复合材料成型工艺与设备(10挤出成型工艺与设备).pptx
复合材料的成型工艺PPT课件

第47页/共256页
另外,在缠绕的时候,所使用的芯模应 有足够的强度和刚度,能够承受成型加工过 程中各种载荷(缠绕张力、固化时的热应力、 自重等),满足制品形状尺寸和精度要求以 及容易与固化制品分离等。
48
第48页/共256页
常用的芯模材料有石膏、石蜡、金 属或合金、塑料等,也可用水溶性高分 材料,如以聚烯醇作粘结剂制成芯模。
49
第49页/共256页
连续纤维缠绕技术的优点
首先,纤维按预定要求排列的规整度和精度 高,通过改变纤维排布方式、数量,可以实现等 强度设计,因此,能在较大程度上发挥增强纤维 抗张性能优异的特点,
50
第50页/共256页
其次,用连续纤维缠绕技术所制得 的成品,结构合理,比强度和比模量高, 质量比较稳定和生产效率较高等。
51
第51页/共256页
连续纤维缠绕技术的缺点
设备投资费用大,只有大批量生产时 才可能降低成本。
52
第52页/共256页
连续纤维缠绕法适于制作承受一定 内压的中空型容器,如固体火箭发动机 壳体、导弹放热层和发射筒、压力容器、 大型贮罐、各种管材等。
53
第53页/共256页
近年来发展起来的异型缠绕技术,可 以实现复杂横截面形状的回转体或断面呈 矩形、方形以及不规则形状容器的成型。
54
第54页/共256页
6. 拉挤成型工艺
拉挤成型工艺中,首先将浸渍过树脂 胶液的连续纤维束或带状织物在牵引装置 作用下通过成型模而定型;
55
第55页/共256页
其次,在模中或固化炉中固化,制成具有 特定横截面形状和长度不受限制的复合材料, 如管材、棒材、槽型材、工字型材、方型材 等。
56
挤出成型工艺分析ppt

挤出成型工艺的历史与发展
1 2 3
起源
挤出成型工艺起源于19世纪末期,最初用于生 产硬质管材和型材。
发展
随着技术的不断进步,挤出成型工艺逐渐应用 于生产各种形状和用途的制品,如软管、薄膜 、发泡制品等。
未来趋势
随着科技的进步,挤出成型工艺将不断向高效 、节能、环保的方向发展,同时探索新的应用 领域和市场。
解决方案:为避免气泡问题,挤出成型过程中可以 采取以下措施
1. 提高塑料熔体的温度,使气体更容易从熔体 中逸出。
2. 控制好挤出机的转速和牵引速度,使塑料熔 体保持稳定的流动状态。
3. 在制品设计时增加排气孔或改变排气结构, 使气体更容易从制品中排出。
制品尺寸不稳定
总结词:制品尺寸不稳定是挤出成型工艺中的另一个问 题,主要是由于挤出机、模具和冷却系统等因素导致的 。 解决方案:为提高制品尺寸稳定性,可以采取以下措施
常用挤出吹塑机。
工艺流程
将挤出造粒后的塑料颗粒加热至 熔融状态,通过吹塑模具吹制成 中空制品。
吹塑工艺参数
包括温度、压力、吹胀比等,需根 据不同产品要求进行优化。
成型后处理
冷却定型
吹塑后的制品需进行冷却定型 ,以去除内应力,提高制品稳
定性。
制品修饰
如切除飞边、修整等。
检验入库
对制品进行质量检验,合格品 入库。
解决方案
为避免塑料降解,挤出成型过程中应 控制好加热温度和时间,避免过度加 热和长时间暴露在高温环境下。同时 ,选择质量好的塑料原材料,并保持 挤出机内部清洁。
制品变形
总结词
详细描述
解决方案
制品变形是挤出成型工艺中的另一个 常见问题,主要是由于制品冷却不均 匀或受力不均匀导致的。
复合材料的成型工艺课件

注射成型工艺
注射成型工艺是将热塑性或热固 性复合材料加热至熔融状态,然 后通过注射机将其注入模具中,
冷却后脱模得到制品的工艺。
该工艺适用于制备大型、结构复 杂的制品,如家电外壳、汽车零
部件等。
注射成型工艺具有生产效率高、 自动化程度高等优点,但模具成 本较高,且对材料性能要求较高
。
层压成型工艺
层压成型工艺是将多层复合材料叠合 在一起,然后在压力和温度作用下使 其粘合在一起并成型的一种工艺。
随着科技的发展,对复合材料的 性能要求越来越高,复合材料成 型工艺正朝着高性能化的方向发
展。
智能化
智能化成型工艺能够提高生产效率 和产品质量,是复合材料成型工艺 的重要发展方向。
绿色化
环保意识的提高,对复合材料的生 产过程中的环保要求也越来越高, 绿色化成型工艺成为未来的发展趋 势。
复合材料成型工艺面临的挑战
。
体育器材领域的应用实例
总结词
轻量、高强度、耐用
VS
详细描述
体育器材领域也是复合材料应用的重要领 域,如滑雪板、羽毛球拍、自行车车架等 。这些应用主要得益于复合材料的轻量、 高强度和耐用等特性,能够提高运动器材 的性能和寿命。
05
复合材料成型工艺的发展趋势与挑战
复合材料成型工艺的发展趋势
高性能化
热压成型工艺的原理与特点
热压成型工艺原理
热压成型是利用热塑性复合材料的热塑性,在加热、加压条 件下,将材料加热至熔点或软化点,然后在压力作用下使材 料塑性变形并贴合在模具表面,冷却固化后形成所需形状的 制品。
热压成型特点
热压成型工艺具有生产效率高、制品尺寸精度高、表面质量 好等优点,适用于生产形状复杂、尺寸精度要求高的复合材 料制品。
挤出成型工艺及模具设计课件

• 直通式挤管机头工艺参数的确定
• (1) 口模
① 口模内径D ❖经验公式: D = d /K
d——管材外径 K——补偿系数
❖按拉伸比确定
② 定型段长度L
❖ 按管材外径:L=(0.5~3)d ❖ 按管材壁厚:L=nt
(2) 芯捧(芯模)
芯棒与分流器之间通过螺纹连接,其中心孔用来通入压 缩空气,以便对管材产生内压,实现外径定径。
适用:内径尺寸要求准确、圆度要求高的情况。
1-管材 2-定径芯模 3-芯棒 4-回水流道 5-进水管 6-排水管 7-进水嘴
定径芯长度:与管材壁厚及牵引速度有关,一般取80~ 300mm,牵引速度和壁厚大时,取大值。反之,取小值。
定径芯直径:一般比管材内径直径大2%~4%,始端比终端 直径大,锥度为0.6:100~1.0:100。
面,芯棒用来成型塑件的内表面。通过调节螺钉5,可
调节口模和芯棒之间的间隙,从而控制塑件的壁厚。
口模实物图片 返回
芯 棒 实 物 图 片
返回
过滤网和过滤板
使从挤出机出来的塑料熔体由旋转流动变为平直流 动,且沿螺杆方向形成挤出压力,增加塑料的塑化均匀 度。
机头体 机头的主体,相当于模架,用来组装并支撑机头的
挤出机:挤出系统、传动系统、加热冷却系统、机身
辅机: 机头、定型装置、冷却装置、牵引装置、切割
装置、卷取装置 控制系统
2. 挤出成型工艺过程
原材料准备
塑化
挤出成型
冷却定型
塑件的牵引、 卷曲、切割
挤塑生产线
3. 挤出成型工艺参数
• 温度
❖ 加料段的温度不宜过高,压缩段和均化段的温度可高一些 ❖ 机头的温度控制在塑料热分解温度以下 ❖ 口模的温度比机头温度可稍低一些,但要保证塑料有良
《挤出成型技术》课件

根据制品形状和尺寸进行结构设计,确保制品成型质量、提高生产 效率。
冷却系统
设计合理的冷却系统,控制模具温度,减小制品成型后的收缩率。
挤出成型设备的操作与维护
01
操作规程
制定严格的设备操作规程,确保 操作人员熟悉设备性能和安全操 作要求。
维护保养
02
03
故障排除
定期对设备进行维护保养,检查 各部件磨损情况,及时更换易损 件。
高分子材料在挤出成型技术中的优势在于其可塑性强、加工温度低、成型周期短 等,使得制品具有轻量化、高强度、耐腐蚀等优良性能。同时,高分子材料在挤 出成型过程中易于实现自动化和智能化生产,提高了生产效率和产品质量。
新型挤出成型技术的研发与推广
随着科技的不断发展,新型挤出成型技术不断涌现,如微孔塑料挤出技术、异型截面管材挤出技术、 反应挤出技术等。这些新型技术的研发和应用,极大地丰富了挤出成型制品的种类和性能,满足了不 同领域的需求。
挤出成型技术的应用领域
挤出成型技术广泛应用于塑料加工行业,如管材、型材、薄膜、板材等产品的生产 。
除了塑料加工行业,挤出成型技术还应用于橡胶、陶瓷、玻璃纤维等材料的加工。
随着科技的发展,挤出成型技术的应用领域不断扩大,如3D打印技术的出现,使得 挤出成型技术也可以用于制造个性化的定制产品。
02
挤出成型设备
挤出成型工艺的控制要素
温度控制
温度是挤出成型工艺的重要控制要素之一,包括 机筒温度、模具温度等。温度的控制直接影响着 塑料的塑化和产品质量。
速度控制
速度控制包括挤出速度、注射速度等,它影响着 产品的产量和质量。合理地调整速度参数,可以 提高生产效率和产品质量。
压力控制
压力也是挤出成型工艺的重要控制要素之一,包 括挤出压力、注射压力等。压力的控制对于塑料 的流动性和产品的致密性至关重要。
挤出成型工艺ppt课件

聚丙烯
160-170 180-190 190-200 200-205 180-200 200-210 200-210 190-200 200-210 200-210
ABS
150-170 160-180 180-195 185-200 180-190 201-215 200-210 190-200 200-210 205-215
• 适用的树脂材料: 绝大部分热塑性塑料及部分热固性塑料,如PVC、PS、ABS、 PC、PE、PP、PA、丙烯酸树脂、环氧树脂、酚醛树脂及密胺树 脂等
• 应用: 塑料薄膜、网材、带包覆层的产品、截面一定、长度连续的管材、 板材、片材、棒材、打包带、单丝和异型材等等,还可用于粉末 造粒、染色、树脂掺和等。
4
塑料工艺
挤出设备
.
5
塑料工艺
• 由挤出机、机头 和口模、辅机等 组成。
1、挤出设备:
6
塑料工艺
设备组成
7
单螺杆挤出机的组成
塑料工艺
• 1、单螺杆挤出机主 要由传动系统、加 料系统、塑化系统、 加热与冷却系统、 控制系统等组成。
• 2、挤出系统是最主 要的系统,它由料 筒、螺杆、多孔板 和过滤网组成。
8
塑料工艺
单螺杆挤出机的结构
9
塑料工艺
双螺杆挤出机的结构
10
普通单螺杆挤出机的工作过程
塑料工艺
11
单螺杆种类
塑料工艺
12
双螺杆挤出
塑料工艺
• (一)双螺杆挤出机的结构
13
(二)双螺杆挤出的特点
塑料工艺
• 和单螺杆挤出机相比,双螺杆挤出机的特点是: 1、较高的固体输送能力和挤出产量; 2、自洁能力; 3、混合塑化能力高; 4、较低的塑化温度,减小分解可能; 5、结构复杂,成本高。
复合材料成型工艺与设备

复合材料成型工艺与设备引言复合材料是由两种或两种以上不同性质的材料组成的复合结构材料。
它们通常具有较好的力学性能、化学稳定性和耐磨性,因此在航空航天、汽车制造、建筑等领域得到广泛应用。
复合材料的制备过程中,成型工艺和设备起着至关重要的作用。
本文将介绍复合材料的成型工艺和设备。
成型工艺复合材料的成型工艺主要包括手工层叠法、预浸法、自动化层叠法和注塑成型等多种方法。
手工层叠法手工层叠法是最简单的一种成型工艺,通过手工将纤维和树脂逐层叠加在一个具有一定形状的模具中,然后采用压实和固化的方式完成成型。
这种方法成本低廉,适用于小批量和特殊形状的产品制造,但生产效率低,一般只适用于简单形状的产品制造。
预浸法预浸法是将纤维与树脂预先浸渍,然后在一定的条件下进行成型。
该方法可有效提高生产效率和产品质量,广泛应用于复合材料制品的生产。
预浸法的关键是控制纤维和树脂的浸渍量和均匀性,以及固化过程中的温度、压力和固化时间。
自动化层叠法自动化层叠法通过机械手或自动化设备将预先浸渍好的纤维和树脂层叠在模具中,然后进行固化。
这种方法具有高度自动化和生产效率高的特点,适用于大批量和复杂形状的产品制造。
注塑成型注塑成型是一种将纤维和树脂混合后直接注入模具中进行成型的方法。
这种方法适用于复杂形状的产品制造,能够实现一次成型,并且可以在成型过程中进行纤维定向和树脂浸透的控制。
成型设备复合材料的成型设备通常包括模具、加热设备和压力设备等。
模具模具是复合材料成型过程中最关键的设备之一。
模具的形状和尺寸决定了最终产品的形状和尺寸。
模具材料通常选用高强度、耐磨、耐高温和耐腐蚀性能好的材料,如钢、铝合金等。
模具制作的精度和表面质量对最终产品的质量具有重要影响。
加热设备加热设备用于提供适当的温度条件以促进树脂固化和纤维的定向。
常用的加热设备包括热风循环炉、电加热板等。
在成型过程中,加热设备应能够提供均匀的温度场,确保整个产品的固化质量。
压力设备压力设备用于提供适当的压力,使纤维和树脂紧密结合,并去除成型过程中的气泡和缺陷。
复合材料工艺及设备 ppt课件

增强材料
涂脱模剂
原材料 手糊成型
固化 脱模制品检验 后处理专用47手糊工艺视频
专用48定义:用纤维增强材料和树脂胶液在模具上铺专用6树脂基复合材料
玻璃/酚醛 高硅氧/酚醛 涤纶/酚醛 碳/酚醛 碳/环氧 蜂窝夹层结构复合材料 经编复合材料 多维整体编织织物复合材料 耐高温树脂基料
碳基复合材料:
整体毡碳/碳 低密度碳/碳 多维整体编织碳/碳
陶瓷基复合材料:
石英织物增强,纤维在闭模中铺好,树脂在重 力或外压的作用下注入模子。
工艺因素:
(1)树脂对纤维的完全浸润 (2)树脂粘度 (3)树脂与纤维之间的界面的表面张力 (4)纤维体积百分数高,直径细小,完全浸 润需长时间和高压。专用342、预浸润
第一步:生产预浸料 把纤维和树脂铺在两张硅化纸或塑料薄膜之间,再 对它加压或辊压,确保压实和纤维浸润,然后部分 固化得到浸有树脂的纤维带或片。 该步工艺优点:单向层中的纤维定向程度极好。
纤维的原子排列,化学性能 高分子基体的分子结构和化学组成 例: 纤维的高模量、高强度性能使它成为理想的负荷 载体,但必须有一种模量较低的基体把它牢固地 粘结起来,使任何一根纤维的断裂,对整体的强 度影响不大。这就要求纤维对基体有良好的浸润 性,但玻纤和碳纤对树脂的浸润性是相当差的, 表现在层间剪切上。
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
绪论
复合材料分类
金属基复合材料 树脂基复合材料 无机非金属基专用5金属基复合材料
金属基复合材料
硼/铝复合材料 碳化硅纤维/铝复合材料
挤出工艺简介ppt课件

1
挤出成型简介
挤出成型一般用于热塑性塑料的管材、棒材、 板材、薄膜、线材等连续型材的生产,所得到的 塑件均具有稳定的截面形状。
粉状和粒状
预热和干燥
挤出机加热
开动螺杆
加料 调整
牵引
冷却
定型
卷取(切割)
后处理
挤出成型工艺流程图
挤出成型
成品
2
挤出工艺示意图
3
挤出成型原理和特点
• 挤出挤出过程中的温差和温度波动,都会影 响塑件的质量,使塑件产生残余应力,各点强 度不均匀,表面灰暗无光。
10
2.压力
• 在挤出过程中,由于塑料流动的阻力、螺 杆槽深度的变化、过滤板、过滤网和口模产生 阻碍等原因,在塑料内部形成一定的压力,而 这种压力是塑料经历物理状态变化而达到均匀 密实的重要条件。
6
2.挤出成型阶段
• 均匀塑化的塑料熔体随螺杆的旋转向 料筒前端移动,在螺杆的旋转挤压作用 下,通过一定形状的口模而获得与口模 形状一致的型材。
7
3.定型冷却阶段
• 塑件离开机头口模后,首先通过定型 装置和冷却装置,使其冷却变硬而定型。 在大多数情况下,定型和冷却是同时进 行的,只有在挤出各种管材和棒材时, 才有一个独立的定型过程。
12
4.牵引速度
• 从机头和口模中挤出的成型塑件,在 牵引力作用下将会发生拉伸取向,拉伸 取向程度越高,塑件沿取向方位上的拉 伸强度也越大,但冷却后长度收缩也大。 通常,牵引速度可与挤出速度相当,两 者的比值称为牵引比,一般应略大于1。
13
挤出成型产品设计要点
请做过挤出成型产品的同仁现身说法。传 授宝贵经验。
14
Hale Waihona Puke • 压力随时间的变化也会产生周期性波动,对 塑件质量有不利的影响,如局部疏松、表面不 平、弯曲等。为了减小压力波动,应合理控制 螺杆转速,保证加热和冷却装置的温控精度。
复合材料挤出成型

复合材料挤出成型在建筑行业中的应用
节能环保
复合材料挤出成型技术能够生产出高性能的节能环保材料,如保温 隔热材料、防水材料等,有助于提高建筑能效和环保性能。
结构强度与稳定性
复合材料挤出成型产品在建筑结构中具有较高的强度和稳定性,能 够提高建筑的安全性和耐久性。
建筑装饰与构件
复合材料挤出成型技术还可应用于建筑装饰和构件的生产,如玻璃纤 维增强塑料门窗、屋顶等。
其组成和结构进行划分,如金属基复合材料、树脂基复合材料、陶瓷基复合材料等。
复合材料挤出成型的工艺流程
总结词
复合材料挤出成型是一种将两种或多种材料混合并经 过熔融、塑化后通过模具挤出成型的工艺。该工艺主 要包括配料、熔融、塑化、成型Байду номын сангаас冷却等步骤。
详细描述
复合材料挤出成型是一种将两种或多种材料混合并经过 熔融、塑化后通过模具挤出成型的工艺。该工艺的流程 包括配料、熔融、塑化、成型和冷却等步骤。在配料阶 段,根据配方将各种原材料称重并混合均匀;在熔融和 塑化阶段,利用加热和压力作用将混合料熔融和塑化; 在成型阶段,通过模具将熔融和塑化的材料挤出并形成 所需的形状;在冷却阶段,对成型后的材料进行冷却定 型,完成整个工艺流程。
复合材料挤出成型
目录
• 挤出成型技术概述 • 复合材料挤出成型原理 • 复合材料挤出成型设备 • 复合材料挤出成型工艺参数 • 复合材料挤出成型质量控制 • 复合材料挤出成型的应用与发展趋势
01 挤出成型技术概述
挤出成型技术简介
01
挤出成型是一种常见的塑料加工 技术,通过螺杆旋转加压的方式 将塑料原料从模具口挤出,并按 照模具的形状形成所需的制品。
观质量。
移动速度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 纤维含量对FRTP性能的影响
各种树脂品种的FRTP的最佳纤维含量不同。
3 纤维质量对性能的影响
(1)纤维直径对性能的影响 一般来讲,纤维直径越细,强度越高,但有时相差 不大,可能是因为纤维细强度高,但同样含量纤维用 在CM中,弱界面也随之增加,加工过程中纤维磨损严 重,强度损失也较大。
20
长纤维:3-13mm,纤维平行于粒料 长度方向排列。 增强粒料
短 纤 维:0.25-0.5mm,纤维和树脂无规混合
长纤维粒料生产的制品其力学性能较高,短纤维粒料 则用于生产形状复杂的薄壁制品。
4
10.1. FRTP粒料生产工艺及设备
• 造粒工艺 • 长纤维粒料是将玻璃纤维束包覆在树脂中间,纤维长度
13
SJ系列单螺杆挤出机
14
(2)单螺杆排气式挤出机回挤造粒法
• 将长纤维粒料加入到排气单螺杆挤出机中,回挤一次造 粒。如果粒料中挥发物较少,则可用普通挤出机回挤造粒。
• 优点: • 生产效率高;粒料质地密实,外观质量较好;劳动条件
好,无玻璃纤维飞扬。 • 缺点: • 用长纤维粒料二次加工.树脂老化几率增加;粒料外观
等于粒料长度。根据纤维在粒料断面的分布情况,分为三 种形式:
L
b c
(a)db c(b)bc (c)
5
长纤维粒料的生产工艺流程
••
玻璃纤维束
树脂及助剂
包覆机头
挤出
冷却
牵引
切粒
包装
制品
6
生产长纤维增强粒料的设备布置工艺形式
4
56
3
2 7
1
图11-1 增强粒料设备平面布置简图
7
图11-2 增强粒料设备立面布置图
8
机头
3
4
5
2
6
1
玻璃纤维通过型芯中的导纱孔进入机头型腔与熔融的 树脂混合。
9
型芯构造形式
分瓣式
套管式
迷宫式
10
牵引和切粒
• 牵引和切粒一般是在一台机器上完成,牵引机构是由两 对牵引辊完成,第一对牵引辊的牵引速度比第二对辊低, 从而保证两道牵引辊之间有一定的张力,防止料条堆积, 但张力不能过大,否则会将料条拉断。 切粒是用切刀将料条连续不断地切成所需要长度的粒料。
1
挤 出 成 型 工 艺 是 生 产 热 塑 性 复 合 材 料 (Fiber Reinforced Thermo Plastics 简称FRTP)制品的主要 方法之一。
工艺过程:先将树脂和增强纤维制成粒料,然后再 将粒料加入挤出机内,经塑化、挤出、冷却定型而成 制品。
2
• 应用: 广泛用于生产各种增强塑料管、棒材、异形断面型材等。
(2)纤维长度和分散状态对性能影响 一般规律是纤维越长,制品强度越高。试验表明,当 玻纤长度小于0.04mm时,纤维不起增强作用。 纤维在制品中的分散状况对制品性能影响较大。一般 来讲,纤维分散越均匀,机械强度和热性能就越好,弹 性模量也有明显的增加,所以要保证纤维尽可能分散均 匀。
(3)玻璃纤维表面处理对CM性能影响 玻纤表面处理情况对FRTP性能影响较大。处理后, 力学性能有明显的提高。表11-5。
(水冷时用),然后切成粒料。粒料中的纤维含量,可由调 整送入挤出机的玻纤股数和螺杆转速来控制。
• 单螺秆挤出机主要是靠机头压力产生均质熔体,
•
双螺抨挤出机完全是靠螺杆作用使树脂充分塑化,并
与纤维均匀复合。
•
因此,它除具有排气式单螺杆挤出造粒的优点外,比
单螺杆挤出机更有效地挤出造粒和利用松散物料。
16
18
10.2 影响FRTP性能的因素
1 基体树脂对FRTP性能影响 不同的热塑性树脂,性能差别很大,用纤维增强后,
其效果也有很大差别。
1)力学性能提高2—3倍以上 2)提高热变形温度 3)产品尺寸稳定提高 4)降低线膨胀系数1—3倍 5)对于吸水率的影响 不一 6)耐疲劳性能、抗蠕变性能 7)防止开裂、改善电性能 FRTP的耐化学腐蚀性能主要取决于树脂的品种
11
冷切造粒机组
本机组主要由塑料挤出机、冷却水槽、刀式吹干机、 切粒机、振动筛五个单元组成,总长约12米,适用于PVC, PE等及其它工程塑料造粒。
最大切粒长度 (3mm)
最大切粒长度(3mm) QLJ-3 、SQ200
12
10.1.2 短纤维粒料生产工艺
1、短纤维粒料生产方法有三种:
(1) 短切纤维原丝单螺杆挤出法
• 优点: 1、能加工绝大多数热塑性复合材料及部分热固 • 性复合材料; 2、生产过程连续,自动化程度高; 3、工艺易掌握及产品质量稳定等。 缺点: 只能生产线型制品。
3
10.1、FRTP粒料生产工艺及设备 短 纤 维 增 强 FRTP 是 将 玻 璃 纤 维 或 其 它 纤 维 ( 长 0.2 一 7mm)均匀地分布在热塑性树脂基体中的一种复合材料,其 生产工艺一般都要经过造粒和成型两个过程。
• 将短切玻璃纤维原丝与树脂按设计比例加入到单螺杆挤 出机中混合、塑化、挤出条料,冷却后切粒。对于粒料树 脂,要重复2—3次才能均匀。对于粉状树脂,则可一次挤 出造粒 。
• 优点: • 纤维和树脂混合均匀,能适应柱塞式注射机生产。 • 缺点: • 玻璃纤维受损伤较严重;料筒和螺杆磨损严重;生 产速
度较低;劳动条件差,粉状树脂和玻璃纤维易飞扬。
21
界面问题 表面:把物体与空气接触的面叫该物体的表面。 液体表面——液体与饱和了的空气所接触的面。 固体表面——固体与它接触的空气面。 界面:把几个不同相相互交界部分叫“界面”。
界面包括表面,比表面范围大。
22
23
24
25
11.3 FRTP挤出成型工艺
定义: 挤出成型需要完成粒料输运、塑化和在压力作用 下使熔融物料通过机头口模获得所要求的断面形 状制品。
及质量不如双螺杆排气式挤出机造粒好。如果考虑到长纤 维造粒过程;其工序多,劳动生产率低。
15
(3)排气式双螺杆挤出机造粒法
•
将树脂和纤维分别加入排气式双螺杆挤出机的加料孔
和进丝口,玻璃纤维被左旋螺杆及捏合装置所破碎,在料
简内纤维和树脂混合均匀,经过排气段除去混料中的挥发
性物质,进一步塑炼后经口模挤出料条,再经冷却、干燥
SJSZ系列锥形双螺杆挤出机
17
2、设备
生产短纤维粒料的主要设备是挤出机和造粒机头, 它不需要单独的牵引和切粒机。
A、挤出机
B、造粒机头
长纤维粒料的造粒是采用冷切法,其原因是不 使纤维从粒料中抽出,短纤维粒料的造粒是采用 热切法。因为从机头挤出来的料条中纤维已经很 短,可以不经冷却直接通过造粒机头造粒。构造 见P296