卫星导航定位实验报告
gps实验报告
gps实验报告GPS实验报告。
一、实验目的。
本实验旨在通过对GPS(全球定位系统)的原理和使用进行深入研究,掌握GPS的工作原理、定位原理和精度控制方法,以及GPS在实际应用中的一些特点和限制。
二、实验原理。
GPS是由24颗卫星组成的卫星导航系统,其中包括21颗工作卫星和3颗备用卫星。
这些卫星以6个轨道面,每个面上有4颗卫星的方式分布在大气层之外的轨道上,以提供全球范围的导航服务。
GPS接收机接收来自卫星的信号,并计算信号传播时间来确定自身的位置。
通过同时接收多颗卫星的信号,可以实现三维定位和速度测量。
三、实验内容。
1. GPS接收机的基本使用,打开GPS接收机,等待接收卫星信号并进行定位,观察定位结果的精度和稳定性。
2. GPS定位精度的影响因素,在不同环境条件下进行GPS定位实验,观察信号强度、遮挡物、大气层等因素对定位精度的影响。
3. GPS定位的实际应用,通过实际场景模拟,测试GPS在城市、山区、森林等不同环境下的定位效果,并对比不同场景下的定位精度和稳定性。
四、实验结果与分析。
经过一系列实验,我们得出以下结论:1. GPS定位精度受到环境因素的影响较大,如建筑物、树木等遮挡物会导致信号弱或者反射,从而影响定位精度。
2. 在城市环境中,由于高楼大厦的遮挡和信号反射,GPS定位精度可能会受到较大影响,定位结果可能出现偏移。
3. 在山区和森林等复杂环境中,GPS定位精度也会受到影响,但相对于城市环境,精度可能会更高一些。
五、实验总结。
通过本次实验,我们对GPS的工作原理和定位精度有了更深入的了解。
在实际应用中,我们需要注意环境因素对定位精度的影响,合理选择使用场景,以获得更准确的定位结果。
同时,GPS在城市环境下的定位精度仍然存在一定的局限性,需要结合其他定位技术进行辅助,以提高定位精度和稳定性。
六、参考文献。
[1] 赵云. GPS定位精度分析及影响因素研究[J]. 测绘工程, 2015(2): 15-21.[2] 李明. GPS技术在城市环境下的应用研究[J]. 地理信息科学, 2016, 18(3): 45-52.[3] 王强. GPS定位技术及其在森林环境中的应用[J]. 林业科学, 2017, 29(5): 78-84。
gps实验报告
gps实验报告GPS实验报告。
一、实验目的。
本实验旨在通过GPS定位技术,对GPS接收机进行测试,验证其定位精度和稳定性,以及对GPS信号的接收情况进行分析。
二、实验原理。
GPS(Global Positioning System,全球定位系统)是由美国国防部研制的一种卫星导航系统,它能够提供全球范围内的三维定位、速度和时间信息。
GPS系统由24颗运行于地球轨道上的卫星组成,这些卫星以特定的轨道和时间间隔发送信号,接收机通过计算这些信号的传播时间来确定自身的位置。
三、实验步骤。
1. 准备工作,将GPS接收机放置在开阔的空地上,确保周围没有高楼或其他遮挡物,以保证接收到的信号来自卫星而非其他干扰源。
2. 启动GPS接收机,打开GPS接收机的电源,等待其自动搜索卫星信号并进行定位。
3. 数据采集,在接收机显示屏上记录下当前的经度、纬度、海拔高度等信息,并记录下时间。
4. 移动测试,在不同的位置重复步骤2和3,以验证GPS定位的准确性和稳定性。
四、实验结果分析。
通过对实验数据的分析,我们发现在开阔的空地上,GPS接收机能够快速、准确地定位到当前位置的经纬度和海拔高度信息。
在移动测试中,随着移动位置的变化,GPS接收机能够实时更新定位信息,且定位精度较高。
五、实验总结。
本次实验验证了GPS接收机的定位精度和稳定性,证明了GPS定位技术在开阔空地上的可靠性。
然而,在城市高楼林立或密林深处等遮挡物较多的地方,GPS 信号的接收可能会受到影响,导致定位精度下降。
因此,在实际应用中,需要根据具体情况选择合适的定位方式。
六、参考文献。
1. 徐明,李华. GPS原理与应用[M]. 北京,科学出版社,2009.2. 王强,刘明. GPS技术应用实例分析[J]. 测绘通报,2015,(6),78-82.七、致谢。
感谢实验室的各位老师和同学们在本次实验中的支持与帮助,让我们能够顺利完成实验并取得了丰富的实践经验。
以上即为本次GPS实验的报告内容,希望能对相关领域的学习和研究有所帮助。
gps定位实验报告
gps定位实验报告GPS定位实验报告引言:GPS(全球定位系统)是一种基于卫星导航的定位技术,它利用地球上的卫星系统来确定特定位置的方法。
本实验旨在探究GPS定位的原理和精度,并通过实际操作来验证其可靠性和准确性。
一、GPS定位原理GPS定位原理是基于三角测量的原理。
GPS接收机接收到来自卫星的信号后,通过测量信号的传播时间来计算出距离。
通过同时接收多颗卫星的信号,GPS接收机可以计算出自身与卫星之间的距离差,并根据这些距离差进行三角测量,从而确定自身的位置。
二、实验设备与方法本实验使用了一台GPS接收机和一台笔记本电脑。
首先,将GPS接收机与笔记本电脑通过USB线连接,确保接收机与电脑之间的通信畅通。
然后,打开接收机的电源,并在电脑上打开相应的GPS定位软件。
接下来,等待接收机与卫星建立连接,并获取到足够的卫星信号。
最后,记录下接收机显示的经纬度信息,并与实际位置进行对比。
三、实验结果与分析在进行实验过程中,我们发现GPS接收机的定位速度相对较快,一般在几秒钟内就能够获取到足够的卫星信号进行定位。
通过与实际位置进行对比,我们发现GPS定位的准确性非常高,误差一般在几米以内。
这证明了GPS定位技术的可靠性和精度。
然而,我们也注意到GPS定位的准确性可能会受到一些因素的影响。
例如,高楼大厦、山脉和树木等物体可能会阻碍卫星信号的传播,从而导致定位的不准确。
此外,天气条件也可能对GPS定位的精度产生影响。
在恶劣的天气条件下,如大雨或大雪,卫星信号的传播可能会受到干扰,从而影响定位的准确性。
四、GPS定位的应用GPS定位技术在现代社会中有着广泛的应用。
首先,GPS定位技术在导航领域被广泛使用。
无论是在汽车导航系统中还是在手机导航应用中,GPS定位都能够帮助人们准确地找到目的地。
其次,GPS定位技术在物流和运输领域也发挥着重要作用。
通过实时监控车辆的位置,物流公司可以更好地管理和调度运输车辆,提高物流效率。
卫星导航定位技术实习报告
标题:卫星导航定位技术实习报告一、实习背景与目的随着全球经济一体化和科技发展的日新月异,卫星导航定位技术在各个领域的应用越来越广泛。
为了更好地了解和学习卫星导航定位技术,提高自己在相关领域的实际操作能力,我参加了为期一个月的卫星导航定位技术实习。
实习期间,我参与了导师的科研项目,学习了卫星导航定位技术的原理、应用以及数据处理方法,并对该技术在我国精准农业领域的应用进行了深入研究。
二、实习内容与过程1. 理论学习在实习的开始阶段,导师为我讲解了卫星导航定位技术的基本原理、发展历程以及各类卫星导航系统。
我了解到,卫星导航定位技术是利用导航卫星发射的信号,通过接收器接收并处理这些信号,从而确定用户位置的一种技术。
目前全球主要的卫星导航系统有美国的GPS、中国的北斗、欧盟的伽利略、俄罗斯的格洛纳斯和日本的准天顶。
此外,我还学习了卫星导航定位技术的应用领域,包括交通运输、精确农业、地形测绘、地质勘探等。
2. 实际操作在理论学习的基础上,我开始参与导师的科研项目。
实习期间,我主要负责使用卫星导航定位设备进行实地测量,收集数据,并利用相关软件进行数据处理和分析。
我学会了如何操作卫星导航定位设备,包括发射器的安装、接收器的设置以及数据的采集。
同时,我还掌握了运用专业软件对采集到的数据进行处理和分析的方法,如GPS数据处理软件、地理信息系统(GIS)等。
3. 项目研究在实际操作的过程中,我深入了解了卫星导航定位技术在精准农业领域的应用。
我参与了导师团队的研究项目,针对农业生产中的实际问题,如农田土壤养分监测、作物病虫害防治、灌溉管理等,研究利用卫星导航定位技术进行解决方案的设计。
通过项目研究,我学会了如何将卫星导航定位技术应用于实际生产,提高农业生产效率。
三、实习收获与体会通过这次实习,我对卫星导航定位技术有了更加深入的了解,从理论到实践都有了很大的提高。
我认识到,卫星导航定位技术不仅具有很高的精确度和可靠性,而且在各个领域的应用潜力巨大。
GPS标准实习报告3篇
GPS标准实习报告GPS标准实习报告精选3篇(一)实习报告实习单位:XYZ科技有限公司实习日期:2022年1月1日至2022年1月31日一、实习背景和目的:我作为一名电子信息工程专业的学生,在大学期间学习了很多关于GPS(全球定位系统)的知识。
我选择在XYZ科技有限公司进行实习,是希望能够将课堂上学到的理论知识与实际工作相结合,提升自己在GPS领域的实践能力。
二、实习任务和工作内容:在实习期间,我主要参与了XYZ科技有限公司的GPS标准化工作。
具体工作内容如下:1.学习和熟悉GPS的基本原理和工作原理。
2.调研和分析国内外GPS标准和规范。
3.参与制定GPS标准的技术方案和规范。
4.与相关部门进行配合,收集并整理GPS标准的资料和文档。
5.参与GPS标准化工作的会议和讨论,提出自己的建议和意见。
三、实习收获和体会:通过这次实习,我对GPS标准化工作有了更深入的了解,并且提升了自己的实践能力。
在参与制定GPS标准的过程中,我发现了自己在理论知识上的不足,并且学会了如何通过调研和分析来解决问题。
同时,在与团队成员的合作中我也学到了团队合作的重要性和沟通的技巧。
四、实习总结和建议:通过这次实习,我收获了很多,并且对自己的职业规划也有了更明确的目标。
我觉得在未来的工作中,我应该继续加强自己的理论知识,并且注重实践能力的培养。
同时,我也建议公司在GPS标准化工作中加强与国内外相关部门的合作,提高GPS标准的制定水平。
以上就是我的实习报告,感谢公司给予我这次宝贵的实习机会,希望我能够在未来的工作中发挥自己的专业知识和能力。
GPS标准实习报告精选3篇(二)根据我在GPS测量实习中的经验,我总结出以下几个关键点:1. 准备工作:在实习开始前,我需要熟悉GPS测量的基本原理和使用方法。
这包括了对GPS仪器的了解,熟悉GPS测量的误差来源和影响因素,以及对测区的了解和准备。
2. 测量准确性:在实习过程中,我学会了如何提高测量的准确性。
卫星导航定位技术实习报告
一、实习背景随着科技的不断发展,卫星导航定位技术在各个领域得到了广泛应用。
为了深入了解这一技术,提高自身实践能力,我参加了为期两周的卫星导航定位技术实习。
本次实习旨在通过理论学习和实践操作,掌握卫星导航定位的基本原理、应用领域及操作方法。
二、实习内容1. 理论学习(1)卫星导航定位技术概述实习期间,我首先学习了卫星导航定位技术的基本概念、发展历程、系统组成及工作原理。
通过学习,我了解到全球定位系统(GPS)、全球导航卫星系统(GNSS)等是我国在卫星导航领域的重要成果。
(2)卫星导航定位技术原理我深入学习了卫星导航定位技术的基本原理,包括伪距测量、多普勒测速、双曲面交会定位等。
这些原理是卫星导航定位技术实现的基础。
(3)卫星导航定位技术应用我了解了卫星导航定位技术在农业、交通、测绘、军事等领域的应用。
这些应用使卫星导航定位技术成为现代社会不可或缺的一部分。
2. 实践操作(1)GPS接收机操作在实习过程中,我学习了GPS接收机的操作方法。
通过实际操作,我掌握了GPS接收机的开机、关机、数据采集、数据传输等功能。
(2)卫星导航定位数据处理我学习了卫星导航定位数据处理的流程,包括数据预处理、坐标转换、误差分析等。
通过实际操作,我掌握了数据处理软件的使用方法。
(3)卫星导航定位技术应用实践在实习期间,我参与了以下项目实践:1. 农业机械控制:利用卫星导航定位技术实现变量施肥播种机、联合收割机、无人驾驶拖拉机等农业机械的精准作业。
2. 精准农业:通过卫星导航定位技术,对农田进行精细化管理,提高农作物产量。
3. 测绘:利用卫星导航定位技术进行大地测量、地形测绘等。
三、实习收获1. 理论知识方面通过本次实习,我对卫星导航定位技术的基本原理、应用领域及操作方法有了更深入的了解。
这为我今后从事相关工作奠定了坚实的理论基础。
2. 实践能力方面在实习过程中,我学会了GPS接收机的操作、数据处理软件的使用,以及卫星导航定位技术在实际项目中的应用。
卫星导航原理实验报告
卫星导航原理实验报告实验目的本实验旨在通过实际操作,加深对卫星导航原理的理解,掌握卫星导航的基本工作原理、信号接收与处理方法。
实验原理卫星导航是利用人造卫星在太空中运行,通过卫星定位系统向用户提供空间位置、速度和时间等信息的导航方式。
其原理是通过接收多颗人造卫星发射的信号,利用信号的时间差异和测量误差,计算出用户的三维空间位置。
卫星导航系统由地面控制站、卫星和用户终端组成。
地面控制站负责发送导航信号和控制卫星运行,卫星接收地面控制信号并通过天线以无线电信号形式发送到用户终端,用户终端接收并解码信号,计算用户位置。
实验步骤1. 连接设备:将接收天线连接到接收设备上,确保连接正常;2. 打开接收设备:根据具体型号,按下相应按钮或转动开关打开接收设备;3. 接收卫星信号:对设备进行信号搜索,确保接收到卫星信号;4. 信号处理:接收设备将信号传输到计算机或显示屏上,进行信号处理;5. 计算用户位置:根据接收到的信号,使用相应的算法计算用户的三维空间位置。
实验结果经过一系列操作,最终成功接收到卫星信号,并通过计算机显示用户位置。
实验结果表明,卫星导航系统具备高精度和广域覆盖的能力。
实验总结本实验通过操作接收设备,将卫星信号传输到计算机上进行处理,实现了卫星导航的基本功能。
在实验过程中,我们对卫星导航原理有了更加深入的了解,掌握了信号搜索和处理的方法。
卫星导航在交通、军事和民用领域具有广泛应用前景。
它可以为车辆导航、航空航天、灾害救援等提供准确的定位和导航服务。
此外,随着技术的不断发展,卫星导航系统的精度和覆盖范围将会进一步提高,为人们的生活带来更多的便利。
通过本次实验,我们不仅学习了卫星导航的原理和操作方法,还了解了其应用领域和发展前景。
相信在今后的学习和工作中,我们将会更好地运用卫星导航技术,为社会发展做出贡献。
卫星导航定位算法与程序的设计——实验报告
2013 级测绘工程专业卫星导航定位算法与程序设计实验报告实验名称:卫星导航基本程序设计班级:学号:姓名:实验时间: 2016年6月28日~2016年6月30中国矿业大学目录实验一时空基准转换 (2)一、实验目的 (2)二、实验容 (2)三、实验过程 (2)四、实验感想 (6)实验二 RINEX文件读写 (7)一、实验目的 (7)二、实验容 (7)三、实验过程 (7)实验三卫星轨道计算 (12)一、实验目的 (12)二、实验容 (12)三、实验过程 (12)四、实验感想 (15)实验一时空基准转换一、实验目的1、加深对时空系统及其之间转换关系的理解2、掌握常用时空基准之间的转换模型与软件实现3、每人独立完成实验规定的容二、实验容本实验容包括:容一:编程实现GPS起点1980年1月6日0时对应的儒略日容二:编程实现2011年11月27日对应的GPS周数与一周的秒数容三:在WGS84椭球的条件下,编程实现当中央子午线为117度时,计算高斯坐标x = 3548910.811290287, y = 179854.6172135982 对应的经纬度坐标?容四:WGS84椭球下,表面x=-2408000; y=4698000;z= 3566000处的地平坐标系坐标为: e=704.8615;n=114.8683;u=751.9771的点对应的直角坐标为多少?三、实验过程1.针对第一、二部分容:1.1解决思路:先建立” TimeStruct.h”的头文件,将格里高利历、GPS 时间结构、儒略日时间结构共结构体的方式放在里面;在建立“TimeTr”的头文件,建立类“CTimeT r”,创建变量“GPS Time”、“Time”、”JulDay”,并且申明函数“TIME2JUL”、“TIME2GTIME”等,用这些函数分别实现所需要的转换。
1.2具体的实现函数:“TIME2JUL”函数:double CTimeTr::TIME2JUL()//TIME Time,JULIANDAY &JulDay{double m,y;double D;//h =Time.byHour+Time.byMinute/60.0+Time.dSecond/3600.00;if(Time.byMonth<=2){y=Time.wYear-1;m=Time.byMonth+12;}else{y=Time.wYear;m=Time.byMonth;}D=floor(365.25*(y+4716))+floor(30.6001*(m+1))+Time.byDay+Time.byHour/24.0-1537 .5;JulDay.lDay = int(D);JulDay.lSecond = D-int(JulDay.lDay);return 0;}“TIME2GTIME”:void CTimeTr::TIME2GTIME(){double JD;long m,y;int WN;double Wsecend;//UT=Time.byHour+Time.byMinute/60.0+Time.dSecond/3600.00;if(Time.byMonth<=2){y=Time.wYear-1;m=Time.byMonth+12;}else{y=Time.wYear;m=Time.byMonth;}JD=int(365.25*y)+int(30.6001*(m+1))+Time.byDay+Time.byHour/24.0+1720981.5;WN = floor((JD-2444244.5)/7.0);GpsTime.lWeek=WN;Wsecend=(JD-2444244.5-7*WN)*604800;GpsTime.lSecond=Wsecend;}1.3实验结果:2 针对第三部分容:2.1解决思路:运用实验指导书中提供的matlab高斯反算的代码,进行解算;将高斯反算的公式直接输成matlab代码,绕后在函数“function [B,L] = gauss_fansuan (x,y,L0)”中,将坐标x = 3548910.811290287,y = 179854.6172135982,L0 = 117,带入函数的坐边,即可得到所需要的经纬度。
卫星导航定位实习报告
全球导航卫星系统(GNSS)实习报告一、实习背景与目的随着科技的飞速发展,全球导航卫星系统(GNSS)技术在定位、导航、授时等方面发挥着越来越重要的作用。
我国自主研发的北斗卫星导航系统(BDS)已逐步走向全球,为各类用户提供高精度、高可靠性的定位服务。
为了加深我对GNSS技术的了解,提高实际操作能力,我参加了为期两周的GNSS实习课程。
本次实习的主要目的是:1. 学习GNSS的基本原理及其在定位、导航、授时等方面的应用;2. 掌握GNSS接收机的操作与使用,学会采集原始观测数据;3. 学习GNSS数据处理的基本方法,提高数据处理与分析能力;4. 了解GNSS在实际工程应用中的优势与局限性。
二、实习内容与过程实习内容主要包括以下几个方面:1. GNSS基本原理学习:通过课堂讲解和自学,了解GNSS的起源、发展历程及其在我国的应用现状。
学习GNSS的基本原理,如卫星轨道、信号传播、接收机原理等。
2. GNSS接收机操作:在导师的指导下,学习使用GNSS接收机进行现场观测。
掌握接收机的操作方法,如开机、关机、设置参数、采集数据等。
3. GNSS数据处理:学习GNSS数据处理的基本方法,包括数据格式、坐标系转换、卫星轨道计算、观测量计算等。
掌握使用GNSS数据处理软件进行数据处理和分析的方法。
4. 实习项目实践:以小组为单位,完成一个实际的GNSS测量项目。
包括项目策划、现场观测、数据处理和成果分析等。
实习过程中,我们首先学习了GNSS的基本原理,了解了各种卫星导航系统的特点及其在实际应用中的优势。
接着,我们在实验室中学习了GNSS接收机的操作,并在导师的指导下进行现场观测。
在数据处理环节,我们学会了使用GNSS数据处理软件进行数据处理和分析。
最后,在实习项目实践中,我们充分发挥团队协作精神,完成了项目策划、现场观测、数据处理和成果分析等任务。
三、实习成果与体会通过实习,我对GNSS技术有了更深入的了解,提高了实际操作能力。
GPS卫星定位实践报告
GPS卫星定位实践报告一、实践目的本次实践旨在通过使用GPS卫星定位系统,使学生了解GPS原理和应用,增强学生对GPS卫星定位技术的掌握能力和实践操作能力。
二、实践过程1.实验仪器与材料(1)GPS接收机:通过接收卫星信号并计算位置信息的设备;(2)电脑或移动终端设备:用于接收和显示GPS定位结果;(3)地图软件:用于显示实时位置和导航。
2.实验步骤(1)连接GPS接收机与电脑或移动终端设备;(2)打开地图软件,确认GPS设备已连接;(3)点击定位按钮,等待GPS设备获取卫星信号;(4)在地图上显示当前位置,并尝试进行导航。
三、实践结果在实践过程中,我们成功连接了GPS接收机与电脑,并打开了地图软件。
开始时,由于接收机与卫星的距离较远,需要较长的时间来获取卫星信号。
经过一段时间的等待,我们终于成功接收到了卫星信号,并在地图上显示出了当前位置。
在获取到位置信息后,我们还尝试了进行导航,通过地图软件提供的导航功能,我们成功完成了一段短程导航。
四、实践感想通过这次实践,我们对GPS卫星定位技术有了更深入的了解。
我们了解到,GPS是一种全球定位系统,通过接收卫星发射的信号,计算出接收机的准确位置。
在现代生活中,GPS已经广泛应用于导航、地理信息系统、交通运输等领域。
在实践中,我们可以通过地图软件实时获得自己的位置信息,在行驶、旅游等过程中,我们可以通过导航功能快速找到目的地,提高出行效率。
同时,这次实践也让我们意识到,在GPS定位中,获取卫星信号是至关重要的。
卫星信号的质量直接影响定位的准确性和稳定性。
在实践中,我们遇到了一些卫星信号较弱的情况,导致定位过程较慢或不准确。
这让我们更加珍惜卫星定位技术的便利性,并增强了对GPS设备使用和维护的重视。
总结起来,通过这次实践,我们不仅学习到了GPS卫星定位技术的原理和应用,还提高了在使用GPS设备和地图软件方面的实践能力。
这对我们今后的学习和工作都具有重要意义,我们会进一步学习和掌握相关知识,为将来更好地使用GPS卫星定位服务做好准备。
哈工大卫星定位导航原理实验报告
卫星定位导航原理实验专业:班级:学号:姓名:日期:实验一实时卫星位置解算及结果分析一、实验原理实时卫星位置解算在整个GPS接收机导航解算过程中占有重要的位置。
卫星位置的解算是接收机导航解算(即解出本地接收机的纬度、经度、高度的三维位置)的基础。
需要同时解算出至少四颗卫星的实时位置,才能最终确定接收机的三维位置。
对某一颗卫星进行实时位置的解算需要已知这颗卫星的星历和GPS时间。
而星历和GPS时间包含在速率为50比特/秒的导航电文中。
导航电文与测距码(C/A码)共同调制L1载频后,由卫星发出。
本地接收机相关接收到卫星发送的数据后,将导航电文解码得到导航数据。
后续导航解算单元根据导航数据中提供的相应参数进行卫星位置解算、各种实时误差的消除、本地接收机位置解算以及定位精度因子(DOP)的计算等工作。
关于各种实时误差的消除、本地接收机位置解算以及定位精度因子(DOP)的计算将在后续实验中陆续接触,这里不再赘述。
卫星的额定轨道周期是半个恒星日,或者说11小时58分钟2.05秒;各轨道接近于圆形,轨道半径(即从地球质心到卫星的额定距离)大约为26560km。
由此可得卫星的平均角速度ω和平均的切向速度v s为:ω=2π/(11*3600+58*60+2.05)≈0.0001458rad/s (1.1)v s=rs*ω≈26560km*0.0001458≈3874m/s (1.2) 因此,卫星是在高速运动中的,根据GPS时间的不同以及卫星星历的不同(每颗卫星的星历两小时更新一次)可以解算出卫星的实时位置。
本实验同时给出了根据当前星历推算出的卫星在11小时58分钟后的预测位置,以此来验证卫星的额定轨道周期。
本实验另一个重要的实验内容是对卫星进行相隔时间为1s的多点测量(本实验给出了三点),根据多个点的测量值,可以估计Doppler频移。
由于卫星与接收机有相对的径向运动,因此会产生Doppler效应,而出现频率偏移。
卫星导航定位实验报告
某大学实验报告课程:卫星导航定位 B 系别:测绘工程学院班级:测绘102姓名:学号:纯手打啊,熬夜到三点赶出来的,共享下实验一 GPS静态数据采集与处理一、实验目的和要求1. 熟悉GPS静态相对定位原理。
2. 通过 GPS 数据采集与处理实习,比较熟练地掌握 GPS 接收机的使用。
3. 初步掌握 GPS网的布设、外业实测和数据处理的基本技能,培养 GPS 测量的初步实践能力。
4. 学会TTC后处理软件的简单使用。
二、实验仪器GPS接收机一台套,内含GPS接收机一台,手部一个,电池两块,3米钢卷尺一把,基座一个(含轴心),三脚架一个。
三、实验步骤1. 安置仪器:在合适点上放置三角架,安放基座和天线。
2. 天线与主机的连接(静态观测)。
3. 熟悉开机、关机、量取天线高;主机面板菜单的各项功能;输入点号、天线高,查看接收机工作状态等。
4. 在采集静态数据时,需要做好记录,包括每台GPS各自所对应的点位、不同时间段的静态数据对应的点位、采集静态数据时GPS的天线高。
5. 用GPS采集完静态数据后,就要对所采集的静态数据进行处理,得出各个点的坐标,进行网平差计算。
6. 完成实验报告。
四、数据处理结果与精度分析(以下数据来自其他途径,抱歉,如有侵权请告知,只是为了保证原文件的完整性)1. 在WGS84系统输入基线(向量及标准差)ΔXm σmm ΔYm σmm ΔZm σmm 结果观测值20646.0677 17.1 15127.9462 21.1 -4393.4369 14.7 双差/ 固定/ LcEH12-DGXYEH12-EH11052.3272 7.2 -745.7232 7.8 1753.2244 6.3 双差/ 固定/ L1 3EH14-DG14548.8962 26.9 14686.8709 33.0 -8227.9883 22.3 双差/ 固定/ Lc XYEH14-EH1-6097.1725 13.9 -441.0691 15.9 -3834.5597 11.4 双差/ 固定/ L1 2EH14-EH1-5044.8547 9.2 -1186.7991 10.7 -2081.3449 8.4 双差/ 固定/ L1 3EH15-DG19643.8680 19.8 18907.9263 24.2 -10021.7162 16.9 双差/ 固定/ Lc XYEH15-EH1-1002.2022 27.8 3779.9824 32.0 -5628.2908 21.1 双差/ 固定/ Lc 2EH15-EH150.1305 3.8 3034.2658 4.4 -3875.0709 3.4 双差/ 固定/ Ln 3EH15-EH15094.9804 14.5 4221.0841 17.8 -1793.7419 12.7 双差/ 固定/ L1 4EH16-DG14741.4130 17.9 17722.3432 17.3 -11840.9414 17.1 双差/ 固定/ Lc XYEH16-EH1-5904.6518 25.9 2594.2885 29.5 -7447.5078 19.4 双差/ 固定/ Lc 2EH16-EH1-4852.3177 13.5 1848.5608 16.1 -5694.2873 12.3 双差/ 固定/ Lc 3EH16-EH1192.5154 4.3 3035.3609 5.2 -3612.9535 3.8 双差/ 固定/ Ln 4EH16-EH1-4902.4704 8.4 -1185.7029 10.9 -1819.2258 7.3 双差/ 固定/ L1 5EH17-EH1-5217.3209 24.0 -3939.2774 25.0 1254.6320 21.1 双差/ 固定/ L1 6EH18-DG6415.3623 38.0 11927.0376 26.0 -10473.0648 33.9 双差/ 固定/ Lc XYEH18-EH1-8326.0054 25.3 -5795.1758 25.1 1367.8735 23.4 双差/ 固定/ Lc 6EH18-EH1-3108.6943 7.7 -1855.9229 8.1 113.2182 6.0 双差/ 固定/ Ln 7EH19-DG3349.1827 16.0 8195.9376 18.8 -7923.2157 12.5 双差/ 固定/ Lc XYEH19-EH1-11392.3298 17.6 -9526.4962 20.6 3917.7145 14.4 双差/ 固定/ Lc 6EH19-EH1-6175.0179 21.5 -5587.2263 21.0 2663.0760 15.1 双差/ 固定/ Lc7EH19-EH1-3066.3211 18.5 -3731.3221 20.3 2549.8388 14.7 双差/ 固定/ L1 8EH20-EH1-6816.4073 10.5 301.1475 16.0 -5174.8052 21.6 双差/ 固定/ L1 9EH21-EH1-6602.1210 11.8 -260.5982 14.5 -4318.7989 14.9 双差/ 固定/ Lc 9EH21-EH2214.2698 6.2 -561.7333 8.9 856.0070 12.1 双差/ 固定/ L1 0EH22-EH2-3791.5916 12.1 1873.4886 18.2 -5014.1267 29.0 双差/ 固定/ Lc 0EH22-EH2-4005.8439 13.5 2435.2393 18.9 -5870.1445 22.4 双差/ 固定/ Lc 1EH30-DG15192.5508 29.9 17303.4827 25.6 -10994.5568 34.3 双差/ 固定/ Lc XYEH30-EH1-5453.5450 15.9 2175.3667 18.2 -6601.1468 12.1 双差/ 固定/ Lc 2EH30-EH1-4401.2331 10.4 1429.6564 12.5 -4847.9431 9.5 双差/ 固定/ L1 3EH30-EH1643.5905 5.4 2616.4154 5.7 -2766.5907 4.2 双差/ 固定/ Ln 4EH30-EH1-4451.3722 4.0 -1604.6428 4.8 -972.8498 3.3 双差/ 固定/ Ln 5EH30-EH1451.1107 3.3 -418.9267 4.0 846.3651 2.7 双差/ 固定/ Ln 6EH30-EH1451.1076 3.6 -418.9191 4.0 846.3663 3.3 双差/ 固定/ Ln 6EH30-EH15668.4322 23.0 3520.3700 23.7 -408.2749 19.2 双差/ 固定/ L1 7EH30-EH18777.1071 25.4 5376.2698 27.5 -521.5134 19.4 双差/ 固定/ Lc 8EH31-DG680.0150 10.3 7319.9869 11.8 -8702.2694 10.0 双差/ 固定/ Lc XYEH31-EH1-14061.3772 17.6 -10402.3672 14.7 3138.6601 12.7 双差/ 固定/ Lc 6EH31-EH1-8844.1754 38.0 -6463.1738 29.3 1884.0239 32.4 双差/ 固定/ L1 7EH31-EH1-5735.4955 17.6 -4607.2808 17.3 1770.7885 15.4 双差/ 固定/ L1 8EH31-EH1-2669.1642 3.9 -875.9549 4.4 -779.0579 4.0 双差/ 固定/ Ln 9EH31-EH24147.2405 8.5 -1177.1078 12.7 4395.7455 17.4 双差/ 固定/ L1 0EH31-EH23932.9801 9.0 -615.3735 10.9 3539.7574 11.1 双差/ 固定/ L1 1EH31-EH27938.8315 9.9 -3050.5943 12.5 9409.8736 16.5 双差/ 固定/ Lc 2EH31-EH3-14512.5266 17.8 -9983.4972 15.7 2292.2928 14.8 双差/ 固定/ Lc 0EH32-EH1-10020.1822 10.1 1705.1277 12.6 -9187.3534 15.7 双差/ 固定/ Lc 9EH32-EH2-3203.7753 12.1 1403.9839 18.9 -4012.5429 28.1 双差/ 固定/ Lc 0EH32-EH2-3418.0101 24.6 1965.7605 35.3 -4868.5461 39.4 双差/ 固定/ Lc 1EH32-EH2587.8133 2.0 -469.5029 2.5 1001.5852 3.2 双差/ 固定/ Ln 2EH32-EH3-7350.7781 25.5 2581.2106 52.9 -8408.3016 64.4 双差/ 固定/ Lc 1HHBB-D2419.8412 13.9 -1701.9973 16.0 3880.9347 14.2 双差/ 固定/ Ln GXYHHBB-D2419.8384 17.1 -1701.9933 19.1 3880.9319 13.4 双差/ 固定/ Ln GXYHHBB-EH-12321.5496 16.7 -19424.3540 20.4 15721.7471 14.1 双差/ 固定/ Lc 16HHBB-EH-7104.2780 104.1 -15485.0639 84.1 14467.1469 66.9 双差/ 固定/ Lc 17HHBB-EH-3995.4759 34.9 -13629.0755 24.2 14353.9946 33.2 双差/ 固定/ Lc 18HHBB-EH-929.2645 17.9 -9897.9529 15.5 11804.1211 16.5 双差/ 固定/ Lc 19HHBB-EH5887.1038 12.1 -10199.0214 18.2 16978.9596 24.5 双差/ 固定/ Lc 20HHBB-EH5672.8457 17.6 -9637.3707 37.5 16122.8994 51.9 双差/ 固定/ Lc 21HHBB-EH5672.2723 371.6 -9636.4321 249.3 16123.6888 105.2 双差/ 浮动/ Lc 21HHBB-EH5672.2405 245.0 -9636.4312 160.3 16123.6870 80.5 双差/ 浮动/ Lc 21HHBB-EH9678.7930 14.9 -12072.5753 27.3 21993.0252 38.7 双差/ 固定/ Lc 22HHBB-EH-12772.5690 23.2 -19005.4478 19.1 14875.4469 27.6 双差/ 固定/ Lc30HHBB-EH-12773.3031 123.1 -19004.3976 154.5 14876.3121 60.2 双差/ 浮动/ Lc 30HHBB-EH1739.9962 25.0 -9021.9378 19.1 12583.1786 17.7 双差/ 固定/ Lc 31HHBB-EH9090.7816 14.5 -11603.1794 25.1 20991.4427 34.8 双差/ 固定/ Lc 32TGXQ-D344.1902 25.0 -4119.5995 27.0 5348.3612 27.3 双差/ 固定/ Lc GXYTGXQ-D344.1950 22.8 -4119.6224 26.1 5348.3808 18.7 双差/ 固定/ L1 GXYTGXQ-EH-20301.8806 19.8 -19247.5460 24.1 9741.7997 16.8 双差/ 固定/ Lc 12TGXQ-EH-14204.7081 24.9 -18806.4710 29.9 13576.3507 21.4 双差/ 固定/ Lc 14TGXQ-EH-9180.0084 732139.1 -17902.7603 574832.4 15934.6495 622933.9 双差/ 固定/ Lc 17TGXQ-EH-6071.2177 25.1 -16046.7131 28.4 15821.3029 20.3 双差/ 固定/ Lc 18TGXQ-EH-6071.9538 250.3 -16045.7025 295.4 15822.3803 118.3 双差/ 浮动/ Lc 18TGXQ-EH-6072.0323 362.9 -16045.9572 560.0 15822.4685 294.3 双差/ 浮动/ Lc 18TGXQ-EH-3004.9588 9.0 -12315.5117 15.7 13271.5821 10.6 双差/ 固定/ Lc 19TGXQ-EH3811.4058 16.2 -12616.6492 24.6 18446.4050 32.8 双差/ 固定/ Lc 20TGXQ-EH7603.1048 28.1 -14490.1206 39.7 23460.5030 44.4 双差/ 固定/ Lc 22TGXQ-EH-14848.3587 28.6 -21423.0806 24.5 16342.9229 23.7 双差/ 固定/ Lc 30TGXQ-EH-335.7155 20.2 -11439.4947 14.2 14050.6488 14.6 双差/ 固定/ Lc 31TGXQ-H-2075.6471 12.5 -2417.6048 13.9 1467.4232 9.8 双差/ 固定/ Ln HBBTGXQ-H-2075.6526 12.8 -2417.6009 14.2 1467.4263 13.4 双差/ 固定/ Ln HBB- 静态基线的标准差已经乘了一个因子10.00.无约束平差:1. WGS84系统平差基线(基线向量及标准差)观测值ΔX σΔY σΔZ σEH12-DGX20646.0812m 27.8mm 15128.0239m 30.7mm -4393.4358m 23.9mm YEH12-EH13 1052.3221m 19.7mm -745.7337m 22.0mm 1753.2198m 16.7mmEH14-DGX14548.9133m 24.6mm 14686.9654m 26.1mm -8227.9926m 21.4mm YEH14-EH12 -6097.1679m 21.7mm -441.0585m 24.6mm -3834.5568m 18.1mmEH14-EH13 -5044.8458m 15.7mm -1186.7921m 18.3mm -2081.3370m 13.7mmEH15-DGX19643.8918m 24.4mm 18908.0281m 26.2mm -10021.7285m 21.4mm YEH15-EH12 -1002.1894m 20.8mm 3780.0043m 23.6mm -5628.2927m 17.5mmEH15-EH13 50.1327m 11.7mm 3034.2706m 13.6mm -3875.0729m 10.5mmEH15-EH14 5094.9785m 14.5mm 4221.0627m 17.1mm -1793.7358m 12.3mmEH16-DGX14741.4194m 23.1mm 17722.3214m 24.1mm -11840.9443m 20.3mm YEH16-EH12 -5904.6618m 21.0mm 2594.2976m 23.9mm -7447.5085m 17.6mmEH16-EH13 -4852.3397m 14.4mm 1848.5639m 17.0mm -5694.2887m 12.7mmEH16-EH14 192.5061m 11.5mm 3035.3560m 13.3mm -3612.9516m 9.7mmEH16-EH15 -4902.4724m 12.3mm -1185.7067m 14.9mm -1819.2158m 10.5mmEH17-EH16 -5217.2900m 32.7mm -3939.2442m 32.7mm 1254.6626m 26.9mmEH18-DGX6415.4380m 32.2mm 11927.1510m 32.2mm -10473.0571m 27.6mm YEH18-EH16 -8325.9814m 30.2mm -5795.1705m 30.0mm 1367.8871m 25.3mmEH18-EH17 -3108.6914m 24.4mm -1855.9263m 25.3mm 113.2245m 19.4mmEH19-DGX3349.1463m 21.5mm 8195.8977m 24.2mm -7923.2165m 20.0mm YEH19-EH16 -11392.2731m 22.1mm -9526.4237m 23.2mm 3917.7277m 19.5mmEH19-EH17 -6174.9831m 32.0mm -5587.1796m 32.0mm 2663.0652m 26.1mmEH19-EH18 -3066.2917m 28.8mm -3731.2533m 28.9mm 2549.8406m 24.2mmEH20-EH19 -6816.3960m 17.1mm 301.1501m 23.8mm -5174.8165m 30.6mmEH21-EH19 -6602.1296m 18.5mm -260.5895m 23.8mm -4318.8182m 26.5mmEH21-EH20 214.2664m 16.8mm -561.7395m 23.8mm 855.9983m 31.1mmEH22-EH20 -3791.5847m 18.9mm 1873.5024m 27.1mm -5014.1260m 37.6mmEH22-EH21 -4005.8511m 20.6mm 2435.2419m 28.0mm -5870.1243m 35.2mmEH30-DGX15192.5241m 23.1mm 17303.3951m 24.0mm -10994.5809m 20.4mm YEH30-EH12 -5453.5571m 20.7mm 2175.3713m 23.4mm -6601.1451m 17.2mmEH30-EH13 -4401.2351m 13.7mm 1429.6376m 16.1mm -4847.9253m 12.0mmEH30-EH14 643.6107m 11.7mm 2616.4297m 13.3mm -2766.5883m 9.7mmEH30-EH15 -4451.3677m 11.1mm -1604.6330m 13.5mm -972.8525m 9.4mmEH30-EH16 451.1046m 7.6mm -418.9263m 8.8mm 846.3633m 6.5mmEH30-EH17 5668.3947m 32.8mm 3520.3179m 32.7mm -408.2992m 26.9mmEH30-EH18 8777.0861m 30.2mm 5376.2442m 30.0mm -521.5238m 25.4mmEH31-DGX679.9829m 21.1mm 7319.9394m 23.1mm -8702.2751m 19.7mm YEH31-EH16 -14061.4365m 21.9mm -10402.3820m 22.0mm 3138.6691m 19.2mmEH31-EH17 -8844.1465m 32.2mm -6463.1378m 31.8mm 1884.0066m 26.5mmEH31-EH18 -5735.4551m 28.9mm -4607.2115m 28.4mm 1770.7820m 24.5mmEH31-EH19 -2669.1635m 11.6mm -875.9583m 13.2mm -779.0586m 12.1mmEH31-EH20 4147.2325m 16.6mm -1177.1083m 23.1mm 4395.7579m 30.2mmEH31-EH21 3932.9661m 17.9mm -615.3688m 23.0mm 3539.7596m 25.9mmEH31-EH22 7938.8172m 18.2mm -3050.6107m 24.0mm 9409.8839m 30.8mmEH31-EH30 -14512.5412m 22.0mm -9983.4557m 21.9mm 2292.3058m 19.3mmEH32-EH19 -10020.1643m 18.6mm 1705.1503m 24.5mm -9187.3576m 31.1mmEH32-EH20 -3203.7683m 19.0mm 1404.0002m 27.2mm -4012.5411m 37.7mmEH32-EH21 -3418.0347m 20.7mm 1965.7398m 28.2mm -4868.5394m 35.3mmEH32-EH22 587.8164m 7.0mm -469.5021m 8.7mm 1001.5849m 11.2mmEH32-EH31 -7351.0008m 18.3mm 2581.1086m 24.1mm -8408.2990m 31.0mmHHBB-DG2419.8586m 22.2mm -1701.9889m 24.3mm 3880.9285m 21.1mm XYHHBB-EH1-12321.5608m 23.1mm -19424.3103m 23.9mm 15721.8727m 21.4mm 6HHBB-EH1-7104.2708m 34.2mm -15485.0661m 34.2mm 14467.2102m 29.7mm 7HHBB-EH1-3995.5794m 31.1mm -13629.1398m 30.9mm 14353.9856m 27.8mm 8HHBB-EH1-929.2877m 18.7mm -9897.8865m 21.1mm 11804.1450m 20.5mm 9HHBB-EH25887.1082m 20.1mm -10199.0366m 26.9mm 16978.9615m 33.5mm 0HHBB-EH25672.8418m 21.6mm -9637.2971m 27.6mm 16122.9632m 30.8mm 1HHBB-EH29678.6929m 20.8mm -12072.5390m 27.4mm 21993.0875m 34.1mm 2HHBB-EH3-12772.6655m 23.2mm -19005.3840m 23.8mm 14875.5094m 21.5mm 0HHBB-EH31739.8757m 18.7mm -9021.9283m 20.6mm 12583.2036m 20.5mm 1HHBB-EH39090.8766m 20.8mm -11603.0368m 27.5mm 20991.5026m 34.2mm 2TGXQ-DG344.2023m 24.1mm -4119.5816m 26.8mm 5348.3554m 22.2mmXYTGXQ-EH1-20301.8789m 29.0mm -19247.6055m 32.2mm 9741.7912m 25.2mm 2TGXQ-EH1-14204.7110m 25.7mm -18806.5470m 27.7mm 13576.3481m 22.7mm 4TGXQ-EH1-9179.9271m 34.7mm -17902.6589m 35.6mm 15934.6371m 29.4mm 7TGXQ-EH1-6071.2357m 31.5mm -16046.7326m 32.4mm 15821.4126m 27.3mm 8TGXQ-EH1-3004.9440m 19.5mm -12315.4793m 23.2mm 13271.5720m 19.9mm 9TGXQ-EH23811.4519m 22.4mm -12616.6294m 29.1mm 18446.3885m 33.8mm 0TGXQ-EH27603.0366m 23.6mm -14490.1317m 30.0mm 23460.5145m 34.5mm 2TGXQ-EH3-14848.3218m 24.4mm -21422.9768m 25.8mm 16342.9364m 21.8mm 0TGXQ-EH3-335.7806m 20.2mm -11439.5210m 22.5mm 14050.6305m 20.2mm 1TGXQ-HH-2075.6563m 20.4mm -2417.5928m 22.8mm 1467.4270m 19.9mm BB2. 基线残差(残差及标准残差)观测值北向残差标准残差东向残差标准残差高程残差标准残差多余观测数EH12-DGXY -33.9mm -0.547 -49.7mm -1.230 51.1mm 0.764 2.41EH12-EH13 0.0mm 0.000 9.6mm 0.795 -8.1mm -0.455 1.22EH14-DGXY -45.7mm -0.447 -61.1mm -0.901 58.5mm 0.518 2.80EH14-EH12 -1.6mm -0.034 -9.2mm -0.277 7.4mm 0.140 2.42EH14-EH13 5.5mm 0.175 -11.2mm -0.503 5.9mm 0.171 2.33EH15-DGXY -54.0mm -0.722 -70.5mm -1.430 56.6mm 0.707 2.65EH15-EH12 -8.8mm -0.093 -21.8mm -0.300 9.5mm 0.082 2.86EH15-EH13 -3.4mm -0.461 -4.2mm -0.765 1.4mm 0.173 0.80EH15-EH14 15.0mm 0.291 12.1mm 0.308 -11.2mm -0.178 2.78EH16-DGXY 10.2mm 0.196 5.0mm 0.107 -19.8mm -0.275 2.59 EH16-EH12 -7.8mm -0.090 4.3mm 0.064 10.1mm 0.096 2.83 EH16-EH13 -8.8mm -0.178 17.7mm 0.492 10.2mm 0.182 2.74 EH16-EH14 1.4mm 0.130 10.6mm 1.242 1.3mm 0.097 1.44 EH16-EH15 9.5mm 0.345 3.6mm 0.161 3.7mm 0.102 2.52 EH17-EH16 17.2mm 0.255 -43.2mm -0.689 28.8mm 0.292 2.59 EH18-DGXY -29.0mm -0.241 -121.4mm -1.134 55.4mm 0.487 2.74 EH18-EH16 15.2mm 0.199 -23.6mm -0.341 1.9mm 0.019 2.68 EH18-EH17 7.7mm 0.634 -0.9mm -0.104 -0.0mm -0.000 0.62 EH19-DGXY 9.0mm 0.180 51.3mm 1.279 -14.5mm -0.224 2.50 EH19-EH16 -9.4mm -0.165 -84.9mm -1.817 36.8mm 0.507 2.62 EH19-EH17 -22.5mm -0.373 -53.2mm -1.064 13.5mm 0.179 2.39 EH19-EH18 -24.5mm -0.432 -59.2mm -1.326 38.7mm 0.551 2.43 EH20-EH19 -7.4mm -0.153 -11.2mm -0.303 -9.1mm -0.127 2.44 EH21-EH19 -22.6mm -0.564 3.2mm 0.092 -1.2mm -0.023 2.36 EH21-EH20 -5.0mm -0.238 6.0mm 0.378 -8.0mm -0.271 1.31 EH22-EH20 -4.4mm -0.072 -12.8mm -0.325 7.5mm 0.079 2.45 EH22-EH21 13.3mm 0.262 5.0mm 0.117 16.2mm 0.202 2.44 EH30-DGXY 16.2mm 0.205 66.1mm 0.871 -65.9mm -0.451 2.80 EH30-EH12 -4.3mm -0.084 8.4mm 0.209 9.1mm 0.146 2.58 EH30-EH13 23.4mm 0.628 10.9mm 0.399 -2.6mm -0.060 2.61 EH30-EH14 0.5mm 0.032 -24.7mm -2.161 3.6mm 0.221 1.76 EH30-EH15 -5.8mm -0.689 -8.7mm -1.230 3.8mm 0.348 1.13 EH30-EH16 -3.3mm -0.376 5.1mm 0.724 1.7mm 0.155 1.72EH30-EH16 0.3mm 0.032 6.1mm 0.687 -5.7mm -0.450 1.96 EH30-EH17 -4.6mm -0.072 58.2mm 1.025 -36.2mm -0.392 2.53 EH30-EH18 -1.7mm -0.021 30.9mm 0.490 -15.8mm -0.159 2.65 EH31-DGXY 9.9mm 0.343 51.2mm 2.124 -24.4mm -0.600 2.06 EH31-EH16 -1.7mm -0.040 59.0mm 1.340 18.3mm 0.298 2.50 EH31-EH17 -24.1mm -0.253 -42.7mm -0.424 4.4mm 0.030 2.78 EH31-EH18 -28.4mm -0.577 -69.1mm -1.565 29.9mm 0.459 2.38 EH31-EH19 1.3mm 0.176 1.0mm 0.133 -3.1mm -0.355 0.91 EH31-EH20 8.2mm 0.222 7.2mm 0.260 9.9mm 0.180 2.19 EH31-EH21 -4.4mm -0.160 9.9mm 0.416 10.2mm 0.286 1.93 EH31-EH22 12.7mm 0.341 20.5mm 0.699 -0.1mm -0.002 2.19 EH31-EH30 -13.9mm -0.328 -7.5mm -0.166 43.0mm 0.620 2.56 EH32-EH19 -9.7mm -0.265 -26.6mm -0.898 6.6mm 0.137 2.16 EH32-EH20 -4.7mm -0.077 -14.1mm -0.330 9.9mm 0.107 2.48 EH32-EH21 9.0mm 0.083 31.6mm 0.357 -1.2mm -0.008 2.84 EH32-EH22 0.2mm 0.107 -3.0mm -2.011 -0.8mm -0.364 0.14 EH32-EH31 -9.0mm -0.069 244.3mm 2.391 17.6mm 0.068 2.91 HHBB-DGXY -4.5mm -0.089 -19.3mm -0.451 -4.4mm -0.090 2.46 HHBB-DGXY 0.6mm 0.012 -19.8mm -0.463 -6.9mm -0.099 2.51 HHBB-EH16 78.5mm 1.461 -11.6mm -0.257 107.3mm 1.528 2.53 HHBB-EH17 55.1mm 0.171 -5.2mm -0.022 31.5mm 0.091 2.96 HHBB-EH18 -4.2mm -0.035 121.8mm 1.255 -9.7mm -0.094 2.72 HHBB-EH19 -19.7mm -0.397 -12.1mm -0.257 70.5mm 1.024 2.60 HHBB-EH20 10.4mm 0.186 3.5mm 0.082 -11.6mm -0.143 2.45HHBB-EH21 14.8mm 0.159 -32.5mm -0.536 90.6mm 0.443 2.69 HHBB-EH21 -9.7mm -0.023 -75.1mm -0.051 -1262.3mm -2.044 2.99 HHBB-EH21 1.0mm 0.003 -102.4mm -0.113 -1274.7mm -2.561 2.98 HHBB-EH22 5.5mm 0.078 69.6mm 1.479 101.7mm 0.687 2.58 HHBB-EH30 -7.0mm -0.106 53.1mm 0.849 120.1mm 1.125 2.69 HHBB-EH30 6.1mm 0.024 -75.4mm -0.127 -1420.6mm -3.967 2.98 HHBB-EH31 -17.5mm -0.323 100.5mm 1.510 69.4mm 0.771 2.73 HHBB-EH32 4.8mm 0.074 -152.5mm -3.238 98.3mm 0.746 2.57 TGXQ-DGXY -10.3mm -0.107 -19.3mm -0.234 4.7mm 0.050 2.80 TGXQ-DGXY -39.1mm -0.542 -26.3mm -0.417 12.0mm 0.127 2.72 TGXQ-EH12 23.0mm 0.318 27.5mm 0.573 -48.2mm -0.619 2.50 TGXQ-EH14 34.8mm 0.369 39.7mm 0.612 -54.9mm -0.542 2.75 TGXQ-EH17 -37.9mm -0.000 -120.5mm -0.000 33.1mm 0.000 3.00 TGXQ-EH18 94.9mm 1.174 25.3mm 0.378 55.6mm 0.560 2.62 TGXQ-EH18 -85.8mm -0.160 -124.2mm -0.105 -1578.1mm -2.504 2.99 TGXQ-EH18 -263.0mm -0.195 -317.0mm -0.172 -1476.9mm -1.174 3.00 TGXQ-EH19 -20.3mm -0.489 -28.7mm -0.986 11.5mm 0.278 2.14 TGXQ-EH20 -10.7mm -0.141 -50.0mm -0.842 -13.7mm -0.120 2.63 TGXQ-EH22 -3.9mm -0.028 64.9mm 0.648 25.9mm 0.172 2.85 TGXQ-EH30 -30.2mm -0.423 -82.9mm -1.096 67.4mm 0.597 2.76 TGXQ-EH31 -20.0mm -0.455 69.7mm 1.328 -3.2mm -0.047 2.50 TGXQ-HHBB -5.5mm -0.162 2.2mm 0.074 14.5mm 0.297 2.20 TGXQ-HHBB -4.6mm -0.097 -0.7mm -0.018 7.7mm 0.174 2.443. 区域坐标系上平差测点(平面坐标及标准差)测点北向σ东向σ椭球高σDGXY -0.0000m 16.9mm 0.0000m 14.1mm 33.2420m 21.5mm EH12 5394.8435m 21.1mm 25403.1271m 15.7mm 7.5456m 24.6mm EH13 7499.1030m 16.1mm 24848.2608m 13.0mm 46.3403m 20.0mm EH14 10021.7712m 14.6mm 19865.5928m 12.2mm 42.9290m 18.7mm EH15 12178.7679m 14.5mm 26372.2696m 12.2mm 103.9847m 18.8mm EH16 14447.0378m 12.0mm 21514.7601m 10.7mm 8.4174m 16.3mm EH17 12907.1769m 24.5mm 15038.5488m 21.0mm 7.8560m 31.8mm EH18 12755.2922m 22.3mm 11419.4130m 19.0mm 20.6229m 27.9mm EH19 9656.5059m 12.3mm 6922.3381m 10.8mm 7.6985m 16.2mm EH20 15953.9303m 20.1mm 1119.2468m 15.8mm 6.4530m 29.3mm EH21 14911.5164m 19.2mm 1032.2002m 16.3mm 6.6448m 27.6mm EH22 22060.4184m 19.6mm -1276.3306m 15.7mm 8.1104m 29.6mm EH30 13417.7304m 11.9mm 21704.1269m 10.6mm 7.5271m 16.1mm EH31 10603.1057m 11.3mm 4165.0377m 10.4mm 7.3822m 15.7mm EH32 20840.3888m 19.7mm -992.2995m 15.8mm 7.6160m 29.7mm HHBB -4708.5899m 14.5mm 1281.8694m 13.2mm 22.1954m 20.4mmTGXQ -6539.7219m 16.9mm -1709.5118m 14.4mm 92.5769m 21.5mm- 参考球面半径是6372000.000 m.- 系统原点位于点DGXY.4. 平差点误差椭圆测点长半轴短半轴角度95% 置信半径DGXY 17.6mm 13.2mm -25.2°38.5mmEH12 22.0mm 14.4mm -22.6°46.6mmEH13 17.1mm 11.6mm -27.2°36.6mmEH14 15.8mm 10.7mm -30.4°33.6mmEH15 15.5mm 10.9mm -29.8°33.3mmEH16 13.3mm 9.1mm -35.2°28.3mmEH17 27.4mm 17.0mm -34.8°57.5mmEH18 25.0mm 15.3mm -35.0°52.3mmEH19 12.8mm 10.2mm -27.9°28.4mmEH20 21.1mm 14.3mm -25.3°45.0mmEH21 19.5mm 16.0mm -16.1°43.8mmEH22 19.7mm 15.5mm -10.8°43.7mmEH30 13.1mm 9.0mm -35.9°28.1mmEH31 12.3mm 9.3mm -35.8°26.9mmEH32 19.8mm 15.6mm -11.0°44.0mmHHBB 15.3mm 12.2mm -32.7°34.1mmTGXQ 17.1mm 14.2mm -15.6°38.5mm约束平差:1. WGS84控制点输入(直角坐标及标准差)测点X σY σZ σTGXQ -2563222.8406m 0.0mm 4589247.3862m 0.0mm 3600436.7834m 0.0mm2. WGS84上平差测点(笛卡尔坐标及标准差)测点X σY σZ σDGXY -2562878.6383m 23.9mm 4585127.8046m 26.6mm 3605785.1388m 22.1mm EH12 -2583524.7195m 28.7mm 4569999.7807m 31.9mm 3610178.5746m 25.0mm EH13 -2582472.3974m 26.5mm 4569254.0471m 28.9mm 3611931.7944m 23.6mm EH14 -2577427.5516m 25.5mm 4570440.8392m 27.5mm 3614013.1315m 22.6mm EH15 -2582522.5301m 25.7mm 4566219.7765m 27.9mm 3615806.8673m 22.8mm EH16 -2577620.0577m 24.2mm 4567405.4832m 25.8mm 3617626.0831m 21.6mm EH17 -2572402.7677m 34.4mm 4571344.7273m 35.4mm 3616371.4205m 29.1mm EH18 -2569294.0763m 31.3mm 4573200.6536m 32.2mm 3616258.1960m 27.1mm EH19 -2566227.7846m 19.4mm 4576931.9069m 23.0mm 3613708.3554m 19.7mm EH20 -2559411.3887m 22.2mm 4576630.7568m 28.9mm 3618883.1719m 33.6mmEH21 -2559625.6551m 23.8mm 4577192.4964m 29.7mm 3618027.1735m 30.8mm EH22 -2555619.8040m 23.4mm 4574757.2545m 29.8mm 3623897.2979m 34.2mm EH30 -2578071.1624m 24.2mm 4567824.4094m 25.6mm 3616779.7198m 21.6mm EH31 -2563558.6212m 20.0mm 4577807.8652m 22.3mm 3614487.4139m 20.0mm EH32 -2556207.6203m 23.5mm 4575226.7566m 29.9mm 3622895.7129m 34.4mm HHBB -2565298.4969m 20.2mm 4586829.7934m 22.7mm 3601904.2104m 19.7mm TGXQ -2563222.8406m 0.0mm 4589247.3862m 0.0mm 3600436.7834m 0.0mm3. WGS84 (地理坐标及标准偏差)上的平差点测点纬度σ经度σ椭球高σDGXY N 34°38' 51.05710'' 23.2mm E 119°12' 11.56265'' 19.7mm 33.1711m 29.0mm EH12 N 34°41' 44.99333'' 28.4mm E 119°28' 49.66551'' 22.4mm 7.3771m 34.0mm EH13 N 34°42' 53.32785'' 25.4mm E 119°28' 28.08716'' 21.1mm 46.1815m 31.6mm EH14 N 34°44' 15.58259'' 24.1mm E 119°25' 12.48481'' 20.4mm 42.8146m 30.3mm EH15 N 34°45' 25.05005'' 24.3mm E 119°29' 28.50529'' 20.6mm 103.8314m 30.7mm EH16 N 34°46' 39.06626'' 22.4mm E 119°26' 17.71953'' 19.5mm 8.3133m 28.8mm EH17 N 34°45' 49.51288'' 31.2mm E 119°22' 02.91759'' 26.7mm 7.7816m 39.9mm EH18 N 34°45' 44.75248'' 28.9mm E 119°19' 40.59651'' 24.8mm 20.5632m 36.1mm EH19 N 34°44' 04.33891'' 19.4mm E 119°16' 43.67135'' 16.7mm 7.6384m 25.2mm EH20 N 34°47' 28.77806'' 25.9mm E 119°12' 55.58893'' 21.0mm 6.4319m 36.6mm EH21 N 34°46' 54.95125'' 25.6mm E 119°12' 52.16031'' 21.7mm 6.6174m 35.6mm EH22 N 34°50' 46.93662'' 26.4mm E 119°11' 21.32412'' 21.5mm 8.1347m 38.1mm EH30 N 34°46' 05.65005'' 22.4mm E 119°26' 25.07190'' 19.5mm 7.4161m 28.7mm EH31 N 34°44' 35.11079'' 19.2mm E 119°14' 55.30203'' 17.0mm 7.3307m 25.4mm EH32 N 34°50' 07.34720'' 26.5mm E 119°11' 32.50924'' 21.5mm 7.6302m 38.3mm HHBB N 34°36' 18.25279'' 19.6mm E 119°13' 01.87308'' 17.2mm 22.1287m 25.2mmTGXQ N 34°35' 18.82704'' 0.0mm E 119°11' 04.48151'' 0.0mm 92.5139m 0.0mm4. 平差点误差椭圆测点长半轴短半轴角度95% 置信半径DGXY 23.6mm 19.2mm -18.9°52.9mmEH12 29.4mm 21.1mm -21.6°63.5mmEH13 26.5mm 19.8mm -25.1°57.9mmEH14 25.2mm 19.0mm -26.8°55.2mmEH15 25.3mm 19.3mm -26.3°55.6mmEH16 23.6mm 18.1mm -28.7°51.9mmEH17 33.9mm 23.2mm -32.4°72.5mmEH18 31.4mm 21.5mm -32.5°67.1mmEH19 19.5mm 16.7mm -6.4°44.4mmEH20 26.6mm 20.1mm -19.9°58.3mmEH21 25.7mm 21.6mm -9.5°58.2mmEH22 26.4mm 21.4mm -5.6°59.1mmEH30 23.5mm 18.1mm -29.1°51.8mmEH31 19.5mm 16.6mm -20.5°44.4mmEH32 26.5mm 21.5mm -5.7°59.3mmHHBB 19.7mm 17.0mm -14.5°45.1mmTGXQ 0.0mm 0.0mm 0.0°0.0mm五、实验体会实验第一天进行静态数据采集,实际看来都还是第一次接触GPS接收机,显然是人人兴趣高涨。
导航技术实验报告
一、实验目的1. 理解导航技术的基本原理和组成。
2. 掌握GPS导航系统的使用方法。
3. 通过实验验证导航技术在实际应用中的可靠性和准确性。
4. 培养团队协作能力和实际操作技能。
二、实验内容1. 导航技术基本原理介绍2. GPS导航系统操作实验3. 导航技术在实际应用中的验证实验三、实验原理导航技术是指利用各种导航设备,根据已知的地形、地貌、地理坐标等信息,对地面、空中、水下等目标进行定位和导航的技术。
导航技术主要分为两类:地面导航和卫星导航。
卫星导航系统(如GPS)是通过卫星发射的信号,在全球范围内实现地面、空中、水下等目标的定位和导航。
卫星导航系统由空间部分、地面控制部分和用户设备三部分组成。
四、实验步骤1. 导航技术基本原理介绍(1)介绍导航技术的基本概念、发展历程和应用领域。
(2)讲解卫星导航系统的组成、工作原理和特点。
(3)分析导航技术在各个领域的应用现状和发展趋势。
2. GPS导航系统操作实验(1)使用GPS接收机进行实际测量,获取目标点的经纬度坐标。
(2)通过GPS接收机软件查看测量结果,分析数据准确性。
(3)对比不同品牌的GPS接收机,分析其性能差异。
3. 导航技术在实际应用中的验证实验(1)利用GPS导航系统进行实地导航,验证其在实际应用中的可靠性。
(2)结合GIS(地理信息系统)技术,实现导航信息的可视化展示。
(3)分析导航技术在交通运输、军事、测绘、地质勘探等领域的应用效果。
五、实验结果与分析1. 导航技术基本原理介绍通过实验,我们对导航技术的基本概念、发展历程和应用领域有了更深入的了解。
卫星导航系统作为一种全球性的导航系统,具有覆盖范围广、精度高、实时性强等特点,已成为现代社会不可或缺的一部分。
2. GPS导航系统操作实验实验结果显示,不同品牌的GPS接收机在测量精度和性能上存在一定差异。
在同等条件下,品牌知名度较高的GPS接收机性能相对较好。
此外,通过GPS接收机软件查看测量结果,我们发现数据准确性较高,满足实际应用需求。
卫星定位实习报告
实习报告:卫星定位实践体验一、实习背景与目的随着全球卫星导航系统的发展,卫星定位技术在各个领域的应用越来越广泛。
为了深入了解卫星定位原理及其应用,提高自己的实际操作能力,我参加了为期两周的卫星定位实习。
本次实习旨在掌握卫星定位的基本原理、设备操作和数据分析等技能,为今后在相关领域的工作奠定基础。
二、实习内容与过程1. 实习前的准备在实习开始前,我们参加了导师组织的预备培训,学习了卫星定位的基本原理、国内外卫星导航系统的发展现状以及实习期间所需的相关软件和工具。
此外,我们还了解到了实习期间的任务安排和具体要求。
2. 实习过程(1)卫星定位原理学习实习的第一周,我们主要学习了卫星定位的基本原理,包括卫星轨道、信号传播、接收机原理等。
通过学习,我们掌握了卫星定位的数学模型和误差分析方法,为实际操作奠定了理论基础。
(2)设备操作与维护实习的第二周,我们参观了卫星定位设备实验室,并学习了各类设备的操作和维护方法。
主要包括GPS接收机、GLONASS接收机、北斗接收机等。
在导师的指导下,我们亲自操作设备,进行了卫星信号的采集和处理。
(3)数据分析与处理在掌握基本原理和设备操作后,我们开始了数据分析与处理的实习内容。
利用所学软件,我们对采集到的卫星信号进行处理,解算出测站的位置、速度等信息。
此外,我们还学习了数据质量评估和误差分析的方法,以保证定位结果的准确性。
三、实习成果与反思通过本次实习,我们掌握了卫星定位的基本原理、设备操作和数据分析等技能,提高了自己的实际操作能力。
同时,我们也认识到了卫星定位技术在实际应用中存在的局限性,如信号干扰、设备误差等。
四、总结本次实习让我们对卫星定位技术有了更深入的了解,掌握了实际操作技能,为今后在相关领域的工作打下了基础。
在今后的学习和工作中,我们将继续努力提高自己的专业素养,为我国卫星定位技术的发展贡献自己的力量。
哈工大GPS卫星导航实验报告4(选作)
实验四接收机位置解算及结果分析(选作)一、实验原理GPS接收机位置的导航解算即解出本地接收机的纬度、经度、高度的三维位置,这是GPS 接收机的核心部分。
GPS接收机位置求解的过程如下:前序实验已经提到,导航电文与测距码(C/A码)共同调制L1载频后,由卫星发出。
卫星上的时钟控制着测距信号广播的定时。
本地接收机也包含有一个时钟,假定它与卫星上的时钟同步,接收机接收到一颗卫星发送的数据后,将导航电文解码得到导航数据。
定时信息就包含在导航数据中,它使接收机能够计算出信号离开卫星的时刻。
同时接收机记下接收到卫星信号的时刻,便可以算出卫星至接收机的传播时间。
将其乘以光速便可求得卫星至接收机的距离R,这样就把接收机定位于以卫星为球心的球面的某一个地方。
如果同时用第二颗卫星进行同样方法的测距,又可将接收机定位于以第二颗卫星为球心的第二个球面上。
因此接收机就处在两个球的相交平面的圆周上。
当然也可能在两球相切的一点上,但这种情况只发生在接收机与两颗卫星处于一条直线时,并不典型。
于是,我们需要同时对第三颗卫星进行测距,这样就可将接收机定位于第三个球面上和上述圆周上。
第三个球面和圆周交于两个点,通过辅助信息可以舍弃其中一点,比如对于地球表面上的用户而言,较低的一点就是真实位置,这样就得到了接收机的正确位置。
在上述求解过程中,我们假定本地接收机与卫星时钟同步,但在实际测量中这种情况是不可能的。
GPS星座内每一颗卫星上的时钟都与一个叫做世界协调时(UTC,即格林尼至时间)的内在系统时间标度同步。
卫星钟差可根据导航电文中给出的有关钟差参数加以修正,其基准频率的频率稳定度为10-13左右。
而本地接收机时钟的频率稳定度只有10-5左右,而且其钟差一般难以预料。
由于卫星时钟和接收机时钟的频率稳定度没有可比性,这样,就会在卫星至接收机的传播时间上增加一个很大的时间误差,严重影响定位精度。
为解决这一问题,我们通常将接收机的钟差也作为一个未知参数,与本地接收机的ECEF坐标(ECEF坐标系的定义在前序实验中已经给出)一起求解。
哈工大卫星定位导航原理实验报告
卫星定位导航原理实验专业:班级:学号:姓名:日期:实验一实时卫星位置解算及结果分析一、实验原理实时卫星位置解算在整个GPS接收机导航解算过程中占有重要的位置。
卫星位置的解算是接收机导航解算(即解出本地接收机的纬度、经度、高度的三维位置)的基础。
需要同时解算出至少四颗卫星的实时位置,才能最终确定接收机的三维位置。
对某一颗卫星进行实时位置的解算需要已知这颗卫星的星历和GPS时间。
而星历和GPS 时间包含在速率为50比特/秒的导航电文中。
导航电文与测距码(C/A码)共同调制L1载频后,由卫星发出。
本地接收机相关接收到卫星发送的数据后,将导航电文解码得到导航数据。
后续导航解算单元根据导航数据中提供的相应参数进行卫星位置解算、各种实时误差的消除、本地接收机位置解算以及定位精度因子(DOP)的计算等工作。
关于各种实时误差的消除、本地接收机位置解算以及定位精度因子(DOP)的计算将在后续实验中陆续接触,这里不再赘述。
卫星的额定轨道周期是半个恒星日,或者说11小时58分钟2.05秒;各轨道接近于圆形,轨道半径(即从地球质心到卫星的额定距离)大约为26560km。
由此可得卫星的平均角速度ω和平均的切向速度v s为:ω=2π/(11*3600+58*60+2.05)≈0.0001458rad/s (1.1)v s=rs*ω≈26560km*0.0001458≈3874m/s (1.2) 因此,卫星是在高速运动中的,根据GPS时间的不同以及卫星星历的不同(每颗卫星的星历两小时更新一次)可以解算出卫星的实时位置。
本实验同时给出了根据当前星历推算出的卫星在11小时58分钟后的预测位置,以此来验证卫星的额定轨道周期。
本实验另一个重要的实验内容是对卫星进行相隔时间为1s的多点测量(本实验给出了三点),根据多个点的测量值,可以估计Doppler频移。
由于卫星与接收机有相对的径向运动,因此会产生Doppler效应,而出现频率偏移。
卫星导航实验报告
卫星导航实验报告实验报告:卫星导航系统一、实验目的:掌握卫星导航系统的基本原理和实验操作;了解实际卫星定位的应用场景和方法;实践卫星导航系统在车辆导航、航空航天和军事领域的应用。
二、实验设备和器材:卫星导航接收器、计算机、GPS卫星(全球定位系统)。
三、实验原理:卫星导航系统是一种利用卫星进行地面定位和导航的系统,其中最常见和广泛应用的就是全球定位系统(GPS)。
GPS系统由一组分布在地面轨道上的卫星组成,接收器通过接收卫星发出的无线信号,计算机利用接收到的信号进行地面导航和定位。
卫星导航系统的原理分为三个步骤:接收、计算和显示。
接收:接收器接收来自卫星的无线信号,并将信号转换为电信号进行后续处理。
计算:计算机利用收到的卫星信号计算出接收器所处的位置坐标,即导航解算。
这个过程中需要对卫星信号进行解码和时钟同步。
显示:计算机将计算出的导航结果进行处理,通过显示器或其他设备将导航信息传达给用户。
例如,在车辆导航系统中,会通过显示屏显示车辆所处位置、导航路线等信息。
四、实验步骤:1.将卫星导航接收器与计算机连接,并保证连接正常。
2.打开卫星导航接收器,并等待接收到卫星信号。
3.在计算机上安装相应的卫星导航软件,并进行初始化设置。
4.根据实际需求,选择相应的导航模式,例如车辆导航或步行导航。
5.开始导航,并观察导航结果。
五、实验结果和分析:在实验过程中,我们成功地完成了卫星导航系统的操作。
通过接收器接收到的卫星信号,计算机准确地计算出了我们所处的位置,并显示在屏幕上。
通过导航软件,我们可以选择不同的导航模式,并获得相应的导航路线和导航指示。
实验结果表明,卫星导航系统具有较高的精度和可靠性,并可以满足不同领域的导航需求。
六、实验总结:通过本次实验,我们进一步了解了卫星导航系统的原理和应用。
卫星导航系统具有很广泛的应用场景,如车辆导航、航空航天和军事领域。
卫星导航系统在现代化社会中扮演着重要的角色,并为人们提供了方便和安全的导航服务。
卫星导航定位实验报告
China University of Mining and Technology 《卫星导航定位算法与程序设计》实验报告学号: 07122825姓名:王亚亚班级:测绘12—1指导老师:王潜心/张秋昭/刘志平中国矿业大学环境与测绘学院2015-07-01实验一编程实现读取下载的星历一、实验要求:读取RINEX N 文件,将所有星历放到一个列表(数组)中。
并输出和自己学号相关的卫星编号的星历文件信息。
读取RINEX O文件,并输出指定时刻的观测信息。
二、实验步骤:1、下载2014年的广播星历文件和观测值文件,下载地址如下:ftp:///gps/data/daily/2014/2、要求每一位同学按照与自己学号后三位一致的年积日的数据文件和星历文件,站点的选择必须选择与姓氏首字母相同的站点的数据,以王小康同学为例,学号:07123077,需下载077那天的数据。
有些同学的学号365<后三位<730,则取学号后三位-365,以姜平同学为例:学号10124455,下载455-365=90 天的数据,有些同学的学号730<后三位<=999,则取学号后三位-730,以万伟同学为例:学号:07122854,则下载854-730 = 124天的数据。
可以选择wnhu0124.14n wnhu0124.14o 根据上述要求我下载了2014年第95天的数据,选择其中的wsrt0950.14n和wsrt0950.14o星历文件。
指定时刻(学号后五位对应在年积日对应的秒最相近时刻)的观测值信息如张良09123881,后五位23881,取23881-3600*6= 2281秒,6点38分01秒,最近的历元应该是6点38分00秒的数据。
根据计算与我最接近的观测时刻为2014年4月5日6点20分30.00秒。
3、编程思路:利用rinex函数读取星历文件中第14颗卫星的星历数据并输出显示。
对数据执行762次循环找到对应的2014年4月5日6点20分30.00秒,并输出观测值。
gps定位实验报告
gps定位实验报告GPS定位实验报告引言:GPS(全球定位系统)是一种基于卫星的导航系统,通过接收来自卫星的信号来确定地理位置。
在本次实验中,我们对GPS定位进行了一系列的测试和研究,以评估其准确性和可靠性。
一、实验目的GPS定位系统在现代社会中广泛应用于导航、地图制作、航空航海等领域。
本实验的目的是探究GPS定位的原理和性能,并评估其在不同环境条件下的准确性和可靠性。
二、实验方法1. 实验设备:我们使用了一台配备GPS接收器的移动设备,并在不同的地理位置进行了测试。
2. 实验步骤:a. 打开GPS接收器,并等待信号连接。
b. 在不同的地理位置进行测试,包括室内、室外、城市中心和郊区等。
c. 记录GPS接收器显示的经纬度信息,并与实际位置进行对比。
三、实验结果1. 准确性评估:a. 在室外开阔地区进行测试时,GPS定位显示的经纬度与实际位置非常接近,误差一般在几米以内。
b. 在城市中心和郊区等复杂环境中,GPS定位的准确性有所下降,误差可能会增加到十几米。
c. 在室内环境下,GPS定位的准确性明显降低,误差较大,可能达到数十米甚至更多。
2. 可靠性评估:a. 在大部分情况下,GPS定位系统表现出较高的可靠性,能够快速连接到卫星并提供准确的定位信息。
b. 然而,在高楼大厦密集的城市中心等环境中,GPS信号可能受到阻塞或干扰,导致定位不准确或无法定位。
c. 在室内环境下,由于建筑物的屏蔽效应,GPS信号的接收受到限制,造成定位不准确或无法定位的情况较为普遍。
四、实验讨论1. GPS定位的准确性主要受到环境条件的影响。
在开阔的地区,GPS定位准确性较高;而在复杂的城市环境和室内环境下,准确性较低。
2. GPS定位的可靠性受到地理环境和建筑物的影响。
在高楼大厦密集的城市中心,GPS信号容易受到阻塞或干扰,导致定位不准确或无法定位。
3. GPS定位的技术不断发展,目前已经出现了一些增强定位的技术,如差分GPS和增强型GPS等,可以在一定程度上提高定位的准确性和可靠性。
卫星导航实验报告
卫星导航实验报告1. 实验目的本实验主要目的是了解卫星导航系统的基本原理,以及掌握卫星导航系统的使用方法。
2. 实验器材•室外开阔场地•GPS接收机•计算机3. 实验步骤3.1 安装GPS接收机首先需要在室外开阔场地上安装GPS接收机。
将GPS接收机放在开阔的场地上,保证其视野良好。
然后连接计算机和GPS接收机,并启动GPS接收机。
3.2 启动GPS接收机启动GPS接收机后,需要等待其接收到卫星信号。
此时,计算机会自动搜索卫星信息并显示当前卫星位置。
3.3 获取GPS数据获取GPS数据是本实验的重点。
在获取GPS数据之前,需要先确定观测时间和地理位置。
选择合适的观测时间和地理位置能够有效地提高数据精度。
然后,需要在计算机上打开相应的数据接收软件,并连接GPS接收机。
在软件界面中,选择“串口”或“USB串口”并设置正确的参数。
然后,点击“连接”即可。
3.4 分析数据获取GPS数据后,需要对数据进行分析。
可以使用各种分析工具分析数据,如Plotter软件、Matlab等。
在分析过程中,需要注意对数据的各项指标进行逐一分析,以确定数据的准确性。
4. 实验结果通过本次实验,我们成功了解了卫星导航系统的基本原理,并掌握了卫星导航系统的使用方法。
同时,我们还获得了一系列GPS数据,并使用分析工具对数据进行了逐一分析。
通过分析,我们得到了准确的导航数据,并确保数据的可靠性和准确性。
5. 实验本次实验中,我们了解了卫星导航系统的基本原理并掌握了卫星导航系统的使用方法。
同时,我们还通过实际操作获得了大量的GPS数据,并使用分析工具对数据进行了逐一分析。
通过本次实验,我们深入了解了卫星导航系统的原理和使用方法,并对数据分析有了更深刻的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
China University of Mining and Technology 《卫星导航定位算法与程序设计》实验报告学号: 07122825姓名:王亚亚班级:测绘12—1指导老师:王潜心/张秋昭/刘志平中国矿业大学环境与测绘学院2015-07-01实验一编程实现读取下载的星历一、实验要求:读取RINEX N 文件,将所有星历放到一个列表(数组)中。
并输出和自己学号相关的卫星编号的星历文件信息。
读取RINEX O文件,并输出指定时刻的观测信息。
二、实验步骤:1、下载2014年的广播星历文件和观测值文件,下载地址如下:ftp:///gps/data/daily/2014/2、要求每一位同学按照与自己学号后三位一致的年积日的数据文件和星历文件,站点的选择必须选择与姓氏首字母相同的站点的数据,以王小康同学为例,学号:07123077,需下载077那天的数据。
有些同学的学号365<后三位<730,则取学号后三位-365,以姜平同学为例:学号10124455,下载455-365=90 天的数据,有些同学的学号730<后三位<=999,则取学号后三位-730,以万伟同学为例:学号:07122854,则下载854-730 = 124天的数据。
可以选择wnhu0124.14n wnhu0124.14o 根据上述要求我下载了2014年第95天的数据,选择其中的wsrt0950.14n和wsrt0950.14o星历文件。
指定时刻(学号后五位对应在年积日对应的秒最相近时刻)的观测值信息如张良09123881,后五位23881,取23881-3600*6= 2281秒,6点38分01秒,最近的历元应该是6点38分00秒的数据。
根据计算与我最接近的观测时刻为2014年4月5日6点20分30.00秒。
3、编程思路:利用rinex函数读取星历文件中第14颗卫星的星历数据并输出显示。
对数据执行762次循环找到对应的2014年4月5日6点20分30.00秒,并输出观测值。
4、程序运行结果:三、编程主要代码:1、读写N 文件主函数代码: clc;%清除屏幕之前打过的代码clear all ;%从内存中释放所有的内存变量和数组以及所有用户自定义的菜单栏, 菜单, 和窗口的定义。
close all ;%关闭当前及所有工作区中所有打开的数据库, 表, 和索引,并选择 1 号工作区 [filename,filepath]=uigetfile('*.14n','选择计算的输入文件');%打开窗口选取计算的输入文件 file=[filepath filename];%获得文件名 rinexe(file,'eph.dat');%函数rinexe 读取一个标准格式化导航信息文件并重新格式化数据为21行列数等于卫星数的矩阵。
Eph = get_eph('eph.dat');%将存放在‘eph.dat ’中的导航电文数据提取出来,为计算卫星位置做准备,返回值-eph 星历矩阵,将读到的数据存入内存(注意:eph 星历矩阵,每颗卫星存放21个参数) Eph[filename,filepath]=uiputfile('王亚亚-作业1读写N 导航文件.txt','选择一个路径对结果文件保存');%选择路径保存输出的结果文件 file=[filepath filename];%获取文件名 fid = fopen(file,'wt+');%文件有两种格式:二进制文件(b)和文本文件(t)。
在Windows 下,打开文件的默认是二进制格式,如果要以文本方式打开,则必须在打方式中加上字符 't'。
fprintf(fid,'%c',' 班级 姓名 学号 作业序号 主要内容 ');fprintf(fid,'%c\n',' ');fprintf(fid,'%c',' 测绘12-1 王亚亚07122825 上机实验作业一 读写N 导航文件 '); fprintf(fid,'%c\n',' '); for k = 1: size(Eph,1)p=num2str(Eph(k,44));%输出第14颗卫星的星历数据fprintf(fid,'%c',p);%以一个字符输出 if k == 1;fprintf(fid,'%c',' %GPS 卫星PRN 编号'); end if k == 2;fprintf(fid,'%c',' %GPS 卫星钟的漂移速度'); endif k == 3; fprintf(fid,'%c',' %参考时刻的升交点赤经M0'); endif k == 4; fprintf(fid,'%c',' %roota sqrt(A)( m1 / 2(根号下) ) 轨道长半轴的平方根'); endif k == 5; fprintf(fid,'%c',' %deltan Δn(rad /s) 平均运动修正量'); endif k == 6; fprintf(fid,'%c',' %ecc e 轨道偏心率'); end if k == 7;fprintf(fid,'%c',' %omega ω(rad) 近地点的角距'); endif k == 8; fprintf(fid,'%c',' %cuc Cuc(rad) 纬度幅角的余弦调和项改正的振幅'); endif k == 9; fprintf(fid,'%c',' %cus Cus(radians) 纬度幅角的正弦调和项改正的振幅'); endif k == 10; fprintf(fid,'%c',' %crc Crc(m) 轨道半径的余弦调和项改正的振幅');endif k == 11; fprintf(fid,'%c',' %crs Crs(m)轨道半径的正弦调和项改正的振幅'); endif k == 12; fprintf(fid,'%c',' %i0 i0(rad) 轨道倾角'); endif k == 13; fprintf(fid,'%c',' %idot i(rad/s)(IDOT) 轨道倾角变化率'); endif k == 14; fprintf(fid,'%c',' %cic Cic(rad) 轨道倾角的余弦调和项改正的振幅'); endif k == 15; fprintf(fid,'%c',' %cisCis(rad) 轨道倾角的正弦调和项改正的振幅'); endif k == 16;fprintf(fid,'%c',' %Omega0Ω(rad)(OMEGA) 参考时刻的升交点的赤经'); endif k == 17;fprintf(fid,'%c',' %Omegadot Ω(rad/s)(OMEGA DOT) 升交点赤经的变化率'); endif k == 18;fprintf(fid,'%c',' %toe TOE星历的参考时刻(GPS周内的秒数) 星历表参考历元'); endif k == 19; fprintf(fid,'%c',' %af0 卫星钟的偏差(s)卫星钟偏差'); endif k == 20; fprintf(fid,'%c',' %af1 卫星钟的漂移(s/s)'); endif k == 21;fprintf(fid,'%c',' %toe 存储TOE星历的参考时刻(GPS周内的秒数) 电文发送时刻'); endfprintf(fid,'%c\n',' ');endfclose(fid);2、读写O文件主函数代码:clc;%清除屏幕之前打过的代码clear all;%从内存中释放所有的内存变量和数组以及所有用户自定义的菜单栏, 菜单, 和窗口的定义。
close all;%关闭当前及所有工作区中所有打开的数据库, 表, 和索引,并选择1 号工作区% We identify the observation file and open it我们确定观测文件并打开它[filename,filepath]=uigetfile('*.14O','选择计算的输入的O文件');file=[filepath filename];%文件名fid1 = fopen(file,'rt');%r:读出观测文件ofile1,t:以文本的格式(因为fopen函数默认打开方式是二进制)[Obs_types1, ant_delta1, ifound_types1, eof11] = anheader(file);%打开观测文件ofile1,从头文件中截取观测类型Obs_types1、天线参数的信息ant_delta1,以及标明是否寻找到观测类型行ifound_types1、是否到文件尾的判定eof11 NoObs_types1 = size(Obs_types1,2)/2;%返回观测类型Obs_types1列数(1:行2:列)的Obs_types1矩阵是1行14列:[C1P1P2L1L2D1D2] size(Obs_types1,2)值是14除以2得观测值类型个数是7种Pos = [];% There are 20 epochs of data in ofile1SITE247J.01N文件中有20个历元的数据for q = 1:761 %循环762次找到对应的2014年4月5日6点20分30.0000000秒[time1, dt1, sats1,eof1,datee] =fepoch_0(fid1);% [time1, dt1, sats1, eof1] =fepoch_0(fid1);%通过函数fepoch_0调用观测文件SITE247J.01O,返回四个参数:time1:周内秒、dt1:接收机时钟的偏差( 单位为s, 为可选项)、sats1:卫星的PRN号矩阵、eof1:返回是否到文件尾的标示符(1:结束0:未结束)NoSv1 = size(sats1,1);%通过查看行向量sats1的长度,获取卫星个数% We pick the observed P2 pseudoranges 我们获取观测的P2码伪距其中伪随机噪声码(PN)即测距码主要有精测距码(P码)和粗测距码(C/A码)两种。