双闭环三相异步电动机调压调速系统课程设计

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章绪论

现在社会工业化越来越体现着它的强大。工业化运行的前提是能源的有力支撑。调压调速是一种非常简单实用的调速方法。本论文对异步电机开环控制调压调速系统及速度闭环控制调压调速系统的讨论和仿真,并探讨最经济实用的调压电路。找出最合理的调速方法,实现电机平稳运行,平滑调速,既能延长电机寿命,又可以有效节约能源。在现实社会具有相当高的研究价值。交流电动机的发明是由美国发明家特斯拉完成的,最早的交流电动机根据电磁感应原理设计,结构比起直流电动机更为简单,同时也比起只能使用在电车上的直流电动机用途更广泛,它的发明让电动机真正进入了家庭电器领域。交流电动机问世之后,同步电动机、串激电动机、交流换向器电动机等也逐步被人们发明出来,并投入实际的生产,为人们的生活提供更多便利。电动机的发明和应用对人类来说具有极大的意义,可以说它为人类生活带来了翻天覆地的变化。

交流电动机,特别是鼠笼型异步电动机,结构简单,成本低,维护方便,而且坚固耐用,惯量小,运行可靠,对环境要求不高,因此在工农业生产中得到了极广泛的应用。其突出的优点是:电机制造成本低,结构简单,维护容易,可以实现高压大功率及高速驱动,适宜在恶劣条件下工作,并能获得和直流电机控制系统相媲美或更好的控制性能。因此,人们对交流电机的研究也越来越深入。但是交流电机是一个复杂的、多变量、强耦合的非线性系统,在设计交流调速系统时完全用解析法是相当复杂的也是行不通的。构造实验系统进行分析研究是通常采用的办法,但由实验来分析研究,耗时长、投资大,且不便于分析系统的各种性能。因此,利用计算机仿真技术去研究交流调速系统是一个省时省力的好办法,计算机仿真作为研究交流电机的一种重要手段,也越来越受到重视。

MATLAB 是目前最流行的科学计算语言之一。它是以复数矩阵作为基本编程单元的高级程序设计语言,提供了矩阵的运算与操作,拥有强大的绘图功能。同时还是高度集成的软件系统,解决工程计算、图形可视化、图像处理、多媒体处理等问题。MATLAB 语言在自动控制、航天工业、汽车工业、生物医学工程、语言处理的方面都有涉及。MATLAB软件是一个非常优秀的软件,具有强大的仿真能力。仿真结果直观。

第2章双闭环三相异步电动机调压调速系统的工作原理2.1 双闭环三相异步电动机调压调速系统控制原理图

调压调速是异步电动机调速方法中的一种,由三相异步电动机机械特性参数表达式可知,当异步电动机等效电路的参数不变时,在相同点的转速下,电磁转矩与定子电压的平方成正比,因此,改变定子外加电压就可以机械特性的函数关系,从而改变电动机在一定负载转矩下的转速。本设计采用转速电流双闭环调速系统。电流环在里边,作为内环;转速环在外边,作为外环,系统控制原理图如下:

图2-1 双闭环三相异步电动机调压调速系统原理图

2.2 控制电路

速度给定指令电位器BP1所给出的电压,经运算放大器N组成的速度调节器送入移相触发电路。同时,N还可以得到来自测速发电机的速度负反馈信号或来自电动机端电压的电压反馈信号,以构成闭环系统,提高调速系统的性能。

2.3 移相触发电路

双向晶闸管有4种触发方式。本系统采用负脉冲触发,即不论电源电压在正半周期还是负半周期,触发电路都输出负得触发脉冲。负脉冲触发所需要的门极电压和电流较小,故容易保证足够大的触发功率,且触发电路简单。TS是同步变压器,为保证触发电路在电源正负半波时都能可靠触发,又有足够的移相范围,TS采用DY11型接法。

移相触发电路采用锯齿波同步方式,可产生双脉冲并有强触发脉冲电源(+40V)经X31送到脉冲变压器的一次侧。

第3章 主电路设计

3.1 调压电路的设计

改变加在定子上的电压是通过交流调压器实现的。目前广泛采用的交流调压器由晶闸管等器件组成。它是将三个双向晶闸管分别接到三相交流电源与三相定子绕组之间通过调整晶闸管导通角的大小来调节加到定子绕组两端的端电压。这里采用三相全波星型联接的调压电路。

图3-1 调压电路原理图

3.2 开环调压调速设计

开环系统的主电路由触发电路、调压电路、电机组成。原理图如下:

图3-2 开环调压系统原理图

AT 为触发装置,用于调节控制角的大小来控制晶闸管的导通角,控制晶闸管输出电压来调节加在定子绕组上的电压大小。

3.3 闭环调压调速设计

速度负反馈闭环调压调速系统的工作原理:将速度给定值与速度反馈值进行比较,比较后经速度调节器得到控制电压,再将此控制电压输入到触发装置,由触发装置输出来控制晶闸管的导通角,以控制晶闸管输出电压的高低,从而调节了加在定子绕组上的电压的大小。因此,改变了速度给定值就改变了电动机的转速。由于采用了速度负反馈从而实现了平稳、平滑的无级调速。同时当负载发生变化时,通过速度负反馈,能自动调整加在电动机定子绕组上的电压大小。由速度调节器输出的控制电压使晶闸管触发脉冲前移,使调压器的输出电压提高,导致电动机的输出转矩增大,从而使速度回升,接近给定值。

3-3 系统调速结构图

图3-4 闭环调速系统原理图

图5-9 调压调速系统静态结构框图

第4章控制回路设计

4.1电流调节器的设计

1.电流调节器的设计原理

电流环的控制对象又电枢回路组成的大惯性环节与晶闸管整流装置,触发器,电流互感器以及反馈滤波等一些小惯性环节组成。电流环可以校正成典型Ⅰ型系统,也可以校正成典型Ⅱ型系统,校正成哪种系统,取决于具体系统要求。

由于电流环的重要作用是保持电枢电流在动态过程中不超过允许值,因而,在突加给定时不希望有超调,或者超调越小越好。从这个观点来说,应该把电流环校正成典型Ⅰ型系统。但是,典型1型系统在电磁惯性时间常数较大时,抗绕性能较差。恢复时间长。考虑到电流环还对电网电压波动又及时的调节功能,因此,为了提高其抗扰性能,又希望把电流环校正成典型Ⅱ型系统。

2.电流环的结构的简化

电流环的结构如图4-1所示。把电流环单独拿出来设计时,首先遇到的问题是反电势产生的反馈作用。在实际系统中,由于电磁时间常数T1远小于机电时间常数Tm,电流调节过程往往比转速的变化过程快得多,因而也比电势E的变化快得多,反电势对电流环来说,只是一个变化缓慢的扰动,在电流调节器的快速调节过程中,可以认为E基本不变,即△E=0。这样,在设计电流环时,可以不考虑反电势变化的影响,而将电势反馈作用断开,使电流环结构得以简化。另外,在将给定滤波器和反馈滤波器两个环节等效的置于环内,使电流环结构变为单位反馈系统。最后,考虑到反馈时间常数Ti 和晶闸管变流装置间常数Ts 比T1 小得多,可以当作小惯性环节处理。经过上述简化和近似处理后,电流环的结构图最终可简化为图4-2所示:

图4-1 电流环的结构图

相关文档
最新文档