双闭环直流调速系统设计
双闭环直流调速系统设计
一、课程设计目的在《电机与拖动》、《电力电子技术》、《伺服系统》和《电力拖动自动控制系统》课程知识的基础上,完成课程的综合性设计。
通过课程设计环节的训练,包括设计方案的论证、参数计算、系统仿真和设计报告的撰写,掌握系统综合应用项目的设计流程和方法,加深对完整项目开发的的理解和掌握,培养应用系统的设计能力,初步积累双闭环直流调速系统的设计方法,以及分析问题和解决问题的能力,并进一步拓宽专业知识面,培养实践应用技能和创新意识。
电力系统综合课程课程设计是电气工程及其自动化专业的一门专业课程,它是一次综合性的理论与实践相结合的训练,也是本专业的一次基本技能训练,其主要目的是:1、理论联系实际,掌握根据实际工艺要求设计电力拖动自动控制系统的基本方法。
2、对一种典型的双闭环调速自动控制系统进行综合性分析设计,掌握各部件和整个系统的设计调试步骤、方法及操作实际系统的方法。
加强基本技能训练。
3、掌握参数变化对系统性能影响的规律,培养灵活运用所学理论解决控制系统中各种实际问题的能力。
4、培养分析问题、解决问题的独立工作能力,学会实验数据的分析与处理能力及编写设计说明书和技术总结报告的能力。
为下学期毕业设计作准备。
5、通过设计熟练地查阅有关资料和手册。
二、课程设计内容与要求1、本课程设计的对象直流伺服电机:学生自行查找电机型号直流测速机:学生根据设计任务选择2、本课程设计的内容要求设计一个直流双闭环调速系统。
其主要内容为:1、测定综合实验中所用控制对象的参数(在实验室完成)。
2、根据给定指标设计电流调节器和转速调节器,并选择调节器参数和具体实现电路。
3、按设计结果组成系统,以满足给定指标。
4、研究参数变化对系统性能的影响。
5、在时间允许的情况下进行调试。
3、本课程设计的设计要求a.调速范围D=5~10,静差率S≤5%。
b.空载启动时电流超调σi≤5%,转速超调σn≤10%(在额定转速时)。
c.动态速降小于10%。
d.振荡次数小于2次。
双闭环直流调速系统的设计
双闭环直流调速系统的设计一、双闭环直流调速系统的结构速度闭环由速度检测器、速度控制器和执行器组成。
速度检测器通常采用编码器或霍尔效应传感器,用于实时测量电机的转速。
速度控制器根据检测器测量值与设定值的差异,计算出控制信号,并将其发送给执行器。
执行器根据控制信号调整电机的驱动电压或电流,以实现转速的控制。
电流闭环由电流检测器、电流控制器和执行器组成。
电流检测器用于测量电机的电流值,电流控制器根据检测值与设定值的差异计算出电流控制信号,并将其发送给执行器。
执行器根据电流控制信号调整电机的电压或电流,以保持电机电流稳定。
二、双闭环直流调速系统的设计步骤1.确定系统的要求和参数:包括转速范围、精度要求、响应时间等。
根据要求和参数,选择适当的检测器、控制器和执行器等元件。
2.设计速度闭环:选择适当的速度检测器,如编码器或霍尔传感器,用于测量电机的转速。
选择合适的速度控制器,如PID控制器,根据转速设定值和检测器测量值的误差计算出控制信号。
选择合适的执行器,如晶闸管或MOSFET,对电机的驱动电压或电流进行调节。
3.设计电流闭环:选择适当的电流检测器,如电流互感器或霍尔传感器,用于测量电机的电流值。
选择合适的电流控制器,如PID控制器,根据电流检测值和设定值的差异计算出电流控制信号。
选择合适的执行器,如晶闸管或MOSFET,对电机的驱动电压或电流进行调节。
4.设计输出滤波器:为了减小电机输出信号的电磁干扰和噪声,可以设计一个输出滤波器,将电机输出信号进行滤波处理。
5.进行系统参数的仿真和调试:使用仿真软件对双闭环直流调速系统进行仿真,并调试系统参数以满足设计要求。
可以采用MATLAB等软件进行仿真和参数优化。
6.确定系统结构和元件的选型:根据仿真和调试的结果,确定系统结构和元件的选型,并进行实际建设和测试。
总结:双闭环直流调速系统的设计是一项复杂的工程,需要综合考虑多个因素。
正确选择检测器、控制器和执行器等元件,并合理调整系统参数,可以实现对直流电机转速的精确控制。
双闭环直流调速系统的设计
双闭环直流调速系统设计一、系统组成与数学建模1)系统组成为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。
二者之间实行嵌套(或称串级)联接如下图所示。
L+-图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。
这就形成了转速、电流双闭环调速系统。
为了获得良好的静、动态性能,转速和电流两个调节器一般都采用P I 调节器,这样构成的双闭环直流调速系统的电路原理图示于下图。
图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压U c为正电压的情况标出的,并考虑到运算放大器的倒相作用。
2)数学建模图中W ASR(s)和W ACR(s)分别表示转速调节器和电流调节器的传递函数。
如果采用PI调节器,则有ss K s W i i iACR 1)(ττ+= ss K s W n n nASR 1)(ττ+=二、 设计方法采用工程设计法 1、设计方法的原则: (1)概念清楚、易懂; (2)计算公式简明、好记;双闭环直流调速系统的动态结构图(3)不仅给出参数计算的公式,而且指明参数调整的方向; (4)能考虑饱和非线性控制的情况,同样给出简单的计算公式; (5)适用于各种可以简化成典型系统的反馈控制系统。
2、工程设计方法的基本思路:(1)选择调节器结构,使系统典型化并满足稳定和稳态精度。
(2)设计调节器的参数,以满足动态性能指标的要求。
一般来说,许多控制系统的开环传递函数都可表示为∏∏==++=n1i irm1j j )1()1()(s T ss K s W τ上式中,分母中的 sr 项表示该系统在原点处有 r 重极点,或者说,系统含有 r 个积分环节。
根据 r=0,1,2,……等不同数值,分别称作0型、I 型、Ⅱ型、……系统。
双闭环直流调速系统ACR设计
双闭环直流调速系统ACR设计双闭环直流调速系统(ACR)是一种使用两个反馈环来控制直流电机转速的系统。
其中一个环,被称为速度环(内环),用来控制电机的速度;另一个环,被称为电流环(外环),用来控制电机的电流。
ACR系统能够提供更精确的转速控制,同时能够保护电机免受过流和过载的损坏。
ACR系统的设计首先需要确定控制器的参数。
其中,内环控制器的参数包括比例增益(Kp)和积分时间(Ti);外环控制器的参数包括比例增益(Kp)和积分时间(Ti)。
这些参数需要根据实际系统的需求来选择,可以通过试验和调整来获得最佳参数。
在内环控制器中,比例增益决定了速度误差与输出调节器输入信号之间的比例关系,即输出调节器的输出值与速度误差的乘积。
积分时间决定了对速度误差的积分时间长度,即速度误差累计值。
在外环控制器中,比例增益决定了电流误差与输出调节器输入信号之间的比例关系,即输出调节器的输出值与电流误差的乘积。
积分时间决定了对电流误差的积分时间长度,即电流误差累计值。
ACR系统的设计还需要确定速度传感器和电流传感器的类型和位置。
速度传感器用于测量电机的转速,可以选择编码器、霍尔传感器等;电流传感器用于测量电机的电流,可以选择霍尔传感器、感应电流传感器等。
这些传感器需要合理安装在电机上,以确保准确测量电机的转速和电流。
在系统工作时,ACR系统通过测量电机的转速和电流,并与设定值进行比较,计算得到速度误差和电流误差。
然后,内环控制器根据速度误差来产生控制信号,控制电机的速度接近设定值;外环控制器根据电流误差来产生控制信号,控制电机的电流接近设定值。
这些控制信号通过功率放大器输出到电机,实现对电机速度和电流的控制。
ACR系统的设计需要考虑诸多因素,如电机的负载特性、速度和电流的响应时间、系统的稳定性等。
通过合理选择控制器的参数和传感器的类型和位置,采取适当的控制策略,可以实现高精度、高效率的直流电机调速系统。
双闭环直流电动机调速系统
04
系统软件设计
控制算法设计
算法选择
算法实现
根据系统需求,选择合适的控制算法, 如PID控制、模糊控制等。
将控制算法用编程语言实现,并集成 到系统中。
算法参数整定
根据系统性能指标,对控制算法的参 数进行整定,以实现最优控制效果。
调节器设计
调节器类型选择
根据系统需求,选择合适 的调节器类型,如PI调节 器、PID调节器等。
在不同负载和干扰条件下测试系统的性能, 验证系统的鲁棒性。
06
结论与展望
工作总结
针对系统中的关键问题,如电流和速度的动态 调节、超调抑制等,进行了深入研究和改进。
针对实际应用中可能出现的各种干扰和不确定性因素 ,进行了充分的考虑和实验验证,提高了系统的鲁棒
性和适应性。
实现了双闭环直流电动机调速系统的优化设计 ,提高了系统的稳定性和动态响应性能。
通过对实验数据的分析和比较,验证了所设计的 双闭环直流电动机调速系统的可行性和优越性。
研究展望
进一步研究双闭环直流电动机 调速系统的控制策略,提高系
统的动态性能和稳定性。
针对实际应用中的复杂环境和 工况,开展更为广泛和深入的 实验研究,验证系统的可靠性
和实用性。
探索双闭环直流电动机调速系 统在智能制造、机器人等领域 的应用前景,为相关领域的发 展提供技术支持和解决方案。
功率驱动模块
总结词
控制直流电动机的启动、停止和方向。
详细描述
功率驱动模块是双闭环直流电动机调速系统的核心部分,负责控制直流电动机的启动、停止和方向。它通常 由电力电子器件(如晶体管、可控硅等)组成,通过控制电动机的输入电压或电流来实现对电动机的速度和 方向的控制。功率驱动模块还需要具备过流保护、过压保护和欠压保护等功能,以确保电动机和整个系统的
双闭环可逆直流脉宽PWM调速系统设计
双闭环可逆直流脉宽PWM调速系统设计一、系统概述二、系统设计原理1.速度内环设计原理速度内环的目标是实现对电机转速的闭环控制。
通过测量电机输出轴速度和设定速度值之间的差异,根据PID控制算法计算出控制信号,通过控制器输出的脉宽PWM信号调节电机的输出转矩,从而实现对电机速度的控制。
2.电流外环设计原理电流外环的目标是实现对电机电流的闭环控制。
通过测量电机的电流和设定电流值之间的差异,根据PID控制算法计算出电流控制信号,通过控制器输出的脉宽PWM信号调节电机的电流,从而实现对电机电流的控制。
三、系统构建要素1.电机驱动模块:用于控制电机的转矩和速度,并提供脉宽PWM信号输出接口。
通常使用MOSFET或IGBT作为功率开关元件。
2.速度测量模块:用于测量电机输出轴的转速,通常采用霍尔元件或编码器。
3.电流测量模块:用于测量电机的电流。
通常通过电流传感器或全桥电流检测器实现。
4.控制器:对测量的速度和电流数据进行处理,根据PID控制算法计算出合适的脉宽PWM信号,控制电机的转速和电流。
5.信号调理模块:用于对控制信号进行滤波和放大,以保证信号的稳定性和合理性。
6.反馈回路:将测量得到的电机速度和电流数据反馈给控制器,以实现闭环控制。
7.电源模块:为整个系统提供稳定的电源。
四、系统工作流程1.控制器通过速度测量模块获取电机的实际速度,并与设定速度进行比较计算出速度误差。
2.控制器通过电流测量模块获取电机的实际电流,并与设定电流进行比较计算出电流误差。
3.将速度误差和电流误差作为输入,经过PID控制算法计算出合适的脉宽PWM信号。
4.控制器将计算得到的脉宽PWM信号通过信号调理模块进行滤波和放大,然后输出到电机驱动模块。
5.电机驱动模块根据脉宽PWM信号的占空比调节电机的输出转矩和电流。
6.通过反馈回路将电机的实际速度和电流信息返回给控制器。
7.根据反馈信息对速度误差和电流误差进行修正,进一步优化脉宽PWM信号的计算。
双闭环直流调速系统设计
双闭环直流调速系统设计1.电机数学模型的建立首先要建立电机的数学模型,这是设计双闭环直流调速系统的基础。
根据电机的参数和运动方程,可以得到电机的数学模型,一般为一组耦合的非线性微分方程。
2.速度内环设计速度内环负责实现期望速度的跟踪控制。
常用的设计方法是采用比例-积分(PID)控制器。
PID控制器的输出是速度的修正量,通过与期望速度相减得到速度误差,然后根据PID算法计算控制器输出。
PID控制器的参数调节是一个关键问题,可以通过试探法、经验法或优化算法等方法进行调节,以实现最佳的速度跟踪性能。
3.电流外环设计电流外环的作用是保证电机的电流输出与速度内环控制输出的一致性。
一般采用PI调节器进行设计。
PI调节器的参数通过试探法、经验法或优化算法等方法进行调节,以实现电流输出的稳定性。
4.稳定性分析与系统稳定控制设计好速度内环和电流外环后,需要对系统的稳定性进行分析。
稳定性分析可以通过线性化方法、根轨迹法、频率响应法等方法进行。
分析得到系统的自然频率、阻尼比等参数后,可以根据稳定性准则进行系统稳定控制。
常用的控制方法包括模型预测控制、广义预测控制、滑模控制等。
5.鲁棒性设计在双闭环直流调速系统设计中,鲁棒性是一个重要的指标。
通过引入鲁棒性设计方法,可以提高系统对参数扰动和外部干扰的抑制能力。
常用的鲁棒性设计方法包括H∞控制、μ合成控制等。
以上是双闭环直流调速系统设计的一般步骤,具体的设计过程可能因实际应用和控制要求的不同而有所差异。
设计双闭环直流调速系统需要深入了解电机的特性和系统的控制需求,综合运用控制理论和工程方法,通过模拟仿真和实验验证来不断调整和优化控制参数,以实现系统的高性能调速控制。
双闭环直流调速系统的设计与仿真实验报告
双闭环直流调速系统的设计与仿真实验报告一、系统结构设计双闭环直流调速系统由两个闭环控制组成,分别是速度子环和电流子环。
速度子环负责监测电机的转速,并根据设定值与实际转速的误差,输出电流指令给电流子环。
电流子环负责监测电机的电流,并根据电流指令与实际电流的误差,输出电压指令给电机驱动器,实现对电机转速的精确控制。
二、参数选择在进行双闭环直流调速系统的设计之前,需选择合适的控制参数。
根据实际的电机参数和转速要求,确定速度环和电流环的比例增益和积分时间常数等参数。
同时,还需根据电机的动态特性和负载特性,选取合适的速度和电流传感器。
三、控制策略速度子环采用PID控制器,通过计算速度误差、积分误差和微分误差,生成电流指令,并传递给电流子环。
电流子环也采用PID控制器,通过计算电流误差、积分误差和微分误差,生成电压指令,并输出给电机驱动器。
四、仿真实验为了验证双闭环直流调速系统的性能,进行了仿真实验。
首先,通过Matlab/Simulink建立双闭环直流调速系统的模型,并设置不同转速和负载条件,对系统进行仿真。
然后,通过调整控制参数,观察系统响应速度、稳定性和抗干扰性等指标的变化。
五、仿真结果分析根据仿真实验的结果可以看出,双闭环直流调速系统能够实现对电机转速的精确控制。
当系统负载发生变化时,速度子环能够快速调整电流指令,使电机转速保持稳定。
同时,电流子环能够根据速度子环的电流指令,快速调整电压指令,以满足实际转速的要求。
此外,通过调整控制参数,可以改善系统的响应速度和稳定性。
六、总结双闭环直流调速系统是一种高精度的电机调速方案,通过双重反馈控制实现对电机转速的精确控制。
本文介绍了该系统的设计与仿真实验,包括系统结构设计、参数选择、控制策略及仿真结果等。
仿真实验结果表明,双闭环直流调速系统具有良好的控制性能,能够满足实际转速的要求。
双闭环直流可逆调速系统设计
双闭环直流可逆调速系统设计
一、实现双闭环直流可逆调速系统的基本原理
双闭环直流可逆调速系统是一种复杂的控制系统,通过控制电机转速
调整和调节,可以实现直流可逆调速系统的功能。
它的工作原理是:当电
机的转速发生变化时,运用程序控制器调整反馈信号。
在反馈信号中,检
测电机转速,并将其作为参考,经过放大器检测调节,将放大器调节的参
数输入给程序控制器,然后根据给定的转速和调节参数,程序控制器根据
相关的算法,调节步进电机的每一步的转速,实现当电机转速发生变化时,程序控制器控制电机转速。
二、双闭环直流可逆调速系统的组成
1.输入信号源:输入信号源主要有可逆调节信号和程序控制参数信号,两者同时作用,确定电机控制的转速范围和精度要求,从而保证可逆调速
系统的精度。
2.程序控制器:程序控制器是可逆调速系统的核心,它根据输入的控
制信号,控制反馈电路,实时获取电机的转速参数,根据算法,按照程序
控制的调节参数调节步进电机,实现调节目标速度。
转速电流双闭环直流调速系统设计
转速电流双闭环直流调速系统设计一、引言直流调速系统是控制直流电机转速的一种常用方法。
在实际应用中,为了提高系统性能,通常采用双闭环控制结构,即转速环和电流环。
转速环用于控制电机转速,电流环用于控制电机电流。
本文将对转速、电流双闭环直流调速系统进行详细设计。
二、转速环设计转速环的主要功能是通过控制电机的转矩来实现对转速的精确控制。
转速环设计步骤如下:1.系统建模:根据电机的特性曲线和转矩方程,建立电机数学模型。
通常采用转速-电压模型,即Tm=Kt*Ua-Kv*w。
2.设计转速环控制器:选择适当的控制器类型和参数,比如PID控制器。
根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。
确定控制器增益Kp、Ki和Kd。
3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。
4.实际系统调试:将设计好的转速环控制器实施到实际系统中,进行调试和优化。
根据实际情况对控制器参数进行微调。
三、电流环设计电流环的主要功能是控制电机的电流,以确保电机输出的转矩能够满足转速环的要求。
电流环设计步骤如下:1.系统建模:根据电机的特性曲线和电流方程,建立电机数学模型。
通常采用电流-电压模型,即Ia=(Ua-R*Ia-Ke*w)/L。
2.设计电流环控制器:选择适当的控制器类型和参数,比如PID控制器。
根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。
确定控制器增益Kp、Ki和Kd。
3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。
4.实际系统调试:将设计好的电流环控制器实施到实际系统中,进行调试和优化。
根据实际情况对控制器参数进行微调。
四、双闭环控制系统设计在转速环和电流环都设计好的基础上,将两个闭环控制器连接起来,形成双闭环控制系统。
具体步骤如下:1.控制系统结构设计:将电流环置于转速环的前端,形成串级控制结构。
2.系统建模:将转速环和电流环的数学模型进行串联,建立双闭环控制系统的数学模型。
晶闸管双闭环直流调速系统设计
晶闸管双闭环直流调速系统设计引言:直流调速系统广泛应用于电机控制领域,其中晶闸管双闭环直流调速系统具有较好的性能和可靠性。
本文将介绍晶闸管双闭环直流调速系统的设计原理和步骤,并分析其性能和可行性。
一、系统设计原理:晶闸管双闭环直流调速系统由速度环和电流环组成。
其中速度环通过测量电机转速与期望速度之间的误差并反馈控制,通过调整电机的输入电压来改变电机的转速。
电流环通过测量电机输出电流与期望电流之间的误差并反馈控制,通过调整晶闸管的导通角来改变电机的输出电流。
速度环和电流环通过PID控制器进行控制,实现闭环控制。
二、系统设计步骤:1.确定系统参数:包括电机参数、电压参数、电流参数和速度参数等。
根据实际情况选择合适的参数值。
2.设计速度环:首先选择合适的速度传感器进行速度测量,如光电编码器或霍尔元件。
然后根据测量值与期望速度之间的误差计算PID控制器的输出值,进一步控制电机的输入电压。
3.设计电流环:选择合适的电流传感器进行电流测量,如电流互感器或霍尔元件。
根据测量值与期望电流之间的误差计算PID控制器的输出值,进一步控制晶闸管的导通角。
4.设计反馈回路:将测量到的速度和电流信号经过滤波器进行滤波处理,减小干扰。
然后将滤波后的信号输入到PID控制器,计算控制器的输出值。
最后将控制器的输出值经过扩大器进行放大,最终作为输入信号驱动电机。
5.系统仿真和优化:使用MATLAB等仿真软件进行系统仿真,分析系统的性能和稳定性。
根据仿真结果,调整控制参数和系统结构,优化系统性能。
三、系统性能和可行性分析:晶闸管双闭环直流调速系统具有较好的稳态和动态性能。
速度环能够实现对电机速度的精确控制,适应不同负载的要求。
电流环能够实现对电机输出电流的精确控制,保证电机的安全运行。
经过优化设计的系统具有较快的响应速度、较小的超调量和较好的稳定性。
总结:本文介绍了晶闸管双闭环直流调速系统的设计原理和步骤,并分析了其性能和可行性。
双闭环直流调速系统(课程设计)
4•仿真实验95•仿真波形分析13三、心得体会14四、参考文献161•课题研究的意义从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。
双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等。
直流调速是现代电力拖动自动控制系统中发展较早的技术。
就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。
且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。
由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。
所以加深直流电机控制原理理解有很重要的意义。
2•课题研究的背景电力电子技术是电机控制技术发展的最重要的助推器,电力电机技术的迅猛发展,促使了电机控制技术水平有了突破性的提高。
从20世纪60年代第一代电力电子器件-晶闸管(SCR)发明至今,已经历了第二代有自关断能力的电力电子器件-GTR、GTO、MOSFET,第三代复合场控器件-IGBT、MCT等,如今正蓬勃发展的第四代产品-功率集成电路(PIC)。
每一代的电力电子元件也未停顿,多年来其结构、工艺不断改进,性能有了飞速提高,在不同应用领域它们在互相竞争,新的应用不断出现。
同时电机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。
正是这些技术的进步使电动机控制技术在近二十多年内发生了天翻地覆的变化。
(3-16) 取:(3-17) ◎i=4.3%<5%,满足课题所给要求。
3.3速度调节器设计电流环等效时间常数1/K。
取KT乙=0.5,贝IJ:1二2X0.0067二0.0134K(3-15)转速滤波时间常数T on。
双闭环直流电机调速系统设计
双闭环直流电机调速系统设计在今天的科技世界里,电机就像是家里的“万能小助手”,无处不在。
你想想,电风扇、洗衣机、甚至小汽车,都少不了它们的身影。
而双闭环直流电机调速系统就是这个小助手的“智囊团”,让它在各种环境中游刃有余,真是个神奇的存在。
今天,我们就来聊聊这个系统是怎么工作的,听起来是不是有点高大上?别担心,咱们用通俗易懂的语言来探讨,让你在闲聊中也能装装逼!1. 什么是双闭环控制?1.1 直流电机的基本知识直流电机,这东西其实就是通过直流电来转动的电机,简单说,就是通过电流来产生磁场,让电机的轴子转动起来。
想象一下,你在玩一辆遥控小车,控制它的速度和方向,其实和电机的工作原理类似。
电流大了,小车跑得快;电流小了,小车就慢了。
是不是很简单?不过,要把这个电机调得又快又稳,就得靠我们的双闭环系统了。
1.2 双闭环系统的工作原理双闭环控制,顾名思义,分为两个环,一个是速度环,一个是电流环。
速度环就像是你的眼睛,时刻盯着电机的转速,确保它不会跑偏。
而电流环就像是你的手,及时调整电机所需的电流,让它在需要的时候有充足的动力。
就好比你骑自行车,风一吹,你得用力蹬脚踏,让车子稳稳前行,这就是速度和电流的配合。
两者相辅相成,形成了一个良性的循环,确保电机在各种负载下都能稳定工作。
2. 设计双闭环系统的重要性2.1 提高系统性能你想啊,电机如果没有双闭环控制,开得快的时候,可能转速就飙到天上,没法控制;慢的时候,又感觉力不从心。
这就像你打球,想要扣篮却被卡在了框下,真是让人心急火燎!而有了双闭环系统,电机就能在不同的环境中保持稳定的转速,性能大大提升。
无论是重载还是轻载,电机都能游刃有余,根本不在话下。
2.2 降低能耗再来谈谈能耗的问题。
我们都知道,能源危机可是个大麻烦。
双闭环系统能够通过实时监测和调节,确保电机在最优状态下运行,从而降低能耗。
想象一下,省电就像是在家里随便找零花钱,谁不乐意呢?通过科学合理的控制,电机就能用更少的电,做更多的事,真是一举两得!3. 实际应用案例3.1 工业自动化说到双闭环系统的实际应用,那可真是多得数不过来。
双闭环直流调速系统设计
第一章设计概述一、课程设计的性质和任务:本课程是电气自动化本科专业学生学习完《直流调速系统》或《电力拖动控制系统》课程后进行的一个重要的独立性实践教学环节。
其任务是通过设计双闭环直流调速系统的全过程,培养学生综合应用所学的直流调速知识去分析和解决工程实际问题的能力,帮助学生巩固、深化和拓展知识面,使之得到一次较全面的设计训练,为毕业设计和实际工程设计奠定基础。
转速、电流双闭环不可逆直流调速系统是一种典型的自动控制系统。
这种调速系统只有两个调节器,即速度调节器(ASR)和电流调节器(ACR),两个调节器作串级连接,其中速度调节器的输出信号作为电流调节器的输入信号,从而形成一环套一环的转速、电流双闭环结构。
这种转速、电流双闭环调速系统,在突加转速给定信号的过程中表现为一个恒电流加速系统,而在稳态和接近稳态的运行中又表现为一个无静差调速系统,因此各项性能指标较系统开环时提高许多。
本此课程设计的目的就是同学们在调试、设计一个典型的调速系统后,能够掌握自控系统调试、设计的方法,步骤及其调试原则,加强同学们的动手能力和对理论知识的理解。
自控系统调试所遵循的原则:先部分,后系统:即首先对系统的各个单元进行调试,然后再对整个系统进行调试。
先开环,后闭环:即首先进行开环调试,然后再对系统闭环进行调试。
先内环,后外环:即首先对内环进行调试(如在本此调试中就应先对电流环进行调试),然后再对外环进行调试(如本此调试中的速度环调试)。
本次系统调试是在DJDK-1型电力电子技术及电机控制实验装置上进行。
整个调试完成后要求系统达到以下指标:二、DJDK-1 型电力电子技术及电机控制实验装置简介1 装置特点(1)设计装置采用挂件结构,可根据不同设计内容进行自由组合。
(2)装置连接线采用强、弱电分开的手枪式插头,两者不能互插,避免强电接入弱电回路,造成设备损坏。
(3)控制屏供电采用三相隔离变压器隔离,分别设有电压型和电流型漏电保护装置,保护操作者的安全。
直流双闭环调速系统设计与仿真
直流双闭环调速系统设计与仿真一、直流双闭环调速系统的基本原理电流环用于控制电机的电流,通过测量电机的电流反馈信号与给定的电流信号进行比较,得到误差信号,然后经过PID控制器计算控制信号,最后通过逆变器输出给电机控制电流。
二、直流双闭环调速系统的设计1.确定系统参数:包括电机的转矩常数,转矩惯量,电感,电阻等参数。
2.设计速度环控制器:根据转速信号和转速误差信号,设计速度环控制器的传递函数。
可以选择PID控制器,也可以选择其他类型的控制器。
3.设计电流环控制器:根据电流信号和电流误差信号,设计电流环控制器的传递函数。
同样可以选择PID控制器或其他类型的控制器。
4.进行系统仿真:将设计好的速度环和电流环控制器加入电机模型,进行系统仿真。
通过调整控制器参数,观察系统的响应特性,可以优化系统性能。
5.调整控制参数:根据仿真结果,调整控制器的参数,使系统响应更加快速、稳定。
三、直流双闭环调速系统的仿真1.定义系统模型:建立直流电机的状态方程,包括速度环和电流环的动态方程。
2.设定系统初始条件和输入信号:设置电机的初始状态和给定的转速信号以及电流信号。
3.选择控制器类型和参数:根据设计要求,选择控制器类型和参数。
可以选择PID控制器,并根据调试经验选择合适的参数。
4.搭建控制系统模型:将速度环和电流环的控制器模型和电机模型连接在一起,构建闭环控制系统模型。
5.进行系统仿真:利用MATLAB或其他仿真软件进行系统仿真,根据给定的转速信号和电流信号,观察系统的响应特性。
四、直流双闭环调速系统的优化1.参数调整:根据仿真结果,调整控制器的参数,使系统的性能得到优化。
可以通过试探法或自适应调节方法进行参数调整。
2.饱和处理:考虑到电机的饱和特性,可以在控制器中添加饱和处理模块,以提高系统的稳定性和抗干扰能力。
3.鲁棒性设计:考虑到系统参数的不确定性,可以采用鲁棒控制方法,提高系统的鲁棒性能。
4.死区补偿:在电机控制中常常会出现死区现象,可以在控制器中添加死区补偿模块,以减小死区对系统性能的影响。
pwm直流双闭环调速系统设计
PWM直流双闭环调速系统设计引言PWM(Pulse Width Modulation)直流双闭环调速系统是一种常用于电动机调速的控制系统。
在许多应用中,需要对电动机的速度进行精确控制,以满足不同的工作需求。
PWM直流双闭环调速系统通过不断调整电动机输入电压的占空比,使电动机保持稳定的转速,具有快速响应、良好的稳定性和较大的负载适应能力等优点。
本文将介绍PWM直流双闭环调速系统的设计原理、硬件电路和控制算法,并提供代码示例和性能分析。
设计原理闭环控制系统PWM直流双闭环调速系统由两个闭环控制回路组成:速度闭环和电流闭环。
速度闭环通过反馈电动机的实际转速来调整电动机输入电压,以使其达到期望转速。
电流闭环通过反馈电动机的实际电流来调整PWM信号的占空比,以使电动机输出的扭矩与负载要求相匹配。
速度闭环控制速度闭环控制由速度传感器、比例积分控制器和电动机驱动器组成。
速度传感器通常采用编码器或霍尔传感器来测量电动机转速,并将其转换为电压信号。
比例积分控制器根据速度误差和积分误差来计算控制器输出,并将其输入给电动机驱动器。
电流闭环控制电流闭环控制由电流传感器、比例积分控制器和PWM模块组成。
电流传感器用于测量电动机的电流,并将其转换为电压信号。
比例积分控制器计算电流误差和积分误差,并生成控制器输出,将其输入给PWM模块。
硬件电路设计PWM直流双闭环调速系统的硬件电路设计包括电源模块、电流传感器、速度传感器、比例积分控制器、PWM模块和电动机驱动器等。
电源模块电源模块用于提供系统所需的直流电压。
它可以采用稳压稳流电路来稳定输出电压和电流。
电流传感器电流传感器用于测量电动机的电流。
常用的电流传感器包括霍尔传感器和电阻传感器。
它将电动机的电流转换为电压信号,并输入给比例积分控制器。
速度传感器速度传感器用于测量电动机的转速。
常用的速度传感器有编码器、霍尔传感器和光电传感器等。
比例积分控制器比例积分控制器是PWM直流双闭环调速系统的核心控制模块。
双闭环直流电机不可逆调速系统设计
双闭环直流电机不可逆调速系统设计
一、系统介绍
双闭环直流电机不可逆调速系统是一种应用直流电动机的调速系统,该系统具有对电机转速的精确控制和安全性高的特点,一般用于低速的直流电机。
双闭环调速系统通常由电动机控制器、电动机和负载2个部分组成,分别实现电机输出扭矩控制、电流控制和转速控制,从而达到电机的调速控制。
二、系统原理
双闭环调速系统由2个调节及控制部分组成,分别是闭环电流控制系统和闭环转速控制系统,两部分互为补偿,实现了转速的精确控制。
闭环电流控制系统:围绕反馈信号monitor电流大小,调整输入指令电流,控制电机输出的扭矩,从而恒定电流,提升电机的输出功率。
闭环转速控制系统:利用信号反馈给出的电机转速参数,实时调整参考转速信号,控制功率输出,实现精确调速,提升电机的输出转速。
三、系统可靠性
随着双闭环调速系统的发展,它的可靠性也得到了极大的提高,它围绕着两个闭环模式,实现了安全性和稳定性的控制:
(1)输出电流闭环控制:可以精确控制输出电流,使电机的输出功率稳定,进而实现转速的控制;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动控制系统仿真课程设计班级:xxxxx姓名:xxx学号:xxxxx双闭环直流调速系统的设计1系统方案选择与总体结构设计调速方案的优劣直接关系到系统调速的质量。
根据电机的型号及参数选择最优方案,以确保系统能够正常,稳定地运行。
本系统采用直流双闭环调速系统,使系统达到稳态无静差,调速范围0-1500r/min,电流过载倍数为1.5倍,速度控制精度为0.1%(额定转速时)。
2系统控制对象的确定本次设计选用直流电动机的额定参数直流电动机的额定参数电动机供电方案选择变电压调速是直流调速系统用的主要方法,调节电枢供电电压所需的可控制电源通常有3种:旋转电流机组,静止可控整流器,直流斩波器和脉宽调制变换器。
旋转变流机组简称G-M系统,用交流电动机和直流发电机组成机组,以获得可调的直流电压。
适用于调速要求不高,要求可逆运行的系统,但其设备多、体积大、费用高、效率低、维护不便。
用静止的可控整流器,例如,晶闸管可控整流器,以获得可调直流静止可控整流器又称V-M系电压。
通过调节触发装置GT 的控制电压来移动触发脉冲的相位,即可改变Ud,从而实现平滑调速,且控制作用快速性能好,提高系统动态性能。
直流斩波器和脉宽调制交换器采用PWM,用恒定直流或不可控整流电源供电,利用直流斩波器或脉宽调制变换器产生可变的平均电压。
与V—M系统相比,PWM系统在很多方面有较大的优越性:一、主电路线路简单,需要的功率器件少;二、开端频率高,电流容易连续,谐波少,电机损耗及发热都较小:三、低速性能好,稳速精度该,调速范围宽,可达1:10000左右;四、若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强;五、功率开关器件工作在开关状态,道通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率高;六、直流电源采用不控整流时,电网功率因数比相控整流高。
本设计应脉宽调速要求,采用直流PWM调速系统。
1、晶体管PWM功率放大器方案选择方案一单极性控制方式,这种控制方式的特点是在一个开关周期内两只功率管以较高的开关频率互补开关,保证可以得到理想的正弦输出电压:另两只功率管以较低的输出电压基波频率工作,从而在很大程度上减小了开关损耗。
但又不是固定其中一个桥臂始终为低频(输出基频),另一个桥臂始终为高频(载波频率),而是每半个输出电压周期切换工作,即同一个桥臂在前半个周期工作在低频,而在后半周则工作在高频,这样可以使两个桥臂的功率管工作状态均衡,对于选用同样的功率管时,使其使用寿命均衡,对增加可靠性有利。
方案二双极性调制方式的特点是4个功率管都工作在较高频率(载波频率),双极性控制的桥式可逆PWM变换器有以下优点:1)电流一定连续;2)可使电机在四象限运行;3)电机停止时有微振电流,可以消除静摩擦死区;4)低速平稳性好,系统的调速范围可达1:20000左右;5)低速时,每个开关器件的驱动脉冲仍较宽,有利于器件的可靠导。
本设计选用双极性控制的桥式可逆PWM变换器。
双闭环直流调速系统电路原理随着调速系统的不断发展和应用,传统的采用 PI 调节器的单闭环调速系统既能实现转速的无静差调节,又能较快的动态响应只能满足一般生产机械的调速要求。
为了提高生产率,要求尽量缩短起动、制动、反转过渡过程的时间,最好的办法是在过渡过程中始终保持电流(即动态转矩)为允许的最大值,使系统尽最大可能加速起动,达到稳态转速后,又让电流立即降低,进入转矩与负载相平衡的稳态运行。
要实现上述要求,其唯一的途径就是采用电流负反馈控制方法,即采用速度、电流双闭环的调速系统来实现。
在电流控制回路中设置一个调节器,专门用于调节电流量,从而在调速系统中设置了转速和电流两个调节器,形成转速、电流双闭环调速控制。
双闭环调速控制系统中采用了两个调节器,分别调节转速和电流,二者之间实现串级连接1 。
已知参数:某转速直流双闭环直流调速系统的已知参数为:直流调速系统的基本数据如下:晶闸管三相桥式全控整流电路供电的双闭环直流调速系统,直流电动机:220V,136A,1460r/min,电枢电阻Ra=0.2Ω,允许过载倍数λ=1.5;电枢回路总电阻R=0.5Ω,电枢回路总电感:L=15mh,电动机轴上的总飞轮力矩:GD²=22.5N*m²,晶闸管装置:放大系数:Ks=40,电流反馈系数:β=0.05V/A,转速反馈系数:α=0.007Vmin/r,滤波时间常数Toi=0.002s,Ton=0.01s设计要求:稳态指标:转速无静差;动态指标:电流超调量≤5%,空载启动到额定转速的转速超调量≤10%双闭环直流调速系统动态结构图如图所示电流环设计:(1)确定时间常数整流装置滞后时间常数Ts=0.0017s。
电流滤波时间常数Toi=0.002s。
电流环小时间常数之和T∑i 按小时间常数近似处理,取T∑i=Ts+Toi=0.0037s(2)选择电流调节器结构按要求可知σi≤5%,所以是典型1系统(3)计算电流调节器参数电流调节器超前时间常数:τi=Tl=L/R=0.03S, K I=0.5/T∑i=0.5/0.0037= 135.1所以,ACR的比例系数为Ki=(K I*τi*R)/(Ksβ)=1.013β=0.05,Wci=135.1/s(4)计算调节器电阻和电容Ri=Ki*R0=1.013*40=40.52kΩ,Ci=τi/Ri=0.75F,Coi=4Toi/R0=0.2uF (5)检验近似条件:1.检验晶闸管整流装置传递函数的近似条件1/3Ts=196.1>Wci 满足条件(6)校验忽略反电动势变化对电流环动态影响的条件40.82<Wci 满足近似条件3 校验电流环小时间常数近似处理条件180.8>Wci 满足近似条件综上所述,电流环可达到的动态性能指标为σi=4.3%<5% 满足设计要求转速环的设计:1 确定时间常数电流环等效时间常数1/K I=2T∑i=0.0074s转速滤波时间常数Ton=0.01s转速环小时间常数T∑n=1/K I +Ton=0.0174s2 选择转速调节器结构按照设计要求,选用PI调节器,其传递函数为Wasr3 计算转速调节器参数按跟随和抗扰性能较好的原则,取h=5,则ASR的超前时间常数为τn=h T∑n=5*0.0174=0.087s转速环开环增益K N=(h+1)/(2h²T∑n²)= 396.4ASR的比例系数为Kn=【(h+1)βCeTm 】/(2h*α*R *T∑n)=11.74 计算调节器电阻和电容已知R0=40KΩ,则Rn=KnR0=11.7*40=468KΩ取470kΩCn=τn/Rn=0.185uF 取0.2UfCon=4Ton/R0= 1uFα=Unom/n nom=0.007检验近似条件:Wcn=Kn/w1=34.5电流环传递函数简化条件63.7>Wcn 满足近似条件转速环小时间常数近似处理条件38.7>Wcn 满足近似条件电力电子变换器的内部原理图为:电流互感器TA的原理图:测速发电机的原理图:三相电源的原理图:利用MATLAB进行仿真设计:直流电动机的数学模型:在本设计中讨论的是直流电动机拖动恒转巨负载的自动控制系统,直流电动机本身是一个电-磁相互作用的非线性系统,在这里将其近似为一个线性系统,得到直流电动机的传递函数为:12()()1 ()ed l m mCn sd U s T T S T S W s-++==转速电流双闭环调速系统的数学模型:求取双闭环调速系统的数学模型一般采用由内到外,逐环求取。
对转速电流双闭环系统,首先求取电流环传递函数,再将其视为转速环中的一个环节,在求取转速环的传递函数,由于检测信号中含有交流分量或其他高频干扰。
故对转速电流信号均经过T型滤波,再加到调节器的输入端,为了补偿这些滤波环节带来的惯性作用,在给定信号中也加入一个相同时间常数的给定滤波环节。
1、电流环传递递函数的求取由于系统中机电时间常数m T 远大于电磁时间常数l T ,反电动势E 的变化过程相对缓慢,因此在电流环中,可忽视反电动势的影响,又由于S T 和oi T 比l T 小得多,可以当作小惯性环节近似处理,故取Ts+Toi T i ∑=。
由于电流环的重要作用是保持电枢电流在动态过程中不超过允许值,因而在土家控制作用时不希望有超调,而且当/10l i T T ≤∑时,典型I 型系统的抗恢复时间还是可以接受的,故采用PI 调节器将电流环的控制对象校正成典型I 型系统,其中PI 调节器传递函数为:ACR 1W =Kiis isττ+。
故电流环的闭环传递函数为(1)(1)211()1K i S T iS Ki i S T iS di T SKi KiW s S +∑∑+∑+==++ 2、转速环的传递函数有上式已知电流环的闭环传递函数,又由于转速环的截止频率cn ω一般较低,因此电流内环()cli s ω可等效为一阶环节。
11()1Icli W s S ≈+其近似条件为:cn ω≤同样的,再将时间常数为cn T 和2I T ∑的两个小惯性环节合并起来,形成一个时间常数为n T ∑的惯性环节,则2n i on T∑=T∑+T基于系统稳态无静差的条件,转速环应校正成典型II 型系统,而且典型II 型系统的抗扰动性能好。
由于将转速环校正成了典型II 型系统,故ASR 有必将采用PI 调节器,其传递函数为:()1ns ASR nsW S Knττ+=。
仿真结果如下图: 电流环:转速环:设计心得:通过这次设计,我再一次的回顾了matlab和protel的使用方法,熟悉了它们的许多新的用法。
这次设计所花费的时间比以往长很多,过程中出现了各种各样的问题,例如在计算Ci和Ri时,没有考虑到单位的问题,导致怎么算都不对,在MATLAB中始终仿真不出来,经过多次的检验后才发现问题的所在。
还有就是在观察图像时,未对上下限进行设置,使得所得的图像不完整。
在设计过程中我查阅了许多资料,参考了课本的例题以及许多概念,询问了同学一些细节的问题。
我感觉这次的设计对我帮助很大,我原来并不擅长这一类的设计,通过这一次的设计,使我的能力有了很大提升。
我认为课程中应该多安排类似这样的活动,并不只是为了考试,这样的课程设计对于我们的思维逻辑动手能力有很大的帮助,这是非常有益的.。