分式全章总结

合集下载

(完整版)初中数学分式章节知识点及典型例题解析

(完整版)初中数学分式章节知识点及典型例题解析

分式的知识点及典型例题分析1、分式的定义:例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2—a 2、m 1、65xy x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 .⑴275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +。

(2)下列式子,哪些是分式?5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145b-+。

2、分式有,无意义,总有意义:(1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12+x ≠0)例1:当x 时,分式51-x 有意义; 例2:分式xx -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义. 例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( )A .122+x x B 。

12+x x C 。

133+x x D 。

25xx - 例7:使分式2+x x有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2<x例8:要是分式)3)(1(2-+-x x x 没有意义,则x 的值为( )A. 2 B 。

—1或—3 C 。

-1 D 。

3同步练习题:3、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去.例1:当x 时,分式121+-a a的值为0 例2:当x 时,分式112+-x x 的值为0例3:如果分式22+-a a 的值为为零,则a 的值为( ) A. 2± B 。

分式整章知识点总结

分式整章知识点总结

分式整章知识点总结一、基本概念1.分式的定义分式是指两个整数或者两个多项式的比值构成的数。

通常表示为a/b,其中a和b为整数,b不等于0。

a称为分子,b称为分母。

2.分式的分类根据分子和分母的关系,分式可以分为真分式、假分式和带分式。

- 真分式:分子的绝对值小于分母的绝对值。

- 假分式:分子的绝对值大于分母的绝对值。

- 带分式:分子的绝对值大于等于分母的绝对值,可以表示为整数部分和真分式部分的和,形如a+b/c的形式。

3.分式的简化分式的简化是指将分子和分母约去它们的公因数,使得分子和分母互质的过程。

简化后的分式要比原式更加简洁,更利于运算。

二、分式的性质1.分式的相等性分式a/b和c/d相等的条件是ad=bc。

即分子的积等于分母的积。

2.分式的倒数分式a/b的倒数是b/a。

3.分式的相反数分式a/b的相反数是-a/b。

4.分式的整除性分式a/b可以整除c/d的条件是ad可以整除bc。

5.分式的乘法分式a/b和c/d的乘积是ac/bd。

6.分式的除法分式a/b除以c/d等于a/b乘以d/c。

7.分式的加法分式a/b和c/d的加法是(ad+bc)/bd。

8.分式的减法分式a/b减去c/d等于(ad-bc)/bd。

三、分式的运算规则1.分式的乘法和除法分式的乘法和除法遵循乘法交换律和结合律的原则。

在计算分式的乘法和除法时,我们需要将分子和分母分别进行运算。

2.分式的加法和减法分式的加法和减法同样满足交换律和结合律。

在计算分式的加法和减法时,需要先通分,然后对分子进行加减运算。

3.分式的混合运算分式的混合运算是指在同一个表达式中包含加、减、乘、除等多种运算符号的运算过程。

在进行分式的混合运算时,我们需要遵循运算法则,先乘除后加减,按照顺序逐步进行计算。

四、分式的应用1.分式在方程中的应用在代数方程中,分式经常会出现在方程的解中。

例如在二次方程、分式方程等中,分式的运算和化简是解题的关键。

2.分式在比例和百分数中的应用比例和百分数是数学中常见的应用题型,其中分式经常会被用到。

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结单选题1、若数a使关于x的分式方程2x−1+a1−x=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6答案:A分析:表示出分式方程的解,由解为正数确定出a的范围即可.解:分式方程整理得:2x−1−ax−1=4,去分母得:2−a=4x−4,解得:x=6−a4,由分式方程的解为正数,得到6−a4>0,且6−a4≠1,解得:a<6且a≠2.故选:A.小提示:此题考查了分式方程的解,始终注意分母不为0这个条件.2、若关于x的分式方程m+4x−3=3xx−3+2有增根,则m的值为()A.2B.3C.4D.5答案:D分析:根据分式方程有增根可求出x=3,方程去分母后将x=3代入求解即可.解:∵分式方程m+4x−3=3xx−3+2有增根,∴x=3,去分母,得m+4=3x+2(x−3),将x=3代入,得m+4=9,解得m=5.故选:D.小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D分析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x 3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、计算x x+1+1x+1的结果是( )A .x x+1B .1x+1C .1D .−1答案:C分析:根据同分母分式的加法法则,即可求解.解:原式=x+1x+1=1, 故选C .小提示:本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键.5、若a +b =5,则代数式(b 2a ﹣a )÷(a−b a )的值为( )A .5B .﹣5C .﹣15D .15 答案:B分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a +b =5,∴原式=b 2−a 2a ⋅a a−b =−(a+b )(a−b )a ⋅a a−b =−(a +b )=−5, 故选:B .小提示:考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.300x =200x+30B.300x−30=200xC.300x+30=200xD.300x=200x−30答案:C分析:乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,根据300÷甲的工效= 200÷乙的工效,列出方程即可.乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,依题意得:300x+30=200x,故选C.小提示:本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键..7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、解方程2x−13=x+a2−1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是( )A .x =−3B .x =−2C .x =13D .x =−13答案:A分析:先按此方法去分母,再将x=-2代入方程,求得a 的值,然后把a 的值代入原方程并解方程.解:把x =2代入方程2(2x -1)=3(x +a )-1中得:6=6+3a -1,解得:a =13,正确去分母结果为2(2x -1)=3(x +13)-6, 去括号得:4x -2=3x +1-6,解得:x =-3.故选:A小提示:本题考查了一元一次方程的解的定义以及解一元一次方程.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.9、下列运算正确的是( )A .2a +3b =5abB .(−ab)2=a 2bC .a 2⋅a 4=a 8D .2a 6a 3=2a 3答案:D分析:根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答. 解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误;C 、原式=a 6,故本选项错误;D 、原式=2a 3,故本选项正确.故选D .小提示:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.10、下列分式中是最简分式的是( )A .2x 2B .42xC .x−1x 2−1D .x−1(x−1)2答案:A分析:一个分式的分子分母无公因式或公因数叫最简分式,四个选项逐个分析排除,只有选项A是最简分式,选项B、C、D中分子分母分别有公因数2、公因式x−1、公因式x−1,都不是最简分式.选项A不能约分,是最简分式;选项B中分子分母有公因数2,可约分,不是最简分式;选项C中x−1x2−1=x−1(x+1)(x−1),分子分母有公因式x−1,可约分,不是最简分式;选项D中分子分母有公因式x−1,可约分,不是最简分式;故选:A.小提示:本题主要考查了最简分式的概念,最简分式指的是分子分母无无公因式或公因数的分式,有时需要将分子分母进行因式分解再判断.填空题11、计算2m−2−mm−2的结果是 ____.答案:−1分析:根据分式的减法法则即可得.解:原式=2−mm−2=−(m−2) m−2=−1,所以答案是:−1.小提示:本题考查了分式的减法,熟练掌握运算法则是解题关键.12、若实数m使得关于x的不等式组{2x>23x<m+1无解,则关于y的分式方程yy−1=4−m2y−2的最小整数解是_________.答案:2分析:先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程从而确定y的取值范围即可得到答案.解:解不等式2x>2得:x>1,解不等式3x <m +1得:x <m+13, ∵不等式组无解,∴m+13≤1,∴m ≤2;y y −1=4−m 2y −2去分母得2y =4−m ,解得y =4−m 2,∵m ≤2,∴4−m ≥2∴y =4−m 2≥1,又∵y −1≠0,∴y >1,∴y 的最小整数解为2,所以答案是:2小提示:本题主要考查了根据不等式组的解集情况求参数,解分式方程,熟知相关计算法则是解题的关键.13、方程22x−1+x 1−2x =1的解是________.答案:x =1分析:原方程去分母得到整式方程,求解整式方程,最后检验即可.解:22x−1+x 1−2x =1, 22x−1﹣x 2x−1=1, 方程两边都乘2x ﹣1,得2﹣x =2x ﹣1,解得:x =1,检验:当x =1时,2x ﹣1≠0,所以x =1是原方程的解,即原方程的解是x=1,所以答案是:x=1.小提示:本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验.14、若|a|=2,且(a−2)0=1,则2a的值为_______.##0.25答案:14分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4所以答案是:1.4小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.15、用科学记数法将﹣0.03896保留两位有效数字为____.答案:﹣3.9×10﹣2分析:先根据科学记数法表示该数,再保留两个有效数字即可.解:﹣0.03896=﹣3.896×10﹣2≈﹣3.9×10﹣2,所以答案是:﹣3.9×10﹣2.小提示:此题考查了科学记数法的表示方法,有效数字的概念,正确理解各知识点是解题的关键.解答题16、为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?答案:每个篮球的原价是120元.分析:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据题意,得12000x =10000x−20.解得x =120.经检验x =120是原方程的解.答:每个篮球的原价是120元.小提示:本题考查了分式方程的应用,根据题意列出方程是解题的关键.17、若a ,b 为实数,且(a−2)2+|b 2−16|b+4=0,求3a ﹣b 的值. 答案:2分析:根据题意可得{a −2=0b 2−16=0b +4≠0,解方程组可得a,b,再代入求值.解:∵(a−2)2+|b 2−16|b+4=0,∴{a −2=0b 2−16=0b +4≠0,解得{a =2b =4, ∴3a ﹣b=6﹣4=2.故3a ﹣b 的值是2.小提示:本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.18、阅读材料:对于非零实数a ,b ,若关于x 的分式(x−a)(x−b)x 的值为零,则解得x 1=a ,x 2=b .又因为(x−a)(x−b)x =x 2−(a+b)x+ab x=x +ab x ﹣(a +b ),所以关于x 的方程x +ab x =a +b 的解为x 1=a ,x 2=b . (1)理解应用:方程x 2+2x =3+23的解为:x 1= ,x 2= ;(2)知识迁移:若关于x 的方程x +3x =5的解为x 1=a ,x 2=b ,求a 2+b 2的值;(3)拓展提升:若关于x 的方程4x−1=k ﹣x 的解为x 1=t +1,x 2=t 2+2,求k 2﹣4k +2t 3的值. 答案:(1)3,23;(2)19;(3)12. 分析:(1)根据题意可得x =3或x =23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5,∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t+t2+2)(t+t2-2)+2t3=t4+4t3+t2-4=t(t3+t)+4t3-4=4t+4t3-4=4(t3+t)-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.。

分式整章知识点及练习题

分式整章知识点及练习题

2、下列各式:a-b x+35+y3()a+b1,,,x2-1有意义。

(2)当x=时,分式x-3A.2x+3 B.1x2-2 C.x(4)、(2013黔西南州)分式x2-1x-a无意义,x=4时,此分式的值为0,则a+b的值等于(1.如果把2y(x+y)2=().3.不改变分式0.5x+0.2b+m=bB.ac-1=b-1a+b=0C.c-1D.2x+4x2-6x+92x2+8x+8;分式整章知识点及练习题1、分式概念a-b x+35+x a+b11.在,2+中,是分式的有()2xπa-b aA、1个B、2个C、3个D、4个,,,x2+1,,(x-y)中,是分式的共有()2xπ4a-b mA、1个B、2个C、3个D、4个2、分式有意义(1)当x___时,分式4x-3无意义.(3)当x为任意实数时,下列分式一定有意义的是()11D.x2+1x+1的值为零,则x的值为()A、-1B、0C、±1D、1(5)已知当x=-2时,分式x-bA.-6B.-2C.6D.24、分式的基本性质)2x-3y中的x和y都扩大5倍,那么分式的值(A扩大5倍B不变C缩小5倍D扩大4倍)2.填空:x2-y2x-y2x()x+3=x2+3x;0.3y+1的值,使分式的分子分母各项系数都化为整数,结果是4、下列各式中,正确的是()A.a+m a a+b ab-1x-y1x2-y2=x+y5、约分m2-3m+2 m2-m x2-9m2-3m9-m2=1 .在解分式方程:x - 1, 1 ,- 1 的最简公分母为 + 的结果是 ( ) m - 3 m + 3 2、计算 的正确结果是( )⎪ ÷1.化简代数式: m 2 - 2m + 1 m - 1 ÷ (m - 1 - ) 3、计算:-x-1 m + 14、先化简,再求值: 1 +5、若 x+ =2,则 x 2+ =.已知 x 2+3x+1=0,求 x 2+6、已知 a+b=3,ab=1,则 + 的值等于_______。

浙教版初中数学七年级下册《分式》全章复习与巩固(提高)知识讲解

浙教版初中数学七年级下册《分式》全章复习与巩固(提高)知识讲解

《分式》全章复习与巩固(提高)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相互联系的知识体系.5.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】【405794 分式全章复习与巩固知识要点】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分. 2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分. 3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下: (1)加减运算a b a bc c c±±=;同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算a c acb d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. (3)除法运算a c a d adb d bc bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘. (4)乘方运算分式的乘方,把分子、分母分别乘方。

分式章节知识点总结归纳解析

分式章节知识点总结归纳解析

分式重点知识复习及相应练习5、 下列各式:土,也,迥(宀1),哄丄(―刃中,是分式的共有()2 x n 4 a-b mA 、1个B 、2个C 、3个D 、4个_^a-b x + 3 5 + x a + b _ 1 t亠6、 在 ---- , ----- , ---- , ------ ,2 —中,是分式的有()2 x 7T a-b aA 、1个B 、2个C 、3个D 、4个7、 下列各式:巳二2,兰旦,土上,—(X 2 +1),—(x-y )中,是分式的共有()2 x 7t 4 a-b mA 、1个B 、2个C 、3个D 、4个A二、分式有意义;分式亓中,当BHO 时,分式有意义:当B=0时,分式无意义。

2 x 1、 若分式——有意义,则X 的取值范围是 _________ :当 ___________ 时,分式 ------- 无意义.3-x2x-3x-32、 己知分式 ------------ ,当兀=2时,分式无意义,则d 的值爬 _______________x~ -5x +a4W-3 3、 当x_时,分式一有意义,当兀= 时,分式一无意义.x 2-lx-3 2x x + 1 4、 当xH —时,分式 ----- 有意义;当x=— 时,分式 ----------- 有意义:X+2X-14x — 2 5、 当x=—时,分式一有意义。

当时,分式 ---------------------------- 无意义:x 2-l3x + 8|x|-36、 当XH_________ 时,分式■无意义.x-3A 一、分式的概念:形如万(A 、B 是整式,B 中含有字母,BHO )的式子。

1、在代数式3x + g, 6x 2y 3 2 b 2abc^ x 2 -1 ——,—+ —,a 35+y X~ ,‘一中,分式的个数有. X-1 X 个。

2、下列代数式中:- 71 1]2_j2夕厘,是分式的有: 3.各式中,一x+ — y,3 2 1 1 4xy X X 分式的个数有() 期'5 +a jr n A 、1 个B 2个 c 、3个D 、4个亠 a_b x + 35 + x a + b2 +丄中,a绘分式的有()2x7t a-bA 、1个B 、2个C 、3个D 、4个x+ y7、 当X 为任意实数时,下列分式一定有意义的是( )2 1 1 1 A. ------ B. — ---- C. — D.—; ---x+3x- -2|x|jr+18、 下列分式,对于任意的X 的值总有意义的是()x —5x —1x" +1 X" — 1A 、 jB 、jC 、D 、x~—1 x~ +18 兀X —19、当兀为任意实数时,下列分式一定有意义的是()2 11 A. B. C. x+3x 2-2x 1 D ,,X~ +1三、分式的值为零:两个条件同时满足:①分子为0,即A=0;②分式有意义,即BH0X 2 — 1I 、分式 -------- 的值为0,则X 的值是 _______________X + 1%■ -9浜若分式厂市的值族则询值为( A.O B. -3C. 36 3或一32x-7 3、 当%= _________ 时,分式 ---- 的值为1.x-32x +14、 分式 ------ 中,当兀= ________ 时,分式没有意义,当/ = _______ 时,分式的值为寥:2-xX" — x5、 能使分式 一的值为零的所有X 的值是()X' -IX= 1 C 、X = 0 或X=l D 、X=0或X = ±lx-b,分式无意义,兀=4时,此分式的值为0,则a+b 的值等于(x-aB. -2C. 6D. 27、解下列不等式口20.(4) /+5 >0 X+3 x~ + 2x + 3四、分式的基本性质:分式的分子和分母同时乘以(或除以〉同一个不等于0的整式,分式的值不变。

(完整word版)鲁教版初三数学知识点(汇总),推荐文档

(完整word版)鲁教版初三数学知识点(汇总),推荐文档

鲁教版初三数学知识点编辑人:鲁东大学08级经济系 李建鹏第一章 分式一、分式1.分式的概念:如果整式A 除以整式B, 可以表示成BA 的形式,且除式B 中含有字母,那么称式子BA 为分式。

其中, A 叫分式的分子,B 叫分式的分母。

注意:①判断一个代数式是否为分式,不能将它变形,不能约分后去判断,即使它约分后是整式也不能说它就是整式,约分之前是分式这个式子就是分式。

如:x 2/x 是分式,虽然约分之后等于x 是整式,但约分前是分式。

②π是常数,所以a/π不是分式而是整式。

2.有理式:整式和分式统称有理式。

(整式的分母中不含有字母)3.关于分式的几点说明:(1)分式的分母中必须含有未知数;(2)分式是两个整式相除的商式,对任意一个分式,分母都不为零;(3)分数线有除号和括号的作用,如:dc b a -+表示(a +b )÷(c -d ); (4)“分式的值为零”包含两层意思:一是分式有意义(分母≠0),二是分子的值为零,不要误解为“只要分子的值为零,分式的值就是零”。

4.一般的,对分式A /B 都有:①分式有意义 B ≠0;②分式无意义 B=0;③分式的值为0A=0且B ≠0;④分式的值大于0分子分母同号;⑤分式的值小于0分子分母异号。

5.基本性质:分式的分子和分母同乘以(或除以)同一个不为0的整式,分式值不变。

二、分式的乘除法1.分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母; 分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。

分式的乘方是把分式的分子、分母各自乘方,再把所得的幂相除。

2.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

注意:①当分式的分子分母都是单项式或者是几个因式乘积的形式时,直接约分; ②分式的分子和分母都是多项式时,将分子和分母分解因式再约分。

3.最简分式: 一个分式的分子和分母没有公因式时,这个分式称为最简分式。

根式分式章节知识点总结

根式分式章节知识点总结

根式分式章节知识点总结
1. 根式的定义和性质
- 根式是指表达具有平方根、立方根、n次根等形式的数的算式。

- 根式的性质包括:
- 根式的值必须是非负数;
- 平方根的运算结果可以是正数或负数,但常用的是正数;
- n次方根的运算结果只能是正数。

2. 根式的化简
- 化简根式是将根式写成最简形式的过程。

- 根式的化简原则包括:
- 化简根式中的因数,使其无根号;
- 化简分母的根式;
- 将根式化成同次数。

3. 根式的运算
- 根式的运算包括加减乘除四则运算。

- 根式的运算规则:
- 加减法:同次根号下的同类项可以相加或相减。

- 乘法:根式相乘,可以合并为一个根式。

- 除法:根式的除法可以化简为乘法。

4. 分式的定义和性质
- 分式是由分子和分母组成的有理数。

- 分式的性质包括:
- 分式的分母不能为零;
- 分式可以化简为最简形式;
- 分式可以约分。

5. 分式的四则运算
- 分式的四则运算包括加减乘除。

- 分式的运算规则:
- 加减法:分母相同的分式可以直接相加或相减。

- 乘法:分式相乘,分子相乘,分母相乘。

- 除法:分式的除法可以化简为乘法的倒数。

以上是关于根式和分式的基本知识点总结,希望对您有帮助。

初中数学知识总结大全 第六章 分式 (编辑:靳军强)

初中数学知识总结大全 第六章 分式 (编辑:靳军强)

第六章 分式知识大全6.1 知识概念 1、分式:形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式(fraction)。

其中 A 叫做分式的分子,B 叫做分式的分母 有理式:整式和分式统称有理式。

2、分式有意义的条件:分母不等于03、约分:把一个分式的分子与分母的公因式约去叫做分式的约分。

方法是把分子、分母因式分解,再约去公因式。

4、通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。

5、最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6、最简公分母:各分式的分母所有因式的最高次幂的积。

6.2 分式的基本性质及四则运算(1)、基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为:b a =m b m a ⨯⨯(用于通分)=mb m a ÷÷(用于约分)(m ≠0) (2)、四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:cb ac b c a ±=± 2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:bdbc ad d c b a ±=±3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为: bdac d c b a =∙4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:bcad d c d a =÷ (3)、除以一个分式,等于乘以这个分式的倒数:cd b a d c b a ∙=÷ 与分数类似,根据分式的基本性,可以对分式进行约分和通分. 6.3 分式知识点总结知识要点总结注意问题 题型分式的概念及有意义的条件BA的形式且B 中有字母 分母0≠B ,分式BA才有意义 1π 不是分式已知当x 为何值时,分式有意义? 当x 为何值时,分式无意义?分式值为0的条件分子等于0,分母不等于0二者必须同时满足,缺一不可当x 为何值时,分式的值为零? (4)当x= - 3时,分式的值是多少?分式的基本性质MB M A M B M A B A ÷÷=∙∙= 0,0≠≠B M ,且M B A ,,均表示的是整式不改变分式的值,使下列各式的分子或分母中最高次项的系数都是正数.分式的符号法则B-A B A -B -A --B A -===--=----=或BA B A B A B AA ,B 或BA 二者同时改变其中两个的符号,分式的值不变 分式约分确定公因式约分把分式中的分子、分母的公因式约去的变形过程叫约分 约分是一个恒等变形。

初二数学八上第十五章分式知识点总结复习和常考题型练习.doc

初二数学八上第十五章分式知识点总结复习和常考题型练习.doc

第十五章分式二、知识概念:A1•分式:形如一,A 、B 是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫 B做分式的分子,3叫做分式的分母. 2. 分式有意义的条件:分母不等于0.3. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值 不变.4. 约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5. 通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6. 最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式. 7. 分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减•用字母表示为:a .b a±b—士 —— ---C C C⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同ci c ad + cb分母分式的加减法法则进行计算•用字母表示为: -±-=b d bd ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为n r CLC积的分母•用字母表示为:-x- = —b d bd⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字 e 士一“ a c a d ad 母表不为: 5 = —X —=b d bc be/ 、川n⑸分式的乘方法则:分子、分母分别乘方•用字母表示为:兰=二0丿b n8. 整数指数幕:列式实际问题分式类比分 数性质列方程{分氏丽目标分式基本性质|类比分数輕分式的运算去分每整式戈程H 标;-]分'式方程的解-检矍解整式方程转式方租的解Wa m xa H =a m+n 5、n是正整数)⑵(/)" = /"(加、斤是正整数)⑶(ah)n =a n h n(〃是正整数)⑷ a m a n = a tn^n(QH O, m> 刃是正整数,m> n)(5)[-| =—(〃是正整数)⑹b n(6)«-w =—(dH(), n 是正整数)a n9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).常考例题精选1. (2015 •宜昌屮考)若分式二有意义,则a的取值范围是() a+1A.a=0B. a=lC. aHTD. aHO2-(2015 •丽水中考)把分式方程丘三转化为-元-次方程时,方程两边需同乘A. xB. 2xC. x+4D. X (x+4)3.(2015 •宜宾中考)分式方程芫-令匕的解为()X2-9 x-3 x+3A. 3B. -3C.无解D. 3 或-34.(2015 •海南中考)今年我省荔枝喜获丰收,有甲、乙两块而积相同的荔枝园,分别收获荔枝8 600kg 和9 800kg,甲荔枝园比乙荔枝园平均每亩少60kg,问甲 荔枝园平均每亩收获荔枝多少kg?设甲荔枝园平均每亩收获荔枝xkg,根据题意, 可得方程()8 600 9 800 X X+60 8 600_9 800 x-60 x5-(2015 •河池中考)若分式幺有意义,则x 的取值范围是 --------------6. (2015 •白银中考)若代数式丄-1的值为零,则x 二X-1-----------------------7. (2015 •齐齐哈尔中考)若关于x 的分式方程三二壬-2有非负数解,则a 的取x-1 2x-2值范围是 ___________ .9. (2015 •连云港中考)先化简,再求值:_iv m^-Zmn+n^ 其中旷一3,旷5.m n/ mn10. (2015 -凉山州中考)某车队要把4000t 货物运到雅安地震灾区(方案定后,每天的运量不变).(1)从运输开始,每天运输的货物吨数n (单位:t )与运输时间t (单位:天)之间 有怎样的函数关系式?8 600 9 800 X X-60 8 600_9 800 x+60 x8. (2015 •呼和浩特中考)化简:(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成 任务,求原计划完成任务的天数.11. (2015 •重庆中考)先化简,再求值:(乎-岂片泊三石,其中x 是不等式 3x+7>l 的负整数解.12. (2015 •玉溪中考)某学校为鼓励学生积极参加体育锻炼,派王老师和李老师 去购买一些篮球和排球•回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?13. (2015 •娄底屮考)为了创建全国卫生城市,某社区要清理一个卫生死角内的 垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4 800元.已知 甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,>1.乙车每趟运费比甲 车少200元.(1) 求甲、乙两车单独运完此堆垃圾各需运多少趟? (2)若单独租用一台车,租用哪台车合算?李老师说:“用1000元购买的排球个数和 用1600元购买的蓝球个數相等:“篮球的单价比排球的单价多:・)元”1・(2015-黔西南州)分式七有意义,则x 的取值范围是()X 1A ・x>lB ・xHl C. x<l D ・一切实数 2 •下列各分式与?相等的是()db 2 b+2 ab a+bCQ3•下列分式的运算正确的是()a —3a -2A • a—2c B. a+2 C. ~a —3 [2_ 3 a +b —a+bB.= a+b3—a _____ 1 ^*a 2—6a+9 3 —a4 • (2015-泰安)化简(a+[二。

初二数学下册知识点归纳

初二数学下册知识点归纳

初二数学下册知识点归纳初二数学下册知识点归纳篇1第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2、分式的运算(1)分数的乘除乘定律:分数乘以分数,分子的乘积作为乘积的分子,分母的乘积作为乘积的分母。

除法定律:分数被分数除,除数的分子和分母颠倒后,再乘以除数。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3、整数指数幂的加减乘除法4、分式方程及其解法第二章反比例函数1、反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形第四章四边形1、平行四边形性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3、梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;在同一个底边上有两个等角的梯形是等腰梯形。

人教版八年级数学上册第十五章 分式知识点总结和题型归纳

人教版八年级数学上册第十五章 分式知识点总结和题型归纳

人教版八年级数学上册第十五章分式知识点总结和题型归纳分式知识点总结和题型归纳第一部分分式的运算一)分式的定义及有关题型考查分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A/B为分式。

例1:下列代数式中是分式的有:(x- y)/(2x+ y),π/(2x- y),(x+ y)/(a+ b)。

考查分式有意义的条件:分式有意义:分母不为0 (B≠0)分式无意义:分母为0 (B=0)例1:当x有何值时,下列分式有意义:1) (x-4)/(13x2-6x)2) 2/x3) 2/(x-4)4) (x+4|x|-3x+2)/(x-1)5) x/(x2-2x-3)考查分式的值为的条件:分式值为:分子为A且分母不为0 (A/B) 例1:当x取何值时,下列分式的值为0.1) (x-1)/(x+3)2) |x|-23) (x2-2x-3)/(x-5)(x+6)例2:当x为何值时,下列分式的值为零:1) 5-|x-1|/(x+4)2) (25-x2)/(x-6)(x+5)考查分式的值为正、负的条件:分式值为正或大于0:分子分母同号 (A/B>0) 分式值为负或小于0:分子分母异号 (A/B<0) 例1:(1) 当x为何值时,分式4/(8-x)为正;2) 当x为何值时,分式5-x/(5+x)为负;3) 当x为何值时,分式(x-2)/(x+3)为非负数.例2:解不等式|x|-2≤(x+1)/(x+5)考查分式的值为1,-1的条件:分式值为1:分子分母值相等 (A/B=1)分式值为-1:分子分母值互为相反数 (A+B=0)例1:若分式|x-2|/(x+2)的值为1,-1,则x的取值分别为3和-1.思维拓展练题:1、若a>b>0,a2+b2-6ab=0,则(a+b)/(a-b)=9/5.2、一组按规律排列的分式:-b/2.5/b。

-8/b。

11/b。

则第n 个分式为(3n-1)/b。

分式整章复习(魏珺如)

分式整章复习(魏珺如)
A. 2个B. 3个C. 4个D. 5个
4.把分式 中的分子、分母的 、 同时扩大2倍,那么分式的值()
A.扩大2倍B.缩小2倍C.改变原来的 D.不改变
5.如果 =3,则 =()A. B.xy C.4 D.
6.当 为任何实数时,下列分式中一定有意义的一个是()
A B C D
7.在一段坡路,小明骑自行车上坡的速度为每小时V1千米,下坡时的速度为每小时V2千米,则他在这段路上、下坡的平均速度是每小时()千米
(1)设初三年级共有 名学生,则① 的取值范围是;②铅笔的零售价每支应为元;③批发价每支应为元。(用含 、 的代数式表示)
(2)若按批发价每购15支比按零售价每购15支少1元,试求初三年级共有多少学生?并确定 的值。
练习
1.当x,分式 的值为负.
2.若分式 的值为零,则x的值等于。
3.在 , , , ,a+ 中,分式的个数有()
4.通分:根据分式的基本性质,分子和分母同乘以适当的整式,不改变分式的值.把几个异分母的分式化成同分母的分式,这样的分式变形叫做分式的.
最简公分母用下面的方法确定:
(1)最简公分母的系数,取各分母系数的;
(2)凡出现的字母为底的幂的因式都要取;
(3)相同字母的幂的因式取指数的.
特别注意:为了确定最简公分母,通常先将各分母分解因式.
(2)一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款。现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用 元,( 为正整数,且 >100)如果多买60支,则可按批发价付款,同样需用 元。
(2)当x________________________时,分式 无意义;

人教版八年级数学第十六章分式知识点总结

人教版八年级数学第十六章分式知识点总结

第十六章 分式知识点及典型例子一、分式的定义:如果A 、B 表示两个整式,且B 中含有未知数,那么式子BA 叫做分式。

二、在分式中,如果________,则分式AB 有意义;如果________,则分式A B无意义;如果________且_________不为零时,则分式A B的值为零;如果__________,则分式0A B > 如果____________,则分式0A B <; 例1.下列各式aπ,11x +,15x+y ,22a b a b --,-3x 2,0•中,是分式的有( )个。

例2.下列分式,当x 取何值时有意义。

(1)2132x x ++; (2)2323x x +-。

例3. 当x________时,分式2134x x +-的值为正数,当x________时,分式2134x x +-的值为负数 例4.当x______时,分式2134x x +-无意义。

当x_______时,分式2212x x x -+-的值为零。

当x_________时,分式2361x x -+的值为负数。

三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用字母表示为_________________________________.分式的分子、分母和分式本身的符号改变其中任何____个,分式的值不变.四、约分:把分式的分子与分母的公因式约去,这样的分式变形叫做分式的约分,约分的理论依据是分式的___________________。

约分的方法:分式的分子与分母同除以他们的公因式,如果分式的分子、分母都是单项式,就直接约去分子、分母的__________;如果分式的分子或分母是多项式,就先__________,再判断公因式进行约分。

最简分式:分子与分母没有____________的分式,叫做最简分式。

(注意约分一定要彻底)五、通分:利用分式的基本性质把几个异分母的分式化为_________的分式,这样的分式变形叫做分式的通分。

苏科版数学八年级下册 第10章 分式知识点总结

苏科版数学八年级下册 第10章 分式知识点总结

分式分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.注意:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母;(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况;(3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如a是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x yx是分式,与xy有区别,xy是整式,即只看形式,不能看化简的结果。

(判断一个数是分数还是整数,要化简)分式有意义,无意义或等于零的条件:1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.注意:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,避免分母的值为零;(2)遇到没有特殊说明的分式,都是有意义的,要注意隐含条件分式中的分母的值不等于零;(3)求分式的值,必须在分式有意义的前提下。

分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M 是不等于零的整式).注意:(1)基本性质中的A 、B 、M 表示的是整式.其中B ≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M ≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M ≠0这个前提条件;(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x 的取值范围变大了.分式的变号法则:对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数. 注意:根据分式的基本性质有b b a a -=-,b ba a-=-.根据有理数除法的符号法则有b b b a a a -==--.分式a b 与a b-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.分式的约分,最简分式:与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式。

第1章《分式》知识点总结及复习解析

第1章《分式》知识点总结及复习解析

第一章分式知识点总结及章末复习知识点一:分式的定义一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子BA叫做分式,A 为分子,B 为分母。

知识点二:与分式有关的条件①分式有意义:( ) ②分式无意义:( ) ③分式值为0:( ) ④分式值为正或大于0: ⑤分式值为负或小于0: 经典例题1、代数式14x-是( ) A .单项式 B .多项式 C .分式 D .整式 2、在2x ,1()3x y +,3ππ-,5a x -,24x y -中,分式的个数为( ) A .1 B .2 C .3 D .43、总价9元的甲种糖果和总价是9元的乙种糖果混合,混合后所得的糖果每千克比甲种 糖果便宜1元,比乙种糖果贵0.5元,设乙种糖果每千克x 元,因此,甲种糖果每千克 元,总价9元的甲种糖果的质量为 千克.4、当a 是任何有理数时,下列式子中一定有意义的是( )A .1a a + B .21a a + C .211a a ++ D .211a a +- 5、当1x =时,分式①11x x +-,②122x x --,③211x x --,④311x +中,有意义的是( )A .①③④B .③④C .②④D .④6、当1a =-时,分式211a a +-( )A .等于0 B .等于1 C .等于-1 D .无意义 7、使分式8483x x +-的值为0,则x 等于( ) A .38 B .12- C .83 D .128、若分式2212x x x -+-的值为0,则x 的值是( ) A .1或-1 B .1 C .-1 D .-29、当x 时,分式11x x +-的值为正数. 10、当x 时,分式11x x +-的值为负数. 11、当x = 时,分式132x x +-的值为1.13、如果分式33x x --的值为1,则x 的值为( ) A .0x ≥ B .3x > C .0x ≥且3x ≠ D .3x ≠14、下列命题中,正确的有( ) ①A 、B 为两个整式,则式子A B 叫分式; ②m 为任何实数时,分式13m m -+有意义; ③分式2116x -有意义的条件是4x ≠; ④整式和分式统称为有理数.A .1个B .2个C .3个D .4个 知识点三:分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

分式章节知识点总结

分式章节知识点总结

分式章节知识点总结一、分式的定义分式是指两个整数或者多项式,中间用横线隔开的表达形式,例如a/b(a、b为整数,b不等于0),a称为分子,b称为分母。

二、分式的类型1. 简单分式:分子、分母都是整数的分式。

例如3/4、5/6等。

2. 复合分式:分子或分母中包含有代数式的分式。

例如2/(x+1)、(x-1)/(x+2)等。

3. 多项式分式:分子或分母中包含有多项式的分式。

例如(x^2+3)/(x-4)、2x/(x^2+1)等。

三、分式的性质1. 分式的值:分式的值是指分子除以分母的结果,也可以看作带有未知数的一种式子。

2. 分式的约分:分式可以进行约分,即将分子和分母同时除以一个数,得到一个新的分式,值不变。

3. 分式的通分:分式可以进行通分,即寻找一个公共分母,使得分式的分母相同,然后进行运算。

四、分式的运算1. 分式的加减法:分式的加减法是将分式化成相同分母的形式,然后分别对分子进行加减运算,最后将结果化简。

2. 分式的乘法:分式的乘法是将分子分别相乘,分母分别相乘,然后化简得到最简分式。

3. 分式的除法:分式的除法是将除数的分子、分母对调位置,再乘上被除数的倒数,然后化简得到最简分式。

五、分式的应用1. 分式在方程中的应用:分式通常出现在方程的解中,需要对分式进行加减和乘除等运算,找到未知数的值。

2. 分式在不等式中的应用:分式在不等式的求解中应用广泛,通过对分式进行化简和变形,找到不等式的解集。

3. 分式在函数中的应用:分式常常用来表示函数的定义域、值域和零点等性质,在函数的运算和变形中起着重要作用。

分式作为代数中重要的一部分,需要掌握其定义、类型、性质和运算方法,灵活运用于方程、不等式和函数等各种问题的求解中。

同时,分式的深入研究还可以延伸到多项式、变量和函数的理论及实际应用中,是代数学习中的重要内容之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相互联系的知识体系.5.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下: (1)加减运算a b a bc c c±±=;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算a c acb d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. (3)除法运算a c a d adb d bc bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘. (4)乘方运算分式的乘方,把分子、分母分别乘方. 4.零指数.5.负整数指数6.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的. 要点三、分式方程 1.分式方程的概念分母中含有未知数的方程叫做分式方程. 2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解. 【典型例题】类型一、分式及其基本性质1、在ma y x xy x x x x 1,3,3,)1(,21,12+++π中,分式的个数是( ) A.2 B.3 C.4 D.5【变式】当x 为任意实数时,下列分式一定有意义的是( )A. B. C. D.2、当x 为何值时,分式293x x -+的值为0?【思路点拨】先求出使分子为0的字母的值,再检验这个值是否使分母的值等于0,当它使分母的值不等于0时,这个值就是要求的字母的值.【总结升华】分式的值为0的条件是:分子为0,且分母不为0,即只有在分式有意义的前提下,才能考虑分式值的情况. 举一反三: 【变式】(1)若分式的值等于零,则x =_______;(2)当x ________时,分式没有意义.类型二、分式运算3、计算:2222132(1)441x x x x x x x -++÷-⋅++-.举一反三:【变式】计算:(1)332212b b a a ab ⎛⎫⎛⎫⎛⎫-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)2224222a a a a a a ⎛⎫- ⎪+--⎝⎭; (3)6333aa a a a a ⎛⎫-÷⎪-+-⎝⎭.4、计算:(1)5231010-⨯⨯;(2)134139m npmn p ----÷;(3)22223a a b b ⎛⎫-⎛⎫÷⎪ ⎪⎝⎭⎝⎭;(4)1322233(3)(2)(3)mn m n m n ----÷.类型三、分式方程的解法5、解方程23222x x x -=+-举一反三: 【变式】()1231244x x x -=---,类型四、分式方程的应用6、某质检部门分别抽取甲、乙两厂相同数量的产品进行质量检查,测得甲厂有合格的产品48件,乙厂有合格的产品45件,甲厂的合格率比乙厂的合格率高5%,问甲厂的合格率是多少?举一反三:【变式】小明家、王老师家、学校在同一条路上,并且小明上学要路过王老师家,小明到王老师家的路程为3 km ,王老师家到学校的路程为0.5 km ,由于小明的父母战斗在抗震救灾第一线,为了使他能按时到校、王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是他步行速度的3倍,每天比平时步行上班多用了20 min ,王老师步行的速度和骑自行车的速度各是多少?拓展类型五、分式条件求值的常用技巧7、已知14x x+=,求2421x x x ++的值.举一反三:【变式】已知a b c 、、为实数,且13ab a b =+,14bc b c =+,15ac c a =+, 求abcab bc ca++的值.8、设0abc ≠,且3270a b c +-=,74150a b c +-=,求22222245623a b c a b c --++的值.举一反三:【变式】已知22230x xy y --=,且x y ≠-,求2x x y x y--的值.类型五、分式方程的应用9、某公司投资某个项目,现有甲、乙两个工程队有能力承包这个项目,公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲乙两队合作完成工程需要20天;甲队每天的工作费用为1000元,乙队每天工作费用为550元,根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队,应付工程队费用多少元?举一反三:【变式】某项工程限期完成,甲队独做正好按期完成,乙队独做则要误期3天.现两队合做2天后,余下的工程再由乙队独做,也正好在限期内完成,问该工程限期是多少天?【巩固练习】 一.选择题1.下列变形从左到右一定正确的是( ).A.22--=b a b a B.bc ac b a = C.ba bx ax = D.22ba b a = 2.把分式yx x+2中的x y 、都扩大3倍,则分式的值( ). A.扩大3倍B.扩大6倍C.缩小为原来的31D.不变3.下列各式中,正确的是( ). A.y x yx y x y x +-=--+-B.y x yx y x y x ---=--+-C.yx yx y x y x -+=--+-D.yx yx y x y x ++-=--+-4.式子222x x x +--的值为0,那么x 的值是( )A .2B .-2C .±2D .不存在5.下列计算中正确的是( ). A.()011-=-B.()111--=C.33212a a=-D.4731)()(a a a =-÷- 6.下列分式中,最简分式是( ).A.21521yxyB.y x y x +-22C.222x xy y x y-+-D.y x y x -+227.将分式方程2514326242y yy y+-+=--化为整式方程时,方程两边应同乘( ).A .()()2642y y --B .()23y -C .()()423y y --D .()()232y y --8.方程14233x x x -+=--的解是( ) A .0B .2C .3D .无解二.填空题9.23-=______,=--3)51(______.10.当x ______时,分式121-+x x 有意义.11.当x ______时,分式122+-x 的值为正.12.2232)()(yx y x -÷=______.13.232])[(x y -=______.14.写出下列分式中的未知的分子或分母:(1)2218324()m n m mn =;(2)2()a b ab a b -=;(3)22()x xy x yx --=. 15.分式方程1712112-=-++x x x 若要化为整式方程,在方程两边同乘的最简公分母是______. 16.方程256x x x x -=--的解是______. 三.解答题17.计算2312212422a a a a ⎛⎫⎛⎫+÷- ⎪ ⎪---+⎝⎭⎝⎭;(2)222244244x x x x x x x +-++++.18. 已知1x =+2111242x x x +-+--.19. 已知345x y z==,求23x y x y z +-+的值.20.在“情系海啸”捐款活动中,某同学对甲、乙两班捐款情况进行统计,得到如下三条信息:信息一:甲班共捐款300元,乙班共捐款232元.信息二:乙班平均每人捐款钱数是甲班平均每人捐款钱数的45. 信息三:甲班比乙班多2人.请根据以上三条信息,求出甲班平均每人捐款多少元.【巩固练习2】 一.选择题1.下列关于x 的方程,其中不是分式方程的是( )A.aba a x +=+1 B.x a b x b a +=-11 C.b x a a x 1-=+ D.1=-+++-n x m x m x n x2.ba ba b a b a b a b a -+⨯-+÷-+22)()(的结果是( ) A .ba ba +- B .ba ba -+ C .2)(ba b a -+ D .13.分式方程)2(6223-+=-x x x x 的解是( ) A .0B .2C .0或2D .无解4.某班学生军训打靶,有m 人各中靶a 环,n 人各中靶b 环,那么所有中靶学生的平均环数是( )A .a b m n++ B .am bn m n ++ C .1()2a b m n + D .1()2am bn + 5.某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么下列方程正确的是( )A .480480420x x -=+ B .480480204x x -=+ C .480480420x x -=- D .480480204x x -=- 6.化简22)11(yx xy y x -⋅-的结果是( ). A .y x +1 B .y x +-1 C .x y - D .y x -7.若关于x 的方程2403x x a x -+=-有增根,则a 的值为( ). A .13 B .-11 C .9 D .38. 甲、乙两人分别从两地同时出发,若相向而行,则经过ah 相遇;若同向而行,则经过bh甲追上乙.那么甲的速度是乙的( )A .a b b +倍B .b a b +倍C .a b b a +-倍D .b a b a-+倍 二.填空题9.若分式1||2--x x x 的值为0,则x 的值为______. 10.若2212x y xy -=,且xy >0,则分式yx y x -+23的值为______. 11.化简2222936a b a b ab =-______;2426aa ab -=______. 12.=-+---|3|)12()21(01______.13.计算()()2232a ab --并把结果化成只含有正整数指数幂形式为______. 14.2x =是否为方程11322x x x -=---的解?答:______. 15.若分式方程127723=-+-x a x x 的解是0x =,则a =______.16.a 个人b 天可做c 个零件(设每人速度一样),则b 个人用同样速度做a 个零件所需天数是________.三.解答题17.(1)已知13a a +=,求221a a +,441a a+的值; (2)已知2217a a +=,求1a a-的值.18. 已知345x y y z z x ==+++,求()()()xyz x y y z x z +++的值.19. a 为何值时,关于x 的方程223242ax x x x +=--+会产生增根?20. 某文化用品商店用2000元购进一批学生书包,上市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?。

相关文档
最新文档