2020-2021常州外国语学校九年级数学上期末试题(及答案)

合集下载

江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类

江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类

江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类一.一元二次方程的应用(共1小题)1.(2022秋•常州期末)常州大剧院举办文艺演出.经调研,如果票价定为每张50元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票将会减少20张.要使门票收入达到60500元,票价应定为多少元?二.三角形综合题(共1小题)2.(2022秋•常州期末)如果三角形一个内角的2倍与另一个内角的和等于90°,那么我们称这样的三角形为“类互余”三角形.(1)若△ABC是“类互余”三角形,∠C>90°,∠A=40°,则∠B= ;(2)如图1,在△ABC中,∠C=90°,BC=2,D是AC上的一点,CD=1,AD=3,△ABD是“类互余”三角形吗?请说明理由;(3)如图2,在△ABC中,,tan∠ABC=2,D是CB延长线上的一点.若△ABD 是“类互余”三角形,求BD的长.三.正方形的性质(共1小题)3.(2021秋•常州期末)【问题】老师上完《7.3特殊角的三角函数》一课后,提出了一个问题,让同学们尝试去探究75°的正弦值.小明和小华经过思考与讨论,作了如下探索:【方案一】小明构造了图1,在△ABC中,AC=2,∠B=30°,∠C=45°.第一步:延长BA,过点C作CD⊥BA,垂足为D,求出DC的长;第二步:在Rt△ADC中,计算sin75°.【方案二】小华构造了图2,边长为a的正方形ABCD的顶点A在直线EF上,且∠DAF =30°.第一步:连接AC,过点C作CG⊥EF,垂足为G,用含a的代数式表示AC和CG的长;第二步:在Rt△AGC中,计算sin75°.请分别按照小明和小华的思路,完成解答过程.四.直线与圆的位置关系(共1小题)4.(2021秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.(1)判断DE所在直线与⊙O的位置关系,并说明理由;(2)若AE=4,ED=2,求⊙O的半径.五.圆的综合题(共2小题)5.(2020秋•常州期末)如图1,在矩形ABCD中,AB=6cm,BC=8cm,点P以3cm/s的速度从点A向点B运动,点Q以4cm/s的速度从点C向点B运动.点P、Q同时出发,运动时间为t秒(0<t<2),⊙M是△PQB的外接圆.(1)当t=1时,⊙M的半径是 cm,⊙M与直线CD的位置关系是 ;(2)在点P从点A向点B运动过程中.①圆心M的运动路径长是 cm;②当⊙M与直线AD相切时,求t的值.(3)连接PD,交⊙M于点N,如图2,当∠APD=∠NBQ时,求t的值.6.(2021秋•常州期末)如图1,边长为6cm的等边△ABC中,AD是高,点P以cm/s 的速度从点D向A运动,以点P为圆心,1cm为半径作⊙P,设点P的运动时间为ts.(1)当⊙P与边AC相切时,求t的值;(2)如图2,若在点P出发的同一时刻,点Q以1cm/s的速度从点B向点C运动,一个点停止运动时,另一个点也随之停止运动.过点Q作BA的平行线,交AC于点M.当QM 与⊙P相切时,求t的值;(3)在运动过程中,当⊙P与△ABC的边共有两个公共点时,直接写出t的取值范围.六.相似三角形的性质(共2小题)7.(2020秋•常州期末)如图,已知△OAB,点A的坐标为(2,2),点B的坐标为(3,0).(1)求sin∠AOB的值;(2)若点P在y轴上,且△POA与△AOB相似,求点P的坐标.8.(2021秋•常州期末)如果经过一个三角形某个顶点的直线将这个三角形分成两部分,其中一部分与原三角形相似,那么称这条直线被原三角形截得的线段为这个三角形的“形似线段”.(1)在△ABC中,∠A=30°.①如图1,若∠B=100°,请过顶点C画出△ABC的“形似线段”CM,并标注必要度数;②如图2,若∠B=90°,BC=1,则△ABC的“形似线段”的长是 ;(2)如图3,在△DEF中,DE=4,EF=6,DF=8,若EG是DEF的“形似线段”,求EG的长.七.相似三角形的判定(共1小题)9.(2022秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC.(1)过点D作⊙O的切线DE,交AC于点E(用直尺和圆规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接BD,△ADE与△ABD相似吗?为什么?八.作图-相似变换(共1小题)10.(2021秋•常州期末)如图,在平面直角坐标系中,△ABC的三个顶点A、B、C的坐标分别为(0,3)、(2,1)、(4,1).(1)以原点O为位似中心,在第一象限画出△ABC的位似图形△ABC,使△A1B1C1与△ABC的相似比为2:1;(2)借助网格,在图中画出△ABC的外接圆⊙P,并写出圆心P的坐标 ;(3)将△ABC绕(2)中的点P(3)将△ABC绕点P顺时针旋转90°,则点A运动的路线长是 .九.方差(共2小题)11.(2020秋•常州期末)某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周第2周第3周第4周第5周第6周甲9101091210乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数中位数众数甲 10 乙10 7(1)填空:根据表Ⅰ的数据补全表Ⅱ;(2)老师计算了乙品牌冰箱销量的方差:S乙2=[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=(台2).请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?12.(2021秋•常州期末)“119”全国消防日,某校为强化学生的消防安全意识,组织了“关注消防,珍爱家园”知识竞赛,满分为100分.现从八、九两个年级各随机抽取10名学生组成八年级代表队和九年级代表队,成绩如下(单位:分):八年级代表队:80,90,90,100,80,90,100,90,100,80;九年级代表队:90,80,90,90,100,70,100,90,90,100.(1)填表:代表队平均数中位数方差八年级代表队90 60九年级代表队 90 (2)结合(1)中数据,分析哪个代表队的学生竞赛成绩更好?请说明理由;(3)学校想给满分的学生颁发奖状,如果该校九年级一共有600名学生且全部参加了知识竞赛,那么九年级大约有多少名学生可以获得奖状?一十.列表法与树状图法(共3小题)13.(2020秋•常州期末)学校为了丰富学生课余生活,开设了社团课.现有以下社团:A.篮球、B.机器人、C.绘画,学校要求每人只能参加一个社团,甲和乙准备随机报名一个社团.(1)甲选择“机器人”社团的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个社团的概率.14.(2021秋•常州期末)小丽的爸爸积极参加社区志愿服务,根据社区安排,志愿者将被随机分配到以下小组中的一个:A组(交通疏导)、B组(环境消杀)、C组(便民代购),开展服务工作.(1)小丽的爸爸被分配到C组的概率是 ;(2)若小丽的班主任刘老师也参加了该社区的志愿者队伍,那么刘老师和小丽的爸爸被分到同一组的概率是多少?请用画树状图或列表的方法写出分析过程.15.(2022秋•常州期末)学校为了践行“立德树人,实践育人”的目标,开展劳动课程,组织学生走进农业基地,欣赏田园风光,体验劳作的艰辛和乐趣.该劳动课程有以下小组:A.搭豇豆架、B.斩草除根、C.趣挖番薯、D.开垦播种.学校要求每人只能参加一个小组,甲和乙准备随机报名一个小组.(1)甲选择“搭虹豆架”小组的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个小组的概率.江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一元二次方程的应用(共1小题)1.(2022秋•常州期末)常州大剧院举办文艺演出.经调研,如果票价定为每张50元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票将会减少20张.要使门票收入达到60500元,票价应定为多少元?【答案】55元.【解答】解:设票价应定为x元,由题意得:x[1200﹣20(x﹣50)]=60500,解得:x1=x2=55.答:票价应定为55元.二.三角形综合题(共1小题)2.(2022秋•常州期末)如果三角形一个内角的2倍与另一个内角的和等于90°,那么我们称这样的三角形为“类互余”三角形.(1)若△ABC是“类互余”三角形,∠C>90°,∠A=40°,则∠B= 25°或10° ;(2)如图1,在△ABC中,∠C=90°,BC=2,D是AC上的一点,CD=1,AD=3,△ABD是“类互余”三角形吗?请说明理由;(3)如图2,在△ABC中,,tan∠ABC=2,D是CB延长线上的一点.若△ABD 是“类互余”三角形,求BD的长.【答案】(1)25°或10°;(2)是,理由见解析;(3)或6.【解答】解:(1)∵∠C>90°,∴∠A+∠B<90°∵△ABC是“类互余”三角形,∠A=40°,∴∠A+2∠B=90°或2∠A+∠B=90°,∴∠B=25°或∠B=10°,故答案为:25°或10°.(2)△ABD是“类互余”三角形,理由如下,在△ABC中,∠C=90°,BC=2,D是AC上的一点,CD=1,AD=3,∴AC=AD+DC=4,∴,∴=,又∵∠C=∠C,∴△ACB∽△BCD,∴∠CBD=∠A,设∠CBD=∠A=α,则∠ADB=∠ABC﹣∠CBD=(90°﹣α)﹣α=90°﹣2α,∴2∠A+∠ABD=2α+90°﹣2α=90°,∴△ABD是“类互余”三角形;(3)设∠ADB=α,依题意,△ABD是“类互余”三角形,∠ABD>90°,当2∠ADB+∠BAD=90°时,如图所示,过点A作AE⊥BC于点E,则∠BAD=90°﹣α,∴∠EAB=α,∴∠EAB=∠ADB,∵tan∠ABC=2,,设AE=2a,则BE=a,∴,解得:a=2,∴AE=4,BE=2,∵∠EAB=∠ADB,∴,∴ED=8,∴BD=DE﹣BE=8﹣2=6;当∠ADB+2∠BAD=90°,如图所示,过点A作AE⊥BC于点E,过点B作BF⊥AD于点F,则∠BAD=α,∠ADB=90°﹣2α,∴∠EAB=∠BAD=α,∴BF=BE=2,设BD=x,则ED=2+x,∵,∴,即,解得:.即或6.三.正方形的性质(共1小题)3.(2021秋•常州期末)【问题】老师上完《7.3特殊角的三角函数》一课后,提出了一个问题,让同学们尝试去探究75°的正弦值.小明和小华经过思考与讨论,作了如下探索:【方案一】小明构造了图1,在△ABC中,AC=2,∠B=30°,∠C=45°.第一步:延长BA,过点C作CD⊥BA,垂足为D,求出DC的长;第二步:在Rt△ADC中,计算sin75°.【方案二】小华构造了图2,边长为a的正方形ABCD的顶点A在直线EF上,且∠DAF =30°.第一步:连接AC,过点C作CG⊥EF,垂足为G,用含a的代数式表示AC和CG的长;第二步:在Rt△AGC中,计算sin75°.请分别按照小明和小华的思路,完成解答过程.【答案】【方案一】.【方案二】.【解答】解:【方案一】如图1,过点A作AQ⊥BC于点Q,在△ABC中,AC=2,∠B=30°,∵∠C=45°.AC=2,∴AQ=CQ=AC=,∵∠B=30°,∴BQ=AQ=,∴BC=BQ+QC=+,∴CD=BC=,∵∠DAC=∠B+∠ACB=75°,∴sin75°==.【方案二】如图2,延长CB交FE于点H,∵正方形ABCD的边长为a,∴AC=a,∵∠DAF=30°.∴∠BAH=60°,∴∠H=30°,∴AH=2AB=2a,∴BH=AB=a,∴CH=BH+BC=a+a=(+1)a,∴CG=CH=,∵∠GAC=∠CAD+∠DAF=75°,∴sin75°===.四.直线与圆的位置关系(共1小题)4.(2021秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.(1)判断DE所在直线与⊙O的位置关系,并说明理由;(2)若AE=4,ED=2,求⊙O的半径.【答案】(1)直线DE与⊙O相切,理由见解析;(2).【解答】解:(1)直线DE与⊙O相切;理由:连接OD,∵∠CAB的平分线是AD,∴∠CAD=∠DAB.∵OA=OD,∴∠OAD=∠ODA.∴∠EAD=∠ADO,∴AE∥OD,∵∠AED=90°,∴∠ODE=90°.∵OD是⊙O的半径,∴直线DE与⊙O相切;(2)连接BD,∵ED=2,AE=4,∴AD==2,∵AB是⊙O的直径,∴∠ADB=90°,∵∠EAD=∠BAD,∴△ADE∽△ABD,∴=,∴AB=5,∴⊙O的半径为.五.圆的综合题(共2小题)5.(2020秋•常州期末)如图1,在矩形ABCD中,AB=6cm,BC=8cm,点P以3cm/s的速度从点A向点B运动,点Q以4cm/s的速度从点C向点B运动.点P、Q同时出发,运动时间为t秒(0<t<2),⊙M是△PQB的外接圆.(1)当t=1时,⊙M的半径是 cm,⊙M与直线CD的位置关系是 相离 ;(2)在点P从点A向点B运动过程中.①圆心M的运动路径长是 5 cm;②当⊙M与直线AD相切时,求t的值.(3)连接PD,交⊙M于点N,如图2,当∠APD=∠NBQ时,求t的值.【答案】见试题解答内容【解答】解:(1)如图1,过M作KN⊥AB于N,交CD于K,∵四边形ABCD是矩形,∴∠ABC=90°,AB∥CD,∴⊙M的直径是PQ,KN⊥CD,当t=1时,AP=3,CQ=4,∵AB=6,BC=8,∴PB=6﹣3=3,BQ=8﹣4=4,∴PQ==5,∴⊙M的半径为cm,∵MN∥BQ,M是PQ的中点,∴PN=BN,∴MN是△PQB的中位线,∴MN=BQ=×4=2,∴MK=8﹣2=6>,∴⊙M与直线CD的位置关系是相离;故答案为:,相离;(2)①如图2,由P、Q运动速度与AB,BC的比相等,∴圆心M在对角线BD上,由图可知:P和Q两点在t=2时在点B重合,当t=0时,直径为对角线AC,M是AC的中点,故M运动路径为OB=BD,由勾股定理得:BD==10,则圆心M的运动路径长是5cm;故答案为:5;②如图3,当⊙M与AD相切时,设切点为F,连接FM并延长交BC于E,则EF⊥AD,EF⊥BC,则BQ=8﹣4t,PB=6﹣3t,∴PQ=10﹣5t,∴PM==FM=5﹣t,△BPQ中,ME=PB=3﹣t,∵EF=FM+ME,∴5﹣t+3﹣t=6,解得:t=;(3)如图4,过D作DG⊥PQ,交PQ的延长线于点G,连接DQ,∵∠APD=∠NBQ,∠NBQ=∠NPQ,∴∠APD=∠NPQ,∵∠A=90°,DG⊥PG,∴AD=DG=8,∵PD=PD,∴Rt△APD≌Rt△GPD(HL),∴PG=AP=3t,∵PQ=10﹣5t,∴QG=3t﹣(10﹣5t)=8t﹣10,∵DC2+CQ2=DQ2=DG2+QG2,∴62+(4t)2=82+(8t﹣10)2,∴3t2﹣10t+8=0,(t﹣2)(3t﹣4)=0,解得:t1=2(舍),t2=.6.(2021秋•常州期末)如图1,边长为6cm的等边△ABC中,AD是高,点P以cm/s 的速度从点D向A运动,以点P为圆心,1cm为半径作⊙P,设点P的运动时间为ts.(1)当⊙P与边AC相切时,求t的值;(2)如图2,若在点P出发的同一时刻,点Q以1cm/s的速度从点B向点C运动,一个点停止运动时,另一个点也随之停止运动.过点Q作BA的平行线,交AC于点M.当QM 与⊙P相切时,求t的值;(3)在运动过程中,当⊙P与△ABC的边共有两个公共点时,直接写出t的取值范围.【答案】(1)t=3﹣;(2)(﹣)或(+);(3)t的取值范围为0≤t<或t=3﹣或3﹣<t≤3.【解答】解:(1)设⊙P与边AC相切点E,连接PE,如图,则PE⊥AC.∵△ABC是边长为6的等边三角形,AD是高,∴BD==3cm,∠DAC=∠BAC=30°.∴AD==3,由题意得:PD=tcm,∴AP=AD﹣PD=(3﹣t)cm.在Rt△APE中,∵sin∠PAE=,∴AP=.∴3﹣t=.解得:t=3﹣.∴当⊙P与边AC相切时,t的值为3﹣.(2)设QM与⊙P相切于点E,①当点E在AD的左侧时,设QM与AD交于点F,如图,连接EP,过点M作MH⊥AD于点H,∵QM与⊙P相切于点E,∴EP⊥QM.∵△ABC是边长为6的等边三角形,AD是高,∴∠DAB=∠DAC=∠BAC=30°.∵QM∥AB,∴∠QFD=∠BAD=30°.∵∠AFM=∠QFD,∴∠AFM=30°.∴∠FAM=∠AFM=30°.∴AM=FM.∵MH⊥AD,∴AH=FH=.由题意得:BQ=t,DP=t,∵∠B=∠BAC=60°,AB∥QM,∴四边形ABQM为等腰梯形,∴AM=BQ=t.∴AH=AM•cos∠DAC=t.∴AF=2AH=2t.∵EP⊥QM,∠EFP=30°,∴FP=2EP=2.∵AF+FP+PD=AD,∴t+2+t=3.解得:t=﹣;②当点P在AD的右侧时,设QM与AD交于点F,如图,连接EP,过点M作MH⊥AD于点H,∵QM与⊙P相切于点E,∴EP⊥QM.∵△ABC是边长为6的等边三角形,AD是高,∴∠DAB=∠DAC=∠BAC=30°.∵QM∥AB,∴∠QFD=∠BAD=30°.∵∠AFM=∠QFD,∴∠AFM=30°.∴∠FAM=∠AFM=30°.∴AM=FM.∵MH⊥AD,∴AH=FH=.由题意得:BQ=t,DP=t,∵∠B=∠BAC=60°,AB∥QM,∴四边形ABQM为等腰梯形,∴AM=BQ=t.∴AH=AM•cos∠DAC=t.∴AF=2AH=2t.∵EP⊥QM,∠EFP=30°,∴FP=2EP=2.∵AF+DP﹣FP=AD,∴t+t﹣2=3.解得:t=+.综上,当QM与⊙P相切时,t的值为(﹣)或(+).(3)①当0≤PD<1时,此时⊙P与BC相交,⊙P与BC边有两个公共点,符合题意,∴此时t的取值范围为0≤t<;②当1<PD<3﹣2时,此时⊙P与△ABC的三边均相离,没有公共点;③当PD=3﹣2时,此时⊙P与AB,AC边相切,此时⊙P与△ABC的边共有两个公共点;∴由(1)知:t=3﹣;④当3﹣2<PD<3﹣1时,此时⊙P与AB,AC边均相交,此时⊙P与△ABC的边共有四个公共点;⑤当3﹣1<PD≤3时,此时⊙P与AB,AC边均相交,但各只有一个交点,符合题意,∴此时t的取值范围为:3﹣<t≤3.综上,当⊙P与△ABC的边共有两个公共点时,t的取值范围为0≤t<或t=3﹣或3﹣<t≤3.六.相似三角形的性质(共2小题)7.(2020秋•常州期末)如图,已知△OAB,点A的坐标为(2,2),点B的坐标为(3,0).(1)求sin∠AOB的值;(2)若点P在y轴上,且△POA与△AOB相似,求点P的坐标.【答案】(1).(2)(0,3)或(0,).【解答】解:(1)如图,过点A作AH⊥OB于H.∵A(2,2),∴AH=OH=2,∴∠AOB=45°,∴sin∠AOB=.(2)由(1)可知,∠AOP=∠AOB=45°,OA=2,当△AOP∽△AOB时,=,可得OP′=OB=3,∴P′(0,3),当△AOP∽△BOA时,=,∴=,∴OP=,∴P(0,),综上所述,满足条件的点P的坐标为(0,3)或(0,).8.(2021秋•常州期末)如果经过一个三角形某个顶点的直线将这个三角形分成两部分,其中一部分与原三角形相似,那么称这条直线被原三角形截得的线段为这个三角形的“形似线段”.(1)在△ABC中,∠A=30°.①如图1,若∠B=100°,请过顶点C画出△ABC的“形似线段”CM,并标注必要度数;②如图2,若∠B=90°,BC=1,则△ABC的“形似线段”的长是 或 ;(2)如图3,在△DEF中,DE=4,EF=6,DF=8,若EG是DEF的“形似线段”,求EG的长.【答案】(1)①作图见解析部分;②或;(2)3.【解答】解:(1)①如图1中,线段CM即为所求;②如图2中,当BH⊥AC时,线段BH是“形似线段”,∵∠ABC=90°,BC=1,∠A=30°,∴AC=2BC=2,AB=BC=,∵•AB•BC=•AC•BH,∴BH==.当CM平分∠BCA时,线段CT是“形似线段”,在Rt△CBT中,CT==.综上所述,△ABC的“形似线段”的长是或;(2)如图3中,当△DEG∽△DFE时,=,∴=,∴EG=3,当△FEG∽△FDE时,=,∴=,∴EG=3,∴EG=3.七.相似三角形的判定(共1小题)9.(2022秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC.(1)过点D作⊙O的切线DE,交AC于点E(用直尺和圆规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接BD,△ADE与△ABD相似吗?为什么?【答案】(1)见解析;(2)△ADE∽△ABD,理由见解析.【解答】解:(1)如图所示,DE即为所求,理由如下,连接OD,∵弦AD平分∠BAC,∴∠CAD=∠BAD,∵OD=OA,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线;(2)△ADE∽△ABD,理由如下,连接BD,如图,∵弦AD平分∠BAC,∴∠CAD=∠BAD,∵OD=OA,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴AC⊥DE,∵AB是⊙O的直径,∴∠ADB=90°,∴∠AED=∠ADB,∴△ADE∽△ABD.八.作图-相似变换(共1小题)10.(2021秋•常州期末)如图,在平面直角坐标系中,△ABC的三个顶点A、B、C的坐标分别为(0,3)、(2,1)、(4,1).(1)以原点O为位似中心,在第一象限画出△ABC的位似图形△ABC,使△A1B1C1与△ABC的相似比为2:1;(2)借助网格,在图中画出△ABC的外接圆⊙P,并写出圆心P的坐标 (3,4) ;(3)将△ABC绕(2)中的点P(3)将△ABC绕点P顺时针旋转90°,则点A运动的路线长是 π .【答案】(1)作图见解析部分;(2)作图见解析部分,P(3,4).(3)π.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,点P即为所求,P(3,4),故答案为:(3,4);(3)∵PA==,∴的长==π.故答案为:π.九.方差(共2小题)11.(2020秋•常州期末)某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周第2周第3周第4周第5周第6周甲9101091210乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数中位数众数甲 10 10 10 乙10 10.5 7(1)填空:根据表Ⅰ的数据补全表Ⅱ;(2)老师计算了乙品牌冰箱销量的方差:S乙2=[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=(台2).请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?【答案】(1)10、10、10.5;(2)建议商家可多采购甲品牌冰箱,理由见解答.【解答】解:(1)甲品牌销售数量从小到大排列为:9、9、10、10、10、12,所以甲品牌销售数量的平均数为=10(台),众数为10台,乙品牌销售数量从小到大排列为7、7、10、11、12、13,所以乙品牌销售数量的中位数为=10.5(台),补全表格如下:平均数中位数众数甲101010乙1010.57故答案为:10、10、10.5;(2)建议商家可多采购甲品牌冰箱,∵甲品牌冰箱销量的方差=×[(9﹣10)2×2+(10﹣10)2×3+(12﹣10)2]=1,S2=,乙∴<S乙2,∴甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱.12.(2021秋•常州期末)“119”全国消防日,某校为强化学生的消防安全意识,组织了“关注消防,珍爱家园”知识竞赛,满分为100分.现从八、九两个年级各随机抽取10名学生组成八年级代表队和九年级代表队,成绩如下(单位:分):八年级代表队:80,90,90,100,80,90,100,90,100,80;九年级代表队:90,80,90,90,100,70,100,90,90,100.(1)填表:代表队平均数中位数方差八年级代表队90 90 60九年级代表队 90 90 80 (2)结合(1)中数据,分析哪个代表队的学生竞赛成绩更好?请说明理由;(3)学校想给满分的学生颁发奖状,如果该校九年级一共有600名学生且全部参加了知识竞赛,那么九年级大约有多少名学生可以获得奖状?【答案】(1)90、90、80;(2)八年级代表队的学生竞赛成绩更好,理由见解答;(3)九年级大约有180名学生可以获得奖状.【解答】解:(1)将八年级代表队成绩重新排列为80,80,80,90,90,90,90,100,100,100,所以其中位数为=90,九年级代表队成绩的平均数为=90,所以其方差为×[(70﹣90)2+(80﹣90)2+5×(90﹣90)2+3×(100﹣90)2]=80,故答案为:90、90、80;(2)八年级代表队的学生竞赛成绩更好,理由如下:∵八、九年级代表队的学生的竞赛成绩的平均数相等,而八年级代表队的学生的竞赛成绩的方差小于九年级,成绩更加稳定,∴八年级代表队的学生竞赛成绩更好;(3)600×=180(名),答:九年级大约有180名学生可以获得奖状.一十.列表法与树状图法(共3小题)13.(2020秋•常州期末)学校为了丰富学生课余生活,开设了社团课.现有以下社团:A.篮球、B.机器人、C.绘画,学校要求每人只能参加一个社团,甲和乙准备随机报名一个社团.(1)甲选择“机器人”社团的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个社团的概率.【答案】(1);(2).【解答】解:(1)甲选择“机器人”社团的概率是,故答案为:;(2)画树状图如图:共有9个等可能的结果,甲、乙两人选择同一个社团的结果有3个,∴甲、乙两人选择同一个社团的概率为=.14.(2021秋•常州期末)小丽的爸爸积极参加社区志愿服务,根据社区安排,志愿者将被随机分配到以下小组中的一个:A组(交通疏导)、B组(环境消杀)、C组(便民代购),开展服务工作.(1)小丽的爸爸被分配到C组的概率是 ;(2)若小丽的班主任刘老师也参加了该社区的志愿者队伍,那么刘老师和小丽的爸爸被分到同一组的概率是多少?请用画树状图或列表的方法写出分析过程.【答案】(1);(2).【解答】解:(1)小丽的爸爸被分配到C组的概率是,故答案为:;(2)画树状图如下:共有9种等可能的结果,刘老师和小丽的爸爸被分到同一组的结果有3种,∴刘老师和小丽的爸爸被分到同一组的概率为=.15.(2022秋•常州期末)学校为了践行“立德树人,实践育人”的目标,开展劳动课程,组织学生走进农业基地,欣赏田园风光,体验劳作的艰辛和乐趣.该劳动课程有以下小组:A.搭豇豆架、B.斩草除根、C.趣挖番薯、D.开垦播种.学校要求每人只能参加一个小组,甲和乙准备随机报名一个小组.(1)甲选择“搭虹豆架”小组的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个小组的概率.【答案】(1);(2).【解答】解:(1)甲选择“搭虹豆架”小组的概率是,故答案为:;(2)画树状图如下:共有16种等可能的结果,其中甲、乙两人选择同一个小组的结果有4种,∴甲、乙两人选择同一个小组的概率为=.。

2020-2021学年九年级上学期期末考试数学试卷(有答案)

2020-2021学年九年级上学期期末考试数学试卷(有答案)

2020-2021学年九年级上学期期末考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.若y=(m﹣1)是关于x的二次函数,则m的值为()A.﹣2B.﹣2或1C.1D.不存在2.如图,在平面直角坐标系中,A(6,0)、B(0,8),点C在y轴正半轴上,点D在x 轴正半轴上,且CD=6,以CD为直径在第一象限作半圆,交线段AB于E、F,则线段EF的最大值为()A.3.6B.4.8C.3D.33.一次数学测试后,随机抽取九年级三班6名学生的成绩如下:80,85,86,88,88,95.关于这组数据的错误说法是()A.极差是15B.众数是88C.中位数是86D.平均数是87 4.近年来,我国石油对外依存度快速攀升,2017年和2019年石油对外依存度分别为64.2%和70.8%,设2017年到2019年中国石油对外依存度平均年增长率为x,则下列关于x的方程正确的是()A.64.2%(1+x)2=70.8%B.64.2%(1+2x)=70.8%C.(1+64.2%)(1+x)2=1+70.8%D.(1+64.2%)(1+2x)=1+70.8%5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰Rt△CDE,连接AD,下列说法:①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四边形ABCD的面积有最大值,且最大值为.其中,正确的结论是()A.①②④B.①③⑤C.②③④D.①④⑤7.如图,△ABC中,AB=AC=5,BC=8,若∠BPC=∠BAC,则cos∠BPC=()A.B.C.D.8.设max{m,n}表示m,n(m≠n)两个数中的最大值.例如max{﹣1,2}=2,max{12,8}=12,则max{2x,x2+2}的结果为()A.2x﹣x2﹣2B.2x+x2+2C.2x D.x2+2二.填空题(共10小题,满分30分,每小题3分)9.方程x2=4的解为.10.已知点P是线段AB的黄金分割点(AP>PB),AB=6,那么AP的长是.11.若,则的值为.12.已知二次函数y=ax2+bx+c(a≠0)的自变量x与函数值y之间满足下列数量关系:x0123y75713则代数式(4a+2b+c)(a﹣b+c)的值为.13.如图,某同学利用半径为40cm的扇形纸片制作成一个圆锥形纸帽(接缝忽略不计),若圆锥底面半径为10cm,那么这个圆锥的侧面积是cm2.14.直角三角形中,两直角边分别是12和5,则斜边上的中线长是.15.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.16.如图,小明为了测量楼房MN的高,在离N点20m的A处放了一个平面镜,小明沿NA 方向后退到C点,正好从镜子中看到楼顶M点.若AC=1.6m,小明的眼睛B点离地面的高度BC为1.5m,则楼高MN=m.17.如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.18.在一块直角三角形铁皮上截一块正方形铁皮,如图,已有的铁皮是Rt△ABC,∠C=90°,要截得的正方形EFGD的边FG在AB上,顶点E、D分别在边CA、CB上,如果AF=4,GB=9,那么正方形铁皮的边长为.三.解答题(共10小题,满分96分)19.(1)计算:(π﹣2019)0+2sin60°﹣+|1﹣|(2)解方程:x2﹣2x﹣3=020.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交边BC、AB于点D、E,联结AD.(1)如果∠CAD:∠DAB=1:2,求∠CAD的度数;(2)如果AC=1,tan B=,求∠CAD的正弦值.21.如图,在平面直角坐标系中,点A、点B的坐标分别为(1,3),(3,2).(1)画出△OAB绕点B顺时针旋转90°后的△O′A′B;(2)以点B为位似中心,相似比为2:1,在x轴的上方画出△O′A′B放大后的△O ″A″B;(3)点M是OA的中点,在(1)和(2)的条件下,M的对应点M′的坐标为.22.“共和国勋章”是中华人民共和国的最高荣誉勋章,在2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士,如图是四位院士(依次记为A、B、C、D)为让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上A、B、C、D四个标号,然后背面朝上放置,搅匀后每个同学可以从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料制作小报,求小明和小华查找同一位院士资料的概率.23.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”24.如图所示,已知:∠AOB=120°,PT切⊙O于T,A,B,P三点共线,∠APT的平分线依次交AT,BT于C,D.(1)求证:△CDT为等边三角形.(2)若AC=4,BD=1,求PC的长.25.已知函数y1=x2﹣(m+2)x+2m+3,y2=nx+k﹣2n(m,n,k为常数且n≠0).(1)若函数y1的图象经过点A(2,5),B(﹣1,3)两个点中的其中一个点,求该函数的表达式.(2)若函数y1,y2的图象始终经过同一定点M.①求点M的坐标和k的值.②若m≤2,当﹣1≤x≤2时,总有y1≤y2,求m+n的取值范围.26.如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.(1)求证:DF⊥AC;(2)若∠ABC=30°,求tan∠BCO的值.27.如图,△ABC中,以AB为直径作⊙O,交BC于点D,E为弧BD上一点,连接AD、DE、AE,交BD于点F.(1)若∠CAD=∠AED,求证:AC为⊙O的切线;(2)若DE2=EF•EA,求证:AE平分∠BAD;(3)在(2)的条件下,若AD=4,DF=2,求⊙O的半径.28.如图,已知抛物线y=ax2+bx﹣3的图象与x轴交于点A(1,0)和B(3,0),与y轴交于点C.D是抛物线的顶点,对称轴与x轴交于E.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴DE上求作一点M,使△AMC的周长最小,并求出点M 的坐标和周长的最小值.(3)如图2,点P是x轴上的动点,过P点作x轴的垂线分别交抛物线和直线BC于F、G.设点P的横坐标为m.是否存在点P,使△FCG是等腰三角形?若存在,直接写出m的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:若y=(m﹣1)是关于x的二次函数,则,解得:m=﹣2.2.解:过CD的中点作EF的垂线与AB交于点M,连接GF,∵GM⊥EF,∴EF=2FM=2=2,当GM的值最小时,EF的值最小,根据垂线段最短可知,当直线过O点时,EF的值最大,∵A(6,0),B(0,8),∴AB=10,∵sin∠OAB==,∴OM=4.8,∵CD=6,∴OG=3,∴GM=1.8,∴FM=2.4,∴EF=4.8;故选:B.3.解:A、极差是15,故A正确;B、众数是88,故B正确;C、中位数是87,故C错误;D、平均数是87,故D正确.故选:C.4.解:设2017年到2019年中国石油对外依存度平均年增长率为x,由题意,得64.2%(1+x)2=70.8%.5.解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠ABO=(180°﹣120°)÷2=30°,故选:A.6.解:∵△ABC、△DCE都是等腰Rt△,∴AB=AC=BC=,CD=DE=CE;∠B=∠ACB=∠DEC=∠DCE=45°;①∵∠ACB=∠DCE=45°,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE;即∠ECB=∠DCA;故①正确;②当B、E重合时,A、D重合,此时DE⊥AC;当B、E不重合时,A、D也不重合,由于∠BAC、∠EDC都是直角,则∠AFE、∠DFC 必为锐角;故②不完全正确;④∵,∴;由①知∠ECB=∠DCA,∴△BEC∽△ADC;∴∠DAC=∠B=45°;∴∠DAC=∠BCA=45°,即AD∥BC,故④正确;③由④知:∠DAC=45°,则∠EAD=135°;∠BEC=∠EAC+∠ECA=90°+∠ECA;∵∠ECA<45°,∴∠BEC<135°,即∠BEC<∠EAD;因此△EAD与△BEC不相似,故③错误;⑤△A BC的面积为定值,若梯形ABCD的面积最大,则△ACD的面积最大;△ACD中,AD边上的高为定值(即为1),若△ACD的面积最大,则AD的长最大;由④的△BEC∽△ADC知:当AD最长时,BE也最长;故梯形ABCD面积最大时,E、A重合,此时EC=AC=,AD=1;故S=(1+2)×1=,故⑤正确;梯形ABCD因此本题正确的结论是①④⑤,故选D.7.解:过点A作AE⊥BC于点E,如图所示:∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE===3,∴cos∠BPC=cos∠BAE==.故选:C.8.解:∵x2+2﹣2x=(x﹣1)2+1,(x﹣1)2≥0,∴(x﹣1)2+1>0,∴x2+2>2x,∴max{2x,x2+2}的结果为:x2+2.故选:D.二.填空题(共10小题,满分30分,每小题3分)9.解:开方得,x=±2,即x1=2,x2=﹣2.故答案为,x1=2,x2=﹣2.10.解:由于P为线段AB=6的黄金分割点,且AP是较长线段;则AP=6×=3﹣3.故答案为:3﹣3.11.解:∵=,∴b=a,∴==.故答案为:.12.解:观察表格可知:x=0时,y=7,x=2时,y=7,∴抛物线的对称轴为直线x==1,∵x=3时,y=13,∴x=﹣1时,y=13,∴4a+2b+c=7,a﹣b+c=13,∴(4a+2b+c)(a﹣b+c)的值为91,故答案为91.13.解:圆锥侧面积公式为:s侧面积=πrR=π×10×40=400π.故答案为:400π.14.解:∵直角三角形中,两直角边分别是12和5,∴斜边为=13,∴斜边上中线长为×13=6.5.故答案为:6.5.15.解:如图,连接AB.∵OA=AB=,OB=2,∴OB2=OA2+AB2,∴∠OAB=90°,∴△AOB是等腰直角三角形,∴∠AOB=45°,∴sin∠AOB=,故答案为:.16.解:∵BC⊥CA,MN⊥AN,∴∠C=∠N=90°,∵∠BAC=∠MAN,∴△BCA∽△MNA.∴,即,∴MN=(m),答:楼房MN的高度为m,故答案为:.17.解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+x2=(8﹣x)2,解得:x=3,即OE=5,DE=3,过D作DF⊥OA,∵S=OD•DE=OE•DF,△OED∴DF=,OF==,则D(,﹣).故答案为:(,﹣)18.解:根据题意知,∠AFE=∠BDG=∠C=90°,∴∠A=BDG(同角的余角相等).∴△AEF∽△DBG,∴=.又∵EF=DG,AF=4,GB=9,∴=.∴EF=6.即正方形铁皮的边长为6.故答案是:6.三.解答题(共10小题,满分96分)19.解:(1)原式=1+2×﹣2+﹣1=1+﹣2+﹣1=0;(2)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x=3或x=﹣1.20.解:(1)∵∠CAD:∠DAB=1:2∴∠DAB=2∠CAD在Rt△ABC中,∠CAD+∠DAB+∠DBA=90°∵DE垂直平分AB交边BC、AB于点D、E∴∠DAB=∠DBA∴∠CAD+∠DAB+∠DBA=∠CAD+2∠CAD+2∠CAD=90°解得,∠CAD=18°(2)在Rt△ABC中,AC=1,tan∠B==,∴BC=2由勾股定理得,AB===∵DE垂直平分AB交边BC、AB于点D、E∴BE=AE=∵∠DAE=∠DBE∴在Rt△ADE中tan∠B=tan∠DAE==∴DE=∴由勾股定理得AD===∴cos∠CAD===∴sin∠CAD===则∠CAD的正弦值为21.解:(1)如图,△O′A′B即为所求;(2)如图,△O″A″B即为所求;(3)如图,∵点M是OA的中点,∴M的对应点M′的坐标为(2,7).故答案为:(2,7).22.解:根据题意画树状图如下:共有16种等可能的结果数,其中小明和小华查找同一位院士资料的有4种结果,∴小明和小华查找同一位院士资料的概率为=.23.解:如图1,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,x=,如图2,四边形DGFE是正方形,过C作CP⊥AB于P,交DG于Q,设ED=x,S△ABC=AC•BC=AB•CP,12×5=13CP,CP=,同理得:△CDG∽△CAB,∴=,∴=,x=<,∴该直角三角形能容纳的正方形边长最大是(步).24.(1)证明:∵∠AOB=120°,∴∠ATB==60°,∵PT切⊙O于T,∴∠BTP=∠TAP,∵PC平分∠APT,∴∠APC=∠CPT,∵∠TCD=∠TAP+∠APC,∠CDT=∠BTP+∠CPT,∴∠TCD=∠CDT==60°,∴△CDT为等边三角形;(2)解:设CT=DT=x,∵∠TCD=∠CDT=∠BDP,∠BPD=∠CPT,∴△PCT∽△PDB,∴,∵∠DTP=∠PAC,∠APC=∠DPT,∴△ACP∽△TDP,∴,∴,即,∴x2=4,∴x=±2,∵x>0,∴x=2,∴,PC=4.25.解:(1)对于函数y1=x2﹣(m+2)x+2m+3,当x=2时,y=3,∴点A不在抛物线上,把B(﹣1,3)代入y1=x2﹣(m+2)x+2m+3,得到3=1+3m+5,解得m=﹣1,∴抛物线的解析式为y=x2﹣x+1.(2)①∵函数y1经过定点(2,3),对于函数y2=nx+k﹣2n,当x=2时,y2=k,∴当k=3时,两个函数过定点M(2,3).②∵m≤2,∴抛物线的对称轴x=≤2,∴抛物线的对称轴在定点M(2,3)的左侧,由题意当1+(m+2)+2m+3≤﹣n+3﹣2n时,满足当﹣1≤x≤2时,总有y1≤y2,∴3m+3n≤﹣3,∴m+n≤﹣1.26.(1)证明:连接OD.∵O为AB中点,D为BC中点,∴OD∥AC.∵DF为⊙O的切线,∴DF⊥OD.∴DF⊥AC.(2)过O作OE⊥BD,则BE=ED.在Rt△BEO中,∠B=30°,∴OE=OB,BE=OB.∵BD=DC,BE=ED,∴EC=3BE=OB.在Rt△OEC中,tan∠BCO=.27.证明:(1)∵AB是直径,∴∠BDA=90°,∴∠DBA+∠DAB=90°,∵∠CAD=∠AED,∠AED=∠ABD,∴∠CAD=∠ABD,∴∠CAD+∠DAB=90°,∴∠BAC=90°,即AB⊥AC,且AO是半径,∴AC为⊙O的切线;(2)∵DE2=EF•EA,∴,且∠DEF=∠DEA,∴△DEF∽△AED,∴∠EDF=∠DAE,∵∠EDF=∠BAE,∴∠BAE=∠DAE,∴AE平分∠BAD;(3)如图,过点F作FH⊥AB,垂足为H,∵AE平分∠BAD,FH⊥AB,∠BDA=90°,∴DF=FH=2,=AB×FH=×BF×AD,∵S△ABF∴2AB=4BF,∴AB=2BF,在Rt△ABD中,AB2=BD2+AD2,∴(2BF)2=(2+BF)2+16,∴BF=,BF=﹣2(不合题意舍去)∴AB=,∴⊙O的半径为.28.解:(1)将点A、B的坐标代入抛物线表达式得:,解得,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)如下图,连接BC交DE于点M,此时MA+MC最小,又因为AC是定值,所以此时△AMC的周长最小.由题意可知OB=OC=3,OA=1,∴BC==3,同理AC=,∴此时△AMC的周长=AC+AM+MC=AC+BC=+3;∵DE是抛物线的对称轴,与x轴交点A(1,0)和B(3,0),∴AE=BE=1,对称轴为x=2,由OB=OC,∠BOC=90°得∠OBC=45°,∴EB=EM=1,又∵点M在第四象限,在抛物线的对称轴上,∴M(2,﹣1);(3)存在这样的点P,使△FCG是等腰三角形.∵点P的横坐标为m,故点F(m,﹣m2+4m﹣3),点G(m,m﹣3),则FG2=(﹣m2+4m﹣3+3﹣m)2,CF2=(m2﹣4m)2+m2,GC2=2m2,当FG=FC时,则(﹣m2+4m﹣3+3﹣m)2=m2+(m2﹣4m)2,解得m=0(舍去)或4;当GF=GC时,同理可得m=0(舍去)或3;当FC=GC时,同理可得m=0(舍去)或5或3(舍去),综上,m=5或m=4或或3.。

2020-2021学年北师大版九年级上册数学期末复习试卷(有答案)

2020-2021学年北师大版九年级上册数学期末复习试卷(有答案)

2020-2021学年北师大新版九年级上册数学期末复习试卷一.选择题(共10小题,满分20分,每小题2分)1.方程x2﹣6x+5=0较小的根为p,方程5x2﹣4x﹣1=0较大的根为q,则p+q等于()A.3B.2C.1D.22.如图所示几何体的左视图正确的是()A.B.C.D.3.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小时随机出的是“剪刀”B.掷一个质地均匀的正六面体骰子,向上的面点数是偶数C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃4.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)2 6.若,则的值为()A.1B.C.D.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB =1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4B.5C.6D.88.如图,在△ABC中,中线AD,BE相交于点F,EG∥BC,交AD于点G,下列说法:①BD =2GE;②AF=2FD;③△AGE与△BDF面积相等;④△ABF与四边形DCEF面积相等,结论正确的是()A.①③④B.②③④C.①②③D.①②④9.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=1610.正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.小明想知道学校旗杆的高,他在某一时刻测得直立的标杆高1米时影长0.9米,此时他测旗杆影长时,因为旗杆靠近建筑物,影子不全落在地面上,有一部分影子在墙上,他测得落在地面上的影长BC为2.7米,又测得墙上影高CD为1.2米,旗杆AB的高度为米.12.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A'B'O.若点A的坐标是(1,2),则点A'的坐标是.13.在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是.14.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm,则可列方程为.15.如图,在菱形ABCD中,∠C=60°,E、F分别是AB、AD的中点,若EF=5,则菱形ABCD的周长为.16.如图,在△ABC中,AB=AC=9,过点B、C分别作AB、BC的垂线相交于点D,延长AC、BD相交于点E,若tan∠BDC=2,则DE=.三.解答题(共3小题,满分22分)17.计算:2cos45°tan30°cos30°+sin260°.18.如图,是一个可以自由转动的转盘,转盘被分成面积相等的三个扇形,每个扇形上分别标上,1,﹣1三个数字.小明转动转盘,小亮猜结果,如果转盘停止后指针指向的结果与小亮所猜的结果相同,则小亮获胜,否则小明获胜.(1)如果小明转动转盘一次,小亮猜的结果是“正数”,那么小亮获胜的概率是.(2)如果小明连续转动转盘两次,小亮猜两次的结果都是“正数”,请用画树状图或列表法求出小亮获胜的概率.19.如图,在菱形ABCD中,对角线AC和BD交于点O,分别过点B、C作BE∥AC,CE ∥BD,BE与CE交于点E.(1)求证:四边形OBEC是矩形;(2)当∠ABD=60°,AD=2时,求BE的长.四.解答题(共1小题,满分8分,每小题8分)20.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A 和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)五.解答题(共1小题,满分10分,每小题10分)21.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)121416每周的销售量y(本)500400300(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?六.解答题(共3小题,满分34分)22.如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式及点B的坐标;(2)若点P为x轴上一点,且满足△ACP是等腰三角形,请直接写出符合条件的所有点P的坐标.23.【方法提炼】解答几何问题常常需要添辅助线,其中平移图形是重要的添辅助线策略.【问题情境】如图1,在正方形ABCD中,E,F,G分别是BC,AB,CD上的点,FG⊥AE于点Q.求证:AE=FG.小明在分析解题思路时想到了两种平移法:方法1:平移线段FG使点F与点B重合,构造全等三角形;方法2:平移线段BC使点B与点F重合,构造全等三角形;【尝试应用】(1)请按照小明的思路,选择其中一种方法进行证明;(2)如图2,正方形网格中,点A,B,C,D为格点,AB交CD于点O.求tan∠AOC 的值;(3)如图3,点P是线段AB上的动点,分别以AP,BP为边在AB的同侧作正方形APCD 与正方形PBEF,连结DE分别交线段BC,PC于点M,N.①求∠DMC的度数;②连结AC交DE于点H,求的值.24.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.解:方程x2﹣6x+5=0较小的根为p=1,方程5x2﹣4x﹣1=0较大的根为q=1,则p+q=2,故选:B.2.解:从几何体的左面看所得到的图形是:故选:A.3.解:A、在“石关、剪刀、布”的游戏中,小时随机出的是“剪刀”为,不符合这一结果,故此选项错误;B、掷一个质地均匀的正六面体骰子,向上的面点数是偶数的概率是==0.5,符合这一结果,故此选项正确;C、从一个装有1个红球2个黄球的袋子中任取一球,取到的是黄球的概率为:,不符合这一结果,故此选项错误;D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为:0.25,不符合这一结果,故此选项错误;故选:B.4.解:由题意可知:△=(﹣2)2﹣4×1×1=0,故选:B.5.解:将抛物线y=2x2向左平移3个单位所得直线解析式为:y=2(x+3)2;故选:C.6.解:∵,∴=2=2﹣=;故选:B.7.解:作CE⊥x轴于E,∵AC∥x轴,OA=2,OB=1,∴OA=CE=2,∵∠ABO+∠CBE=90°=∠OAB+∠ABO,∴∠OAB=∠CBE,∵∠AOB=∠BEC,∴△AOB∽△BEC,∴=,即=,∴BE=4,∴OE=5,∵点D是AB的中点,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.8.解:∵中线AD,BE相交于点F,∴BD=CD,AE=CE,BF=2EF,AF=2FD,②正确;∵EG∥BC,∴△BDF∽△EGF,∴==2,∴BD=2GE,①正确;∵AF=2FD,∴△ABF的面积=2△BDF的面积=△ABD的面积=△ABC的面积,△BDF的面积=△ABC的面积,∵EG∥BC,AE=CE,∴△AGE∽△ADC,=,∴=()2=,∴△AGE的面积=△ADC的面积△ABC的面积,∴△AGE与△BDF面积不相等,③不正确;∵BD=CD,AE=CE,∴△ABD的面积=△ADC的面积=△ABC的面积=△ABE的面积=△BCE的面积,∴△ABD的面积=△BCE的面积,∴△ABD的面积﹣△BDF的面积=△BCE的面积﹣△BDF的面积,即△ABF与四边形DCEF面积相等,④正确;故选:D.9.解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=,AB∥x轴,∴B(5,4).故A无误;如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=,∴D(﹣3,0)∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∴a=﹣,故C无误;∵OC=8,OD=3,∴OC•OD=24,故D错误.综上,错误的只有D.故选:D.10.解:∵BF∥AD∴△BNF∽△DNA∴,而BF=BC=1,AF=,∴AN=,又∵AE=BF,∠EAD=∠FBA,AD=AB,∴△DAE≌△ABF(SAS),∴∠AED=∠BFA∴△AME∽△ABF∴,即:,∴AM=,∴MN=AN﹣AM=.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.解:过点D作DE⊥AB于点E,则BE=CD=1.2m,∵他在某一时刻测得直立的标杆高1米时影长0.9米,∴=,即=,解得:AE=3m,∴AB=AE+BE=3+1.2=4.2(m).故答案为:4.2.12.解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以﹣2,故点A的坐标是(1,2),则点A′的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).13.解:根据图表可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,则两次摸出的球都是红球的概率为;故答案为:.14.解:设人行通道的宽度为xm,则两块矩形绿地可合成长为(30﹣3x)m、宽为(24﹣2x)m的大矩形,根据题意得:(30﹣3x)(24﹣2x)=480.故答案为:(30﹣3x)(24﹣2x)=480.15.解:∵E、F分别是AB、AD的中点,∴EF=BD,∵EF=5,∴BD=10,∵四边形ABCD为菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∴AB=BD=10,∴菱形ABCD的周长=4×10=40,故答案为:40.16.解:作CF⊥BD于F,作AG⊥BC于G,如图所示:∵AB=AC=9,AG⊥BC,∴BG=CG,∵BE⊥AB,CD⊥BC,∴∠ABG+∠CBD=90°,∠CBD+∠BDC=90°,∴∠ABG=∠BDC,∴tan∠ABG==tan∠BDC==2,∴AG=2BG,BC=2CD,设BG=x,则AG=2x,在Rt△ABG中,由勾股定理得:x2+(2x)2=92,解得:x=,∴BC=2BG=,CD=BC=,∴BD===9,∵CF⊥BD,∴△BCD的面积=BD×CF=BC×CD,∴CF==,∴DF===,∵AB⊥BD,CF⊥BD,∴CF∥AB,∴△CFE∽△ABE,∴=,即=,解得:DE=3;故答案为:3.三.解答题(共3小题,满分22分)17.解:原式=2×﹣××+()2=﹣+=.18.解:(1)∵每个扇形上分别标上,1,﹣1三个数字,其中是“正数”的有2个数,∴小亮猜的结果是“正数”,那么小亮获胜的概率是;故答案为:;(2)根据题意画图如下:共有9种等情况数,其中两次的结果都是“正数”的有4种,∴小亮获胜的概率是.19.(1)证明:∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形OBEC是矩形;(2)解:∵四边形ABCD为菱形,∴AD=AB,OB=OD,OA=OC,∵∠DAB=60°,∴△ABD为等边三角形,∴BD=AD=AB=2,∴OD=OB=,在Rt△AOD中,AO===3∴OC=OA=3,∵四边形OBEC是矩形,∴BE=OC=3.四.解答题(共1小题,满分8分,每小题8分)20.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.75.∴AE=40,∵AB=57,∴BE=17∵四边形BCFE是矩形,∴CF=BE=17.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=17,∴BC=EF=30﹣17=13.答:教学楼BC高约13米.五.解答题(共1小题,满分10分,每小题10分)21.解:(1)设y与x之间的函数关系式是y=kx+b(k≠0),,得,即y与x之间的函数关系式为y=﹣50x+1100;(2)由题意可得,w=(x﹣10)y=(x﹣10)(﹣50x+1100)=﹣50(x﹣16)2+1800,∵a=﹣50<0∴w有最大值∴当x<16时,w随x的增大而增大,∵12≤x≤15,x为整数,∴当x=15时,w有最大值,此时,w=﹣50(15﹣16)2+1800=1750,答:销售单价为15元时,每周获利最大,最大利润是1750元.六.解答题(共3小题,满分34分)22.解:(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2)把A(1,2)代入反比例函数y=,∴k=1×2=2;∴反比例函数的表达式为y=,解得,,,∴B(2,1);(2)∵一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),∵A(1,2),∴AC==2,过A作AD⊥x轴于D,∴OD=1,CD=AD=2,当AP=AC时,PD=CD=2,∴P(﹣1,0),当AC=CP=2时,△ACP是等腰三角形,∴OP=3﹣2或OP=3+2∴P(3﹣2,0)或(3+2,0),当AP=CP时,△ACP是等腰三角形,此时点P与D重合,∴P(1,0),综上所述,所有点P的坐标为(﹣1,0)或(3﹣2,0)或(3+2,0)或(1,0).23.解:(1)①平移线段FG至BH交AE于点K,如图1﹣1所示:由平移的性质得:FG∥BH,∵四边形ABCD是正方形,∴AB∥CD,AB=BC,∠ABE=∠C=90°,∴四边形BFGH是平行四边形,∴BH=FG,∵FG⊥AE,∴BH⊥AE,∴∠BKE=90°,∴∠KBE+∠BEK=90°,∵∠BEK+∠BAE=90°,∴∠BAE=∠CBH,在△ABE和△CBH中,,∴△ABE≌△CBH(ASA),∴AE=BH,∴AE=FG;②平移线段BC至FH交AE于点K,如图1﹣2所示:则四边形BCHF是矩形,∠AKF=∠AEB,∴FH=BC,∠FHG=90°,∵四边形ABCD是正方形,∴AB=BC,∠ABE=90°,∴AB=FH,∠ABE=∠FHG,∵FG⊥AE,∴∠HFG+∠AKF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠HFG,在△ABE和△FHG中,,∴△ABE≌△FHG(ASA),∴AE=FG;(2)将线段AB向右平移至FD处,使得点B与点D重合,连接CF,如图2所示:∴∠AOC=∠FDC,设正方形网格的边长为单位1,则AC=2,AF=1,CE=2,DE=4,FG=3,DG=4,根据勾股定理可得:CF===,CD===2,DF===5,∵()2+(2)2=52,∴CF2+CD2=DF2,∴∠FCD=90°,∴tan∠AOC=tan∠FDC===;(3)①平移线段BC至DG处,连接GE,如图3﹣1所示:则∠DMC=∠GDE,四边形DGBC是平行四边形,∴DC=GB,∵四边形ADCP与四边形PBEF都是正方形,∴DC=AD=AP,BP=BE,∠DAG=∠GBE=90°∴DC=AD=AP=GB,∴AG=BP=BE,在△AGD和△BEG中,,∴△AGD≌△BEG(SAS),∴DG=EG,∠ADG=∠EGB,∴∠EGB+∠AGD=∠ADG+∠AGD=90°,∴∠EGD=90°,∴∠GDE=∠GED=45°,∴∠DMC=∠GDE=45°;②如图3﹣2所示:∵AC为正方形ADCP的对角线,∴∠DAC=∠PAC=∠DMC=45°,∴AC=AD,∵∠HCM=∠BCA,∴∠AHD=∠CHM=∠ABC,∴△ADH∽△ACB,∴===.24.解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PF=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,四边形AEBD∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).。

江苏省常州市外国语学校2020-2021学年八年级上学期数学期中考试试卷及参考答案

江苏省常州市外国语学校2020-2021学年八年级上学期数学期中考试试卷及参考答案
15. 如图,已知在△ABC中,AB=AC,AC的垂直平分线分别交AB于点D,交AC于点E.若∠DCB=30°,则∠DCA=__ ______°.
16. 如图,在Rt△ABC中,∠C=90°,AB=8,AD平分∠BAC,交BC边于点D,若CD=2,则△ABD的面积为_______ _.
17. 已知:如图,在四边形ABCD中,∠DAB=90°,AD∥BC,AD=1,AB=3,将△ABD沿直线BD翻折,点A恰好落 在CD边上点 处,则BC的长________
江苏省常州市外国语学校2020-2021学年八年级上学期数学期中考试试卷
一、单选题
1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A.
B.
C.
D.
2. 下列各数中,无理数是( ) 3. 下列各式中,正确的是( ) 4. 已知等腰三角形的周长为10,一边长为4,则此等腰三角形的腰长为( ) 5. 下列条件中,不能判定△ABC为直角三角形的是( ) 6. 如图,△ABC中,AB=AC , AD⊥BC , 垂足为D , DE∥AB , 交AC于点E , ED=3,则AE的长为( )
(1) 试判断EF和AC的位置关系,并说明理由 (2) 若BD=26,EF=5,求AC的长 22. 阅读下面的文字,解答问题. 由于1< <2,所以 的整数部分为1,小数数部分
-1,根据以上的内容,解答下面的问题:
(1) 的整数部分是________,小数部分是________;
(2) 1+ 的整数部分是________,小数部分是________;
三、解答题 18. 解方程 (1) 4x²-3=22 (2) =0 19. 计算 (1) (2) . 20. 如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A.B. C在小正方形的顶点上.

(含答案)江苏省常州市武进区2020-2021学年九年级上学期期中考试数学试题

(含答案)江苏省常州市武进区2020-2021学年九年级上学期期中考试数学试题

江苏省常州市武进区2020~2021学年度九年级上学期期中考试数学试题一、选择题(每小题2分,共16分)1.下列各图形中,是轴对称图形的是 --------------------------------------------------------- 【 】A .B .C .D .2.下列将一元二次方程5)3()2(=-+x x 化成一般形式正确的是 ---------------------- 【 】 A .2110x x +-= B .2110x x --=C .260x x --=D .260x x +-=3.下列一元二次方程有两个异号的实数根的是 --------------------------------------------- 【 】 A .2310x x --= B .212202x x -+=C .2440x x -+=D .2102x x -+-= 4.已知⊙O 的半径为6cm ,OP =7cm ,则点P 与⊙O 的位置关系是 ---------------- 【 】A .点P 在圆内B .点P 在圆上C .点P 在圆外D .无法确定5.正九边形的每个内角的度数为 ---------------------------------------------------------------- 【 】A .40B .80C .120D .1406.某电动自行车厂四月份的产量为1000辆,由于市场需求量不断增大,六月份的产量提高到1210辆,则该厂五、六月份的月平均增长率为 ----------------------------------------- 【 】A .10%B .11%C .12.1%D .21%7.已知关于x 的方程290x kx -+=可以配方成2()0x m -=的形式,则k 的值为 - 【 】 A .3B .6C .6-D .6±8. 如图,60MPN ∠=︒,点O 是∠MPN 的角平分线上的一点,半径为4的⊙O 经过点P ,将⊙O 向左平移,当⊙O 与射线PM 相切时,⊙O 平移的距离是 ------------------------------------------------------ 【 】A .2B .334C .323D .32 2020.11OPNM二、填空题(每小题2分,共20分) 9.一元二次方程22=x 的根是 .10.已知1-=x 是方程032=-+mx x 的一个根,则m 的值为 . 11.圆锥的高为3cm ,底面半径为2cm ,则圆锥的侧面积是 2cm . 12.当x= 时,代数式(1)(5)x x +-与31)(1)x x -+(的值相等. 13.四边形ABCD 是⊙O 的内接四边形,∠A ∶∠C =4∶1,则∠A = °. 14.在Rt △ABC 中,∠C =90°,AC =5,BC =3,则其外接圆的直径为 .15.一个两位数等于它的两个数字的积的3倍,十位上的数字比个位上的数字小2,设个位上的数字为x ,根据题意,可以列出方程 .16.如图,AB 是⊙O 的直径,点C 、D 是AB 两侧⊙O 上的点,若∠CAB =34°,则∠ADC = °.16题图 17题图 18题图17.如图,△ABC 中,AB =AC ,点M 是AB 上一点,AM =3,以AM 为半径的⊙A 与BC 相切于点D ,交AC 于点N ,劣弧MN 长为2π,则BC 的长为 .18.如图,⊙O ,以⊙O 的内接正八边形的一边向⊙O 内作正方形ABCD ,则正方形ABCD 的面积为 . 三、解下列方程(每题4分,共16分) 19.⑴ 05)2(2=--x ⑵ 0652=+-x x⑶ x x x -=-+3)3()1( ⑷ 09)1(422=--x xB四、尺规作图题(共6分)20.如图,点A 是⊙O 上一点.请利用直尺和圆规完成下列作图.(不写作法,保留作图痕迹)⑴ 画出⊙O 的内接正△ABC .⑵ 在⊙O 上画出M 、N 两点,使得∠MAN =30°.(画一种即可)五、解答题(共42分,其中第21、22、23题各6分,第24、25、26题8分) 21.(6分)已知关于x 的一元二次方程2210(0)nx x n -+=≠有实数根.⑴ 求n 的取值范围;⑵ 当n 取最大值时,求方程)0(0122≠=+-n x nx 的根.22.(6分)如图,⊙O 的半径为2,△ABC 是⊙O 的内接三角形,22=AB .⑴ 求∠C 的度数;⑵ 求图中阴影部分的面积.23.(6分)如图,矩形ABCD 中,AB =2cm ,BC =3cm ,点E 从点B 沿边BC 以2cm /s 的速度向点C 移动,同时点F 从点C 沿边CD 以1cm /s 的速度向点D 移动,当E 、F 两点中有一点到达终点时,则另一点也停止运动.当△AEF 是以AF 为底的等腰三角形时,求点E 运动的时间.24.(8分)某商店进了一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,使库存减少最快,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,当每件衬衫降价多少元时,商场平均每天盈利达到1200元?A BCDEF25.(8分)国庆假期,小明做数学题时遇到了如下问题:如图1,四边形ABCD 是⊙O 的内接四边形,BC 是⊙O 的直径,直线l 经过点A ,∠ABD =∠DAE =30°.试说明直线l 与⊙O 相切.小明添加了适当的辅助线后,得到了图2的图形,并利用它解决了问题.⑴ 请你根据小明的思考,写出解决这一问题的过程; ⑵ 图2中,若AD =7,AB =4,求DC 的长.ElElF26. (8分)如图,在平面直角坐标系xOy 中,点A (-3,0),B (1,1),C (0,3).过点B 作BD⊥x 轴,垂足为点D .连接CD .⑴ 若点M 是y 轴上一点,当AM ⊥CD 时,点M 的坐标为 ; ⑵ 若点P 是△ABC 的外心,求点P 的坐标;⑶ 在x 轴上是否存在点Q ,使得∠BQD =∠ACB ,若存在,直接写出....点Q 的坐标;若不存在,说明理由.yxABC DOy xA BCDO备用图九年级数学参考答案及评分意见一、选择题(每小题2分,共16分)二、填空题(每小题2分,共20分)9.2±=x10.-211.π13212.-1或-2 13.144° 14.34 15.x x x x +-=-)2(10)2(3 16.5617.3618.224-三、解下列方程(每题4分,共16分) 19.⑴ 05)2(2=--x52±=-x---------------------------- 2分 52±=x------------------------------ 4分 ⑵ 0652=+-x x 0)3()2(=--x x --------------------------- 2分3,221==x x --------------------------------- 4分⑶ x x x -=-+3)3)(1(0)2)(3(=+-x x ---------------------- 2分2321-==x x , ----------------------- 4分⑷ 09)1(422=--x x 0]3)1(2][3)1(2[=--+-x x x x ---------- 2分2,5221-==x x ----------------------------- 4分四、尺规作图题(共6分)20.⑴ 如图,△ABC 为求作的图形 ----------------------------------------------------------------------- 4分⑵ 作等边△MON ,则∠MAN =30°(作法不唯一,画对即可) -------------------------- 2分五、解答题(共42分,其中第21、22、23题各6分,第24、25、26题8分)21.⑴ n n ac b 44142422-=⋅⋅-=- -------------------------------------------------------------------- 1分由“关于x 的方程有实数根”得:b 2-4ac ≥0,即:4-4n ≥0 ------------------------- 2分解得:1≤n --------------------------------------------------------------------------------------------- 3分∴ n 的取值范围是01≠≤n n 且 -------------------------------------------------------------------- 4分⑵ 由01≠≤n n 且得:n 的最大值为1 ------------------------------------------------------------- 5分把n =1代入原方程得:化简得:0122=+-x x 解得:121==x x ------------------ 6分22.⑴ 连接OA ,OB .△OAB 中,OA =OB =2,AB =22∴ 8222222=+=+OB OA ,8)22(22==AB∴ 222AB OB OA =+----------------------------------------------------- 2分 ∴ ∠AOB =90°---------------------------------------------------------- 3分∴ ︒=∠=∠4521AOB C -------------------------------------------------4分 ⑵ ππ=⨯⨯=436090OAB S 扇形,22221=⨯⨯=∆OAB S ------------------ 5分∴ 2-=π阴影S----------------------------------------------------------- 6分 23.解:设点E 运动的时间是x 秒.根据题意可得:2222)23()2(2x x x +-=+----------------------------------------------------3分解这个方程得:31631621+=-=x x , --------------------------------------------------- 4分)(5.123s =÷, )(212s =÷ ∴ 两点运动了1.5s 后停止运动. 由6315<<得:2313160<<-<,2311316>>+ ---------------------------------5分答:当△AEF 是以AF 为底的等腰三角形时,点E 运动的时间是)316(-秒 ---- 6分24.解:当每件衬衫应降价x 元时,商场平均每天盈利达到1200元.根据题意得:(40-x )(20+2x )=1200 -------------------------------------------------- 3分解得:x 1=10,x 2=20 ---------------------------------------------------------------------------- 5分当10=x 时,平均每天售出: 20+2×10=40 ---------------------------------------------- 6分当20=x 时,平均每天售出: 20+2×20=60 ---------------------------------------------- 6分要使库存减少最快,则x =20 ------------------------------------------------------------------ 7分答:当每件衬衫应降价20元时,商场平均每天盈利达到1200元. ----------------- 8分25.⑴ ∵ AE 是⊙O 的直径∴ ∠ADE =90°∴ ∠AED +∠EAD =90° --------------------------------------------- 1分 ∵ ∠ABD =∠AED ,∠ABD =∠DAE ---------------------------- 2分 ∴ ∠DEA =∠AED∴ ∠EAD +∠DAE =90° 即:OA ⊥AE --------------------------- 3分 ∵ 点A 是半径OA 的外端∴ 直线l 与⊙O 相切 ---------------------------------------------------- 4分 ⑵ 过点A 点AF ⊥BD ,垂足为点F ,∴ ∠AFB =∠AFD =90° ∵ ∠ABD =30° ∴ ∠AED =30°lA E∴ 直径AE =2AD =72=BC ---------------------------------------- 5分 ∵ ∠ABD =30°,AB =4 ∴ AF =AB 21=2 ----------------- 6分 ∴ 32242222=-=-=BF AB BF32)7(2222=-=-=AF AD DF∴ BD =BF+DF =33 --------------------------------------------------- 7分 ∵ BC 是直径 ∴ ∠BDC =90°∴ 1)33()72(2222=-=-=BD BC CD -------------------- 8分26.⑴ M (0,1) ---------------------------------------------------------------------------------------------- 1分⑵ 过点O 作直线MN ⊥AC ,垂足为点E . ∵ 点C (0,3),点A (-3,0) ∴ OA =OC =3∴ MN 垂直平分AC ,∠COE =∠AOE =45° ∴ △ABC 的外心P 在直线MN 上直线MN 的表达式为:y =-x --------------------------------------------------------------------- 2分设P (a ,-a )由PA =PB 可得:2222)1()1()3()(-+--=--+-a a a a解得:67-=a ------------------------------------------------------------------------------------------3分∴ 点P 的坐标为(67-,67) -------------------------------------------------------------------4分⑶ 1Q (32,0),2Q (34,0)分。

2020-2021成都市实验外国语学校九年级数学上期末试卷(及答案)

2020-2021成都市实验外国语学校九年级数学上期末试卷(及答案)

2020-2021成都市实验外国语学校九年级数学上期末试卷(及答案)一、选择题1.关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有两个不相等的实数根,则实数m 的取值花围是( ) A .m≥1B .m >1C .m≥1且m≠3D .m >1且m≠32.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范围是( ) A .0<m <1B .1<m ≤2C .2<m <4D .0<m <43.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…-159…当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2 B .4<x <5C .x <-1或x >5D .x <-1或x >44.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正三角形B .矩形C .正八边形D .正六边形5.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π-C .32π-D .3π-6.关于下列二次函数图象之间的变换,叙述错误的是( ) A .将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象 B .将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x+2)2的图象 C .将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象D .将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x+1)2﹣1的图象 7.抛物线2y ax bx c =++经过点(1,0),且对称轴为直线1x =-,其部分图象如图所示.对于此抛物线有如下四个结论:①abc <0; ②20a b +=;③9a-3b+c=0;④若0m n >>,则1x m =-时的函数值小于1x n =-时的函数值.其中正确结论的序号是( )A .①③B .②④C .②③D .③④8.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .459.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( ) A .有两个不相等实数根 B .有两个相等实数根 C .有且只有一个实数根 D .没有实数根10.若20a ab -=(b ≠0),则aa b+=( ) A .0B .12 C .0或12D .1或 211.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( ) A .36°B .54°C .72°D .108°12.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( ) A .y=1+12x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2二、填空题13.有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了__人.14.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________. 15.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____. 16.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为 .17.抛物线y=﹣x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是_____.18.如图,抛物线2y ax bx c =++的对称轴为1x =,点P ,点Q 是抛物线与x 轴的两个交点,若点P 的坐标为(4,0),则点Q 的坐标为__________.19.对于实数,a b ,定义运算“◎”如下:a ◎b 22()()a b a b =+--.若()2m +◎()3m -24=,则m =_____.20.一元二次方程22x 20-=的解是______.三、解答题21.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000 落在“铅笔”的次数m68111136345546701落在“铅笔”的频率m n(结果保留小数点后两位)0.680.740.680.690.680.70(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.22.如图,四边形ACDE是证明勾股定理时用到的一个图形,a、b、c是Rt∆ABC和Rt∆BED的边长,已知2=AE c,这时我们把关于x的形如220++=ax cx b二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”220+=ax cx b,必有实数根;(3)若x=-1是“勾系一元二次方程” 220++=ax cx b的一个根,且四边形ACDE的周长是2,求∆ABC的面积.23.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?24.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.25.深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到A“全程马拉松”项目组的概率为 .(2)用树状图或列表法求小智和小慧被分到同一个项目标组进行志愿服务的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据二次项系数非零及根的判别式列出关于m的一元一次不等式组,然后方程组即可.【详解】解:∵(m-3)x 2-4x-2=0是关于x 的方程有两个不相等的实数根,∴230(4)4(3)(2)0m m -≠⎧⎨∆=---⨯->⎩解得:m>1且m ≠3. 故答案为D. 【点睛】本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.2.C解析:C 【解析】 【分析】根据二次函数图象上点的坐标特征即可求得. 【详解】解:当a >0时,抛物线开口向上,则点(0,1)的对称点为(x 0,1), ∴x 0>4,∴对称轴为x=m 中2<m <4, 故选C . 【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,画出草图更直观.3.D解析:D 【解析】 【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x <4时,y 1>y 2,从而得到当y 2>y 1时,自变量x 的取值范围. 【详解】∵当x=0时,y 1=y 2=0;当x=4时,y 1=y 2=5;∴直线与抛物线的交点为(-1,0)和(4,5),而-1<x<4时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>4.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.4.C解析:C【解析】因为正八边形的每个内角为135 ,不能整除360度,故选C.5.B解析:B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,2{34A AB BD ∠=∠=∠=∠, ∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD=2602123602π⨯-⨯=23π故选B .6.D解析:D 【解析】 【分析】根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解. 【详解】A 选项,将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象,故A 选项不符合题意;B 选项,将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x +2)2的图象,故B 选项不符合题意;C 选项,将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象,故C 选项不符合题意;D 选项,将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x +1)2+1的图象,故D 选项符合题意. 故选D . 【点睛】本题主要考查了二次函数图象与几何变换,熟练掌握平移变换只改变图形的位置不改变图形的形状与大小的关键.7.D解析:D 【解析】 【分析】①根据抛物线开口方向、对称轴、与y 轴的交点即可判断; ②根据抛物线的对称轴方程即可判断;③根据抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1可得抛物线与x 轴的另一个交点坐标为(﹣3,0),即可判断;④根据m >n >0,得出m ﹣1和n ﹣1的大小及其与﹣1的关系,利用二次函数的性质即可判断. 【详解】解:①观察图象可知: a <0,b <0,c >0,∴abc >0, 所以①错误;②∵对称轴为直线x =﹣1,即﹣2ba=﹣1,解得b =2a ,即2a ﹣b =0, 所以②错误;③∵抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1, ∴抛物线与x 轴的另一个交点为(﹣3,0), 当a =﹣3时,y =0,即9a ﹣3b +c =0, 所以③正确; ∵m >n >0, ∴m ﹣1>n ﹣1>﹣1,由x >﹣1时,y 随x 的增大而减小知x =m ﹣1时的函数值小于x =n ﹣1时的函数值,故④正确; 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数的图象和性质及点的坐标特征.8.C解析:C 【解析】 【分析】 【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3355÷= 故选C9.A解析:A 【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x 2+x ﹣3=0有两个不相等的实数根. 【详解】∵a=1,b=1,c=﹣3,∴△=b 2﹣4ac=12﹣4×(1)×(﹣3)=13>0, ∴方程x 2+x ﹣3=0有两个不相等的实数根, 故选A .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.C解析:C 【解析】 【分析】 【详解】解:∵20a ab -= ()0b ≠, ∴a(a-b)=0, ∴a=0,b=a . 当a=0时,原式=0; 当b=a 时,原式=12, 故选C11.C解析:C 【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度, 故选C .12.D解析:D 【解析】 【分析】抛物线的形状只是与a 有关,a 相等,形状就相同. 【详解】y =2(x ﹣1)2+3中,a =2. 故选D . 【点睛】本题考查了抛物线的形状与a 的关系,比较简单.二、填空题13.12【解析】【分析】【详解】解:设平均一人传染了x 人x +1+(x +1)x =169x =12或x =-14(舍去)平均一人传染12人故答案为12解析:12 【解析】 【分析】 【详解】解:设平均一人传染了x人,x+1+(x+1)x=169x=12或x=-14(舍去).平均一人传染12人.故答案为12.14.【解析】分析:直接利用概率公式求解即可求出答案详解:从12345中随机取出1个不同的数共有5种不同方法其中3被抽中的概率为故答案为点睛:本题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情解析:1 5【解析】分析:直接利用概率公式求解即可求出答案.详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为15.故答案为15.点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比. 15.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长解析:12【解析】【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 16.【解析】试题分析:根据圆的确定先做出过ABC三点的外接圆从而得出答案如图分别作ABBC的中垂线两直线的交点为O以O为圆心OA为半径作圆则⊙O即为过ABC三点的外接圆由图可知⊙O还经过点DEFGH这5解析:【解析】试题分析:根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.如图,分别作AB、BC的中垂线,两直线的交点为O,以O 为圆心、OA 为半径作圆,则⊙O 即为过A ,B ,C 三点的外接圆,由图可知,⊙O 还经过点D 、E 、F 、G 、H 这5个格点,故答案为5.考点:圆的有关性质.17.-3<x <1【解析】试题分析:根据抛物线的对称轴为x=﹣1一个交点为(10)可推出另一交点为(﹣30)结合图象求出y >0时x 的范围解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1已知一个交点为(1解析:-3<x <1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y >0时,x 的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y >0时,x 的取值范围是﹣3<x <1.故答案为﹣3<x <1.考点:二次函数的图象.18.(0)【解析】∵抛物线的对称轴为点P 点Q 是抛物线与x 轴的两个交点∴点P 和点Q 关于直线对称又∵点P 的坐标为(40)∴点Q 的坐标为(-20)故答案为(-20)解析:(2-,0)【解析】∵抛物线2y ax bx c =++的对称轴为1x =,点P ,点Q 是抛物线与x 轴的两个交点, ∴点P 和点Q 关于直线1x =对称,又∵点P 的坐标为(4,0),∴点Q 的坐标为(-2,0).故答案为(-2,0). 19.-3或4【解析】【分析】利用新定义得到整理得到然后利用因式分解法解方程【详解】根据题意得或所以故答案为:或【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法这解析:-3或4【解析】【分析】利用新定义得到22[(2)(3)][(2)(3)]24m m m m ++--+--=,整理得到2(21)490m --=,然后利用因式分解法解方程.【详解】根据题意得,22[(2)(3)][(2)(3)]24m m m m ++--+--=, 2(21)490m --=,(2 m-1+7)(2 m-1-7)=0,2 m-1+7=0或2 m-1-7=0,所以123,4m m =-=. 故答案为:3-或4.【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法. 20.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x 1=1,x 2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x 2=1,开方得:x =±1,解得:x 1=1,x 2=﹣1.故答案为x 1=1,x 2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.三、解答题21.(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36【解析】【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1-360n )=3000,然后解方程即可. 【详解】(1)转动该转盘一次,获得铅笔的概率约为0.7;故答案为 0.7(2)4000×0.5×0.7+4000×3×0.3=5000, 所以该商场每天大致需要支出的奖品费用为5000元;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1﹣360n )=3000,解得n =36, 所以转盘上“一瓶饮料”区域的圆心角应调整为36度.故答案为36.【点睛】 本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了扇形统计图.22.(1)2340x ++=(答案不唯一)(2)见解析(3)1.【解析】【分析】(1)直接找一组勾股数代入方程即可;(2)根据根的判别式即可求解;(3)根据方程的解代入求出a,b,c 的关系,再根据完全平方公式的变形进行求解.【详解】(1)当a=3,b=4,c=5时,勾系一元二次方程为2340x ++=;(2)依题意得△=)2-4ab=2c 2-4ab,∵a 2+b 2=c 2,∴2c 2-4ab=2(a 2+b 2)-4ab=2(a-b )2≥0,即△≥0,故方程必有实数根;(3)把x=-1代入得c∵四边形 ACDE 的周长是,即,故得到c=2,∴a 2+b 2=4,∵(a+b)2= a 2+b 2+2ab∴ab=2,故∆ABC 的面积为12ab=1. 【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知勾股定理、根的判别式及完全平方公式的应用.23.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b +⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.24.(1)60,10;(2)96°;(3)1020;(4)23 【解析】【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m 的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案;(4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可.【详解】(1)接受问卷调查的学生共有3050%60÷=(人),604301610m =---=, 故答案为:60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数163609660=︒⨯=︒,故答案为:96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:4301800102060+⨯=(人), 故答案为:1020; (4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种, ∴恰好抽到1名男生和1名女生的概率为82123=. 【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.25.(1)13(2)13 【解析】【分析】(1)直接利用概率公式可得;(2)记这三个项目分别为A 、B 、C ,画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】(1)小智被分配到A“全程马拉松”项目组的概率为13, 故答案为:13. (2)画树状图为:共有9种等可能的结果数,其中小智和小慧被分配到同一个项目组的结果数为3, 所以小智和小慧被分到同一个项目组进行志愿服务的概率为31=93.【点睛】本题主要考察概率,熟练掌握概率公式是解题关键.。

内江市2020-2021学年度九年级第一学期期末考试数学试题(word版,有解答)

内江市2020-2021学年度九年级第一学期期末考试数学试题(word版,有解答)

内江市2020—2021学年度第一学期九年级期末考试数 学第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1. 下列各组二次根式中,属于同类二次根式的是( ) A. 3与18 B. 63与28 C 5.0与32 D.12与72 2. 下列计算正确的是( )A.2)2(-=-2 B. 532=+ C. 2332=⨯ D. 22223=-3. 用配方法解方程x 2+6x+4=0时,原方程变形为( )A. (x+3)2=9B. (x+3)2=13C. (x+3)2=5D. (x+3)2=44. 如图,某小区计划在一个长80米,宽36米的长方形场地ABCD 上,修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若使每块草坪的面积都为260平方米,求道路的宽度. 设道路 宽度为x 米,则根据题意可列方程为( )A. (80-2x )(36-x )=260×6B. 36×80-2×36x -80x =260×6C. (36-2x )(80-x )=260D. (80-2x )(36-x )=265. 下列时间中是不可能事件的是( ) A. 抛掷一枚硬币50次,出现正面的次数为40次B. 从一个装有30只黑球的不透明袋子中摸出一个球为黑球C. 抛掷一枚质地均匀的普通正方体骰子两次,出现点数之和等于13D. 从一副没有大小王的扑克牌中任意抽出一张牌恰为黑桃K6. 在△ABC 中,∠C=90º,AB=10,tanA=43,则BC 的长为( ) A. 27 B. 6 C. 8 D. 107. 如图,商用手扶梯AB 的坡比为1:3,已知扶梯的长 AB 为12米,则小明乘坐扶梯从B 处到A 处上升的高度AC 为( ) A. 6米 B. 8米 C. 10米 D. 12米8. 如图,四边形ABCD 与四边形EFGH 位似,位似中心点 是O ,OE:EA=32,则S 四边形EFGH : S 四边形ABCD =( ) A. 94 B. 254 C. 32 D. 52 9. 当b -c =3时,关于的一元二次方程2x 2-bx+c =0的根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定10.已知-1<a <0,化简4)1(4)1(22+---+a a a a 的结果是( ) C A B A D B CD C A BEFGH OA. a 2-B. -2aC. 2aD. a2 11.如图,在四边形ABCD 中,P 是对角线BD 的中点, 点E 、F 分别是AB 、CD 的中点,AD=BC ,∠EPF=140º,∠EFP=( ) A. 50º B. 40º C. 30º D. 20º 12.如图,在正方形ABCD 中,E 为BC 中点,连接AE , DF ⊥AE 于点F ,连接CF ,FG ⊥CF 于点G ,下列结论:①CF=CD ;②G 为AD 中点;③△DCF ∽△AGF ;④AF:EF=2:3. 其中正确结论的个数是( )A. 1B. 2C. 3D. 4 第Ⅱ卷(非选择题 共72分) 二、填空题(本大题共4小题,每小题4分,共16分.) 13.二次根式21-x 中x 的取值范围是_______. 14.如图,点O 为正方形的中心,点E 、F 分别在正方形的边上, 且∠EOF=90º,随机地往图中投一粒米,则米粒落在图中阴影部分的概率为_________. 15. 已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=______. 16.观察下列一组方程:①x 2-x =0;②x 2-3x +2=0;③x 2-5x +6=0;④x 2-7x +12=0;·······它们的根有一定的规律,都是两个连续的自然数.我们称这类一元二次方程为“连根一元二次方程”. 若x 2+kx +56=0也是“连根一元二次方程”,则k 的值为______,第n 个方程为 .三、解答题(本大题共6小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)(1)计算:.30tan 6)20213(212745sin 02︒+-+-︒ (2)解方程:(x -3)2=2(x -3).18.(本小题满分8分)如图,在正方形ABCD 中,E 为BC 边的中点,连接DE ,过点E 作EF ⊥ED 交AB 于点G 、交DA 的延长线于点F. (1)求证:△ECD ∽△DEF ;(2)若CD=4,求AF 的长.A F DB EC F E O B E CF A DF CG E A B D D E A F B C P19.(本小题满分8分)某数学小组为调查某学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A(乘坐电动车)、B(乘坐普通公交车或地铁)、C(乘坐学校的定制公交车)、D(乘坐家庭汽车)、E(步行或其他)”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的扇形统计图和条形统计图,请结合统计图回答下列问题:(1)本次调查中一共调查了 名学生;扇形统计图中,E 选项对应的圆心角是 度;(2)请将条形统计图补充完整;(3)若甲、乙两名学生放学时从A 、B 、C 三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具回家的概率.20.(本小题满分9分)某校数学兴趣小组借助无人机测量一条河流的宽度CD.如图所示,一架水平飞行的无人机在A 处测得正前方河流的左岸C 处的俯角为α,无人机沿水平线AF 方向继续飞行50米至B 处,测得正前方河流的右岸D 处的俯角为30°. 线段AM 的长为无人机距地面的铅直高度,点M 、C 、D 在同一直线上. 其中tan α=2,MC=503米.(1)求无人机的飞行高度AM ;(结果保留根号) (2)求河流的宽度CD.(结果精确到1米,参考数据:2≈1.41,3≈1.73)选项 30 A B C D E 60 20 100 80 60 40 20 0 人数 40 A C B 30% D E α A B F 30° M C D21.(本小题满分9分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2019至2021年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯. 2021年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?22.(本小题满分12分)如图,在△ABC中,∠ACB=90º,CD⊥AB,垂足为D.(1)图1中共有对相似三角形,写出来分别为;(2)已知AB=5,AC=4,请你求出CD的长;(3)在(2)的情况下,如果以AB为轴,CD为y轴,点D为坐标原点O,建立直角坐标系(如图2),若点P从C点出发,以每秒1个单位的速度沿线段CB运动,点Q从B 点出发,以每秒1个单位的速度沿线段BA运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t秒,是否存在点P,使以点B、P、Q为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.CA D B图1yCA OB x图2内江市2020—2021学年度第一学期九年级期末考试数学解析第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1. 下列各组二次根式中,属于同类二次根式的是( ) A. 3与18 B. 63与28 C 5.0与32 D.12与72 解析:考查二次根式的化简及同类二次根式的定义. 难度:★A. 2318=;B. 7363=,7228=;C. 2215.0=,63132=;D. 3212=,2672=. 故选B . 2. 下列计算正确的是( ) A.2)2(-=-2 B. 532=+ C.2332=⨯ D. 22223=- 解析:考查二次根式的有关运算. 难度:★ A. 2)2(2=-;B. 2与3不是同类二次根式,不能加减;C. 632=⨯;故选D .3. 用配方法解方程x 2+6x+4=0时,原方程变形为( )A. (x+3)2=9B. (x+3)2=13C. (x+3)2=5D. (x+3)2=4解析:考查配方法解方程. 难度:★根据等式性质,得x 2+6x+9=5,(x+3)2=5. 故选C .4. 如图,某小区计划在一个长80米,宽36米的长方形场地ABCD 上,修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若使每块草坪的面积都为260平方米,求道路的宽度. 设道路 宽度为x 米,则根据题意可列方程为( )A. (80-2x )(36-x )=260×6B. 36×80-2×36x -80x =260×6C. (36-2x )(80-x )=260D. (80-2x )(36-x )=26 解析:考查列一元二次方程解应用题. 难度:★★由题意,用平移的思路(如右图)得到长(80-2x )米、宽(36-x )米的矩形草坪,选A .5. 下列时间中是不可能事件的是( )A. 抛掷一枚硬币50次,出现正面的次数为40次B. 从一个装有30只黑球的不透明袋子中摸出一个球为黑球C. 抛掷一枚质地均匀的普通正方体骰子两次,出现点数之和等于13D. 从一副没有大小王的扑克牌中任意抽出一张牌恰为黑桃K解析:考查“统计与概率”的事件分类. 难度:★A.“抛掷一枚硬币50次,出现正面的次数为40次”是随机事件;B.“从一个装有30只黑球的不透明袋子中摸出一个球为黑球”是必然事件;D.“从一副没有大小王的扑克牌中任意抽出一张牌恰为黑桃K ”是随机事件;质地均匀的普通正方体骰子点数最大是6,所以C.“抛掷一枚质地均匀的正方体骰子两次,出现点数之和等于13”是不可能事件. 故选C .6. 在△ABC 中,∠C=90º,AB=10,tanA=43,则BC 的长为( ) AD B CA. 27B. 6C. 8D. 10 解析:考查对直角三角形性质的综合应用. 难度:★★ 如图,因为在Rt △ACB 中,∠C=90º,tan ∠A=43, 设BC=3k ,AC=4k ,则由勾股定理得AB=5k =10,解得k =2,则BC=3×2=6,故选B .7. 如图,商用手扶梯AB 的坡比为1:3,已知扶梯的长 AB 为12米,则小明乘坐扶梯从B 处到A 处上升的高度AC 为( ) A. 6米 B. 8米 C. 10米 D. 12米解析:考查对直角三角形性质的综合应用. 难度:★★由题意得在Rt △ACB 中,∠C=90º,tan ∠ABC=33,则∠ABC=30º. 而AB=12米,则AC=21AB=21×12=6米. 故选A . 8. 如图,四边形ABCD 与四边形EFGH 位似,位似中心点 是O ,OE:EA=32,则S 四边形EFGH : S 四边形ABCD =( ) A. 94 B. 254 C. 32 D. 52 解析:主要考查“位似图形的面积比等于位似比的平方”. 难度:★由OE:EA=32,得OE:OA=52. 而四边形ABCD 与四边形EFGH 位似, 则S 四边形EFGH : S 四边形ABCD =254)52(2=,故选B . 9. 当b -c =3时,关于的一元二次方程2x 2-bx+c =0的根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定解析:主要考查等式性质、代数式的变形及一元二次方程根的判别式. 难度:★★由b -c =3变形得b =3+c ,代入Δ=(-b )2-8c=(3+c )2-8c=c 2-2c +9=(c -1)2+8.无论c 为何实数,(c -1)2≥0,则(c -1)2+8恒为正数,即Δ>0. 故选A .10.如图,在四边形ABCD 中,P 是对角线BD 的中点, 点E 、F 分别是AB 、CD 的中点,AD=BC ,∠EPF =140º,∠EFP=( ) A. 50º B. 40º C. 30º D. 20º解析:考查三角形的中位线性质、等边对等角及三角形内角和定理. 难度:★★由E 、F 、P 分别是AB 、CD 、BD 的中点,得PE 、PF 分别是BC 、AD 的中位线,则PE=0.5BC ,PF=0.5AD. 又AD=BC ,则PE=PF. 而∠EPF=140º,则∠EFP=(180º-140º)÷2=20º. 故选D .11.已知-1<a <0,化简4)1(4)1(22+---+aa a a 的结果是( ) A. a 2- B. -2a C. 2a D. a2 B C A C A B D C A B E F G H O D EA FBC P解析:考查实数的比较、代数式的恒等变形及二次根式的化简. 难度:★★★由-1<a <0,得-1<a 1<0且a 1<a ,得a+a 1<0,a -a 1>0. 则.211)1()1(4)1(4)1(2222a a a a a a a a a a a a a =++-=+--=+---+故选C . 12.如图,在正方形ABCD 中,E 为BC 中点,连接AE , DF ⊥AE 于点F ,连接CF ,FG ⊥CF 于点G ,下列结论:①CF=CD ;②G 为AD 中点;③△DCF ∽△AGF ; ④AF:EF=2:3. 其中正确结论的个数是( )A. 1B. 2C. 3D. 4解析:考查图形综合应用,主要有相似三角形、全等三角形、 直角三角形、等腰三角形、正方形的有关知识. 难度:★★★由已知,依次可得Rt △ABE 中,BE:AB:AE=1:2:5;△DFA ∽△ABE ;AF:DF:AD=1:2:5;过点C 作CH ⊥DF 于点H ,易得△CHD ≌△DFA ,进而得DH=FH ,故①CF=CD 成立;又FG ⊥CF ,则∠CFH=∠GFA ,而∠CFH=∠CDH ,∠CDH=∠GAF ,所以∠GFA=∠GAF ,得GA=GF ,同理得GD=GF ,则GA=GD ,故②G 为AD 中点成立;得③△DCF ∽△AGF 成立;设正方形的边长为2,则AE=5,AF=55252=,EF=AE -AF=553, 故④AF:EF=2:3成立. 故选D .第Ⅱ卷(非选择题 共72分)二、填空题(本大题共4小题,每小题4分,共16分,请讲最后答案直接填在题中的横线上.)13.二次根式21-x 中x 的取值范围是_______. 解析:考查二次根式的存在性. 难度:★.由21-x ≥0且x -2≠0,得x -2>0,即x >2. 14.如图,点O 为正方形的中心,点E 、F 分别在正方形的边上,且∠EOF=90º,随机地往图中投一粒米,则米粒落在图中阴影部分的概率为_________. 解析:考查正方形的中心对称性及概率问题. 难度:★. 如图,米粒落在图中阴影部分的概率为25%.15.已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=______. 解析:主要考查相似多边形的性质及一元二次方程的求解. 难度:★★★.由题意得四边形ABEF 为正方形.设FD=x ,则AD=(1+x ).由四边形EFDC 与矩形ABCD 相似,得AD:AB=CD:DF ,即(1+x ):1=1:x ,整理得x 2+x -1=0,解得x =251±-(251--舍去),则AD=2511251+=++-. A F D B E CF CG EA B DH F O16.观察下列一组方程:①x 2-x =0;②x 2-3x +2=0;③x 2-5x +6=0;④x 2-7x +12=0;·······它们的根有一定的规律,都是两个连续的自然数.我们称这类一元二次方程为“连根一元二次方程”. 若x 2+kx +56=0也是“连根一元二次方程”,则k 的值为______,第n 个方程为 . 解析:考查阅读理解能力. 难度:★★★由“连根一元二次方程”的定义k 的值为-7-8=-15;一次项系数依次为:-1=-(1+0);-3=-(2+1);-5=-(3+2);-7=-(4+3);·······;常数项依次为:0=1×0;2=2×1;6=3×2;12=4×3;·······;所以第n 个方程为x 2-(n +n -1)x +n (n -1)=0,即x 2-(2n -1)x +n 2-n =0.三、解答题(本大题共6小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)(1)计算:.30tan 6)20213(212745sin 02︒+-+-︒ (2)解方程:(x -3)2=2(x -3). 解:原式=33612133)22(2⨯+⨯+- 解:(x -3)2-2(x -3)=0 =32213321++- (x -3)(x -3-2)=0 =31- x -3=0,x -5=0x 1=3,x 2=518.(本小题满分8分)某数学小组为调查某学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A(乘坐电动车)、B(乘坐普通公交车或地铁)、C(乘坐学校的定制公交车)、D(乘坐家庭汽车)、E(步行或其他)”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的扇形统计图和条形统计图,请结合统计图回答下列问题:(1)本次调查中一共调查了 名学生;扇形统计图中,E 选项对应的圆心角是 度;(2)请将条形统计图补充完整;(3)若甲、乙两名学生放学时从A 、B 、C 三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具回家的概率.解:(1)总人数是60÷30%=200人,E 选项对应的圆心角是360×40÷200=72度;(2)C(乘坐学校的定制公交车)有200-20-60-30-40=50人,如图;(3)画树状图如右图: 开始共有9个等可能的结果,其中甲、乙两名学生恰好选择同一种 交通工具回家的结果有3个, 甲 A B C∴甲、乙两名学生恰好选择同一种交通工具回家的概率为93,即31. 乙 A B C A B C A B C A C B 30% D E 选项 30 A B C D E 60 20 100 80 60 40 20 0 人数 40 5019.(本小题满分8分)如图,在正方形ABCD 中,E 为BC 边的中点,连接DE ,过点E 作EF ⊥ED 交AB 于点G 、交DA 的延长线于点F. (1)求证:△ECD ∽△DEF ;(2)若CD=4,求AF 的长.(1)证明:∵四边形ABCD 是正方形,EF ⊥ED ,∴∠C=∠FED=90º. ∵BC ∥AD ,∴∠CED=∠EDF,∴△ECD ∽△DEF.(2)解:∵四边形ABCD 是正方形, ∴∠C=90º,AD=BC=CD=4.∵E 为BC 的中点,∴CE=0.5BC=2. 在Rt △DCE 中,由勾股定理得DE=.5242CD CE 2222=+=+∵△ECD ∽△DEF ,∴CE:DE=DE:DF ,∴DF :5252:2=,解得DF=10.∵AD=4,∴AF=DF -AD=10-4=6.20.(本小题满分9分)某校数学兴趣小组借助无人机测量一条河流的宽度CD.如图所示,一架水平飞行的无人机在A 处测得正前方河流的左岸C 处的俯角为α,无人机沿水平线AF 方向继续飞行50米至B 处,测得正前方河流的右岸D 处的俯角为30°. 线段AM 的长为无人机距地面的铅直高度,点M 、C 、D 在同一直线上. 其中tan α=2,MC=503米.(1)求无人机的飞行高度AM ;(结果保留根号) (2)求河流的宽度CD.(结果精确到1米,参考数据:2≈1.41,3≈1.73)解:过点B 作BN ⊥MD 于点N.由题意可知,∠ACM=α,∠BDM=30°,AB=MN=50. (1)在Rt △AMC 中,tan ∠ACM=tan α=2,MC=503,∴AM=2MC=1003,即BN=1003.答:无人机的飞行高度AM 为1003米.(2)在Rt △BND 中,∵tan ∠BDN=tan30°=DN BN , ∴DN=1003÷33=300,∴DM=DN+MN=300+50=350, ∴CD=DM -MC=350-503≈264.答:河流的宽度CD 约为264米.21.(本小题满分9分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次.B E CF A D α A B F 30° M N C D(1)求东部华侨城景区2019至2021年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯. 2021年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?解:(1)设年平均增长率为x ,由题意得20(1+x )2=28.8,解得x 1=20%,x 2=-2.2(舍去).答:华侨城景区2019至2021年春节长假期间接待游客人次的年平均增长率为20%.(2)设每杯售价定为a 元,由题意得(a -6)[300+30(25-a )]=6300,解得a 1=21,a 2=20∴为了让顾客获得最大优惠,a 应取20.答:每杯售价定为20元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额.22.(本小题满分12分)如图,在△ABC 中,∠ACB=90º,CD ⊥AB ,垂足为D.(1)图1中共有 对相似三角形,写出来分别为 ;(2)已知AB=5,AC=4,请你求出CD 的长;(3)在(2)的情况下,如果以AB 为轴,CD 为y 轴,点D 为坐标原点O ,建立直角坐标系(如图2),若点P 从C 点出发,以每秒1个单位的速度沿线段CB 运动,点Q 从B 点出发,以每秒1个单位的速度沿线段BA 运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t 秒,是否存在点P ,使以点B 、P 、Q 为顶点的三角形与△ABC 相似?若存在,请求出点P 的坐标;若不存在,请说明理由. 解:(1)3;△ABC ∽△ACD ,△ABC ∽△CBD ,△ACD ∽△CBD .(2)∵在Rt △ACB 中,∠ACB=90º,AB=5,AC=4, ∴BC=.345AC AB 2222=-=-∵S △ABC =21AB·CD=21AC·BC , ∴CD=512AB BC AC =⋅. (3)存在点P ,使以点B 、P 、Q 为顶点的三角形与△ 理由如下:在△BOC 中,∵∠COB=90º,BC=3,OC=2.4,∴OB=1.8 分两种情况:①当∠BQP=90º时,如图2①,此时△PQB ∽△,∴BC BQ AB BP =, ∴353t t =-, 解得t =89,即BQ=CP=89, ∴BP=BC -CP=3-89=815. A O B x 图2① C A D B 图1 C y P Q在△BPQ 中,由勾股定理得PQ=,23)89()815(BQ BP 2222=-=- OQ=OB -BQ=-5989=4027. ∴点P 的坐标为(4027,23); ②当∠BPQ=90º时,如图2②,此时△QPB ∽△ACB , ∴AB BQ BC BP =, ∴533t t =-, 解得t =815,即BQ=CP=815, ∴BP=BC -CP=3-815=89. 过点P 作PE ⊥x 轴于点E.∵△QPB ∽△ACB ,∴AB BQ CO PE =, 即PE:512=815:5,∴PE=109. 在△BPE 中,BE=,4027)109()89(PE PB 2222=-=- ∴OE=OB -BE=-594027=89, ∴点P 的坐标为(89,109), 综上可得,点P 的坐标为(4027,23);(89,109). A O B x图2② C y P Q E。

2020-2021学年泰安市泰山区九年级上学期期末数学试卷(含答案解析)

2020-2021学年泰安市泰山区九年级上学期期末数学试卷(含答案解析)

2020-2021学年泰安市泰山区九年级上学期期末数学试卷一、选择题(本大题共12小题,共48.0分)1.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A. 1.5mB. 1.6mC. 1.86mD. 2.16m2.下列反比例函数是()A. B. C. D.3.把抛物线y=x2+1向左平移3个单位,再向下平移2个单位,得到的抛物线表达式为()A. y=(x+3)2−1B. y=(x−3)2−2C. y=(x−3)2+2D. y=(x−3)2−14.一个盒子中装有标号为1,2,3,4的四个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和不小于5的概率为()A. 23B. 13C. 58D. 385.下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…−2013…y…6−4−6−4…下列各选项中,正确的是()A. 这个函数的图象开口向下B. 这个函数的图象与x轴无交点C. 这个函数的最小值小于−6D. 当x>1时,y的值随x值的增大而增大6. 在△ABC中,AB=AC,BC=8,当S△ABC=20时,tanB的值为()A. 54B. 45C. 34D. 437. 如图,点A、B、C、D在⊙O上,OB//CD.若∠A=28°,则∠BOD的大小为()A. 152°B. 134°C. 124°D. 114°8. 已知点P(−3,2),点Q(2.m)都在反比例函数y=kx(k≠0)的图象上,则m的值为()A. 2B. 3C. −2D. −39. 如图.在平面直角坐标系中,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上。

连接OA,OB,若0A⊥OB,,则k的值为().A. B. C. −3 D. −210. 如图1,已知直角梯形ABCD,∠B=Rt∠.AD=CD=4cm,BC=6cm,如图在这块铁皮上剪下一个扇形和一个半径为1cm的圆形铁片,使之恰好围成一个图2所示的一个圆锥,则圆锥的高为()A. √17cmB. 2√2cmC. √3cmD. √15cm11. 如图,在面积为12的▱ABCD中,对角线BD绕着它的中点O按顺时针方向旋转一定角度后,其所在直线分别交AB、CD于点E、F,若AE=2EB,则图中阴影部分的面积等于()A. 2B. 3C. 43D. 2312. 已知函数f(x)=x2−2ax+5,当x≤2时,函数值随x增大而减小,且对任意的1≤x1≤a+1和1≤x2≤a+1,x1,x2相应的函数值y1,y2总满足|y1−y2|≤4,则实数a的取值范围是()A. −1≤a≤3B. −1≤a≤2C. 2≤a≤3D. 2≤a≤4二、填空题(本大题共6小题,共24.0分)13. 已知双曲线y=1−mx,当x>0时,y随x的增大而减小,则m的取值范围为______ .14. 若cos2α+sin242o=1,则锐角α=_________。

2020-2021常州外国语学校八年级数学上期末试题(及答案)

2020-2021常州外国语学校八年级数学上期末试题(及答案)

2020-2021常州外国语学校八年级数学上期末试题(及答案)一、选择题1.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 2.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=-B .120100x x 10=+C .120100x 10x =-D .120100x 10x=+ 3.在平面直角坐标系内,点 O 为坐标原点, (4,0)A -, (0,3)B ,若在该坐标平面内有以 点 P (不与点 A B O 、、重合)为一个顶点的直角三角形与 Rt ABO ∆全等,且这个以点 P 为顶点的直角三角形 Rt ABO ∆有一条公共边,则所有符合的三角形个数为( )。

A .9B .7C .5D .34.2019年7月30日阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150km ,现在高速路程缩短了20km ,若走高速的平均车速是走国道的2.5倍,所花时间比走国道少用1.5小时,设走国道的平均车速为/xkm h ,则根据题意可列方程为( )A .15020150 1.52.5x x --=B .15015020 1.52.5x x--= C .15015020 1.52.5x x --= D .15020150 1.52.5x x--= 5.下列各式中不能用平方差公式计算的是( )A .()2x y)x 2y -+( B .() 2x y)2x y -+--( C .() x 2y)x 2y ---( D .()2x y)2x y +-+( 6.如图,ABC ∆是等边三角形,0,20BC BD BAD =∠=,则BCD ∠的度数为( )A .50°B .55°C .60°D .65°7.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ8.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .20 9.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°10.下列条件中,不能作出唯一三角形的是( )A .已知三角形两边的长度和夹角的度数B .已知三角形两个角的度数以及两角夹边的长度C .已知三角形两边的长度和其中一边的对角的度数D .已知三角形的三边的长度11.到三角形各顶点的距离相等的点是三角形( )A .三条角平分线的交点B .三条高的交点C .三边的垂直平分线的交点D .三条中线的交点 12.如图,在△ABC 中,∠ABC =90°,∠C =20°,DE 是边AC 的垂直平分线,连结AE ,则∠BAE 等于( )A.20°B.40°C.50°D.70°二、填空题13.若关于x的分式方程x2322m mx x++=--的解为正实数,则实数m的取值范围是____.14.若x2+kx+25是一个完全平方式,则k的值是____________.15.已知x m=6,x n=3,则x2m﹣n的值为_____.16.如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为_______厘米/秒时,能够在某一时刻使△BPD与△CQP全等.17.若a+b=5,ab=3,则a2+b2=_____.18.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同.A型机器每小时加工零件的个数_____.19.已知a+b=5,ab=3,b aa b+=_____.20.因式分解34x x-=.三、解答题21.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?22.计算:(1)4(x﹣1)2﹣(2x+5)(2x﹣5);(2)2214a a bb a b b⎛⎫-÷⎪-⎝⎭n.23.为推进垃圾分类,推动绿色发展,某工厂购进甲、乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分20kg,甲型机器人分类800kg垃圾所用的时间与乙型机器人分类600kg 垃圾所用的时间相等。

人教版2020---2021学年度上学期九年级数学期中考试卷及答案(含2套题)

人教版2020---2021学年度上学期九年级数学期中考试卷及答案(含2套题)

密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(共10小题,每小题3分,共30分)1.方程3x 2﹣4x ﹣1=0的二次项系数和一次项系数分别为( ) A .3和4 B .3和﹣4 C .3和﹣1 D .3和1 2.二次函数y=x 2﹣2x+2的顶点坐标是( )A .(1,1)B .(2,2)C .(1,2)D .(1,3) 3.将△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则直线AB 与直线A 1B 1的夹角(锐角)为( ) A .130° B .50° C .40° D .60°4.用配方法解方程x 2+6x+4=0,下列变形正确的是( ) A .(x+3)2=﹣4 B .(x ﹣3)2=4 C .(x+3)2=5 D .(x+3)2=± 5.下列方程中没有实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+3x+2=0 C .2015x 2+11x ﹣20=0 D .x 2+x+2=06.平面直角坐标系内一点P (﹣2,3)关于原点对称的点的坐标是( )A .(3,﹣2)B .(2,3)C .(﹣2,﹣3)D .(2,﹣3)7.如图,⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OC=3:5,则AB 的长为( )A . cmB .8cmC .6cmD .4cm8.已知抛物线C 的解析式为y=ax 2+bx+c ,则下列说法中错误的是( )A .a 确定抛物线的形状与开口方向B .若将抛物线C 沿y 轴平移,则a ,b 的值不变 C .若将抛物线C 沿x 轴平移,则a 的值不变D .若将抛物线C 沿直线l :y=x+2平移,则a 、b 、c 的值全变 9.如图,四边形ABCD 的两条对角线互相垂直,AC+BD=16,则四边形ABCD 的面积最大值是( )A .64B .16C .24D .32封线内不得10.已知二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),且a2+ab+ac<0,下列说法:①b2﹣4ac<0;②ab+ac<0;③方程ax2+bx+c=0有两个不同根x1、x2,且(x1﹣1)(1﹣x2)>0;④二次函数的图象与坐标轴有三个不同交点,其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(共6小题,每小题3分,共18分)11.抛物线y=﹣x2﹣x﹣1的对称轴是_________.12.已知x=(b2﹣4c>0),则x2+bx+c的值为_________.13.⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离_________.14.如图,线段AB的长为1,C在AB上,D在AC上,且AC2=BC•AB,AD2=CD•AC,AE2=DE•AD,则AE的长为_________.15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是_________.16.如图,△ABC是边长为a的等边三角形,将三角板的角的顶点与A重合,三角板30°角的两边与BC交于D、E点,则DE长度的取值范围是_________.三、解答题(共8小题,共72分)17.解方程:x2+x﹣2=0.18.已知抛物线的顶点坐标是(3,﹣1),与y轴的交点是(﹣4),求这个二次函数的解析式.19.已知x1、x2是方程x2﹣3x﹣5=0的两实数根(1)求x1+x2,x1x2的值;(2)求2x12+6x2﹣2015的值.密学校 班级 姓名 学号密 封 线 内 不 得 答 题20.如图所示,△ABC 与点O 在10×10的网格中的位置如图所示(1)画出△ABC 绕点O 逆时针旋转90°后的图形; (2)画出△ABC 绕点O 逆时针旋转180°后的图形;(2)若⊙M 能盖住△ABC ,则⊙M 的半径最小值为_________.21.如图,在⊙O 中,半径OA 垂直于弦BC ,垂足为E ,点D 在CA 的延长线上,若∠DAB+ ∠AOB=60°(1)求∠AOB 的度数; (2)若AE=1,求BC 的长.22.飞机着陆后滑行的距离S (单位:m )关于滑行时间t (单位:s )的函数解析式是:S=60t ﹣1.5t 2(1)直接指出飞机着陆时的速度; (2)直接指出t 的取值范围;(3)画出函数S 的图象并指出飞机着陆后滑行多远才能停来?23.如图,△ABC 是边长为6cm 的等边三角形,点D 从B 点出发沿B →A 方向在线段BA 上以a cm/s 速度运动,与此同时,点E 从线段BC 的某个端点出发,以b cm/s 速度在线段BC 上运动,当D 到达A 点后,D 、E 运动停止,运动时间为t (秒)(1)如图1,若a=b=1,点E 从C 出发沿C →B 方向运动,连AE 、CD ,AE 、CD 交于F ,连BF .当0<t <6时:密封 线 内 不 得①求∠AFC 的度数; ②求的值;(2)如图2,若a=1,b=2,点E 从B 点出发沿B →C 方向运动,E 点到达C 点后再沿C →B 方向运动.当t ≥3时,连DE ,以DE 为边作等边△DEM ,使M 、B 在DE 两侧,求M 点所经历的路径长.24.定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(1)已知抛物线的焦点F (0,),准线l :,求抛物线的解析式;(2)已知抛物线的解析式为:y=x 2﹣n 2,点A (0,)(n ≠0),B (1,2﹣n 2),P 为抛物线上一点,求PA+PB 的最小值及此时P 点坐标;(3)若(2)中抛物线的顶点为C ,抛物线与x 轴的两个交点分别是D 、E ,过C 、D 、E 三点作⊙M ,⊙M 上是否存在定点N ?若存在,求出N 点坐标并指出这样的定点N 有几个;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分) 1.B . 2.A . 3. B .4.C .5.D .6.D .7.B .8.D . 9. D .密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题10.C .二、填空题(共6小题,每小题3分,共18分)11.抛物线y=﹣x 2﹣x ﹣1的对称轴是 直线x=﹣ . 12.已知x=(b 2﹣4c >0),则x 2+bx+c 的值为 0 .13.⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB=24cm ,CD=10cm .则AB 和CD 之间的距离 7cn 或17cm .14.如图,线段AB 的长为1,C 在AB 上,D 在AC 上,且AC 2=BC •AB ,AD 2=CD •AC ,AE 2=DE •AD ,则AE 的长为 ﹣2 .15.抛物线的部分图象如图所示,则当y <0时,x 的取值范围是 x >3或x <﹣1 .16.如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是 (2﹣3)a ≤DE ≤a . .三、解答题(共8小题,共72分)17. 解:分解因式得:(x ﹣1)(x+2)=0, 可得x ﹣1=0或x+2=0,题解得:x 1=1,x 2=﹣2.18.解:设抛物线解析式为y=a (x ﹣3)2﹣1, 把(0,﹣4)代入得:﹣4=9a ﹣1,即a=﹣, 则抛物线解析式为y=﹣(x ﹣3)2﹣1.19.解:(1)∵∴x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 1+x 2=3,x 1x 2=﹣5,;(2)∵x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 12﹣3x 1﹣5=0, ∴x 12=3x 1+5,∴2x 12+6x 2﹣2015=2(3x 1+5)+6x 2﹣2015=6(x 1+x 2)﹣2015=﹣1987.20.解:(1)如图,△A ′B ′C ′为所作; (2)如图,△A ″B ″C ″为所求;(3)如图,点M 为△ABC 的外接圆的圆心,此时⊙M 是能盖住△ABC 的最小的圆,⊙M 的半径为=.故答案为.21.解:(1)连接OC , ∵OA ⊥BC ,OC=OB ,∴∠AOC=∠AOB ,∠ACO=∠ABO ,∵∠DAO=∠ACO+∠AOC=∠OAB+∠DAB ,∠ACO=∠OAB , ∴∠DAB=∠AOC ,∴∠DAB=∠AOB ,又∠DAB+∠AOB=60°, ∴∠AOB=30°; (2)∵∠AOB=30°, ∴BE=OB ,设⊙O 的半径为r ,则BE=r ,OE=r ﹣1, 由勾股定理得,r 2=(r )2+(r ﹣1)2, 解得r=4,∵OB=OC ,∠BOC=2∠AOB=60°, ∴BC=r=4.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题22.解:(1)飞机着陆时的速度V=60; (2)当S 取得最大值时,飞机停下来,则S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600, 此时t=20因此t 的取值范围是0≤t ≤20; (3)如图,S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600. 飞机着陆后滑行600米才能停下来.23.解:(1)如图1,由题可得BD=CE=t . ∵△ABC 是等边三角形, ∴BC=AC ,∠B=∠ECA=60°. 在△BDC 和△CEA 中,,∴△BDC ≌△CEA , ∴∠BCD=∠CAE ,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°, ∴∠AFC=120°;②延长FD 到G ,使得FG=FA ,连接GA 、GB ,过点B 作BH ⊥FG于H ,如图2,∵∠AFG=180°﹣120°=60°,FG=FA ,密 封 内∴△FAG 是等边三角形,∴AG=AF=FG ,∠AGF=∠GAF=60°. ∵△ABC 是等边三角形, ∴AB=AC ,∠BAC=60°, ∴∠GAF=∠BAC , ∴∠GAB=∠FAC . 在△AGB 和△AFC 中,,∴△AGB ≌△AFC ,∴GB=FC ,∠AGB=∠AFC=120°, ∴∠BGF=60°. 设AF=x ,FC=y ,则有FG=AF=x ,BG=CF=y . 在Rt △BHG 中,BH=BG •sin ∠BGH=BG •sin60°=y ,GH=BG •cos ∠BGH=BG •cos60°=y , ∴FH=FG ﹣GH=x ﹣y . 在Rt △BHF 中,BF 2=BH 2+FH 2 =(y )2+(x ﹣y )2=x 2﹣xy+y 2.∴==1;(2)过点E 作EN ⊥AB 于N ,连接MC ,如图3,由题可得:∠BEN=30°,BD=1×t=t ,CE=2(t ﹣3)=2t ﹣∴BE=6﹣(2t ﹣6)=12﹣2t ,BN=BE •cosB=BE=6﹣t , ∴DN=t ﹣(6﹣t )=2t ﹣6, ∴DN=EC .∵△DEM 是等边三角形, ∴DE=EM ,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°∴∠NDE=∠MEC . 在△DNE 和△ECM 中,,∴△DNE ≌△ECM , ∴∠DNE=∠ECM=90°,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴M 点运动的路径为过点C 垂直于BC 的一条线段.当t=3时,E 在点B ,D 在AB 的中点, 此时CM=EN=CD=BC •sinB=6×=3;当t=6时,E 在点C ,D 在点A , 此时点M 在点C .∴当3≤t ≤6时,M 点所经历的路径长为3.24.解:(1)设抛物线上有一点(x ,y ), 由定义知:x 2+(y ﹣)2=|y+|2,解得y=ax 2;(2)如图1,由(1)得抛物线y=x 2的焦点为(0,),准线为y=﹣,∴y=x 2﹣n 2由y=x 2向下平移n 2个单位所得, ∴其焦点为A (0,﹣n 2),准线为y=﹣﹣n 2, 由定义知P 为抛物线上的点,则PA=PH , ∴PA+PH 最短为P 、B 、A 共线,此时P 在P ′处, ∵x=1,∴y=1﹣n 2<2﹣n 2, ∴点B 在抛物线内,∴BI=y B ﹣y I =2﹣n 2﹣(﹣﹣n 2)=,∴PA+PB 的最小值为,此时P 点坐标为(1,1﹣n 2); (3)由(2)知E (|n|,0),C (0,n 2),设OQ=m (m >0),则CQ=QE=n 2﹣m ,在Rt △OQE 中,由勾股定理得|n|2+m 2=(n 2﹣m )2, 解得m=﹣, 则QC=+=QN ,∴ON=QN ﹣m=1, 即点N (0,1), 故AM 过定点N (0,1).密 封 线 得 人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(共15题,每题3分共45分)1.下列平面图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.方程x 2=3x 的解是( )A .x=﹣3B .x=3C .x 1=0,x 2=3D .x 1=0,x 2=﹣3 3.三角形的两边长分别是3和6,第三边是方程x 2﹣6x+8=0的解,则这个三角形的周长是( )A .11B .13C .11或13D .11和134.已知x 1,x 2是一元二次方程x 2﹣4x+1=0的两个实数根,则x 1•x 2等于( )A .﹣4B .﹣1C .1D .45.若a 为方程x 2+x ﹣5=0的解,则a 2+a+1的值为( )A .12B .6C .9D .166.关于x 的一元二次方程9x 2﹣6x+k=0则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥17.如图所示,在等腰直角△ABC 中,∠B=90°,将△ABC A 逆时针旋转60°后得到的△AB ′C ′,则∠BAC ′等于(A .105°B .120°C .135°D .150°8.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( A .y=1+x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2 9.将抛物线y=2x 2向左平移1个单位,再向上平移3到的抛物线,其解析式是( )A .y=2(x+1)2+3B .y=2(x ﹣1)2﹣3C .y=2(x+1)2﹣3D .y=2(x ﹣1)2+3 10.抛物线y=(x+2)2+1的顶点坐标是( ) A .(2,1) B .(﹣2,1) C .(2,﹣1) D .(﹣2,﹣1)11.函数y=﹣x 2﹣4x ﹣3图象顶点坐标是( ) A .(2,﹣1) B .(﹣2,1) C .(﹣2,﹣1) D .2,1)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题12.已知二次函数y=ax 2+bx+c 的x 、y 的部分对应值如下表:x ﹣1 0 1 2 3y51﹣1 ﹣1 1则该二次函数图象的对称轴为( )A .y 轴B .直线x=C .直线x=2D .直线x= 13.已知二次函数y=ax 2+bx+c 的图象如图所示,则a 、b 、c满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >014.已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是( )A .B .C .D .15.已知0≤x ≤,那么函数y=﹣2x 2+8x ﹣6的最大值是( ) A .﹣10.5 B .2 C .﹣2.5 D .﹣6 二、解答题(本大题共9小题,共75分) 16.解方程:x 2﹣4x+2=0.17.已知抛物线的顶点为A (1,﹣4),且过点B (3,0).求该抛物线的解析式.18.如图,点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=α,将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD . (1)求证:△COD 是等边三角形;(2)当α=150°时,试判断△AOD 的形状,并说明理由.19.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x (元)取整数,用y (元)表示该店日净收入.( 日净收入=每天的销售额﹣套餐成本﹣每天固定支出 )(1)当5<x ≤10时,y= ;当x >10时, y= ;(2)若该店日净收入为1560元,那么每份售价是多少元?20.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值.21.已知关于x的一元二次方程.(1)判断这个一元二次方程的根的情况;(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.22.某房地产开放商欲开发某一楼盘,于2010年初以每亩100万的价格买下面积为15亩的空地,由于后续资金迟迟没有到位,一直闲置,因此每年需上交的管理费为购买土地费用的10%,2012年初,该开发商个人融资1500万,向银行贷款3500万后开始动工(已知银行贷款的年利率为5%,且开发商预计在2014年初完工并还清银行贷款),同时开始房屋出售,总面积为5万平方米,费用的5%开发商聘请调查公司进行了市场调研,发现在该片区,定位每平方米3000100元,则会少卖1000平方米,且卖房时间会延长2.5房地产开发商预计售房净利润为8660万.(1)问:该房地产开发商总的投资成本是多少万?(2)若售房时间定为2年(2发商不再出售,准备作为商业用房对外出租)每平方米多少元?23.正方形ABCD中,将一个直角三角板的直角顶点与点A 合,一条直角边与边BC交于点E(点E不与点B和点C另一条直角边与边CD的延长线交于点F.(1)如图①,求证:AE=AF;(2)如图②,此直角三角板有一个角是45°,它的斜边与边CD交于G,且点G是斜边MN的中点,连接EGEG=BE+DG;(3)在(2)的条件下,如果=,那么点G是否一定是边CD的中点?请说明你的理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.如图,已知点A (0,1),C (4,3),E (,),P 是以AC 为对角线的矩形ABCD 内部(不在各边上)的一动点,点D 在y 轴上,抛物线y=ax 2+bx+1以P 为顶点. (1)说明点A ,C ,E 在一条直线上;(2)能否判断抛物线y=ax 2+bx+1的开口方向?请说明理由; (3)设抛物线y=ax 2+bx+1与x 轴有交点F 、G (F 在G 的左侧),△GAO 与△FAO 的面积差为3,且这条抛物线与线段AE 有两个不同的交点,这时能确定a 、b 的值吗?若能,请求出a ,b 的值;若不能,请确定a 、b 的取值范围.参考答案一、选择题(共15题,每题3分共45分)1.B .2. C .3. B .4. C .5.B .6.A .7.A .8.D .9.A . 10.B .11.B .12.D .13.A .14.D .15.C .二、解答题(本大题共9小题,共75分) 16.解:x 2﹣4x=﹣2 x 2﹣4x+4=2 (x ﹣2)2=2或 ∴,.17.解:设抛物线的解析式为y=a (x ﹣1)2﹣4, ∵抛物线经过点B (3,0), ∴a (3﹣1)2﹣4=0, 解得:a=1,∴y=(x ﹣1)2﹣4,即y=x 2﹣2x ﹣3.18.(1)证明:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴∠OCD=60°,CO=CD , ∴△OCD 是等边三角形; (2)解:△AOD 为直角三角形. 理由:∵△COD 是等边三角形.答 题∴∠ODC=60°,∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴∠ADC=∠BOC=α, ∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC ﹣∠CDO=150°﹣60°=90°,于是△AOD 是直角三角形.19.解:(1)由题意得:当5<x ≤10时,y=400(x ﹣5)﹣600; 当x >10时,y=(x ﹣5)[400﹣40(x ﹣10)]﹣600=﹣40x 2+100x ﹣4600.即y=﹣40x 2+100x ﹣4600(x >10).故答案是:400(x ﹣5)﹣600;﹣40x 2+100x ﹣4600; (2)由(1)知,y=﹣40x 2+100x ﹣4600(x >10) 当y=1560时,(x ﹣5)[400﹣40(x ﹣10)]﹣600=1560, 解得:x 1=11,x 2=14,答:该店日净收入为1560元,那么每份售价是11元或14元;20.解:(1)作图如右:△A 1B 1C 1即为所求;(2)作图如右:△A 2B 2C 2即为所求;(3)x 的值为6或7.21.解:(1)密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题所以,方程有两个实数根;(2)若腰=3,则x=3是方程的一个根,代入后得:k=2, 原方程为x 2﹣5x+6=0⇒x 1=2,x 2=3即,等腰三角形的三边为3,3,2. 则周长为8,面积为若底为3,则原方程为x 2﹣4x+4=0⇒x 1=x 2=2 即,等腰三角形的三边为2,2,3. 则周长为7,面积为22.解:(1)15×100=1500万, 1500×10%×2=300万,1500+3500+3500×5%×2=5350万, 1500×5%×2=150万,四者相加1500+300+5350+150=7300万. 答:该房地产开发商总的投资成本是7300万;(2)设房价每平方米上涨x 个100元,依题意有 (5﹣0.1x )=8660+7300, 解得x 1=12,x 2=8,又因为当x 1=12时,卖房时间为30个月,此时超过两年,所以舍去;当x 2=8时,卖房时间为20个月; 则房价为3000+8×100=3800元. 答:房价应定为每平方米3800元.23.解:(1)如图①,∵四边形ABCD 是正方形, ∴∠B=∠BAD=∠ADC=∠C=90°,AB=AD . ∵∠EAF=90°,∴∠EAF=∠BAD ,∴∠EAF ﹣∠EAD=∠BAD ﹣∠EAD , ∴∠BAE=∠DAF . 在△ABE 和△ADF 中,∴△ABE ≌△ADF (ASA ) ∴AE=AF ;(2)如图②,连接AG , ∵∠MAN=90°,∠M=45°, ∴∠N=∠M=45°, ∴AM=AN .∵点G 是斜边MN 的中点, ∴∠EAG=∠NAG=45°.密 封 题∴∠EAB+∠DAG=45°. ∵△ABE ≌△ADF , ∴∠BAE=∠DAF ,AE=AF , ∴∠DAF+∠DAG=45°, 即∠GAF=45°, ∴∠EAG=∠FAG . 在△AGE 和AGF 中,,∴△AGE ≌AGF (SAS ), ∴EG=GF . ∵GF=GD+DF , ∴GF=GD+BE , ∴EG=BE+DG ;(3)G 不一定是边CD 的中点. 理由:设AB=6k ,GF=5k ,BE=x , ∴CE=6k ﹣x ,EG=5k ,CF=CD+DF=6k+x , ∴CG=CF ﹣GF=k+x ,在Rt △ECG 中,由勾股定理,得 (6k ﹣x )2+(k+x )2=(5k )2, 解得:x 1=2k ,x 2=3k ,∴CG=4k 或3k .∴点G 不一定是边CD 的中点.24.解:(1)由题意,A (0,1)、C (4,3)两点确定的直线解析式为:y=x+1 将点E 的坐标(,),代入y=x+1中,左边=,右边=×+1=.∵左边=右边∴点E 在直线y=x+1上, 即点A 、C 、E 在一条直线上;(2)解法一:由于动点P 在矩形ABCD 的内部,∴点P 的纵坐标大于点A 的纵坐标,而点A 与点P 上,且P 为顶点,∴这条抛物线有最高点,抛物线的开口向下. 解法二:∵抛物线y=ax 2+bx+1的顶点P 的纵坐标为,且P 在矩形ABCD 的内部, ∴1<<3,由1<1﹣得﹣>0.∴a <0.∴抛物线开口向下; (3)连接GA 、FA .密学校 班级 姓名 学号密 封 线 内 不 得 答 题∵S △GAO ﹣S △FAO =3∴GO •AO ﹣FO •AO=3. ∵OA=1, ∴GO ﹣FO=6.设F (x 1,0),G (x 2,0),则x 1、x 2是方程ax 2+bx+1=0的两个根,且x 1<x 2,又∵a <0 ∴x 1•x 2=<0, ∴x 1<0<x 2 ∴GO=x 2、FO=﹣x 1∴x 2﹣(﹣x 1)=6,即x 2+x 1=6 ∵x 2+x 1=,∴=6∴b=﹣6a∴抛物线的解析式为:y=ax 2﹣6ax+1,其顶点P 的坐标为(3,1﹣9a )∵顶点P 在矩形ABCD 的内部, ∴1<1﹣9a <3, ∴﹣<a <0① 由方程组,得ax 2﹣(6a+)x=0, ∴x=0或x==6+,当x=0时,即抛物线与线段AE 交于点A ,而这条抛物线与线段AE 有两个不同的交点, 则有:0<6+≤, 解得:﹣a <﹣②,综合①②,得﹣<a <﹣,∵b=﹣6a , ∴<b <.。

2020-2021常州外国语学校七年级数学上期中试题(及答案)

2020-2021常州外国语学校七年级数学上期中试题(及答案)

2020-2021常州外国语学校七年级数学上期中试题(及答案)一、选择题1.计算:1252-50×125+252=( )A.100B.150C.10000D.225002.甲乙两个超市为了促销一种定价相等的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买同样的商品最合算( )A.甲B.乙C.相同D.和商品的价格有关3.计算3x2﹣x2的结果是()A.2 B.2x2 C.2x D.4x24.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.81B.508C.928D.13245.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°6.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM平分∠AOD,ON平分∠COB,则∠MON的度数为()A.60°B.45°C.65.5°D.52.5°7.如图,O是直线AB上一点,OD平分∠BOC,OE平分∠AOC,则下列说法错误的是()A .∠DOE 为直角B .∠DOC 和∠AOE 互余 C .∠AOD 和∠DOC 互补 D .∠AOE 和∠BOC 互补8.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .a+b=0B .b <aC .ab >0D .|b|<|a|9.下列说法:①﹣a 一定是负数;②|﹣a |一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个10.如图,将一三角板按不同位置摆放,其中1∠与2∠互余的是( )A .B .C .D .11.如图所示几何体的左视图是( )A .B .C .D . 12.代数式:216x y x +,25xy x +,215y xy -+,2y ,-3中,不是整式的有( ) A .4个 B .3个 C .2个 D .1个二、填空题13.若代数式5x -5与2x -9的值互为相反数,则x =________.14.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰6”中C 的位置是有理数______,-2017应排在A 、B 、C 、D 、E 中_______的位置.15.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含a 、b 代数式表示).16.若关于x 的方程2ax =(a+1)x+6的解为正整数,求整数a 的值_____. 17.2018年2月3日崂山天气预报:多云,-1°C~-9°C ,西北风3级,则当天最高气温比最低气温高_______℃18.小华在计算14a -时,误把“-”看成“+”,求得结果为5-,则14a -=____________.19.若233mx y -与42n x y 是同类项,则n m =__________.20.已知3x =是关于x 方程810mx -=的解,则m =__________. 三、解答题21.已知:223+2A B a ab -=,223A a ab =-+-.(1)求B ;(用含a 、b 的代数式表示)(2)比较A 与B 的大小.22.阅读理解与计算:(1)用“⊕”定义新运算:对于任意有理数,a b ,都有21a b b ⊕=+.例如:2744117⊕=+=.则①填空:53⊕= ;②当m 为有理数时,求()2m m ⊕⊕的值;(2)已知,m n 互为相反数,,x y 互为倒数,1=a ,试求()()201220122a m n xy -++-的值.23.初一(7)班数学学习小组“孙康映雪”在学习了第七章平面图形的认识(二)后对几何学习产生了浓厚的兴趣.请你认真研读下列三个片断,并完成相关问题.如图1,直线OM ⊥ON ,垂足为O ,三角板的直角顶点C 落在∠MON 的内部,三角板的另两条直角边分别与ON 、OM 交于点D 和点B .(片断一)小孙说:由四边形内角和知识很容易得到∠OBC+∠ODC的值.如果你是小孙,得到的正确答案应是:∠OBC+∠ODC = °.(片断二)小康说:连结BD(如图2),若BD平分∠OBC,那么BD也平分∠ODC.请你说明当BD平分∠OBC时,BD也平分∠ODC的理由.(片断三)小雪说:若DE平分∠ODC、BF平分∠MBC,我发现DE与BF具有特殊的位置关系.请你先在备用图中补全图形,再判断DE与BF有怎样的位置关系并说明理由.24.我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?25.在做解方程练习时,学习卷中有一个方程“2y–12=12y+■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x=2时代数式5(x–1)–2(x–2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:原式=1252﹣2×25×125+252=(125-25)2=1002=10000.故选C.点睛:本题考查了完全平方公式的应用,熟记完全平方公式的特点是解决此题的关键.2.B解析:B【解析】【分析】此题可设原价为x元,分别计算出两超市降价后的价钱,再比较即可.设原价为x元,则甲超市价格为x×(1-10%)×(1-10%)=0.81x乙超市为x×(1-20%)=0.8x,3.B解析:B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x2﹣x2=(3-1)x2=2x2,故选B.【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.4.B解析:B【解析】【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【详解】解:孩子自出生后的天数是:1×73+3×72+2×7+4=508,故选:B.【点睛】本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数字列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.5.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.6.D解析:D【解析】【分析】设∠AOM=∠DOM=x,∠CON=∠BON=y,则∠BOD=60-2x,根据∠AOB=60°,∠COD=45°,列出算式,求出x-y的度数,最后根据∠MON与各角之间的关系,即可求出答案.【详解】设∠AOM=∠DOM=x,∠CON=∠BON=y,则∠BOD=60°-2x∵∠COD=45°∴60°-2x+2y=45°,∴x-y=7.5°∴∠MON=x+(60°-2x)+y=60°(x-y)=52.5°故选D.【点睛】本题考查了角平分线的性质、几何图形中角度计算问题,通过代数方法解决几何问题是本题的关键.7.D解析:D【解析】【分析】根据角平分线的性质,可得∠BOD=∠COD,∠COE=∠AOE,再根据余角和补角的定义求解即可.【详解】解:∵OD平分∠BOC,OE平分∠AOC,∴∠BOD=∠COD=12∠BOC,∠AOE=∠COE=12∠AOC,∵∠AOC+∠COB=180°,∴∠COE+∠COD=90°,A、∠DOE为直角,说法正确;B、∠DOC和∠AOE互余,说法正确;C、∠AOD和∠DOC互补,说法正确;D、∠AOE和∠BOC互补,说法错误;故选D.【点睛】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.解析:D【解析】【分析】根据图形可知,a 是一个负数,并且它的绝对是大于1小于2,b 是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.【详解】A 选项:由图中信息可知,实数a 为负数,实数b 为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A 错误;B 选项:由图中信息可知,实数a 为负数,实数b 为正数,而正数都大于负数,故B 错误;C 选项:由图中信息可知,实数a 为负数,实数b 为正数,而异号两数相乘积为负,负数都小于0,故C 错误;D 选项:由图中信息可知,表示实数a 的点到原点的距离大于表示实数b 的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D 正确.∴ 选D.9.A解析:A【解析】【分析】【详解】根据负数的概念,当a≤0时,-a≥0,故①不正确;|-a|≥0,是非负数,故②不正确;根据乘积为1的两数互为倒数,可知倒数是本身的数为±1,故③正确;根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,负数的绝对值是其相反数,故④不正确;由平方的意义,1和0的平方均为她本身,故⑤不正确.故选A.【点睛】此题主要考查了有理数的相关概念,解题时要明确正负数,相反数,绝对值,倒数的意义及特点,然后从中判断即可.相反数:只有符号不同的两数互为相反数;绝对值:一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数; 倒数:乘积为1的两数互为倒数.10.C解析:C【解析】【分析】根据余角的定义,可得答案.【详解】解:C 中的121809090∠∠+=-=,【点睛】本题考查余角,利用余角的定义是解题关键.11.B解析:B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B .【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.12.C解析:C【解析】【分析】根据整式的概念,进行判断即可.【详解】216x y x+分母中含有未知数,是分式,不是整式, 25xy x +是多项式,是整式,215y xy -+是多项式,是整式, 2y分母中含有未知数,是分式,不是整式, -3是单项式,是整式, ∴不是整式的有216x y x +、2y,共2个, 故选C.【点睛】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数. 二、填空题13.2【解析】【分析】由5x -5的值与2x -9的值互为相反数可知:5x -5+2x -9=0解此方程即可求得答案【详解】由题意可得:5x -5+2x -9=0移项得7x=14系数化为1得x=2【点睛】本题考查了解析:2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0,解此方程即可求得答案.【详解】由题意可得:5x-5+2x-9=0,移项,得7x=14,系数化为1,得x=2.【点睛】本题考查了相反数的性质以及一元一次方程的解法.14.-29A【解析】【分析】由题意可知:每个峰排列5个数求出5个峰排列的数的个数再求出峰6中C位置的数的序数然后根据排列的奇数为负数偶数为正数解答根据题目中图中的特点可知每连续的五个数为一个循环A到E从解析:-29,A.【解析】【分析】由题意可知:每个峰排列5个数,求出5个峰排列的数的个数,再求出,“峰6”中C位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答,根据题目中图中的特点可知,每连续的五个数为一个循环A到E,从而可以解答本题.【详解】解:∵每个峰需要5个数,∴5×5=25,25+1+3=29,∴“峰6”中C位置的数的是-29,(2017-1)÷5=2016÷5=403…1,∴2017应排在A、B、C、D、E中A的位置,故答案为:-29;A【点睛】此题考查图形的变化规律,观察出每个峰有5个数是解题的关键,难点在于峰上的数的排列是从2开始.15.a+8b【解析】【分析】观察可知两个拼接时总长度为2a-(a-b)三个拼接时总长度为3a-2(a-b)由此可得用9个拼接时的总长度为9a-8(a-b)由此即可得【详解】观察图形可知两个拼接时总长度为解析:a+8b【解析】【分析】观察可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),由此可得用9个拼接时的总长度为9a-8(a-b),由此即可得.【详解】观察图形可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),四个拼接时,总长度为4a-3(a-b),…,所以9个拼接时,总长度为9a-8(a-b)=a+8b,故答案为:a+8b.【点睛】本题考查了规律题——图形的变化类,通过推导得出总长度与个数间的规律是解题的关键. 16.2347【解析】【分析】把a看做已知数表示出方程的解由方程的解为正整数确定出整数a的值即可【详解】方程整理得:(a﹣1)x=6解得:x=由方程的解为正整数即为正整数得到整数a=2347故答案为:23解析:2,3,4,7【解析】【分析】把a看做已知数表示出方程的解,由方程的解为正整数,确定出整数a的值即可.【详解】方程整理得:(a﹣1)x=6,解得:x=61 a-,由方程的解为正整数,即61a-为正整数,得到整数a=2,3,4,7,故答案为:2,3,4,7【点睛】本题考查了求解一元一次方程的解法,解题的关键是得出关于a的等式.17.8【解析】【分析】根据有理数的减法解答即可【详解】-1-(-9)=8所以当天最高气温是比最低气温高8℃故答案为:8【点睛】此题考查有理数的减法关键是根据有理数的减法解答解析:8【解析】【分析】根据有理数的减法解答即可.【详解】-1-(-9)=8,所以当天最高气温是比最低气温高8℃,故答案为:8【点睛】此题考查有理数的减法,关键是根据有理数的减法解答.18.33【解析】【分析】先根据错解求出a的值再进行计算即可得解【详解】解:根据题意得14+a=-5a=-14-5=-19∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法解析:33【解析】【分析】先根据错解求出a 的值,再进行计算即可得解.【详解】解:根据题意得,14+a=-5,a=-14-5=-19, ∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法,正确理解题意是解题的关键.19.8【解析】【分析】利用同类项的定义得出mn 的值进而得出答案【详解】∵与是同类项∴∴∴故答案为:8【点睛】此题主要考查了同类项正确得出mn 的值是解题关键解析:8【解析】【分析】利用同类项的定义得出m ,n 的值进而得出答案.【详解】∵233m x y -与42n x y 是同类项∴24m =,3n =∴2m =∴328n m ==.故答案为:8.【点睛】此题主要考查了同类项,正确得出m ,n 的值是解题关键.20.6【解析】【分析】将x =3代入原方程即可求出答案【详解】将x =3代入mx −8=10∴3m=18∴m=6故答案为:6【点睛】本题考查一元一次方程解题的关键是熟练运用一元一次方程的解的定义本题属于基础题解析:6【解析】【分析】将x =3代入原方程即可求出答案.【详解】将x =3代入mx−8=10,∴3m =18,∴m =6,故答案为:6【点睛】本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.三、解答题21.(1)-5a 2+2ab-6;(2)A >B .【解析】【分析】(1)根据题意目中223+2A B a ab -=,223A a ab =-+-,可以用含a 、b 的代数式表示出B ;(2)根据题目中的A 和(1)中求得的B ,可以比较它们的大小.【详解】(1)∵2A-B=3a 2+2ab ,A=-a 2+2ab-3,∴B=2A-(3a 2+2ab )=2(-a 2+2ab-3)-(3a 2+2ab )=-2a 2+4ab-6-3a 2-2ab=-5a 2+2ab-6,(2)∵A=223a ab -+-,B=-5a 2+2ab-6,∴A-B=(223a ab -+-)-(-5a 2+2ab-6)=-a 2+2ab-3+5a 2-2ab+6=4a 2+3,∵无论a 取何值,a 2≥0,所以4a 2+3>0,∴A >B .【点睛】本题考查整式的加减,解答本题的关键是明确整式加减的计算方法.22.(1)①10;②26;(2)2【解析】【分析】(1)根据新定义运算法则可得:①53⊕=32+1;②()2221551m m ⊕+=⊕=+; (2)根据互为相反数和互为倒数的两个数的关系,和绝对值定义可得:m+n=0,xy=1,a 2=1,代入式子可得.【详解】解:(1)根据新定义运算法则可得:①53⊕=32+1=10故答案为:10②()222155126m m ⊕+=⊕=+=(2)因为,m n 互为相反数,,x y 互为倒数,1=a ,所以m+n=0,xy=1,a 2=1所以()()201220122a m n xy -++-=1-0+1=2【点睛】考核知识点:新定义运算,有理数运算.理解新定义运算法则,掌握有理数运算法则是关键.23.(1)180°;(2)见解析;(3)DE ⊥BF.【解析】【分析】(1)根据四边形的性质,可得答案;(2)根据三角形内角和定理和角平分线的定义即可求解;(3)根据补角的性质,可得∠CBM=∠ODC ,根据相似三角形的判定与性质,可得答案.【详解】(1)由四边形内角的性质,得,∠OBC+∠DOB+∠ODC+∠DCB=360°,∵∠DOB=∠DCB=90°,∴∠OBC+∠ODC=180°;(2)∵∠OBD+∠ODC=180°BD 平分∠OBC∴∠OBD=∠CBD∴∠OBD+∠ODB=90°∴∠CBD+∠ODC=90°∴∠ODB=∠BDC∴BD 平分∠ODC.(3)如图,延长DE 交BF 于G , ,∵∠ODC+∠OBC=∠CBM+∠OBC=180,∴∠CBM=∠ODC ,∠CBM=∠EBG=∠ODC=∠EDC .∵∠BEG=∠DEC ,∴△DEC ∽△BEG ,∴∠BGE=∠DCE=90°,∴DE 垂直BF .【点睛】本题考查了三角形的内角和定理,利用相似三角形的判定与性质是解题关键;利用补角的性质得出∠NDC+∠CBM=180°是解题关键.24.客房8间,房客63人【解析】【分析】设该店有x间客房,以人数相等为等量关系列出方程即可.【详解】设该店有x间客房,则7799x x+=-解得8x=7778763x+=⨯+=答:该店有客房8间,房客63人.【点睛】本题考查的是利用一元一次方程解决应用题,根据题意找到等量关系式是解题的关键.25.见解析【解析】【分析】把x=3代入代数式5(x−1)−2(x−2)−4,求出“2y−12=12y-■”的y,再代入该式子求出■.【详解】解:5(x-1)-2(x-2)-4=3x-5,当x=3时,3x-5=3×3-5=4,∴y=4.把y=4代入2y-12=12y-■中,得2×4-12=12×4-■,∴■=-11 2.即这个常数为-11 2.【点睛】根据题意先求出y,将■看作未知数,把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程,通过未知系数的方程求出未知数系数,这种解题方法叫做待定系数法,是数学中的一个重要方法,以后在函数的学习中将大量用到这种方法.。

上册 期末复习强化训练卷1(一元二次方程)-2020-2021学年苏科版九年级数学上学期(机构)

上册 期末复习强化训练卷1(一元二次方程)-2020-2021学年苏科版九年级数学上学期(机构)

期末复习强化训练卷1(一元二次方程)-苏科版九年级数学一、选择题1、方程||(2)4310m m x x m ++++=是关于的一元二次方程,则( )A .2m =±B .2m =C .2m =-D .2m ≠±2、下列关于x 的方程:①ax 2+bx +c =0;②2x +21x-3=0;③x 2﹣4+x 5=0;④3x =x 2.其中是一元二次方程的有( )A .1个B .2个C .3个D .4个3、已知m 是方程2210x x --=的一个根,则代数式2242019m m -+的值为( )A .2022B .2021C .2020D .20194、如果0是关于x 的一元二次方程(a +3)x 2﹣x +a 2﹣9=0的一个根,那么a 的值是( ) A .3 B .﹣3 C .±3 D .±25、方程2(5)6(5)x x x -=-的根是( )A .5x =B .5x =-C .15x =-,23x =D .15x =,23x =6、关于x 的一元二次方程x 2+(k ﹣3)x +1﹣k =0根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定7、等腰三角形的一边长是3,另两边的长是关于x 的方程x 2﹣4x +k =0的两个根,则k 的值为( )A .3B .4C .3或4D .78、若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2+αβ的值为( )A .10B .9C .7D .59、直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( )A .0个B .1个C .2个D .1个或2个10、某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x 元,则可列方程为( )A .(40)(60010)10000x x +-=B .(40)(60010)10000x x ++=C .[60010(40)]10000x x --=D .[60010(40)]10000x x +-=11、近年来天府新区加大了对教育经费的投入,2017年投入3000万元,2019年投入4320万元.假设投入教育经费的年平均增长率为x ,根据题意列方程,则下列方程正确的是( )A .3000x 2=4320B .3000(1+x ) 2=4320C .3000(1+x %)2=4320D .3000(1+x )+3000(1+x ) 2=432012、方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,则方程a (x +m +2)2+b =0的解是( ) A .x 1=﹣2,x 2=1 B .x 1=﹣4,x 2=﹣1C .x 1=0,x 2=3D .x 1=x 2=﹣2二、填空题13、若关于x 的方程(1-a )12+a x -7=0是一元二次方程,则a = .14、关于x 的一元二次方程(m ﹣1)x 2+5x +m 2﹣3m +2=0的常数项是0,则m 的值( )A .1B .1或2C .2D .±115、已知关于x 的方程x 2+6x +k =0有一根为2,则k 的值为 .16、已知x 为实数,且满足(2x 2+3)2+2(2x 2+3)﹣15=0,则2x 2+3的值为 .17、若关于x 的一元二次方程(k ﹣1)x 2﹣x ﹣1=0有两个不相等实数根,则k 的取值范围是 . 18、已知周长为40的矩形的长和宽分别是关于x 的一元二次方程x 2﹣mx +9=0的两个实数根,则m 的值为 .19、已知m 、n 是方程210x x +-=的根,则式子22m m n mn ++-= 1 .20、已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c = .21、已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.若2111x x +=﹣1, 则k 的值为_____.22、一个三角形的两边长分别为2和3,第三边长是方程210210x x -+=的根,则三角形的周长为 . 23、在实数范围内定义一种运算“*”,其规则为a *b =a 2﹣b 2,根据这个规则,方程(x +2)*5=0的解为_____. 24、准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面 积为80平方米,则小路的宽度为 米.三、解答题25、用指定的方法解下列方程:(1)24(1)360x --=(直接开平方法) (2)22510x x -+= (配方法)(3)(1)(2)4x x +-=(公式法) (4)2(1)(1)0x x x +-+=(因式分解法)(5)2x 2﹣5x ﹣4=0(配方法); (6)3(x ﹣2)+x 2﹣2x =0(因式分解法)26、关于x 的一元二次方程为22(2)0x x m m --+=(1)求证:无论m 为何实数,方程总有实数根;(2)m 为何整数时,此方程的两个根都为正数.27、已知m ,n 是一元二次方程x 2﹣3x ﹣10=0两个实数根,求:(1)(m ﹣1)(n ﹣1);(2)m 2+3n ﹣5的值.28、已知关于x 的一元二次方程x 2﹣4x ﹣2k +8=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2)若x 13x 2+x 1x 23=24,求k 的值.29、2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?30、某医疗设备工厂生产的呼吸机一月份产量为80台,一月底因突然爆发新冠肺炎疫情,市场对呼吸机需求量大增,为满足市场需求,工厂决定从二月份起持续扩大产能,一、二、三月总产量为560台.(1)求呼吸机产量的月平均增长率;(2)按照这个月平均增长率,求五月份产量为多少台?31、有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.32、某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1元,平均每天可多售出20箱.(1)若每箱降价3元,每天销售该饮料可获利多少元?(2)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(3)能否使每天销售该饮料获利达到1500元?若能,请求出每箱应降价多少元;若不能,请说明理由.33、某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?34、如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,点P,Q之间的距离为cm?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s 的速度移动,P,Q同时出发,几秒后,△PBQ的面积为1cm2?期末复习强化训练卷1(一元二次方程)-苏科版九年级数学(答案)一、选择题1、方程||(2)4310m m x x m ++++=是关于x 的一元二次方程,则( ) A .2m =±B .2m =C .2m =-D .2m ≠± 【答案】解:由题意得:|m |=2且m +2≠0,由解得得m =±2且m ≠﹣2,∴m =2.故选:B .2、下列关于x 的方程:①ax 2+bx +c =0;②2x +21x -3=0;③x 2﹣4+x 5=0;④3x =x 2.其中是一元二次方程的有( A )A .1个B .2个C .3个D .4个3、已知m 是方程2210x x --=的一个根,则代数式2242019m m -+的值为( )A .2022B .2021C .2020D .2019【答案】解:∵m 是方程x 2﹣2x ﹣1=0的一个根,∴m 2﹣2m ﹣1=0,∴m 2﹣2m =1,∴2m 2﹣4m +2019=2(m 2﹣2m )+2019=2×1+2019=2021. 故选:B .4、如果0是关于x 的一元二次方程(a +3)x 2﹣x +a 2﹣9=0的一个根,那么a 的值是( ) A .3 B .﹣3 C .±3 D .±2解:把x =0代入一元二次方程(a +3)x 2﹣x +a 2﹣9=0得a 2﹣9=0,解得a 1=﹣3,a 2=3,而a +3≠0,所以a 的值为3.故选:A .5、方程2(5)6(5)x x x -=-的根是( )A .5x =B .5x =-C .15x =-,23x =D .15x =,23x =解:2(5)6(5)0x x x ---=,(5)(26)0x x ∴--=,则50x -=或260x -=,解得5x =或3x =,故选:D .6、关于x 的一元二次方程x 2+(k ﹣3)x +1﹣k =0根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定【答案】解:△=(k ﹣3)2﹣4(1﹣k )=k 2﹣6k +9﹣4+4k =k 2﹣2k +5=(k ﹣1)2+4,∴(k ﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A .7、等腰三角形的一边长是3,另两边的长是关于x 的方程x 2﹣4x +k =0的两个根,则k 的值为()A .3B .4C .3或4D .7【答案】解:当3为腰长时,将x =3代入x 2﹣4x +k =0,得:32﹣4×3+k =0,解得:k =3,当k =3时,原方程为x 2﹣4x +3=0,解得:x 1=1,x 2=3,∵1+3=4,4>3,∴k =3符合题意;当3为底边长时,关于x 的方程x 2﹣4x +k =0有两个相等的实数根,∴△=(﹣4)2﹣4×1×k =0,解得:k =4,当k =4时,原方程为x 2﹣4x +4=0,解得:x 1=x 2=2,∵2+2=4,4>3,∴k =4符合题意.∴k 的值为3或4.故选:C .8、若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2+αβ的值为( )A .10B .9C .7D .5【答案】解:根据题意得α+β=2,αβ=﹣3,所以α2+β2+αβ=(α+β)2﹣αβ=22﹣(﹣3)=7.故选:C .9、直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( )A .0个B .1个C .2个D .1个或2个 解:直线y x a =+不经过第二象限,∴a ≤0,当0a =时,关于x 的方程2210ax x ++=是一次方程,解为12x =-, 当0a <时,关于x 的方程2210ax x ++=是二次方程,△2240a =->,∴方程有两个不相等的实数根.故选:D .10、某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x 元,则可列方程为( )A .(40)(60010)10000x x +-=B .(40)(60010)10000x x ++=C .[60010(40)]10000x x --=D .[60010(40)]10000x x +-=解:售价上涨x 元后,该商场平均每月可售出(60010)x -个台灯,依题意,得:(40)(60010)10000x x +-=,故选:A .11、近年来天府新区加大了对教育经费的投入,2017年投入3000万元,2019年投入4320万元.假设投入教育经费的年平均增长率为x ,根据题意列方程,则下列方程正确的是(B )A .3000x 2=4320B .3000(1+x ) 2=4320C .3000(1+x %)2=4320D .3000(1+x )+3000(1+x ) 2=432012、方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,则方程a (x +m +2)2+b =0的解是( )A .x 1=﹣2,x 2=1B .x 1=﹣4,x 2=﹣1C .x 1=0,x 2=3D .x 1=x 2=﹣2解:∵方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,∴方程a (x +m +2)2+b =0的两个解是x 3=﹣2﹣2=﹣4,x 4=1﹣2=﹣1,故选:B .二、填空题13、若关于x 的方程(1-a )12+a x -7=0是一元二次方程,则a = .【答案】解:∵关于x 的方程(a ﹣1)xa 2+1﹣7=0是一元二次方程,∴a 2+1=2,且a ﹣1≠0,解得,a =﹣1.故答案为:﹣1.14、关于x 的一元二次方程(m ﹣1)x 2+5x +m 2﹣3m +2=0的常数项是0,则m 的值( )A .1B .1或2C .2D .±1【答案】解:由题意,得m 2﹣3m +2=0且m ﹣1≠0,解得m =2,故选:C .15、已知关于x 的方程x 2+6x +k =0有一根为2,则k 的值为 .解:根据题意知,x =2满足关于x 的方程x 2+6x +k =0,则22+6×2+k =0,解得k =﹣16. 故答案是:﹣16.16、已知x 为实数,且满足(2x 2+3)2+2(2x 2+3)﹣15=0,则2x 2+3的值为 .解:设2x 2+3=t ,且t ≥3,∴原方程化为:t 2+2t ﹣15=0,∴t =3或t =﹣5(舍去),∴2x 2+3=3,故答案为:317、若关于x 的一元二次方程(k ﹣1)x 2﹣x ﹣1=0有两个不相等实数根,则k 的取值范围是 . 解:根据题意得:△=b 2﹣4ac =1+4(k ﹣1)=4k ﹣3>0,且k ﹣1≠0,解得:k >且k ≠1.故答案为:k >且k ≠1.18、已知周长为40的矩形的长和宽分别是关于x 的一元二次方程x 2﹣mx +9=0的两个实数根,则m 的值为 .解:周长为40的矩形的长和宽的和为40÷2=20,∵矩形的长和宽是一元二次方程x 2﹣mx +9=0的两个实数根,∴m =20.故答案为:20.19、已知m 、n 是方程210x x +-=的根,则式子22m m n mn ++-= 1 . 解:m 是方程210x x +-=的根,210m m ∴+-=,即21m m +=,221m m n mn m n mn ∴++-=+-+,m 、n 是方程210x x +-=的根,21m m ∴+=,1m n +=-,1mn =-,222()1111m m n mn m m m n mn ∴++-=+++-=-+=. 故答案为:1.20、已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c = .解:根据题意得△2(5)420c =--⨯⨯=,解得258c =.故答案为:258.21、已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.若2111x x +=﹣1, 则k 的值为__3___.22、一个三角形的两边长分别为2和3,第三边长是方程210210x x -+=的根,则三角形的周长为 .解:210210x x -+=,(3)(7)0x x --=,30x -=或70x -=,所以13x =,27x =,2357+=<,∴三角形第三边长为3,∴三角形的周长为2338++=.故答案为8.23、在实数范围内定义一种运算“*”,其规则为a *b =a 2﹣b 2,根据这个规则,方程(x +2)*5=0的解为_3或-7____.24、准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面 积为80平方米,则小路的宽度为 米.解:设小路的宽度为x 米,则小正方形的边长为4x 米,依题意得:(304244)80x x x +++=整理得:2427400x x +-=解得18x =-(舍去),254x =. 故答案为:54.三、解答题25、用指定的方法解下列方程:(1)24(1)360x --=(直接开平方法) (2)22510x x -+= (配方法)(3)(1)(2)4x x +-=(公式法) (4)2(1)(1)0x x x +-+=(因式分解法)(5)2x 2﹣5x ﹣4=0(配方法); (6)3(x ﹣2)+x 2﹣2x =0(因式分解法)【答案】解:(1)方程变形得:(x ﹣1)2=9,开方得:x ﹣1=3或x ﹣1=﹣3,解得:x 1=4,x 2=﹣2;(2)方程变形得:x 2﹣x =﹣,配方得:x 2﹣x +=(x ﹣)2=, 开方得:x ﹣=±, 则x 1=,x 2=; (3)方程整理得:x 2﹣x ﹣6=0,这里a =1,b =﹣1,c =﹣6,∵△=1+24=25,∴x =, 则x 1=3,x 2=﹣2;(4)分解因式得:(x +1)(2﹣x )=0,解得:x 1=﹣1,x 2=2.(5)2x 2﹣5x ﹣4=0,变形得:x 2x =2, 配方得:x 2x ,即(x )2,开方得:x ±,则x 1,x 2;(6)3(x ﹣2)+x 2﹣2x =0,变形得:3(x ﹣2)+x (x ﹣2)=0,即(x ﹣2)(x +3)=0,可得x ﹣2=0或x +3=0,解得:x 1=2,x 2=﹣3.26、关于x 的一元二次方程为22(2)0x x m m --+=(1)求证:无论m 为何实数,方程总有实数根;(2)m 为何整数时,此方程的两个根都为正数.【答案】(1)证明:△=(﹣2)2﹣4×[﹣m (m +2)]=4m 2+8m +4=4(m +1)2,∵4(m +1)2≥0,∴△≥0,∴无论m 为何实数,方程总有实数根;(2)解:x ==1±(m +1),所以x 1=m +2,x 2=﹣m ,根据题意得m +2>0且﹣m >0,所以﹣2<m <0,所以整数m 为﹣1.27、已知m ,n 是一元二次方程x 2﹣3x ﹣10=0两个实数根,求:(1)(m ﹣1)(n ﹣1);(2)m 2+3n ﹣5的值.解:∵m ,n 是方程x 2﹣3x ﹣10=0,∴根据一元二次方程根与系数的关系得:m +n =3,mn =﹣10.(1)(m ﹣1)x (n ﹣1)=mn ﹣(m +n )+1=﹣10﹣3+1=﹣12;(2)由m ,n 是一元二次方程x 2﹣3x ﹣10=0两个实数根,得m 2﹣3m ﹣5=0,则m 2﹣3m =5.故m 2+3n ﹣5=m 2﹣3m +3(m +n )﹣5=5+3×3﹣5=9;28、已知关于x 的一元二次方程x 2﹣4x ﹣2k +8=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2)若x 13x 2+x 1x 23=24,求k 的值.【答案】解:(1)由题意可知,△=(﹣4)2﹣4×1×(﹣2k +8)≥0,整理得:16+8k﹣32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)由题意得:=24,由韦达定理可知:x1+x2=4,x1x2=﹣2k+8,故有:(﹣2k+8)[42﹣2(﹣2k+8)]=24,整理得:k2﹣4k+3=0,解得:k1=3,k2=1,又由(1)中可知k≥2,∴k的值为k=3.故答案为:k=3.29、2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?【答案】解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.30、某医疗设备工厂生产的呼吸机一月份产量为80台,一月底因突然爆发新冠肺炎疫情,市场对呼吸机需求量大增,为满足市场需求,工厂决定从二月份起持续扩大产能,一、二、三月总产量为560台.(1)求呼吸机产量的月平均增长率;(2)按照这个月平均增长率,求五月份产量为多少台?解:(1)设呼吸机产量的月平均增长率为x,根据题意,得80+80(1+x)+80(1+x)2=560,解得x1=﹣4(舍去),x2=1=100%,答:呼吸机产量的月平均增长率为100%.(2)80×(1+1)4=1120(台).答:五月份产量为为1120台.31、有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.【答案】解:(1)由题意得:y=x(30﹣3x),即y=﹣3x2+30x.(2)当y=63时,﹣3x2+30x=63.解此方程得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去;∴当AB的长为7m时,花圃的面积为63m2.(3)不能围成面积为72m2的花圃.理由如下:如果y=72,那么﹣3x2+30x=72,整理,得x2﹣10x+24=0,解此方程得x1=4,x2=6,当x=4时,30﹣3x=18,不合题意舍去;当x=6时,30﹣3x=12,不合题意舍去;故不能围成面积为72m2的花圃.32、某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1元,平均每天可多售出20箱.(1)若每箱降价3元,每天销售该饮料可获利多少元?(2)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(3)能否使每天销售该饮料获利达到1500元?若能,请求出每箱应降价多少元;若不能,请说明理由.解:设每箱饮料降价x元,商场日销售量(10020)x+箱,每箱饮料盈利(12)x-元;(1)依题意得:(123)(100203)1440-+⨯=(元)答:每箱降价3元,每天销售该饮料可获利1440元;(2)要使每天销售饮料获利1400元,依据题意列方程得,(12)(10020)1400x x-+=,整理得27100x x-+=,解得12x=,25x=;为了多销售,增加利润,5x∴=,答:每箱应降价5元,可使每天销售饮料获利1400元.(3)不能,理由如下:要使每天销售饮料获利1500元,依据题意列方程得,(12)(10020)1500x x-+=,整理得27150x x-+=,因为△4960110=-=-<,所以该方程无实数根,即不能使每天销售该饮料获利达到1500元.33、某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?【答案】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.34、如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,点P,Q之间的距离为cm?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s 的速度移动,P,Q同时出发,几秒后,△PBQ的面积为1cm2?【答案】解:(1)设经过x 秒,点P ,Q 之间的距离为cm ,则AP =x (cm ),QB =2x (cm ),∵AB =6cm ,BC =8cm ∴PB =(6﹣x )(cm ),∵在△ABC 中,∠B =90°,∴由勾股定理得:(6﹣x )2+(2x )2=6化简得:5x 2﹣12x +30=0∵△=(﹣12)2﹣4×5×30=144﹣600<0∴点P ,Q 之间的距离不可能为cm .(2)设经过x 秒,使△PBQ 的面积等于8cm 2,由题意得:21(6﹣x )•2x =8 解得:x 1=2,x 2=4, 检验发现x 1,x 2均符合题意∴经过2秒或4秒,△PBQ 的面积等于8cm 2.(3)①点P 在线段AB 上,点Q 在线段CB 上设经过m 秒,0<m ≤4,依题意有21(6﹣m )(8﹣2m )=1,∴m 2﹣10m +23=0 解得;m 1=5(舍),m 2=5, ∴m =5符合题意; ②点P 在线段AB 上,点Q 在射线CB 上设经过n 秒,4<n ≤6,依题意有21(6﹣n )(2n ﹣8)=1,∴n 2﹣10n +25=0 解得n 1=n 2=5, ∴n =5符合题意;③点P 在射线AB 上,点Q 在射线CB 上设经过k 秒,k >6,依题意有21(k ﹣6)(2k ﹣8)=1 解得k 1=5,k 2=5(舍), ∴k =5符合题意; ∴经过(5)秒,5秒,(5)秒后,△PBQ 的面积为1cm 2.。

浙教版2020-2021学年九年级上册数学期末复习试题1(含答案)

浙教版2020-2021学年九年级上册数学期末复习试题1(含答案)

浙教新版2020-2021学年九年级上册数学期末复习试题1 一.选择题(共10小题,满分40分,每小题4分)1.已知A(m,2020),B(m+n,2020)是抛物线y=﹣(x﹣h)2+2036上两点,则正数n=()A.2B.4C.8D.162.如图所示的是正十二角形体,因为其独特的对称美,所以2019年在英国举办的第60界国际数学奥林匹克的会标,就选用了正十二角形体,若将它绕自身中心旋转一定角度后能与原图重合,则这个角度不可能是()A.60°B.90°C.120°D.180°3.如图,AB是⊙O的直径,CD是弦,点C,D在直径AB的两侧.若∠AOC:∠AOD:∠DOB=2:7:11,CD=4,则的长为()A.2πB.4πC.D.π4.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2﹣2D.y=(x+1)2﹣25.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.6.已知点(﹣1,y1),(,y2),(2,y3)在函数y=ax2﹣2ax+a﹣2(a>0)的图象上,则将y1、y2、y3按由大到小的顺序排列是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y2>y1 7.如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①②B.②③C.①③D.②④8.某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A.=+1B.=﹣1C.=+2D.=﹣29.如图,△ABC的三个顶点坐标分别为A(1,2),B(4,2),C(4,4),若反比例函数y=在第一象限内的图象与△ABC有交点,则实数k的取值范围是()A.2≤k≤16B.2≤k≤8C.1≤k≤4D.8≤k≤16 10.如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=()A.B.C.D.二.填空题(共6小题,满分30分,每小题5分)11.某学校食堂为了了解服务质量,随机调查了来食堂就餐的200名学生,调查的结果如图所示,根据图中给出的信息,这200名学生中对该食堂的服务质表示不满意的有人.12.若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为.13.某市民广场有一个直径16米的圆形喷水池,喷水池的周边有一圈喷水头(喷水头高度忽略不计),各方向喷出的水柱恰好在喷水池中心的装饰物OA的顶端A处汇合,水柱离中心3米处达最高5米,如图所示建立直角坐标系.王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的他站立时必须在离水池中心O米以内.14.一面墙上有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图,若矩形的高为2m,宽为m,则要打掉墙体的面积为m2.15.如图是一株美丽的勾股树.所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为7cm,则正方形A、B、C、D的面积的和是.16.如图,平行四边形ABCD中,∠A=60°,.以A为圆心,AB为半径画弧,交AD于点E,以D为圆心,DE为半径画弧,交CD于点F.若用扇形ABE围成一个圆维的侧面,记这个圆锥的底面半径为r1;若用扇形DEF围成另一个圆锥的侧面,记这个圆锥的底面半径为r2与,则的值为.三.解答题(共8小题,满分80分,每小题10分)17.(1)解方程:(x﹣2)x=2x﹣1.(2)计算:|﹣|+×+()﹣1﹣(﹣)0.18.如图,在▱ABCD中,AE、CF分别平分∠BAD、∠BCD.求证:(1)AE=CF;(2)AE∥CF.19.目前中学生带手机进校园现象越来越受到社会关注,针对这种现象,某校数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度,在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2位家长来自相同班级的概率.温馨提示:初三(1)班两名家长用A1,A2表示;初三(2)班两名家长用B1,B2表示.20.如图,下列网格由小正方形组成,点A,B,C都在正方形网格的格点上.(1)在图1中画出一个以线段BC为边,且与△ABC面积相等但不全等的格点三角形;(2)在图2和图3中分别画出一个以线段AB为边,且与△ABC相似(但不全等)的格点三角形,并写出所画三角形与△ABC的相似比.(相同的相似比算一种)21.如图,Rt△ABC中,∠C=90°,AB=4,在BC上取一点D,连结AD,作△ACD 的外接圆⊙O,交A B于点E.张老师要求添加条件后,编制一道题目,并解答.(1)小明编制题目是:若AD=BD,求证:AE=BE.请你解答.(2)在小明添加条件的基础上请你再添加一条线段的长度,编制一个计算题(不标注新的字母),并直接给出答案.(根据编出的问题层次,给不同的得分)22.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.23.阿静家在新建的楼房旁围成一个矩形花圃,花圃的一边利用20米长的院墙,另三边用总长为32米的离笆恰好围成.如图,设AB边的长为x米,矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)当x为何值时,S有最大值?并求出最大值.24.问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且=2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,垂足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵A(m,2020),B(m+n,2020)是抛物线y=﹣(x﹣h)2+2036上两点,∴2020=﹣(x﹣h)2+2036,解得x1=h﹣4,x2=h+4,∴A(h﹣4,2020),B(h+4,2020),∵m=h﹣4,m+n=h+4,∴n=8,故选:C.2.解:∵正十二角形体的中心角为30°,∴观察图象可知,旋转角是30°的偶数倍数时,可以与本身重合,故选:B.3.解:∵∠AOC:∠AOD:∠DOB=2:7:11,∠AOD+∠DOB=180°,∴∠AOD=×180°=70°,∠DOB=110°,∠COA=20°,∴∠COD=∠COA+∠AOD=90°,∵OD=OC,CD=4,∴2OD2=42,∴OD=2,∴的长是==,故选:D.4.解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣1,﹣2),所以所得抛物线解析式为:y=﹣(x+1)2﹣2.故选:B.5.解:由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:第一次选择,它有3种路径;第二次选择,每次又都有2种路径;两次共6种等可能结果,其中获得食物的有2种结果,∴获得食物的概率是=,故选:C.6.解:∵y=ax2﹣2ax+a﹣2=a(x﹣1)2﹣2(a>0),∴图象的开口向上,对称轴是直线x=1,∵点(﹣1,y1)到对称轴的距离最大,点(,y2)到对称轴的距离最小,∴y1>y3>y2,故选:B.7.解:∵①中的三角形的三边分别是:2,,,②中的三角形的三边分别是:3,,,③中的三角形的三边分别是:2,2,2,④中的三角形的三边分别是:3,,4,∵①与③中的三角形的三边的比为:1:,∴①与③相似.故选:C.8.解:∵原计划每周生产x万个口罩,一周后以原来速度的1.5倍生产,∴一周后每周生产1.5x万个口罩,依题意,得:=+1.故选:A.9.解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选:A.10.解:如图,连接BF,取BF的中点O,连接OE,OC.∵四边形ABCD是矩形,EF⊥BE,∴∠BEF=∠BCF=90°,AB=CD=3,BC=AD=5,∵OB=OF,∴OE=OB=OF=OC,∴B,C,F,E四点共圆,∴∠EBF=∠ECF,∴tan∠EBF=tan∠ACD,∴==,故选:B.二.填空题(共6小题,满分30分,每小题5分)11.解:因为200名学生中对该食堂的服务质量表示不满意占总体的百分比为:1﹣46%﹣38%﹣9%=7%,所以200名学生中对该食堂的服务质量表示很满意有:200×7%=14(人).故答案为:14.12.解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°,∵△ABC∽△A′B′C′,∴∠B′=∠B=20°.故答案为20°.13.解:设OA右侧的抛物线的解析式为y=a(x﹣3)2+5,∵某市民广场有一个直径16米的圆形喷水池,∴该抛物线过点(8,0),∴0=a(8﹣3)2+5,得a=﹣,∴OA 右侧的抛物线的解析式为y =﹣(x ﹣3)2+5=x 2++,当y =1.8时,1.8=﹣(x ﹣3)2+5,得x 1=7,x 2=﹣1,∵各方向喷出的水柱恰好在喷水池中心的装饰物OA 的顶端A 处汇合,点A 的坐标为(0,),∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心O 7米以内, 故答案为:7.14.解:如图,连结AD 、BC 交于O ,∵∠BDC =90°,∴BC 是直径,∴BC ===, ∴OA =OB =AB =, ∴△AOB 是正三角形,∴∠AOB =60°,∠AOC =120°,∴S △AOB =,S △AOC =,∴S =2(S 扇形OAC ﹣S △AOC )+S 扇形OAB ﹣S △AOB=2[﹣]+[﹣]=π﹣,∴打掉墙体面积为(π﹣)平方米, 故答案为:(π﹣).15.解:∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.故答案为49cm2.16.解:设AD=3k,AB=2k,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠D=180°,∵∠A=60°,∴∠D=120°,∴的长===2πr1,可得r1=,∴的长===2πr2,可得r2=,∴=1,故答案为1.三.解答题(共8小题,满分80分,每小题10分)17.解:(1)(x﹣2)x=2x﹣1x2﹣2x﹣2x=﹣1,则x2﹣4x=﹣1,x2﹣4x+4=3,(x﹣2)2=3,则x﹣2=±,解得:x1=2+,x2=2﹣;(2)|﹣|+×+()﹣1﹣(﹣)0=+2+2﹣1=3+1.18.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAD=∠DCB,∴∠ADE=∠CBF,∵AE、CF分别平分∠BAD、∠BCD,∴∠DAE=∠DAB,∠BCF=∠DCB,∴∠DAE=∠BCF,∴△ADE≌△CBF(ASA),∴AE=CF.(2)∵△ADE≌△CBF,∴∠AED=∠CFB,∴AE∥CF.19.解:画树状图如下:共有12种等可能结果,其中2人来自相同班级的共有4种,所以2人来自相同班级的概率为=.20.解:(1)如图所示,△BCD即为所求.(2)如图所示,△ABE和△ABF即为所求,相似比;相似比.21.(1)证明:连结DE,∵∠C=90°,∴AD为直径,∴DE⊥AB,∵AD=BD,∴AE=BE;(2)答案不唯一.①第一层次:若AC=4,求BC的长.答案:BC=8;②第二层次:若CD=3,求BD的长.答案:BD=5;③第三层次:若CD=3,求AC的长.设BD=x,∵∠B=∠B,∠C=∠DEB=90°,∴△ABC~△DBE,∴=,∴=,∴x=5,∴AD=BD=5,∴AC==4.22.解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PF=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当A B是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,四边形AEBD∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).23.解:(1)由题意可得,S=x(32﹣2x)=﹣2x2+32x,∵,解得,6≤x<16,即S与x之间的函数关系式是S=﹣2x2+32x(6≤x<16);(2)∵S=﹣2x2+32x=﹣2(x﹣8)2+128,∴当x=8时,S有最大值,最大值是128平方米.24.解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,故答案为:CF、DE、DF;(2)连接OP,如图2所示:∵AB是半圆O的直径,=2,∴∠APB=90°,∠AOP=×180°=60°,∴∠ABP=30°,同(1)得:四边形PECF是正方形,∴PF=CF,在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=8×=4,在Rt △CFB 中,BF ====CF , ∵PB =PF +BF ,∴PB =CF +BF ,即:4=CF +CF ,解得:CF =6﹣2; (3)①∵AB 为⊙O 的直径,∴∠ACB =∠ADB =90°,∵CA =CB ,∴∠ADC =∠BDC ,同(1)得:四边形DEPF 是正方形,∴PE =PF ,∠APE +∠BPF =90°,∠PEA =∠PFB =90°,∴将△APE 绕点P 逆时针旋转90°,得到△A ′PF ,PA ′=PA ,如图3所示: 则A ′、F 、B 三点共线,∠APE =∠A ′PF ,∴∠A ′PF +∠BPF =90°,即∠A ′PB =90°,∴S △PAE +S △PBF =S △PA ′B =PA ′•PB =x (70﹣x ),在Rt △ACB 中,AC =BC =AB =×70=35, ∴S △ACB =AC 2=×(35)2=1225,∴y =S △PA ′B +S △ACB =x (70﹣x )+1225=﹣x 2+35x +1225;②当AP =30时,A ′P =30,PB =AB ﹣AP =70﹣30=40,在Rt △A ′PB 中,由勾股定理得:A ′B ===50,∵S △A ′PB =A ′B •PF =PB •A ′P ,∴×50×PF =×40×30,解得:PF =24,∴S 四边形PEDF =PF 2=242=576(m 2),∴当AP =30m 时.室内活动区(四边形PEDF )的面积为576m 2.。

2020-2021学年九年级上册数学第1章《二次函数》单元测试卷(有答案)

2020-2021学年九年级上册数学第1章《二次函数》单元测试卷(有答案)

2020-2021学年九年级上册数学第 1章《二次函数》单元测试卷式是()1. 卜列关于X 的函数一定为二次函数的是( A . y=4xB , y= 5x2 - 3xC. y=ax 2+bx+cD , y=x 3-2x+12.将二次函数y= 2x 2+5的图象先向左平移 3个单位,再向下平移 1个单位,则平移后的函数关系A. y=2 (x+3) 2+6 B . y=2 (x+3) 2+4 C. y=2 (x- 3) 2+6D. y=2 (x-3) 2+43. 如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长) ,其余三边除大门外用栅栏围成,栅栏总长度为 50m,门宽为2m.若饲养室长为 xm,占地面积为ym 2,则关于x 的函数表达式为(:2+26x (2<x<52)B. C. -2 .y= - . x +50x (2w x< 52) y= - x 2+52x (2< x< 52) - 2 一 一 一 __________ y=一方x2+27x- 52 (2<x< 52)(aw0)在同一坐标系中的图象可能是(D .5.以下抛物线的顶点坐标为(2, 0)的是(10.如图,已知顶点为(-3, -6)的抛物线y=ax 2+bx+c 经过点(-1, -4),则下列结论:-1;⑤若点(-2, m ) , (- 5, n )在抛物线上,则 m>n,其中正确的个数共有(二.填空题⑥y= ( x+1 ) 2- x 2.这六个式子中,二次函数有12.把二次函数 y=x 2- 4x+5化为y=a (x —h ) 2+k 的形式,那么h+k=A . y= 3x 2+2B . y= 3x2 - 2C. y=3 (x — 2) 2D. y=3 (x+2) 26.二次函数y= ax 2+bx+c 的图象如图所示,其对称轴是x=-1, 卜列结论中正确的是(8.二次函数C. 2a+b=0D. a - b+c>2 (x-1) 2+b (aw0)的图象经过点(0, 2) a+b 的值是( B. - 1C. 2D. 3 x 2- 2x+c 在-3< x< 2的范围内有最大值为一5, 则c 的值是(B. 3C. - 3D. - 69.二次函数 y=ax 2—2ax+b 中,当—1wxw 4 时,—2wyw3,贝U b — a 的值为( B. - 6或 7C. 3D. 3 或—2①b 2>4ac ;② ax 2+bx+c< - 6;③ 9a- 3b+c= - 6;④关于 x 的二次方程 ax 2+ bx+ c= - 4 的根为B. 2个C. 3个D. 4个11.观察:① y = 6x 2;② y=- 3x 2+5;③2 1y=200x 2+400x+200;④ y=x 3-2x;⑤ ¥二工 二.(只填序号)13. 一名男生参加抛实心球测试,已知球的高度 y (m )与水平距离 x (m )之间的关系是7.二次函数 y= a2B. 4ac< b -114 .已知抛物线的顶点坐标是(-2, 3),其图象是由抛物线 y=-8x 2+1平移得到的,则该抛物线的解析式为.15 .抛物线y=a (x- h) 2+k (a<0)经过(-1,3)、( 5, 3)两点,则关于 x 的不等式a (x- h -1) 2+k<3的解集为.16 .已知二次函数 y=ax 2+bx+c (aw0, a, b, c,为常数),对称轴为直线 x=1,它的部分自变量x 与函数值y 的对应值如下表.请写出ax 2+bc+c= 0的一个正数解的近似值 (精确到0.1)x - 0.4 — 0.3 — 0.2 — 0.117 .若函数y=x 2+2x+m 的图象与x 轴没有交点,则 m 的取值范围是 .18 .已知二次函数 y=ax 2+ (a-1) x- 2a+1,当1vxv3时,y 随x 的增大而减小,则 a 的取值范围是.19 .如果二次函数y=a (x-1) 2(aw0)的图象在它的对称轴右侧部分是上升的,那么a 的取值范围是.20 .小甬是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线y=-/父2的性质时,将一个直角三角板的直角顶点置于平面直角坐标系的原点 O,两直角边与该抛物线交于A, B 两点 (如图),对该抛物线,小甬将三角板绕点 O 旋转任意角度时惊奇地发现,交点A, B 的连线段总经过一个固定的点,则该点的坐标是三.解答题21 .已知二次函数 y=2x 2+4x- 6,(1)将二次函数的解析式化为y= a (x-h) 2+k 的形式.(2)写出二次函数图象的开口方向、对称轴、顶点坐标. 22 .已知二次函数(k 为常数),求k 的值.__ 1 2 产12工m,则这名男生抛实心球的成绩是3m.y= ax 2+ bx+c0.920.38—0.12—0.5823.在平面直角坐标系xOy中,抛物线y= ax2+4ax+4a-4 (aw0)的顶点为A.(1)求顶点A的坐标;(2)过点(0, 5)且平行于x轴的直线1,与抛物线y=ax2+4ax+4-4 (aw 0)交于B、C两点.①当a=1时,求线段BC的长;②当线段BC的长不小于8时,直接写出a的取值范围.532 -11— I I E II」] ■ I J 、-5 一4 4-2 口, 1 2 3 4 5x-2~-3-4-5 _____________24.已知二次函数的图象y=- x2+bx+c如图所示,它与轴的交点坐标为(- 1,0), (3, 0)(1)求b, c的值;(2)根据图象,直接写出函数值y<0时,自变量x的取值范围.25.二次函数y=ax2+bx+c (aw0)与一次函数y=x+k (kw0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c- x- k< 0的解集;(3)写出二次函数值y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c= m有两个不等的实数根,求m的取值范围;26.如图,一段长为45m的篱笆围成一个一边靠墙的矩形花园,墙长为27m,设花园的面积为sm2,平行于墙的边为xm.若x不小于17m,(1)求出s关于x的函数关系式;(2)求s的最大值与最小值.花园27.在平面直角坐标系xOy中,二次函数y = x2-2mx+1图象与y轴的交点为A,将点A向右平移4个单位长度,向上平移1个单位长度得到点B.(1)直接写出点A的坐标为,点B的坐标为;(2)若函数y=x2-2mx+1的图象与线段AB恰有一个公共点,求m的取值范围.参考答案与试题解析・选择题1.解:A、是一次函数,故此选项不符合题意;B、是二次函数,故此选项符合题意;C、当a=0时不是二次函数,故此选项不符合题意;D、不是二次函数,故此选项不符合题意;故选:B.2.解:根据“左加右减,上加下减”的法则可知,将抛物线y= 2x2+5向左平移3个单位,再向下平移1个单位,那么所得到抛物线的函数关系式是y=2 (x+3) 2+4.故选:B.3.解:y关于x的函数表达式为:y=g (50+2-x) x b-l= ---- x+26x (2W x<52).故选:A.4,解:①当a>0时,二次函数y= ax2-a的图象开口向上、对称轴为y轴、顶点在y轴负半轴,一次函数y= ax - a (aw0)的图象经过第一、三、四象限,且两个函数的图象交于y轴同一点;②当a<0时,二次函数y= ax2-a的图象开口向下、对称轴为y轴、顶点在y轴正半轴,一次函数y=ax-a (aw0)的图象经过第一、二、四象限,且两个函数的图象交于y轴同一点.对照四个选项可知D正确.故选:D.5.解:抛物线y= 3x2+2的顶点为(0, 2);抛物线y= 3x2-2的顶点为(0, - 2);抛物线y=3 (x-2) 2的顶点为(2, 0);抛物线y=3 (x+2) 2的顶点为(-2, 0);故选:C.6.解:A、由抛物线的开口向下知a<0,对称轴在y轴的左侧,a、b同号,即b<0,与y轴的交点为在y轴的正半轴上,. 0,因此abc>0,故错误;B、抛物线与x轴有两个交点,b2 - 4ac>0,即4acv b2,故正确;C、对称轴为x= ----- --= - 1,得2a = b,23.2a- b= 0,故错误;D、•.当x= - 1 时,y>0• -a- b+c>0,故错误.故选:B.7.解:二.二次函数y=a (x- 1) 2+b (aw0)的图象经过点(0, 2),a+b = 2.故选:C.8.解:把二次函数y= - x2-2x+c转化成顶点坐标式为y= - (x+1) 2+c+l,又知二次函数的开口向下,对称轴为x=- 1,故当x= - 1时,二次函数有最大值为- 5,故-1+2+c= - 5,故c= - 6.故选:D.2 29.解::抛物线y=ax — 2ax+b=a (x—1) +b- a,「•顶点(1, b - a)当a>0 时,当-1WxW4 时,—2WyW3,函数有最小值,b - a= - 2,当a<0 时,当—1wxw4 时,—2wyw3,函数有最大值,b - a= 3,故选:D.10.解:二•抛物线与x轴有2个交点,•・△= b2- 4ac>0,即b2>4ac,所以①正确;•.•抛物线的顶点坐标为(-3, - 6),即x= - 3时,函数有最小值,•.ax2+bx+c> - 6,所以②错误;•.•抛物线的顶点坐标为(-3, - 6),•••9a-3b+c= - 6,所以③正确;•••抛物线y= ax2+bx+c 经过点(-1, - 4),而抛物线的对称轴为直线x= - 3,.二点(-1, - 4)关于直线x= - 3的对称点(-5, - 4)在抛物线上,••・关于x的一元二次方程ax2+bx+c= - 4的两根为-5和-1 ,所以④错误;•••抛物线开口向上,对称轴为直线x= - 3,而点(-2, m) , ( - 5, n)在抛物线上,: - 3 - ( - 5) > - 2 - ( - 3),m<n,所以⑤错误.故选:B.二.填空题11.解:这六个式子中,二次函数有:①y=6x2;②y=- 3x2+5;③y= 200x2+400x+200;故答案为:①②③.12.解:y=x —4x+5= ( x _ 2) 2+1,. .h=2, k= 1,h+k=2+1= 3.故答案为:3.13.解:•••一名男生参加抛实心球测试,已知球的高度y (m)与水平距离x (m)之间的关系是7T小亭卷i 2: 1・・・当y=0,则0 = - y;5-x2+Vx+—, _L 乙O R-J解得:x1= 10, x2= - 2,,这名男生抛实心球的成绩为10m,故答案为:10.14.解:,•,该抛物线是由抛物线y= - 8x2+1平移得到的,a= - 8,又•••抛物线的顶点坐标是(- 2, 3),该抛物线的解析式为y=- 8 (x+2) 2+3.故答案为:y=- 8 (x+2) 2+3.15.解:二.抛物线y=a (x-h) 2+k (a>0)经过(-1, 3) , ( 5, 3)两点,,大致图象如图所示:•1-y= a (x- h- 1) 2+k (a>0)经过(0, 3) , (6, 3)两点则关于x的不等式a (x-h-1) 2+kW3的解集为:x< 0或x>6.故答案为:*^0或*>6.16.解:由表可知,当x= - 0.2时,y的值最接近0, 所以,方程ax2+bx+c= 0一个解的近似值为-0.2, 设正数解的近似值为a,.•.对称轴为直线x=1,一+(一。

2020-2021常州市正衡中学九年级数学上期中试卷(及答案)

2020-2021常州市正衡中学九年级数学上期中试卷(及答案)

A.3
B. 2 3
C.4
D. 4 3
7.如图,直线 y=kx+c 与抛物线 y=ax2+bx+c 的图象都经过 y 轴上的 D 点,抛物线与 x 轴交
于 A、B 两点,其对称 轴为直线 x=1,且 OA=OD.直线 y=kx+c 与 x 轴交于点 C(点 C 在点 B
的右侧).则下列命题中正确命题的是( )
中,
,是
的外接圆,点 P 在直径 BD 的延长线
上,且

求证:PA 是 的切线;

,求图中阴影部分的面积 结果保留 和根号
25.已知关于 x 的方程 x2 ax a 2 0 .
(1)当该方程的一个根为 1 时,求 a 的值及该方程的另一根; (2)求证:不论 a 取何实数,该方程都有两个不相等的实数根.
23.如图,在 ABC 中, AB 6cm,BC 7cm,ABC 30 , 点 P 从 A 点出发,以 1cm / s 的速度向 B 点移动,点 Q 从 B 点出发,以 2cm / s 的速度向 C 点移动.如果 P,Q 两点同时出发,经过几秒后 PBQ 的面积等于 4cm2 ?
24.如图,在
19.如图, O 的半径为 2,切线 AB 的长为 2 3 ,点 P 是 O 上的动点,则 AP 的长的
取值范围是_________.
20.如图,正五边形 ABCDE 内接于⊙O,F 是 CD 弧的中点,则∠CBF 的度数为_____.
三、解答题
21.(2016 内蒙古包头市)一幅长 20cm、宽 12cm 的图案,如图,其中有一横两竖的彩 条,横、竖彩条的宽度比为 3:2.设竖彩条的宽度为 xcm,图案中三条彩条所占面积为 ycm2. (1)求 y 与 x 之间的函数关系式;

江西省九江市2020-2021学年度上学期期末考试九年级数学试题及参考答案

江西省九江市2020-2021学年度上学期期末考试九年级数学试题及参考答案

期末试卷 九年级数学(上学期)参考答案 第1页 (共4页)九江市2020-2021学年度上学期期末考试九年级数学参考答案及评分标准 一、 选择题(本大题共6小题,每题3分,共18分.)题号1 2 3 4 56 答案 A C C D A D二、 填空题(本大题共6小题,每题3分,共24分.)7.二、四 8. 18cm 2 9.0 10.4 11.1612. 12(对1个得1分,对2个得2分,1对1错0分,2对1错得1分)情况1 情况2 情况3三、 解答题(本大题共5小题,每小题6分,共30分.)13.本题共两小题,每小题3分,共6分.(1)12x =,23x =-………………………………(3分) (2)证明:∵四边形ABCD 是矩形 ∴AB=DC ,∠B=∠C=90°∵BF=CE ∴BF+EF=CE+EF即:BE=CF∴△ABE ≌△DCF∴AE=DF ………………………………(6分)14. 解:(1)12………………………………(2分)期末试卷 九年级数学(上学期)参考答案 第2页 (共4页)共有12种等可能结果,红红获胜的结果有6种,所以P (红红胜)=12………(6分) 15. 解:相似.理由如下:△ABC 中,AB=2,BC=,AC=△DEF 中,,EF=2,………(3分)AB BC AC DE EF DF===, ∴△ABC ∽△DEF. ………(6分)16. 解:(1)∵方程2210x x m -+-=有实数根 ∴△≥0即:()()22411m --⨯⨯-≥0,解得:m ≤2……………(3分)(2)当m =1时,10x =,22x =……………(6分) 17.解: EF 即为所求……………(3分) 点F 即为所求……………(3分)四、 解答题(本大题共3小题,每题8分,共24分.)18. 解:(1)设y 与x 的函数关系式为()0y kx b k =+≠, 根据题意得501006090k b k b ⎧+=⎪⎨+=⎪⎩,解得1150k b ⎧=-⎪⎨=⎪⎩.……………(4分) 故y 与x 的函数关系式为150y x =-+(0<x ≤90); (2)根据题意得(-x +150)(x -25)= 3750,……………(6分)解得x 1=75,x 2=100>90(不合题意,舍去)答:应将售价定为75元。

常州市教育学会2021-2022学年九年级学业水平监测数学试题(含解析)

常州市教育学会2021-2022学年九年级学业水平监测数学试题(含解析)
23.如果经过一个三角形某个顶点的直线将这个三角形分成两部分,其中一部分与原三角形相似,那么称这条直线被原三角形截得的线段为这个三角形的“形似线段”.
(1) △ABC中,∠A=30.
①如图1,若∠B=100°,请过顶点C画出△ABC的“形似线段”CM,并标注必要度数;
②如图2,若∠B=90°,BC=1,则△ABC的“形似线段”的长是.
8.已知圆O的半径为3,AB、AC是圆O的两条弦,AB=3 ,AC=3,则∠BAC的度数是()
A.75°或105°B.15°或105°C.15°或75°D.30°或90°
【答案】B
【解析】
【分析】根据题意画出图形,作出辅助线,由于AC与AB在圆心的同侧还是异侧不能确定,故应分两种情况进行讨论.
【详解】解:分别作OD⊥AC,OE⊥AB,垂足分别是D、E.
(3)在运动过程中,当ΘP与△ABC的边共有两个公共点时,直接写出t的取值范围.
一、选择题(本大题共8小题,每小题2分,共16分)
1.“科学用眼,保护视力”是青少年珍爱生命的具体表现,某班50名同学的视力检查数据如下表:
视力
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
人数
2
3
6
9
12
10
5
3
则视力的众数是()
21.如图,AB是ΘO 直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.
(1)判断DE所在直线与ΘO的位置关系,并说明理由;
(2)若AE=4,ED=2,求ΘO的半径.
22.百货大楼童装专柜平均每天可售出30件童装,每件盈利40元,为了迎接“周年庆”促销活动,商场决定采取适当的降价措施.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出3件.要使平均每天销售这种童装盈利1800元,那么每件童装应降价多少元?
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.25°B.40°C.35°D.30°
11.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F.P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是()
A.4- B.4- C.8- D.8-
12.二次函数 的图像如图所示,下列结论正确是( )
∴∠EAF=2∠EPF=80°,
∴S扇形AEF= ,
S△ABC= AD•BC= ×2×4=4,
∴S阴影部分=S△ABC-S扇形AEF=4- π.
12.C
解析:C
【解析】
【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;由对称轴为x= =1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c<0,结合b=-2a可得3a+c<0;观察图象可知抛物线的顶点为(1,3),可得方程 有两个相等的实数根,据此对各选项进行判断即可.
③若直线x=4与此抛物线交于点E,将抛物线在C,E之间的部分记为图象记为图象P(含C,E两点),将图象P沿直线x=4翻折,得到图象Q,又过点(10,﹣4)的直线y=kx+b与图象P,图象Q都相交,且只有两个交点,求b的取值范围.
23.深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.
【分析】
连接AC,OD,根据直径所对的圆周角是直角得到∠ACB是直角,求出∠ACD的度数,根据圆周角定理求出∠AOD的度数,再利用切线的性质即可得到∠ADP的度数.
【详解】
连接AC,OD.
∵AB是直径,
∴∠ACB=90°,
∴∠ACD=125°﹣90°=35°,
∴∠AOD=2∠ACD=70°.
∵OA=OD,
A.x<﹣2B.﹣2<x<4C.x>0D.x>4
8.以 为根的一元二次方程可能是( )
A. B. C. D.
9.关于y=2(x﹣3)2+2的图象,下列叙述正确的是( )
A.顶点坐标为(﹣3,2)B.对称轴为直线y=3
C.当x≥3时,y随x增大而增大D.当x≥3时,y随x增大而减小
10.如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若∠BCD=125°,则∠ADP的大小为()
【详解】
如图:
EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,
∵四边形ABCD是矩形,
∴∠C=∠D=90°,
∴四边形CDMN是矩形,
∴MN=CD=4,
设OF=x,则ON=OF,
∴OM=MN-ON=4-x,MF=2,
在直角三角形OMF中,OM2+MF2=OF2,
即:(4-x)2+22=x2,
【详解】
连接BE,
设⊙O半径为r,则OA=OD=r,OC=r-2,
25.解方程:2(x-3)2=x2-9.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
x2−3x=0,
x(x−3)=0,
∴x1=0,Βιβλιοθήκη 2=3.故选:D.2.B
解析:B
【解析】
【分析】
取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.
∵AB=2,
∴△ABD的高为 ,
∵扇形BEF的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD、BE相交于点G,设BF、DC相交于点H,
在△ABG和△DBH中,

∴△ABG≌△DBH(ASA),
∴四边形GBHD的面积等于△ABD的面积,
∴图中阴影部分的面积是:S扇形EBF-S△ABD=
A. B. C. D. 有两个不相等的实数根
二、填空题
13.有一人患了流感,经过两轮传染后共有 人患了流感,每轮传染中平均一个人传染了__人.
14.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.
15.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.
解得:x=2.5,
故选B.
【点睛】
本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.
3.A
解析:A
【解析】
【分析】
利用勾股定理得出AC的长,再利用图中阴影部分的面积=S△ABC−S扇形面积求出即可.
【详解】
解:在Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,
6.B
解析:B
【解析】
【分析】
根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
【详解】
连接BD,
∵四边形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等边三角形,
5.如图,点O是△ABC的内切圆的圆心,若∠A=80°,则∠BOC为()
A.100°B.130°
C.50°D.65°
6.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()
A. B. C. D.
7.如图,二次函数 的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()
19.抛物线 关于x轴对称的抛物线的解析式为_______
20.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A,B,C,则ac的值是________.
三、解答题
21.如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.
(1)求证:△DCE∽△DBC;
2020-2021常州外国语学校九年级数学上期末试题(及答案)
一、选择题
1.一元二次方程 的根是()
A. B. C. D.
2.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知 ,则球的半径长是()
A.2B.2.5C.3D.4
3.如图,Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,分别以A、C为圆心,以 的长为半径作圆,将Rt△ABC截去两个扇形,则剩余(阴影)部分面积为( )
A.(24− )cm2B. cm2
C.(24− )cm2D.(24− )cm2
4.现有一块长方形绿地,它的短边长为20 m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m2,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )
A.x(x-20)=300B.x(x+20)=300C.60(x+20)=300D.60(x-20)=300
16.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.
17.一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为.
18.如图,在Rt△ABC中,∠ABC=90°,AB=BC= ,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是__.
【点睛】
此题主要考查了根据一元二次方程的根与系数的关系列一元二次方程.
9.C
解析:C
【解析】
∵y=2(x﹣3)2+2的图象开口向上,顶点坐标为(3,2),对称轴为直线x=3,
∴当 时,y随x的增大而增大.
∴选项A、B、D中的说法都是错误的,只有选项C中的说法是正确的.
故选C.
10.C
解析:C
【解析】
∴∠OAD=∠ADO,
∴∠ADO=55°.
∵PD与⊙O相切,
∴OD⊥PD,
∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.
故选:C.
【点睛】
本题考查了切线的性质、圆周角定理及推论,正确作出辅助线是解答本题的关键.
11.B
解析:B
【解析】
试题解析:连接AD,
∵BC是切线,点D是切点,
∴AD⊥BC,
【详解】
∵点O是△ABC的内切圆的圆心,∴∠OBC= ∠ABC,∠OCB= ∠ACB.
∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB= (∠ABC+∠ACB)=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.
故选B.
【点睛】
本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解答此题的关键.
14.【解析】【分析】设⊙O半径为r根据勾股定理列方程求出半径r由勾股定理依次求BE和EC的长【详解】连接BE设⊙O半径为r则OA=OD=rOC=r-2∵OD⊥AB∴∠ACO=90°AC=BC=AB=4在
解析:
【解析】
【分析】
设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.
二、填空题
13.12【解析】【分析】【详解】解:设平均一人传染了x人x+1+(x+1)x=169x=12或x=-14(舍去)平均一人传染12人故答案为12
相关文档
最新文档