26.(6分)学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元.(1)篮球和足球的单价各是多少元?(2)实际购买时,正逢该商店进行促销.所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760元.请直接写出学校购买篮球和足球的个数各是多少.27.(5分)点O为数轴的原点,点A、B在数轴上的位置如图所示,点A表示的数为5,线段AB的长为线段OA长的1.2倍.点C在数轴上,M为线段OC的中点.(1)点B表示的数为;(2)若线段BM的长为4.5,则线段AC的长为;(3)若线段AC的长为x,求线段BM的长(用含x的式子表示).一、填空题(本题6分)28.观察下列等式,探究其中的规律并解答问题:(1)第4个等式中,k=;(2)写出第5个等式:;(3)写出第n个等式:(其中n为正整数)二、解答题(本题共14分,每小题0分)29.我们熟知的七巧板,是由宋代黄伯思设计的“燕几图”(“燕几”就是“宴几”,也就是宴请宾客的案几)演变而来.到了明代,严澄将“燕几图”里的方形案几改为三角形,发明了“蝶翅几”.而到了清代初期,在“燕几图”和“蝶翅几”的基础上,兼有三角形、正方形和平行四边形,能拼出更加生动、多样图案的七巧板就问世了(如图1网格中所示)(1)若正方形网格的边长为1,则图1中七巧板的七块拼板的总面积为.(2)使用图1中的七巧板可以拼出一个轮廓如图2所示的长方形,请在图2中画出拼图方法(要求:画出各块拼板的轮廓).(3)随着七巧板的发展,出现了一些形式不同的七巧板,如图3所示的是另一种七巧板.利用图3中的七巧板可以拼出一个轮廓如图4所示的图形;大正方形的中间去掉一个小正方形,请在图4中画出拼图的方法(要求:画出各块拼板的轮廓).30.对于平面内给定射线OA,射线OB及∠MON,给出如下定义:若由射线OA、OB 组成的∠AOB的平分线OT落在∠MON的内部或边OM、ON上,则称射线OA与射线OB关于∠MON内含对称.例如,图1中射线OA与射线OB关于∠MON内含对称.已知:如图2,在平面内,∠AOM=10°,∠MON=20°.(1)若有两条射线OB1,OB2的位置如图3所示,且∠B1OM=30°,∠B2OM=15°,则在这两条射线中,与射线OA关于∠MON内含对称的射线是;(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON 内含对称,设∠COM=x°,求x的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且0<t<60.若∠FOE的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON内含对称,直接写出t的取值范围.2019-2020学年北京市西城区七年级(上)期末数学试卷试题解析一、选择题(本题共30分,每小题3分)1.【答案】B解:﹣4的倒数是﹣.故选:B.2.【答案】B解:将3369000用科学记数法表示为3.369×106,故选:B.3.【答案】D解:A.5a与6b不是同类项,所以不能合并,故本选项不合题意;B.9a﹣a=8a,故本选项不合题意;D.3ab+8ab=7ab,正确,故本选项符合题意.故选:D.4.【答案】A解:点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是:两点之间,线段最短,故选:A.5.【答案】B解:A、由x﹣5=7,可得x=7+5,不符合题意;B、由8﹣2(3x+1)=x,可得8﹣6x﹣2=x,符合题意;C 、由x=﹣1,可得x=﹣6,不符合题意;D 、由=﹣3,可得2(x﹣1)=x﹣12,不符合题意,故选:B.6.【答案】A解:∵3a2﹣a=1,∴原式=2(3a2﹣a)﹣5=2﹣5=﹣3,故选:A.7.【答案】C解:∵﹣3<a<﹣2,∴|a|<3,∵a<8,b<0,∴选项②符合题意;∴b+c>0,∵b>a,∴选项④符合题意,故选:C.8.【答案】D解:A、∵|x|=7,∴x=±7,故本选项不符合题意.B、﹣a不是的数不一定是负数,本选项不符合题意.C、射线AB和射线BA不是同一条射线,本选项不符合题意.D、一个锐角的补角比这个角的余角大90°,正确,本选项符合题意,故选:D.9.【答案】C解:A、折叠后,圆不是与两个空白小正方形相邻,故与原正方体不符,故此选项错误;B、折叠后,圆与三角形成对面,与原正方体不符,故此选项错误;C、折叠后与原正方体相同,与原正方体符和,故此选项正确;D、折叠后,两个三角形的短边不是与两个空白小正方形相邻,与原正方体不符,故此选项错误.故选:C.10.【答案】D解:由统计图可知,2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变,故选项A合理;2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是﹣0.4%,故选项C合理;故选:D.二、填空题(本题共16分,第11~15题每小题2分,第16~18题每小题2分)11.【答案】见试题解答内容解:由图可得,∠ABC=45°,∠DEF<45°,∴∠ABC>∠DEF,故答案为:>.12.【答案】见试题解答内容解:0.0586≈0.059(精确到千分位).故答案为0.059.13.【答案】见试题解答内容解:把x=3代入关于x的一元一次方程ax+b=0得到3a+b=0,则一组满足条件的a,b的值:a=4,b=﹣3.故答案为:1,﹣3(答案不唯一).14.【答案】见试题解答内容解:∵(x+1)2+|y﹣2020|=0,∴x+1=0,y﹣2020=0,所以x y=(﹣1)2020=1.故答案为:1.15.【答案】见试题解答内容解:设有x个人,依题意,得:400x﹣3400=300x﹣100.故答案为:400x﹣3400=300x﹣100.16.【答案】见试题解答内容解:(1)=2×7﹣(﹣3)×6=28∴﹣4m﹣2×4=6,∴m=﹣5.故答案为:28、﹣5.17.【答案】见试题解答内容。

2020年北京市海淀区七年级上学期期末考试数学模拟试卷(附答案)

2020年北京市海淀区七年级上学期期末考试数学模拟试卷(附答案)

北京市海淀区七年级上学期期末考试数学模拟试卷一、选择题(本题共36分,每题3分) 1、—6的相反数是 A 、—6B 、6C 、61-D 、61 2、下列四个数中,最小的数是 A 、|—6| B 、—2C 、0D 、21-3、右图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是A B C D4、据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3 120 000吨,把数3 120 000用科学记数法表示为A 、51012.3⨯ B 、710312.0⨯ C 、5102.31⨯ D 、61012.3⨯5、若53=x 是关于x 的方程05=-m x 的解,则m 的值为 A 、3 B 、31 C 、-3 D 、31-6、如图,下列说法中不正确...的是 (A )直线AC 经过点A(B )射线DE 与直线AC 有公共点 (C )点B 在直线AC 上(D )直线AC 与线段BD 相交于点A 7、下列运算正确的是A 、42633=-a a B 、532532b b b =+ C 、b a ba b a 22245=- D 、ab b a =+8、将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是A B C D9、若α∠与β∠互为补角, β∠是α∠的2倍,则α∠为A 、30°B 、40°C 、60°D 、120°10、如图,直线AB 与CD 相交于点O ,OE 平分AOC ∠,且︒=∠140BOE ,则BOC ∠为 A 、140° B 、100° C 、80° D 、40°11、如图,从边长(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形ABCD (不重叠无缝隙),则AD 、AB 的长分别是 A 、3、2a+5B 、5、2a+8C 、5、2a+3D 、3、2a+212、在三角形ABC 中,AB=8,AC=9,BC=10.o P 为BC 边上的一点,在边AC 上取点1P ,使得01CP CP =。

2020-2021学年北京海淀区七年级上期末数学试卷

2020-2021学年北京海淀区七年级上期末数学试卷

2020-2021学年北京海淀区七年级上期末数学试卷
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)如图,能用∠1、∠ABC、∠B三种方法表示同一个角的是()A.B.
C.D.
【解答】解:A、∠1、∠ABC、∠B三种方法表示的是同一个角,故此选项正确;
B、∠1、∠AB
C、∠B三种方法表示的不一定是同一个角,故此选项错误;
C、∠1、∠ABC、∠B三种方法表示的不一定是同一个角,故此选项错误;
D、∠1、∠ABC、∠B三种方法表示的不一定是同一个角,故此选项错误;
故选:A.
2.(3分)“扶贫”是新时期党和国家的重点工作之一,为落实习近平总书记提出的“精准扶贫”战略构想,某省预计三年内脱贫1020000人,数字1020000用科学记数法可表示为()
A.1.02×106B.1.02×105C.10.2×105D.102×104
【解答】解:1020000=1.02×106.
故选:A.
3.(3分)如表是四个城市今年一月份某一星期的平均气温;其中,平均气温最低的城市是()
城市吐鲁番乌鲁木齐喀什阿勒泰气温(℃)﹣9﹣16﹣7﹣25 A.阿勒泰B.喀什C.吐鲁番D.乌鲁木齐
【解答】解:所给的数的大小顺序为﹣7>﹣9>﹣16>﹣25,
∴阿勒泰的气温最低,
故选:A.
第1 页共15 页。

解析版】北京市海淀区2020—2021学年七年级上期末数学试卷

解析版】北京市海淀区2020—2021学年七年级上期末数学试卷

解析版】北京市海淀区2020—2021学年七年级上期末数学试卷北京市海淀区2020-2021学年七年级上学期末数学试卷一、选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的。

请将正确选项前的字母填在表格中相应的位置。

1.-2的相反数是(。

)。

A。

-。

B。

-2.C。

2.D。

无法确定2.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重。

其中推进燃煤电厂脱硫改造 000千瓦是《政府工作报告》中确定的重点任务之一。

将数据15 用科学记数法表示为(。

)。

A。

15×10^6.B。

1.5×10^7.C。

1.5×10^8.D。

0.15×10^83.下列各式结果为正数的是()。

A。

-(-2)^2.B。

(-2)^3.C。

-|-2|。

D。

(-2)^44.下列运算正确的是()。

A。

5a+2a=7a。

B。

5a-2b=3abC。

5a-2a=3.D。

-ab^3+2ab^3=ab^35.如图,把原先弯曲的河道改直,A,B两地间的河道长度变短,如此做的道理是()。

A。

两点确定一条直线。

B。

两点确定一条线段C。

两点之间,直线最短。

D。

两点之间,线段最短6.从三个不同方向看一个几何体,得到的平面图形如图所示,则那个几何体是()。

A。

圆柱。

B。

圆锥。

C。

棱锥。

D。

球7.若2是关于x的方程x+a=-1的解,则a的值为()。

A。

-3.B。

2.C。

-2.D。

-68.有理数a,b在数轴上的位置如图所示,则下列各式成立的是()。

A。

b-a>0.B。

-b>aC。

a>-b。

D。

-ab<09.已知x-3y=3,则5-x+3y的值是()。

A。

8.B。

2.C。

-2.D。

-810.已知线段AB=6cm,若M是AB的三等分点,N是AM的中点,则线段MN的长度为()。

A。

1cm。

B。

2cm。

C。

1.5cm。

D。

1cm或2cm二、填空题(本大题共24分,每小题3分)11.比较大小:-2 ________ -3.12.写出一个解为1的一元一次方程 ________。

2020-2021学年北京市海淀区清华附中七年级上学期期末数学试卷(附答案解析)

2020-2021学年北京市海淀区清华附中七年级上学期期末数学试卷(附答案解析)

2020-2021学年北京市海淀区清华附中七年级上学期期末数学试卷一、选择题(本大题共11小题,共34.0分)1.下列各数中,与−的和为0的是()A. 3B. −3C. 3D.2.−51,|−4|,−(−7),|0|,−|−2|,负数共有()2A. 1个B. 2个C. 3个D. 4个3.若x=1是方程4−2x=ax的解,则a=()A. 1B. 2C. 3D. −14.下列运算正确的是()A. a2+b2=2a+2bB. (ab)2=a2b2C. a3+a2=a5D. 2a3⋅3a2=6a65.下列有理数的大小比较,正确的是()A. −2.9>3.1B. −10>−9C. −4.3<−3.4D. 0<−206.用科学记数法表示316000000为()A. 3.16×107B. 3.16×108C. 31.6×107D. 31.6×1067.如图,能判定AB//CD的条件是()A. ∠1=∠3B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°8.若|x−2|与(y−1)2互为相反数,则多项式−y−(x2+2y2)的值为()A. −7B. 5C. −5D. −139.给出下列五个命题:①对角线相等的平行四边形是矩形;②平分弦的直径垂直弦,并且平分弦所对的两条弧;③三点确定一个圆;④相邻的两个角都互补的四边形是平行四边形;⑤相等的圆心角所对的弦相等,所对的弧也相等,其中正确的命题有()个.A. 0B. 1C. 2D. 310.当x=3时,整式px3+qx+1的值等于2012,那么当x=−3时,整式px3+qx+1的值为()A. 2013B. −2012C. 2014D. −201011.如图,点C是AB的中点,点D是BC的中点,则下列等式中正确的有()AB.①CD=AD−DB;②CD=AD−BC;③BD=2AD−AB;④CD=13A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共12小题,共32.0分)12.单项式9x m y2与单项式4x3y n是同类项,则m+n=______.13.有一个正六面体骰子放在桌面上,将骰子沿如图所示顺时针方向滚动,每滚动90°算一次,则滚动第2022次后,骰子朝下一面的数字是______.14.关于x的方程是一元一次方程,则k=.15.如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展开后,得折痕AD,BE(如图①),点O为其交点.如图②,若P,N分别为BE,EC上的动点.如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值=______.16.若∠α的余角是60°,则cosα的值是______.17.如图所示,△ABC中∠C=80°,AC边上有一点D,使得∠A=∠ABD,将△ABC沿BD翻折得△A′BD,此时A′D//BC,则∠ABC=______度.18.在△ABC中,AC=5,BC=12,AB=13,则△ABC的面积为=______ .19.Rt△ABC中,∠ACB=90°,CA=CB,斜边AB=5cm,斜边上的高CD=______cm.20.如图,已知DE//BC,CD是∠ACB的平分线,∠BDC=88°,∠AED=40°,那么∠B等于______.21.如图,直三棱柱ABC−A1B1C1的底面为正三角形,且主视图是边长为4的正方形,则此直三棱柱左视图的面积为______ .22.数学课上,同学提出如下问题:如何证明“两直线平行,同位角相等”?老师说这个证明可以用反证法完成,思路及过程如下:如图1,我们想要证明“如果直线AB,CD被直线所截EF,AB//CD,那么∠EOB=∠EO′D.”如图2,假设∠EOB≠∠EO′D,过点O作直线A′B′,使∠EOB′=∠EO′D,依据基本事实______,可得A′B′//CD.这样过点O就有两条直线AB,A′B′都平行于直线CD,这与基本事实______矛盾,说明∠EOB≠∠EO′D的假设是不对的,于是有∠EOB=∠EO′D.请补充上述证明过程中的两条基本事实.23.中国蛟龙号从海拔−6542m的地方继续下潜了471m,此时它位于海拨______m处.三、计算题(本大题共1小题,共4.0分)24.已知M=3a2+4ab−1,N=a2−2ab−1,.(1)用含a,b的代数式表示M−3N;(2)若a,b满足(a−1)2+|b−2|=0,求M−3N的值.四、解答题(本大题共8小题,共50.0分)25.已知a、b互为相反数,c、d互为倒数.且|m|=2,求3a−5m+3b−(cd)2013的值.26. 解方程:(1)3x+1=x+9;(2)2x−12+1=5x+23.27. 如图,AB=4cm,∠ACB=45°.(1)尺规作图:作△ABC的外接圆(不要求写作法,保留作图痕迹);(2)在(1)的条件下,若弦AB和其所对的劣弧所围成图形的面积为S,求S的值.28. 如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+(c−9)2=0.若点A与点B之间的距离表示为AB=|a−b|,点B与点C之间的距离表示为BC=|b−c|,点B在点A、C之间,且满足BC=2AB.(1)a=______,b=______,c=______;(2)若点P为数轴上一动点,其对应的数为x,当代数式|x−a|+|x−b|+|x−c|取得最小值时,此时x=______,最小值为______.(3)动点M从A点位置出发,沿数轴以每秒1个单位的速度向终点C运动,设运动时间为t秒,当点M运动到B点时,点N从A点出发,以每秒2个单位的速度沿数轴向C点运动,N点到达C点后,再立即以同样的速度返回,运动到终点A.问:在点N开始运动后,M、N两点之间的距离能否为2个单位?如果能,请求出运动的时间t的值以及此时对应的M点所表示的数:如果不能,请说明理由.29. 甲、乙、丙三地位置如图所示,甲、乙两地相距30km,丙地离甲地足够远,小明骑自行车从甲地往丙地,小军骑自行车从乙地往丙地,小明的速度为5km/ℎ,小军的速度为15km/ℎ.问:两人同时出发多长时间后相距20km?30. 如图,在△ABC中,∠1=∠2,ED//BC、CD⊥AB于点D.。

2020-2021学年北京市海淀区清华附中七年级(上)期末数学试卷(附答案详解)

2020-2021学年北京市海淀区清华附中七年级(上)期末数学试卷(附答案详解)

2020-2021学年北京市海淀区清华附中七年级(上)期末数学试卷1.下面四个几何体中,主视图为三角形的是()A. B. C. D.2.若a+3=0,则a的倒数是()A. 3B. 13C. −13D. −33.若2是关于x的方程12x+a=−1的解,则a的值为()A. 0B. 2C. −2D. −64.下列各式中运算正确的是()A. a2b−ab2=0B. x+x=x2C. 2b3+2b2=4b5D. 2a2−3a2=−a25.如图,数轴上两点M,N所对应的实数分别为m,n,则m−n的结果可能是()A. −1B. 1C. 2D. 36.已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A. 5B. 6C. 5或6D. 5或6或77.如图,在下列给出的条件中,可以判定AB//CD的有()①∠1=∠2;②∠1=∠3;③∠2=∠4;④∠DAB+∠ABC=180°;⑤∠BAD+∠ADC=180°.A. ①②③B. ①②④C. ①④⑤D. ②③⑤8.如果|m−3|+(n+2)2=0,那么n m的值为()9.下面命题:①同位角相等;②对顶角相等;③若x2=y2,则x=y;④互补的角是邻补角.其中真命题有()个.A. 1B. 2C. 3D. 410.当x=2时,整式ax3+bx−1的值等于−100,那么当x=−2时,整式ax3+bx−1的值为()A. 100B. −100C. 98D. −9811.若−32x a−1y4与12y b+1x2是同类项,则a+b的值为______ .12.如图是一个正方体的展开图,如果正方体相对的两个面所标注的值均互为相反数,则字母x+y的值为______ .13.已知方程(a−2)x|a|−1=1是关于x的一元一次方程,则a=______ .14.如图,四边形ABCD为一条长方形纸带,AB//CD,将四边形ABCD沿EF折叠,A、D两点分别为A′、D′对应,若∠1=∠2,则∠AEF的度数为______ .15.若∠α=10°45′,则∠α的余角的大小为______ .16.如图,AB//CD,∠A=25°,∠C=70°,则∠E=______ .17.如图,已知△ABC,通过测量、计算得△ABC的面积约为______cm2.(结果保留一位小数)18.一副直角三角板叠放如图所示,现将含30°角的三角板ABC固定不动,把含45°角的三角板ADE绕顶点A顺时针转动,若0°<∠BAD<180°,要使两块三角板至少有一组互相平行,则符合要求的∠BAD的值为______ .19.计算:(1)8−|−5|+(−5)×(−3);(2)−12021−3.5÷78×(−14).20.解方程:(1)3x+4(1−x)=5;(2)2x+16=1−x−13.21.先化简,再求值:3(x2y−2y2)−(2x2y−6y2),其中x=−2,y=1.22.如图,已知P,A,B三点,按下列要求完成画图和解答.(1)作直线AB;(2)连接PA,PB,用量角器测量∠APB=______ .(3)用刻度尺取AB中点C,连接PC;(4)过点P画PD⊥AB于点D;(5)根据图形回答:在线段PA,PB,PC,PD中,最短的是线段______ 的长度.理由:______ .23.列方程解应用题:一列火车匀速行驶,经过一条长420米的隧道需要15秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是5秒,求这列火车的长度.24.已知线段AB=12cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,求线段AM的长.25.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.26.定义:对于一个有理数x,我们把{x}称作x的相伴数;若x≥0,则{x}=12x−1;若x<0,则{x}=−12x+1.例:{1}=12×1−1=−12.(1)求{32},{−1}的值;(2)当a>0,b<0时,有{a}={b},试求代数式(a+b)2−2a−2b的值.27.如图1,OA⊥OB,∠COD=60°.∠AOD,求∠AOD的度数;(1)若∠BOC=37(2)若OC平分∠AOD,求∠BOC的度数;(3)如图2,射线OB与OC重合,若射线OB以每秒15°的速度绕点O逆时针旋转,同时射线OC以每秒10°的速度绕点O顺时针旋转,当射线OB与OA重合时停止运动.设旋转的时间为t秒,请直接写出图中有一条射线平分另外两条射线所夹角时t 的值.28.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A. −3B. −2C. −1D. 1∠EAB,∠ECF=29.如图:AB//CD,AE⊥CE,∠EAF=131∠ECD,则∠AFC=______ .330. 如图所示的网格是正方形网格,A ,B ,C ,D 是网格线的交点.我们晓观数学发现△ABD 的面积与△ABC的面积相等,则这样的点D(不包含C)共有______ 个.31. 在同一平面内有2021条直线a 1,a 2,a 3,…,a 2021,如果a 1⊥a 2,a 2//a 3,a 3⊥a 4,a 4//a 5,…,那么a 1与a 5的位置关系是______ ;a 1与a 2021的位置关系是______ .32. 取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明,但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:5→×3+116→÷28→÷24→÷22→÷21.如果自然数m 经过7步运算可得到1,则所有符合条件的m 的值为______ .答案和解析1.【答案】B【解析】【分析】本题考查了简单几何体的三视图,从正面看得到的图形是主视图.根据主视图是从正面看得到的图形,可得答案.【解答】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.2.【答案】C【解析】解:∵a+3=0,∴a=−3,则a的倒数是:−1.3故选:C.直接利用倒数的定义、相反数的定义分析得出答案.此题主要考查了倒数和相反数,正确掌握相关定义是解题关键.3.【答案】C【解析】解:把x=2代入方程得:1+a=−1,解得:a=−2,故选C把x=2代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.【答案】D【解析】解:A、a2b与ab2不是同类项,所以不能合并,故本选项不合题意;B、x+x=2x,合并同类项错误,故本选项不合题意;C、2b3与2b2不是同类项,所以不能合并,故本选项不合题意;D、2a2−3a2=−a2,合并同类项正确,故本选项符合题意.故选:D.分别根据合并同类项法则对各个选项逐一判断即可.本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.合并同类项时,系数相加减,字母及其指数不变.5.【答案】C【解析】【分析】本题考查了实数与数轴,利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.根据在数轴上表示的两个实数,右边的总比左边的大可得−2<n<−1<0<m<1,m−n的结果可能是2.【解答】解:∵M,N所对应的实数分别为m,n,∴−2<n<−1<0<m<1,∴m−n的结果可能是2.故选:C.6.【答案】C【解析】解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【答案】D【解析】解:①∠1=∠2不能判定AB//CD,不符合题意;②∵∠1=∠3,∴AB//CD,符合题意;③∵∠2=∠4,∴AB//CD,符合题意;④∠DAB+∠ABC=180°;不能判定AB//CD,不符合题意;⑤∵∠BAD+∠ADC=180°,∴AB//CD,符合题意.故选:D.根据平行线的判定定理对各选项进行逐一判断即可.本题考查的是平行线的判定,正确掌握平行线的判定方法是解题关键.8.【答案】A【解析】解:因为|m−3|+(n+2)2=0,所以m−3=0,n+2=0,解得m=3,n=−2,所以n m=(−2)3=−8,故选:A.根据非负数的性质求出m、n的值,再代入计算即可.本题考查非负数偶次幂、绝对值的性质,求出m、n的值是解决问题的关键.9.【答案】A【解析】解:①两直线平行,同位角相等,原命题是假命题;②对顶角相等,是真命题;③若x2=y2,则x=y或x=−y,原命题是假命题;④互补的角不一定是邻补角,原命题是假命题;故选:A.根据平行线的性质、对顶角、等式的性质和邻补角判断解答即可.和邻补角,难度不大.10.【答案】C【解析】解:∵当x=2时,整式ax3+bx−1的值为−100,∴8a+2b−1=−100,即8a+2b=−99,则当x=−2时,原式=−8a−2b−1=99−1=98.故选:C.将x=2代入整式,使其值为−100,列出关系式,把x=−2代入整式,变形后将得出的关系式代入计算即可求出值.本题考查了代数式的求值,正确变形并整体代入,是解题的关键.11.【答案】6【解析】解:根据题意,得a−1=2,b+1=4,解得a=3,b=3,所以a+b=3+3=6.故答案为:6.根据同类项是字母相同,且相同的字母的指数也相同,可得a、b的值,根据有理数的加法,可得答案.本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.12.【答案】−3【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“2”是相对面,“y”与“1”是相对面,∵相对面上所标的两个数互为相反数,∴x=−2,y=−1,∴x+y=−2−1=−3.故答案为:−3.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再根据相对面上的两个数互为相反数,求出x、y的值,然后代入代数式计算即可得解.本题考查了正方体相对两个面上的文字.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.13.【答案】−2【解析】解:∵方程(a−2)x|a|−1=1是关于x的一元一次方程,∴|a|−1=1且a−2≠0,解得a=−2.故答案是:−2.由一元一次方程的定义得到|a|−1=1且a−2≠0,由此求得a的值.本题考查了一元一次方程的概念和解法,解题的关键在于了解一元一次方程的未知数的指数为1.14.【答案】60°【解析】解:由翻折的性质可知:∠AEF=∠FEA′,∵AB//CD,∴∠AEF=∠2,设∠1=x,则∠AEF=∠1=∠FEA′=x,∵∠AEB=180°,∴3x=180°,∴x=60°,∴∠AEF=60°.故答案为:60°.由题意∠1=∠2,设∠2=x,易证∠AEF=∠1=∠FEA′=x,构建方程即可解决问题.本题考查平行线的性质,翻折变换等知识,解题的关键是学会利用参数解决问题.15.【答案】79°15′【解析】解:∠a的余角=90°−10°45′=89°60′−10°45′=79°15′.故答案为:79°15′.用90°减去这个角即可.本题主要考查的是余角的定义、度分秒的换算,将90°转化为89°60′是解题的关键.16.【答案】45°【解析】解:∵AB//CD,∴∠1=∠C=70°,∴∠E=∠1−∠A=70°−25°=45°,故答案为:45°.根据平行线性质得出∠1=∠C=70°,根据三角形外角性质求出∠E即可.本题考查了三角形的外角性质,平行线的性质的应用,注意:两直线平行,同位角相等.17.【答案】2.6【解析】【分析】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB≈2.6cm,CD≈2cm,∴S△ABC=12AB⋅CD=12×2.6×2≈2.6(cm2).故答案为2.6.18.【答案】45°或90°或120°【解析】解:当AE//BC时,∠BAD=45°,当DE//AB时,∠BAD=90°,当DE//AC时,∠BAD=120°,综上所述,满足条件的∠BAD的值为45°或90°或120°.故答案为:45°或90°或120°.分两种情形:DE//AB,DE//AC分别求解即可.本题考查旋转变换,平行线的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题.19.【答案】解:(1)8−|−5|+(−5)×(−3)=8−5+15=18;(2)−12021−3.5÷78×(−14)=−1−72×87×(−14)=−1+1=0.【解析】(1)根据有理数的加减法和乘法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.【答案】解:(1)去括号得:3x+4−4x=5,移项得:3x−4x=5−4,合并得:−x=1,解得:x=−1;(2)去分母得:2x+1=6−2(x−1),去括号得:2x+1=6−2x+2,移项得:2x+2x=6+2−1,合并得:4x=7,解得:x=74.【解析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解本题的关键.21.【答案】解:原式=3x2y−6y2−2x2y+6y2=x2y,当x=−2,y=1时,原式=(−2)2×1=4.【解析】根据整式的加减进行化简,然后代入值计算即可.本题考查了整式的加减−化简求值,解决本题的关键是掌握整式加减运算法则.22.【答案】90°PD垂线段最短【解析】解:(1)如图,直线AB即为所求作.(2)测量可知,∠APB=90°.故答案为:90°.(3)如图,线段PC即为所求作.(4)如图,线段PD即为所求作.(5)根据垂线段最短可知,线段PD最短,故答案为:PD,垂线段最短.根据要求一一画出图形即可解决问题.本题考查作图−复杂作图,直线,射线,线段等知识,解题的关键是理解题意,灵活运用所学知识解决问题.23.【答案】解:设这列火车的长度为x米,根据题意可知:x+42015=x5,解得x=210,答:这列火车的长度为210米.【解析】设这列火车的长度为x米,根据经过一条长420米的隧道需要15秒的时间,灯光照在火车上的时间是5秒,以及火车的速度不变,列出方程求解即可.本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.【答案】解:(1)当点C在线段AB上时,如图1,∵AB=12cm,BC=6cm,∴AC=AB−BC=6cm,∵M是AC的中点,AC,∴AM=12∴AM=1×6cm=3cm;2(2)当点C在线段AB的延长线上时,如图2,∵AB=12cm,BC=6cm,∴AC=AB+BC=18cm,∵M是AC的中点,∴AM=1AC,2×18cm=9cm,∴AM=12∴线段AM的长为3cm或9cm.AC求出即可.【解析】根据题意画出符合条件的两种情况,求出AC的长,根据AM=12本题考查了两点间的距离的应用,注意:在求解没有图形的几何题时,应根据题意画图,同时注意图形的多样性,以免漏解.25.【答案】证明:∵AD⊥BC于点D,EC⊥BC于点C,∴AD//EC,∴∠BAD=∠E,∠DAC=∠ACE,∵∠ACE=∠E,∴∠BAD =∠DAC ,即AD 平分∠BAC .【解析】根据平行线的性质和判定解答即可.此题考查平行线的判定和性质,关键是根据平行线的判定得出AD//EC 解答.26.【答案】解:(1){32}=12×32−1=−14,{−1}=−12×(−1)+1=32;(2)a >0,b <0,{a}={b},即12a −1=−12b +1,解得:a +b =4,故(a +b)2−2a −2b =(a +b)2−2(a +b)=42−8=8.【解析】(1)根据对称数的定义求得即可;(2)由对称数的定义化简,然后代入代数式确定即可.本题考查了代数式求值,能够根据相伴数的概念化简是解题的关键.27.【答案】解:(1)∵∠COD =60°,∴∠BOC =∠COD −∠BOD =60°−∠BOD ,∵OA ⊥OB ,∴∠AOB =90°,∴∠BOD =∠AOD −∠AOB =∠AOD −90°,∴∠BOC =60°−∠BOD =60°−(∠AOD −90°)=150°−∠AOD ,∵∠BOC =37∠AOD , ∴150°−∠AOD =37∠AOD , 解得:∠AOD =105°,故∠AOD 的度数是105°;(2)∵OC 平分∠AOD ,∠COD =60°,∴∠AOC =∠COD =60°,∴∠AOD =∠AOC +∠COD =60°+60°=120°,∴∠BOD =∠AOD −∠AOB =120°−90°=30°,∴∠BOC =∠COD −∠BOD =60°−30°=30°,故∠BOC 的度数是30°;(3)根据题意,可得:∠AOD =90°+60°=150°,∠AOB =90°−15°t ,∠AOC =90°+10°t ,当OB 与OA 重合时,∠AOB =0°,即0°=90°−15°t ,解得:t =6,此时,∠AOC =90°+10°t =90°+10°×6=150°=∠AOD ,即OC 与OD 重合, ∴当OB 与OA 重合时,OC 与OD 也重合,此时停止运动,∴分三种情况讨论:①当OB 平分∠AOD 时:∵∠AOB =12∠AOD =12×150°=75°, ∴90°−15°t =75°,解得:t =1;②当OC 平分∠BOD 时:∠BOC =∠AOC −∠AOB =(90°+10°t)−(90°−15°t)=25°t ,∠COD =∠AOD −∠AOC =150°−(90°+10°t)=60°−10°t ,解得:t =127;③当OB 平分∠AOC 时:由②知,∠BOC =25°t ,∵∠AOB =∠BOC ,∴90°−15°t =25°t ,解得:t =94.综上,图中有一条射线平分另外两条射线所夹角时t 的值为1或127或94.【解析】(1)根据角的和差表示出∠BOC =60°−∠BOD =60°−(∠AOD −90°)=150°−∠AOD ,由已知条件可得方程,解方程即可得∠AOD 的度数;(2)根据角平分线的定义得∠AOC =∠COD =60°,∠AOD 的度数,根据角的和差可得∠BOD 的度数,即可求得∠BOC 的度数;(3)根据题意求出OB 与OA 重合时,OC 与OD 也重合,此时停止运动,然后分三种情况讨论即可求解.此题主要考查角的计算,角平分线的性质与一元一次方程的应用,解题的关键是根据题意找到等量关系求解.28.【答案】A【解析】【分析】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键,属于基础题.根据CO=BO可得点C表示的数为−2,据此可得a=−2−1=−3,解之即可.【解答】解:易得点C在原点的左侧,且CO=BO,且点B表示2,∴点C表示的数为−2,∵将点A向右平移1个单位长度得到点C,∴a=−2−1=−3.故选:A.29.【答案】60°【解析】解:连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,∵AB//CD,∴∠BAC+∠ACD=180°,∴∠CAE+3x+∠ACE+3y=180°,∴∠CAE+∠ACE=180°−(3x+3y),∠FAC+∠FCA=180°−(2x+2y)∴∠AEC=180°−(∠CAE+∠ACE)=180°−[180°−(3x+3y)]=3x+3y=3(x+y),∠AFC=180°−(∠FAC+∠FCA)=180°−[180°−(2x+2y)]=2x+2y=2(x+y),∵AE⊥CE,∴∠AEC=90°,∴∠AFC=23∠AEC=23×90°=60°.故答案为:60°.连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°−(2x+2y),求出∠AEC=2(x+y),∠AFC═2(x+y),即可得出答案.本题考查了平行线的性质和三角形内角和定理的应用,根据题意作出辅助线,构造出三角形,利用三角形内角和定理求解是解答此题的关键.30.【答案】5【解析】解:如图,满足条件的D点有5个.故答案为5.在AB的两侧作AB的平行线,且到AB的距离等于C点到AB的距离,则这两直线上的格点为D点.本题考查了三角形的面积,掌握三角形的面积公式是本题的关键.31.【答案】平行平行【解析】解:如图,a1⊥a2,a2//a3,a3⊥a4,a4//a5,…,∴a1⊥a2,a1⊥a3,a1//a4,a1//a5,依此类推,a1⊥a6,a1⊥a7,a1//a8,a1//a9,∴2021÷4=505…1,∴a1//a2021.故答案是:平行;平行.根据平行线的性质和规律得到:4条直线的位置关系为一个循环.本题考查了平行线的性质,解题的关键是找到在同一平面内有2021条直线的位置关系的规律.32.【答案】21或128【解析】解:当m为奇数时,经过第1次运算可得3m+1,而(3m+1)是偶数,再经过6次计算可得,3m+1=1,26解得,m=21,当m为偶数时,经过7次运算可得,m=1,27解得m=128,故答案为:21或128.根据m为奇数和偶数分别进行解答即可.本题考查有理数的运算,掌握运算结果的奇偶性以及每次运算结果的规律性是正确解答的关键.第21页,共21页。

2020-2021学年北京市海淀区七年级上学期期末数学试卷(附解析)

2020-2021学年北京市海淀区七年级上学期期末数学试卷(附解析)

2020-2021学年北京市海淀区七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.如图,已知点M是直线AB上一点,∠AMC=52°48′,∠BMD=72°19′,则∠CMD等于()A. 49°07′B. 54°53′C. 55°53′D. 53°7′2.据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为()A. 2.78×106B. 27.8×106C. 2.78×105D. 27.8×1053.下列说法:①−a是负数;②−2的倒数是−1;③−(−3)的相反数是−3;④绝对值等于2的2数2.其中正确的是()A. 1个B. 2个C. 3个D. 4个4.下面的式子,正确的是()A. 3a2+5a2=8a4B. 5a2b−6ab2=−abC. 2x+3y=5xyD. 6xy−9xy=−3xy5.若关于x的一元一次方程2x+3a=1的解为x=2,则关于m的一元一次不等式3−m>a的解集为()A. m<2B. m<4C. m>2D. m>46.有下列说法:①任何无理数都是无限小数;②有理数与数轴上的点一一对应;③√3是3的平方根;④在1和3之间的无理数有且只有√2,√3,√5,√7这4个;⑤π是分数,它是有理数,2⑥1+√6是多项式.其中正确的个数是()A. 1B. 2C. 3D. 47.江苏卫视《一站到底》栏目中,有一期的题目如图,两个天平都保持平衡,则三个球体的重量等于()个正方体的重量.A. 2B. 3C. 4D. 58.某人在点A处看点B在北偏东40°的方向上,看点C在北偏西35°的方向上,则∠BAC的度数为()A. 65°B. 75°C. 40°D. 35°9.若一个三角形的两边长分别为4和7,则第三边长可能是()A. 2B. 3C. 10D. 1110.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.二、填空题(本大题共8小题,共16.0分)11. 如果全班某次数学成绩的平均分是84分,某同学得了85分,记作+1分,那么−5分表示的是______分.12. 写出一个与5x 2y 是同类项且系数为负数的单项式:______.13. 转换角的单位:1.6°=______,48°15′−30°45′=______.14. 如果等腰三角形的两条边长分别等于4厘米和8厘米,那么这个等腰三角形的周长等于______厘米.15. 在运动会中,一班总成绩为m 分,二班比一班总成绩的23还多5分,用含有m 的代数式表示二班的总成绩为______ .16. 如果点C 在线段AB 上,下列表达式:①AC =12BC ;②AB =2BC ;③AC =BC ;④AC +BC =AB 中,能表示C 是线段AB 中点的有______ 个.17. 代数式2x 2−4x +7的值为9,则2x −x 2+6的值为______ .18. 两年前生产某种药品的成本是5000元,现在生产这种药品的成本是3000元,设平均每年降价的百分率为x ,根据题意列出的方程是______.三、计算题(本大题共1小题,共8.0分)19. 涟水外国语中学七年级同学在学习完《有理数》后,对运算产生了浓厚的兴趣.为庆祝“国庆节”,他们借助有理数的运算,定义了一种新运算“−”,规则如下:(1)求(−2)−(−3)的值;(2)试用学习有理数的经验和方法来探究这种新运算“−”是否具有交换律?请写出你的探究过程.四、解答题(本大题共8小题,共46.0分)20. 解方程:(x +14)2−(x +14)(x −14)=14.21. 先化简再求值:(1)−a 2b+(2ab 2−a 2b)−2(2ab 2−a 2b),其中a=−1,b=−2.(2)22. 按要求画图:(1)如图1,平面上有五个点A,B,C,D,E,按下列要求画出图形.①连接BD;②画直线AC交BD于点M;③画出线段CD的反向延长线;④请在直线AC上确定一点N,使B,E两点到点N的距离之和最小,并写出画图的依据.(2)有5个大小一样的正方形制成如图2所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注意:只需添加一个符合要求的正方形,并用阴影表示.)23. 某地电话拨号入网有两种收费方式,用户可任选其一(A)计时制:0.05元/分;(B)包月制:40元/月(限一部个人住宅电话上网)此外,每一种上网方式都得加收通信费0.02元/分,(1)某用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户应该支付的费用:(2)若某用户估计一个月上网时间是50小时,他应该选择哪一种方式.24. 某学校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,甲种方式:收制版费6元,每印一份收印刷费0.1元;乙种方式:没有制版费,每印一份收印刷费0.12元,若数学学案需印刷x份.(1)填空:按甲种收费方式应收费________________ 元,按乙种收费方式应收费________________ 元;(2)若该校一年级需印500份,选用哪种印刷方式合算?(3)印刷多少份时,甲、乙两种收费方式一样多?25. 已知有理数a,b,c在数轴上的位置如图所示.(1)用“>”或“<”填空:b−a______ 0,c−b______ 0,a+b______ 0;(2)化简:|b−a|−|c−b|+|a+b|.26. 如图,AB、CD交于点O,∠AOE=4∠DOE,∠AOE的余角比∠DOE小10°(题中所说的角均是小于平角的角).(1)求∠AOE的度数;(2)请写出∠AOC在图中的所有补角;(3)从点O向直线AB的右侧引出一条射线OP,当∠COP=∠AOE+∠DOP时,求∠BOP的度数.27. 已知A、B、C三个数集,每一个数集中所包含的数都写在各自的大括号内,请把这些数填在图圈内相应的位置.A:{−2,−3,−8,6,7,…}B:{−3,−5,1,2,6,…}C:{−1,−3,−8,2,5,…}.参考答案及解析1.答案:B解析:此题考查了角的计算,掌握平角的定义是本题的关键,是一道基础题,根据∠AMC=52°48′,∠BMD= 72°19′和∠CMD=180°−∠AMC−∠BMD,代入计算即可.解:∵∠AMC=52°48′,∠BMD=72°19′,∴∠CMD=180°−∠AMC−∠BMD=180°−52°48′−72°19′=54°53′,故选B.2.答案:C解析:解:将27.8万用科学记数法表示为2.78×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.答案:B解析:解:①−a不一定是负数,错误;②−2的倒数是−1,正确;2③−(−3)的相反数是−3,正确;④绝对值等于2的数是±2,错误;故选:B.利用负数,倒数,相反数以及绝对值的意义判断即可.此题考查了负数,倒数,相反数以及绝对值的意义,熟练掌握定义是解本题的关键.4.答案:D解析:解:A、3a2+5a2=8a2,原计算错误,故此选项不符合题意;B、5a2b与6ab2不是同类项,不能合并,原计算错误,故此选项不符合题意;C、2x与3y不是同类项,不能合并,原计算错误,故此选项不符合题意;D、6xy−9xy=−3xy,原计算正确,故此选项符合题意.故选:D.先判断是否是同类项,再进行合并同类项即可.此题考查了合并同类项,熟练掌握合并同类项法则是解题的关键.5.答案:B解析:解:把x=2代入方程得:2x+3a=1,解得:a=−1,∴一元一次不等式为3−m>−1,解得m<4,故选:B.把x=2代入方程计算即可求出a的值,即可得到关于m的一元一次不等式3−m>−1,解不等式即可求得解集.此题考查了一元一次方程的解以及解一元一次不等式,方程的解即为能使方程左右两边相等的未知数的值.6.答案:B解析:本题考查了实数,利用无理数的意义,实数与数轴的关系是解题关键.根据无理数的意义,实数与数轴的关系,可得答案.解:①任何无理数都是无限小数,故①符合题意;②实数与数轴上的点一一对应,故②不符合题意;③√3是3的平方根,故③符合题意;④在1和3之间的无理数有无数个,故④不符合题意;⑤π是无理数,故⑤不符合题意;2⑥1+√6是无理数,故⑥不符合题意;故选B.7.答案:D解析:解:设一个球体重x,圆柱重y,正方体重z.z,根据等量关系列方程2x=5y;2z=3y,消去y可得:x=53则3x=5z,即三个球体的重量等于五个正方体的重量.故选:D.由图可知:2球体的重量=5圆柱体的重量,2正方体的重量=3圆柱体的重量.可设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程即可得出答案.本题主要考查了等式的性质,此题的关键是找到球,正方体,圆柱体的关系.8.答案:B解析:解:如图所示:∵某人在A处看点B在北偏东40°的方向上,看点C在北偏西35°的方向上,∴∠BAD=40°,∠CAD=35°,∴∠BAC=∠BAD+∠CAD=40°+35°=75°.故选:B.根据方位角的概念画出图形,再根据已知结合角的和差关系求解.本题考查了方向角,解答此类题关键是需要从运动的角度,正确画出方位角,再结合角的和差关系求解.9.答案:C解析:解:设第三边的长为l,则7−4<l<7+4,即3<l<11,故选:C.设第三边的长为l,再根据三角形的三边关系进行解答即可.本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边;任意两边之差小于第三边.10.答案:D解析:本题主要考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.根据正方体的表面展开图进行分析解答即可.解:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,正面的图的斜线方向相反,故C错误,只有D选项符合条件,故选:D.11.答案:79解析:解:如果全班某次数学成绩的平均分是84分,某同学得了85分,记作+1分,那么−5分表示的是79分.故答案为:79.根据全班某次数学成绩的平均分是84分,某同学得了85分,记作+1分,可以得到−5分表示的分数.本题考查正数和负数,解答本题的关键是明确正负数在题目中的实际意义.12.答案:−4x2y(答案不唯一)解析:解:同类项是指字母相同,并且相同字母的次数也相同.与5x2y是同类项且系数为负数的单项式,可以是:−4x2y.故答案为:−4x2y(答案不唯一).根据单项式系数及同类项的定义进行解答即可.本题考查的是单项式系数及同类项的定义,单项式中的数字因数叫做单项式的系数,同类项是指字母相同,并且相同字母的次数也相同.13.答案:1°36′17°30′解析:解:1.6°=1°36′,48°15′−30°45′=17°30′.故答案是:1°36′;17°30′.根据度分秒间的进制单位是60解答.考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法.14.答案:20解析:解:当4厘米是腰时,则4+4=8,不能组成三角形,应舍去;当8厘米是腰时,则三角形的周长是4+8×2=20(厘米).故答案为:20.分两种情况讨论:当4厘米是腰时或当8厘米是腰时.根据三角形的三边关系,知4,4,8不能组成三角形,应舍去.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.此类题不要漏掉一种情况,同时注意看是否符合三角形的三边关系.m+515.答案:23m+5.解析:解:由题意得:二班的总成绩=23m+5.故答案为:23×一班成绩+5,根据题意列代数式即可.二班的总成绩=23本题考查了列代数的知识,解答本题的关键是读懂题意,找到所求的量的等量关系.16.答案:2解析:解:如图,C为AB的中点,则有②AB=2BC;③AC=BC这2个正确.故答案为:2.利用线段中点的意义:在线段上平分线段的点,画出图形判定即可.此题考查线段中点的意义,注意结合图形,直观理解.17.答案:5解析:解:∵2x2−4x+7=9,即x2−2x=1,∴原式=−(x2−2x)+6=−1+6=5.故答案为:5.根据题意求出x2−2x的值,原式变形后代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.答案:5000(1−x)2=3000解析:解:设平均每年降价的百分率为x,由题意得,5000(1−x)2=3000.故答案为:5000(1−x)2=3000.设平均每年降价的百分率为x,根据题意可得,两年前的生产成本×(1−降价百分率)2=现在的生产成本,据此列方程即可.本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.19.答案:(1)2;(2)(−2)−(−3)=2,则(−3)−(−2)=(−3)×(−2)+2×(−3)=6−6=0,因为2≠0,所以这种新运算“−”不具有交换律。

20192020学年北京市海淀区七年级上期末数学考试题含

20192020学年北京市海淀区七年级上期末数学考试题含

2021-2021 学年北京市海淀区七年级上期末数学考试题含答案数学.1学校班级姓名成绩一、选择题〔此题共36 分,每题3 分〕在以下各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置 .1.根据国家旅游局数据中心综合测算,今年国庆期间全国累计旅游收入4 822 亿元,用科学记数法表示 4 822 亿正确的选项是A . 4822108B . 11C. 10D . 10122.从正面观察如图的两个立体图形,得到的平面图形是3.假设a 3 0 ,那么a的相反数是A .3B .1 13C.D.3 34.将以下平面图形绕轴旋转一周,可得到图中所示的立体图形的是5.以下运算结果正确的选项是A. 5x x 5B. 2x2 2x3 4 x5C. 4b b 3bD. a2b ab2 01 / 106. 西山隧道段是上庄路南延工程的一局部,将穿越西山山脉,隧道全长约4km .隧道贯穿后,往来海淀山前山后地区较之前路程有望缩短一半,其主要依据是A .两点确定一条直线B .两点之间,线段最短C.直线比曲线短D .两条直线相交于一点7. 线段 AB 10 cm,点C在直线AB上,且 AC 2 cm,那么线段BC 的长为A . 12 cm B. 8 cm C. 12 cm 或 8 cm D .以上均不对8. 假设关于 x的方程2x a 4 0 的解是 x 2 ,那么a的值等于A .8 B.0 C.2 D.89.下表为某用户银行存折中年 11 月到年 5 月间代扣水费的相关数据,其中扣缴水费最多的一次的金额为日期摘要币种存 / 取款金额余额操作员备注151101 水费RMB 钞- 125. 45 874. 55 010005B25 折160101 水费RMB 钞- 136. 02 738. 53 010005Y03 折160301 水费RMB 钞- 132. 36 606. 17 010005D05 折160501 水费RMB 钞- 128. 59 477. 58 01000K19 折A . 738. 53 元B . 125. 45 元C.136. 02 元D. 477. 58 元10. 如下图,数轴上点 A、 B 对应的有理数分别为a、 b,以下说法正确的选项是A .ab 0B .a b 0 C. a b 0 D .a b 011.点 A、 B、C、D 、E 的位置如下图,以下结论中正确的选项是A .AOB=130B.AOB =DOEC .DOC 与BOE 互补D.AOB 与COD 互余2 / 1012. 小博表演扑克牌游戏,她将两副牌分别交给观众A 和观众 B ,然后背过脸去,请他们各 自按照她的口令操作:a .在桌上摆 3 堆牌,每堆牌的张数要相等,每堆多于10 张,但是不要告诉我;b .从第 2 堆拿出 4 张牌放到第1 堆里;c .从第 3 堆牌中拿出 8 张牌放在第1 堆里;d .数一下此时第 2 堆牌的张数,从第 1 堆牌中取出与第 2 堆相同张数的牌放在第3 堆 里;e .从第 2 堆中拿出 5 张牌放在第1 堆中.小博转过头问两名观众:“请告诉我现在第2 堆有多少张牌,我就能告诉你们最初的 每堆牌数.〞观众A 说 5 张,观众 B 说 8 张,小博猜两人最初每一堆里放的牌数分别为 A . 14, 17B . 14, 18C . 13, 16D . 12, 16 二、填空题〔此题共 24 分,每题 3 分〕 13. 用四舍五入法,精确到百分位,对2.017 取近似数是. 14. 请写出一个只含有字母 m 、 n ,且次数为 3 的单项式.. x 12 y20 ,那么x y的值是.1516. a b 2 ,那么多项式3a 3b 2 的值是 .17. 假设一个角比它的补角大 36 48' ,那么这个角为 ' .18.下面的框图表示解方程3x 20 4x 25的流程 .第 1 步的依据是.3 / 1019.如图,在正方形网格中,点O 、 A 、 B 、 C 、 D 均是格点.假设 OE 平分∠ BOC ,那么∠ DOE 的度数为.20 .下 面 是 一 道 尚 未 编 完 的 应 用 题 , 请 你 补 充 完 整 , 使 列 出 的 方 程 为2x 4(35 x)94 .七年级一班组织了“我爱阅读〞读书心得汇报评比活动,为了倡导同学们多读书,读好书,老师为所有参加比赛的同学都准备了奖品,.三、解答题〔此题共 40 分,第 21 题 8 分,每题各 4 分,第 22- 26 题,每题 5 分,第 27 题 7 分〕21.计算:〔1〕 (11 1) 12 .〔 2〕 ( 1)102 ( 1)3 16 .46 2222.解方程:x 1 3 2 x .2423. 设 A1 x 4( x 1y) ( 3 x 2y) .2 3 23 〔 1〕当 x1, y 1 时,求 A 的值;3〔 2 〕假设使 求得的 A 的值与〔 1 〕中 的结果相同,那么给出 的 x 、 y 的条件还可 以是.4 / 1024.如图,平面上有四个点A, B,C, D.〔1〕根据以下语句画图:①射线 BA;②直线 AD,BC 相交于点E;③在线段DC 的延长线上取一点F,使 CF=BC ,连接 EF.〔2〕图中以 E 为顶点的角中,小于平角的角共有个.25.以下两个问题,任选其一作答,问题一答对得4 分,问题二答对得5 分 .如图, OD 是∠ AOC 的平分线, OE 是∠ BOC 的平分线 .B问题一:假设∠ AOC =36°,∠ BOC=136°,求∠ DOE 的度数 .E问题二:假设∠ AOB=100°,求∠ DOE 的度数 .OADC5 / 1026.如图1,由于保管不善,长为40 米的拔河比赛专用绳AB 左右两端各有一段〔AC 和BD 〕磨损了,磨损后的麻绳不再符合比赛要求.磨损的麻绳总长度缺乏20 米.只利用麻绳AB 和一把剪刀〔剪刀只用于剪断麻绳〕就可以得到一条长20 米的拔河比赛专用绳EF.请你按照要求完成以下任务:(1〕在图 1 中标出点 E、点 F 的位置,并简述画图方法;(2〕说明〔 1〕中所标 EF 符合要求 .图 1图227.在数轴上,把表示数1 的点称为基准点,记作点O . 对于两个不同的点M 和 N,假设点M、点 N 到点O的距离相等,那么称点M 与点 N 互为基准变换点 . 例如:图 1 中,点 M 表示6 / 10数1,点N表示数3,它与基准点O 的距离都是2 个位度,点M 与点 N 互基准点 .1(1〕点 A 表示数 a,点 B 表示数 b,点 A 与点 B 互基准点 .①假设 a,b=;假设a4 ,b=;②用含 a 的式子表示b, b=;(2〕点 A 行如下操作:先把点 A 表示的数乘以5,再把所得数表示的点沿着数向2左移 3 个位度得到点 B. 假设点 A 与点 B 互基准点,点 A 表示的数是;〔3〕点 P 在点 Q 的左,点P 与点 Q 之的距离8 个位度. P、 Q 两点做如下操作:点 P 沿数向右移k〔 k>0〕个位度得到P , P P 的基准点,点 P 沿1 2 1 2 数向右移k 个位度得到P3,P4P3的基准点,⋯⋯,依此序不断地重复,得到 P5, P6 ,⋯, P n. Q1Q的基准点,将数沿原点折后Q1的落点 Q2 , Q3 Q2的基准点,将数沿原点折后 Q3的落点 Q4,⋯⋯,依此序不断地重复,得到 Q5, Q6,⋯, Q n.假设无k何, P n与 Q n两点的距离都是4, n= .海淀区七年级第一学期期末练习数学参考答案.17 / 10一、选择题〔此题共 36 分,每题3 分〕题号1234 56 7 8 9 10 11 12 答案 B A A B C BCBCDCA二、填空题〔此题共 24 分,每题 3 分〕13. 2.02 ;14 .2m 2 n 〔答案不唯一〕;15 . 1; 16 . 4;17 . 108 ,24; 18.等式两边加〔或减〕同一个数〔或式子〕,结果仍相等;19. 22.5 ;20.奖品为两种书签,共 35 份,单价分别为 2 元和 4 元,共花费 94 元,那么两种书签各多少份 .〔答案不唯一〕三、解答题〔此题共40 分,第 21 题 8 分,每题各 4 分,第 22-26 题,每题 5 分,第27 题 7 分〕21.〔 1〕解:原式3 261 .----------------------3分 ----------------------4分〔 2〕解:原式1 ( 1) 162 8--------------------2分13 分 2--------------------23 .----------------------4 分222.解: 2 x+1 12 2x .---------------------2 分 2x+212 2 x .----------------------3 分 3x 12 . ---------------------- 4 分x 4 .---------------------- 5 分23.解:〔 1〕 A1 x 4x 4 y 3 x2 y ---------------------2 分2 3 2 36 x 2 y . --------------------- 3 分当 x1, y 1 时,3 1) A6 ( 2 13=4.8 / 10∴ A 的是4 . ----------------4 分〔 2〕3x y 2 .〔答案不唯一〕--------------- 5 分24.〔 1〕---------------4分〔2〕分25.解:一:∵ OD 平分AOC ,AOC 36 ,∴DOC 1 AOC 18 .2∵ OE 平分BOC , BOC 136∴EOC 1BOC 68 . 2∴DOE EOC DOC 50 二:⋯⋯⋯⋯⋯⋯⋯2分,⋯⋯⋯⋯⋯⋯⋯3分.⋯⋯⋯⋯⋯⋯分4∵ OD 平分AOC ,1∴DOCAOC .⋯⋯⋯⋯⋯⋯⋯1分2∵ OE 平分BOC ,1∴EOCBOC .⋯⋯⋯⋯⋯⋯⋯2分2∴DOEEOCDOC11BOCAOC221AOB.⋯⋯⋯⋯⋯⋯分42∵AOB 100 ,9 / 10∴ DOE 50 .⋯⋯⋯⋯⋯⋯ 分 5 〔注:无推理 程,假设答案正确 2 分〕26.解:〔 1〕〔解法不唯一〕⋯⋯⋯⋯⋯⋯2分如 ,在CD 上取一点 M ,使 CM =CA , FBM 的中点,点E 与点 C 重合 .⋯3分( 2〕∵ F BM 的中点,∴MF =BF.∵AB =AC +CM+MF +BF , CM=CA , ∴AB =2CM +2MF =2〔 CM +MF 〕 =2EF . ∵AB =40m , ∴ E F =20m. ⋯⋯⋯⋯⋯⋯ 4 分 ∵ AC BD 20 m , AB AC BD CD 40 m ,∴ CD > 20 m.∵点 E 与点 C 重合, EF 20 m ,∴ CF 20 m.∴点 F 落在 段 CD 上. ∴ EF 符合要求.⋯⋯⋯⋯⋯⋯5 分 27.解:〔 1〕① 2, -2;⋯⋯⋯⋯⋯⋯2分② 2 a ;⋯⋯⋯⋯⋯⋯4分( 2〕10;⋯⋯⋯⋯⋯⋯ 5 分7〔 3〕 4 或 12. ⋯⋯⋯⋯⋯⋯ 7 分10 / 10。

北京市海淀区2020-2021学年七年级期末数学试题(含答案)

北京市海淀区2020-2021学年七年级期末数学试题(含答案)

七年级第一学期期末试题数学2020.1姓名_____________ 学号_____________ 成绩_____________一、选择题(每小题2分,共24分)下面各题均有四个选项,其中只有一个是符合题意的. 请将正确选项前的字母填在下列表格中的相应位置.1.-2的相反数是( ) A.12B.12-C.2D.-22.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为( ) A.50.3610⨯B.53.610⨯C.43.610⨯D.33610⨯3.下列各式中结果为负数的是( ) A.()3--B.3-C.()23-D.23-4.下列计算正确的是( ) A.2233x x -=B.22232a a a --=- C.()3131a a -=-D.()2122x x -+=--5.实数a 在数轴上的对应点的位置如图所示.若实数b 满足-a<b<a ,则b 的值可以是( )A.2B.-1C.-2D.-36.如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是( )A. B. C. D.7.下列结论正确的是( ) A.23ab -和2b a 是同类项 B.2π不是单项式2 C.a 比a -大D.2是方程214x +=的解8.如图是一个由4个相同的正方体组成的立体图形,从左面看这个几何体,所看到的平面图是( )A. B.C. D.9.将一副三角板按如图所示位置摆放,其中α∠与β∠一定相等的是( )A. B.C. D.10.一个篮球的单价为a 元,一个足球的单价为b 元()b a >,小明买了6个篮球和2个足球,小国买了5个篮球和3个足球,小国比小明多花( ) A.()a b -元;B.()b a -元;C.()5a b -元;D.()5b a -元11.某商店换季促销,将一件标价为240元的T 恤打8折售出,获利20%,则这件T 恤的成本为( ) A.144元B.160元C.192元D.200元12.观察下列关于x 、a 的单项式的特点:223x a ,2265x a -,23128x a ,242013x a -,253021x a 按此规律,第10个单项式是( ) A.2990144x aB.2990144x a -C.210110233x aD.210110233x a -二、填空题(每小题3分,共24分) 13.写出一个比-2小的有理数:_____________. 14.若a ,b 互为倒数,则26ab -=____________. 15.已知()2230a b -++=,则ab =___________.16.若2是关于x 的一元一次方程()31x ax -=的解,则a =___________.17.一个两位数的个位数字是x ,十位数字是x ,列式表示这个两位数____________. 18.将一副三角板如图放置,若25AOD ∠=︒,则BOC ∠大小为___________.19.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么AOB ∠的大小为____________.20.已知:点A 在原点左侧,点B 在原点右侧,且点A 到原点的距离是点B 到原点距离的2倍,15AB =.点P 从点A 出发,以每秒1个单位长度的速度向点B 方向运动;同时,点Q 从点B 出发,先向点A 方向运动,当与点P 重合后,马上改变方向与点P 同向而行且速度始终为每秒2个单位长度.设运动时间为t 秒.①当点P 与点Q 重合时,t 的值为____________;②当23AP AQ =时,t 的值为____________________________________秒. 三、解答题(本题共52分,第21(1)题3分,第21(2)题4分,第22((1)题3分,第22(2)题4分,第23题~26题每题6分,第27,28题每题7分) 21.计算:(1)()()21643⎛⎫-⨯-+- ⎪⎝⎭; (2)()411352⎛⎫-+-÷--- ⎪⎝⎭. 22.解方程:(1)()23110x -=;(2)12123x x-+-=. 23.已知345a b -=-,求代数式()()221524a b a b b +-+--的值. 24.如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图: (1)画射线AB ; (2)连接BC ;(3)反向延长BC 至D ,使得BD BC =; (4)在直线l 上确定点E ,使得AE CE +最小.25.如图,120AOB ∠=︒,OC 平分AOB ∠.若20BOD ∠=︒,请你补全图形,并求COD ∠的度数.26.观察下列式子,定义一种新运算:134137⊗=⨯+=;()3143111⊗-=⨯-=; 5445424⊗=⨯+=;()()6346327-⊗-=⨯--=-;(1)请你想一想:a b ⊗=___________;(用含a 、b 的代数式表示)﹔ (2)如果a b ≠,那么a b ⊗____________b a ⊗(填“=”或“≠”); (3)如果()63a a ⊗-=⊗,请求出a 的值.27.如图,已知点O 在直线AB 上,作射线OC ,点D 在平面内,BOD ∠与AOC ∠互余. (1)若:4:5AOC BOD ∠∠=,则BOD ∠=______________;(2)若()045AOC αα∠=︒<︒,ON 平分COD ∠、补全图形,求出AON ∠的值(用含α的式子表示)﹔28.对于数轴上的A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如数轴上点A ,B ,C 所表示的数分别为1,3,4,此时点B 是点A ,C 的“联盟点”.(1)若点A 表示数-2,点B 表示的数2,下列各数2,0,4,63-所对应的点分别1234,,,C C C C ,其中是点A ,B 的“联盟点”的是_____________;(2)点A 表示数-10,点B 表示的数30,P 在为数轴上一个动点:①若点P 在点B 的左侧,且点P 是点A ,B 的“联盟点”,求此时点P 表示的数;②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点表示的数______________.七年级第一学期期末数学试题参考答案一、选择题二、填空题三、解答题 21.(1)18;(2)022.(1)2x =;(2)13x = 23.9122a b --;-1724.25.40°或80° 26.(1)4a b + (2)≠(3)∵()63a a ⊗-=⊗ ∴4634a a -=⨯+ 即4612a a -=+ ∴6a =27.解:(1)∵:4:5AOC BOD ∠∠=,BOD ∠与AOC ∠互余, ∴5905045BOD ∠=︒⨯=︒+; (2)∵BOD ∠与AOC ∠互余, ∴90BOD AOC ∠+∠=︒, 情形一:点D 在BOC ∠.在045α︒<≤︒的条件下,补全图形如下:. ∴90COD ∠=︒, ∵ON 平分COD ∠, ∴45CON ∠=︒, ∴45AON α∠=+︒;情形二:点D 在BOC ∠外.在045α︒<≤︒的条件下,补全图形如下:902COD α∠=︒+,此时45AON ∠=︒. 28.解:(1)1C ,4C ; (2)①设点1P 表示的数为x ,ⅰ.如图,当点1P 在点A 左侧时,112PB P A =,则()30210x x -=--, 解得50x =-.所以点1P 表示的数为-50;ⅰ.如图,当点2P 在线段AB 上且222P B P A =时, 则()30210x x -=+, 解得103x =. 所以点2P 表示的数为103;ⅰ.如图,当点3P 在线段AB 上且332P A P B =时, 则()10230x x +=-, 解得503x =. 所以点3P 表示的数为503. 综上所述,当点P 在点B 的左侧时,点3P 表示的数为-50或103或503. ②50或70或110.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 16 页 2020-2021学年北京市海淀区七年级上期末数学试卷
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)下列说法中,正确的是( )
A .绝对值等于他本身的数必是正数
B .若线段A
C =BC ,则点C 是线段AB 的中点
C .角的大小与角两边的长度有关,边越长,则角越大
D .若单项式12x n y 与x 3y m
﹣1是同类项,则这两个单项式次数均为4
2.(3分)近年来,我国5G 发展取得明显成效,截至2020年2月底,全国建设开通5G 基
站达16.4万个,将数据16.4万用科学记数法表示为( )
A .164×103
B .16.4×104
C .1.64×105
D .0.164×106
3.(3分)在﹣5,﹣0.9,0,﹣0.01这四个数中,最大的负数是( )
A .﹣5
B .﹣0.9
C .0
D .﹣0.01
4.(3分)下列运算正确的是( )
A .3a +2a =5a 2
B .3a ﹣a =3
C .2a 3+3a 2=5a 5
D .﹣0.25ab +14ab =0
5.(3分)小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是2y +1=
12y ﹣□,小明想了想后翻看了书后的答案,此方程的解是y =−53
,然后小明很快补好了这个常数,这个常数应是( )
A .−32
B .32
C .52
D .2
6.(3分)实数a ,b ,c ,d 在数轴上对应点的位置如图所示,正确的结论是( )
A .a >c
B .b +c >0
C .|a |<|d |
D .﹣b <d
7.(3分)下列等式变形错误的是( )
A .若a =b ,则a
1+x 2=b
1+x 2
B .若a =b ,则3a =3b
C .若a =b ,则ax =bx
D .若a =b ,则
a m =
b m。

相关文档
最新文档