四动能定理的应用练习题及答案完整版
高中物理动能定理的综合应用题20套(带答案)

1 2
mv12
0
在 N 点时 代入解得
v1 5m/s
mg
FN
mv12 R
FN 6N
根据牛顿第三定律可得小汽车对轨道压力大小 6N,方向竖直向上。 (3)设小汽车恰能过最高点,则
Pt0 fL0 mg 2R 0
代入解得
此时小汽车将停在
t0 1.15s 2s
代入解得
mg 2R n1 fL
设物体从静止运动到
A
所用的时间为
t,由
L0
1 2
at2 ,得
t 1s
(2)从物体开始运动到最终停下的过程中,设总路程为 s,由动能定理得
mgh-mgscos37 0-0
代入数据解得
s=8.25m (3)假设物体能依次到达 B 点、D 点,由动能定理有
mg(h-Lsin37
)- mgcos37 ( L
(1)滑块运动到 C 点时的速度大小 VC; (2)滑块运动过程中克服轨道摩擦力所做的功 Wf; (3)若滑块从直轨道上 A′点由静止开始下滑,运动至 C 点时对轨道恰好无压力,则 A′点
距离水平地面的高度为多少?
【答案】(1)滑块运动到 C 点时的速度大小 vC 是
.
(2)滑块运动过程中克服轨道摩擦力所做的功 Wf 是 mg(H﹣2R).
因此小车将停在第 7 段; 当通电时间 t 2.0s 时
n1 6.4
代入解得
Pt fL0 n2 fL 0
n2 20
因此小车将停在第 20 段;综上所述,当 t≤2.0s 时,小汽车将停在第 7 段和第 20 段之间。
3.一种氢气燃料的汽车,质量为 m=2.0×103kg,发动机的额定输出功率为 80kW,行驶在 平直公路上时所受阻力恒为车重的 0.1 倍。若汽车从静止开始先匀加速启动,加速度的大 小为 a=1.0m/s2。达到额定输出功率后,汽车保持功率不变又加速行驶了 800m,直到获得 最大速度后才匀速行驶。求:(g=10m/s2) (1)汽车的最大行驶速度。 (2)汽车从静止到获得最大行驶速度所用的总时间。 【答案】(1)40m/s;(2)55s
高中物理动能定理的综合应用题20套(带答案)及解析

(1)滑块到达底端 B 时的速度大小 vB;
(2)滑块与传送带间的动摩擦因数 μ;
(3)此过程中,由于克服摩擦力做功而产生的热量 Q.
【答案】(1)
2gh (2) v02 2gh (3) m v0
2
2gh
2gl
2
【解析】
试题分析:(1)滑块在由
A
到
B
的过程中,由动能定理得:
mgh= 1 2
(1)求运动员在 AB 段下滑时受到阻力 Ff 的大小; (2)若运动员能够承受的最大压力为其所受重力的 6 倍,则 C 点所在圆弧的半径 R 至少应为 多大? 【答案】(1)144 N (2)12.5 m 【解析】
试题分析:(1)运动员在 AB 上做初速度为零的匀加速运动,设 AB 的长度为 x,斜面的倾 角为 α,则有 vB2=2ax
mvB2
0
,
解得:
=
B
2gh ;
(2)滑块在由 B 到 C 的过程中,由动能定理得:μmgL= 1 mv02− 1 mvB2,
2
2
解得, =v02 2gh ; 2gL
(3)产生的热量:Q=μmgL
L 相对, 相对
0 B 2
2 g
= ( 0
2gh)2 2 g
(或
(0 v02
2 gh )2 2gh
(3)传送带的速度大于或等于 v1,则滑块回到水平轨道时的速度大小仍为 v1
mgs
0
1 2
mv12
得 s=0.9m,即滑块在水平轨道上滑行的路程为 0.9m,则最后停在离 B 点 0.2m 处。
若传送带的速度 7 m/s <v<3m/s,则滑块将回到 B 点,滑上圆弧轨道后又滑到水平轨道,
高考物理动能定理的综合应用题20套(带答案)含解析

高考物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)求滑块与斜面间的动摩擦因数μ;(2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值;(3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR -μmgcos37°2sin 37R︒=0-0 解得:μ=0.375⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ①在C 点时,根据牛顿第二定律有:mg +N =2Cv m R② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37°2sin 37R ︒=212C mv -2012mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④在竖直方向的位移为:y =212gt ⑤ 根据图中几何关系有:tan37°=2R yx-⑥ 由④⑤⑥式联立解得:t =0.2s考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.3.如图所示,光滑曲面与光滑水平导轨MN 相切,导轨右端N 处于水平传送带理想连接,传送带长度L =4m ,皮带轮沿顺时针方向转动,带动皮带以恒定速率v =4.0m/s 运动.滑块B 、C 之间用细绳相连,其间有一压缩的轻弹簧,B 、C 与细绳、弹簧一起静止在导轨MN 上.一可视为质点的滑块A 从h =0.2m 高处由静止滑下,已知滑块A 、B 、C 质量均为m =2.0kg ,滑块A 与B 碰撞后粘合在一起,碰撞时间极短.因碰撞使连接B 、C 的细绳受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离.滑块C 脱离弹簧后以速度v C =2.0m/s 滑上传送带,并从右端滑出落至地面上的P 点.已知滑块C 与传送带之间的动摩擦因数μ=0.2,重力加速度g 取10m/s 2.(1)求滑块C 从传送带右端滑出时的速度大小; (2)求滑块B 、C 与细绳相连时弹簧的弹性势能E P ;(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C 总能落至P 点,则滑块A 与滑块B 碰撞前速度的最大值v m 是多少? 【答案】(1) 4.0m/s (2) 2.0J (3) 8.1m/s 【解析】 【分析】 【详解】(1)滑块C 滑上传送带到速度达到传送带的速度v =4m/s 所用的时间为t ,加速度大小为a ,在时间t 内滑块C 的位移为x ,有mg ma μ=C v v at =+212C x v t at =+代入数据可得3m x = 3m x L =<滑块C 在传送带上先加速,达到传送带的速度v 后随传送带匀速运动,并从右端滑出,则滑块C 从传送带右端滑出时的速度为v=4.0m/s(2)设A 、B 碰撞前A 的速度为v 0,A 、B 碰撞后的速度为v 1,A 、B 与C 分离时的速度为v 2,有2012A A m gh m v =01()A A B m v m m v =+ 12()()A B A B C C m m v m m v m v +=++A 、B 碰撞后,弹簧伸开的过程系统能量守恒222A 1A 2111()()222P B B C C E m m v m m v m v ++=++代入数据可解得2.0J P E =(3)在题设条件下,若滑块A 在碰撞前速度有最大值,则碰撞后滑块C 的速度有最大值,它减速运动到传送带右端时,速度应当恰好等于传送带的速度v .设A 与B 碰撞后的速度为1v ',分离后A 与B 的速度为2v ',滑块C 的速度为'C v ,C 在传送带上做匀减速运动的末速度为v =4m/s ,加速度大小为2m/s 2,有22()Cv v a L '-=- 解得42m/s Cv '= 以向右为正方向,A 、B 碰撞过程1()A m A B m v m m v '=+弹簧伸开过程12()()A B C C A B m m v m v m m v '''+=++22212111+()()+222p A B A B C C E m m v m m v m v '''+=+代入数据解得74228.14m v =+≈m/s .4.一个平板小车置于光滑水平面上,其右端恰好和一个光滑圆弧轨道AB 的底端等高对接,如图所示.已知小车质量M=3.0kg ,长L=2.06m ,圆弧轨道半径R=0.8m .现将一质量m=1.0kg 的小滑块,由轨道顶端A 点无初速释放,滑块滑到B 端后冲上小车.滑块与小车上表面间的动摩擦因数.(取g=10m/s 2)试求:(1)滑块到达B 端时,轨道对它支持力的大小; (2)小车运动1.5s 时,车右端距轨道B 端的距离;(3)滑块与车面间由于摩擦而产生的内能.【答案】(1)30 N (2)1 m (3)6 J 【解析】(1)滑块从A 端下滑到B 端,由动能定理得(1分)在B 点由牛顿第二定律得(2分) 解得轨道对滑块的支持力N (1分)(2)滑块滑上小车后,由牛顿第二定律对滑块:,得m/s2 (1分)对小车:,得m/s2 (1分)设经时间t后两者达到共同速度,则有(1分)解得s (1分)由于s<1.5s,故1s后小车和滑块一起匀速运动,速度v="1" m/s (1分)因此,1.5s时小车右端距轨道B端的距离为m (1分)(3)滑块相对小车滑动的距离为m (2分)所以产生的内能J (1分)5.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6m,始终以v0=6m/s的速度顺时针运动.将一个质量m=1kg 的物块由距斜面底端高度h1=5.4m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H=5m,g取10m/s2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h4=9.0m所以当离传送带高度在1.8m~9.0m的范围内均能满足要求即1.8m≤h≤9.0m6.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.【答案】(1)0.32μ=(2)F=130N【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△t=mv′﹣mv,代入数据解得:F=130N.7.如图所示,BC 225竖直放置的光滑细圆管,O为细圆管的圆心,在圆管的末端C连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球从进入圆管开始受到始终竖直向上的力F=5N的作用,当小球运动到圆管的末端C时作用力F立即消失,小球能平滑地冲上粗糙斜面.(g=10m/s2)求:(1)小球从O点的正上方某处A点水平抛出的初速度v0为多少?(2)小球在圆管中运动时对圆管的压力是多少?(3)小球在CD斜面上运动的最大位移是多少?【答案】(1)2m/s ;(2)7.1N ;(3)0.35m. 【解析】 【详解】(1)小球从A 运动到B 为平抛运动, 水平方向:r sin45°=v 0t ,在B 点:tan45°=y v gt v v =, 解得:v 0=2m/s ;(2)小球到达在B 点的速度:22m/s cos 45v v ︒==,由题意可知:mg =0.5×10=5N=F ,重力与F 的合力为零,小球所受合力为圆管的外壁对它的弹力,该力不做功, 小球在管中做匀速圆周运动,管壁的弹力提供向心力,22(22)0.5N 7.1N225v F m r ==⨯= 由牛顿第三定律可知,小球对圆管的压力大小:7.1N F '=; (3)小球在CD 上滑行到最高点过程,由动能定理得:21sin 45?cos 45?02mg s mg s mv μ︒︒--=-解得:s ≈0.35m ;8.如图,与水平面夹角θ=37°的斜面和半径R =1.0m 的光滑圆轨道相切于B 点,且固定于竖直平面内。
(完整版)高中物理动能定理典型练习题(含答案)

动能定理典型练习题典型例题讲解1.下列说法正确的是( )A 做直线运动的物体动能不变,做曲线运动的物体动能变化B 物体的速度变化越大,物体的动能变化也越大C 物体的速度变化越快,物体的动能变化也越快D 物体的速率变化越大,物体的动能变化也越大【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力的多少倍?【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速度为v ,根据动能定理有0212-=mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有2210mv Fh mgh -=- ②由①②两式解得hh H mg F += 另解:研究物体运动的全过程,根据动能定理有000)(=-=-+Fh h H mg解得hh H mg F +=3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2)【解析】设物体克服摩擦力图5-3-5Hh图5-3-4图5-3-6图5-3-7所做的功为W ,对物体由A 运动到B 用动能定理得221mv W mgh =- Jmv mgh W 32612151012122=⨯⨯-⨯⨯=-=即物体克服阻力所做的功为32J.课后创新演练1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A )A .0B .8JC .16JD .32J2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C )A .1:3B .3:1C .1:9D .9:13.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A )A .4LB .L )12(-C .2LD .2L4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD )A .fL =21Mv 2B .f s =21mv 2C .f s =21mv 02-21(M +m )v 2D .f (L +s )=21mv 02-21mv 25.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2B .mv 02C .2mv 02/3D .3mv 02/86.如图5-3-8所示,一小物块初速v 1,开始由A 点沿水平面滑至B 点时速度为v 2,若该物块仍以速度v 1从A 点沿两斜面滑动至B 点时速度为v 2’,已知斜面和水平面与物块的动摩擦因数相同,则( C ) A.v 2>v 2' B.v 2<v 2’ C.v 2=v 2’ D .沿水平面到B 点时间与沿斜面到达B 点时间相等. 7.如图5-3-9所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?【解析】滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端.在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功.设其经过和总路程为L ,对全过程,由动能定理得:200210cos sin mv L ng mgS -=-αμα得αμαcos 21sin mgS 20mg mv L +=8.如图5-3-10所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传知工件与传送带间的动摩擦因数23=μ,g 取送至h =2m 的高处.已10m/s 2.(1) 试通过计算分析工件在传送带上做怎样的运动?(2) 工件从传送带底端运动至h =2m 高处的过程中摩擦力对工件做了多少功?【解析】 (1) 工件刚放上皮带时受滑动摩擦力θμcos mg F =,工件开始做匀加速直线运动,由牛顿运动定律ma mg F =-θsin 得:图5-3-8图5-3-10V 0S 0αP 图5-3-9)30sin 30cos 23(10)sin cos (sin 00-⨯=-=-=θθμθg g mFa =2.5m/s 2设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得5.2222220⨯==a v x =0.8m <4m. 故工件先以2.5m/s 2的加速度做匀加速直线运动,运动0.8m 与传送带达到共同速度2m/s 后做匀速直线运动。
动能定理简单练习题

动能定理简单练习题动能定理简单练习题动能定理是物理学中的一个基本定理,描述了物体的动能与其速度之间的关系。
它在解决各种物理问题中起着重要的作用。
本文将给出一些简单的练习题,帮助读者更好地理解和应用动能定理。
练习题一:一个质量为1 kg的物体以10 m/s的速度沿着水平方向运动,求它的动能。
解析:根据动能定理,动能等于物体的质量乘以速度的平方的一半。
即动能=1/2 × 1 × (10)^2 = 50 J。
练习题二:一个质量为2 kg的物体以2 m/s的速度运动,当它的速度增加到4m/s时,求它的动能的增加量。
解析:首先求物体在速度从2 m/s增加到4 m/s时的动能。
根据动能定理,动能等于物体的质量乘以速度的平方的一半。
即动能1=1/2 × 2 × (2)^2 = 4 J。
再求物体在速度从0 m/s增加到4 m/s时的动能。
即动能2=1/2 × 2 × (4)^2 = 16 J。
所以动能的增加量=动能2 - 动能1 = 16 J - 4 J = 12 J。
练习题三:一个质量为0.5 kg的物体以20 m/s的速度运动,当它的速度减小到10 m/s时,求它的动能的减小量。
解析:首先求物体在速度从20 m/s减小到10 m/s时的动能。
根据动能定理,动能等于物体的质量乘以速度的平方的一半。
即动能1=1/2 × 0.5 × (20)^2 = 100 J。
再求物体在速度从20 m/s减小到0 m/s时的动能。
即动能2=1/2 × 0.5× (10)^2 = 25 J。
所以动能的减小量=动能1 - 动能2 = 100 J - 25 J = 75 J。
练习题四:一个质量为10 kg的物体以5 m/s的速度运动,撞击到一个质量为5kg的静止物体,两个物体粘在一起后以共同的速度运动,求它们共同的速度。
解析:由于两个物体粘在一起后以共同的速度运动,可以利用动能守恒定理解决这个问题。
(完整版)动能定理习题(附答案)

m: C 点竖直上抛,根据动能定理:
12 mgh 0 mv2
2 ∴ h=2.5 R ∴ H=h +R=3.5 R
(2) 物块从 H 返回 A 点,根据动能定理:
mgH -μ mg=s0-0 ∴ s=14 R
小物块最终停在 B 右侧 14R 处
13 也可以整体求解,解法如下:
m: B→ C,根据动能定理: F 2R f 2R mgH 0 0
解: (1) m 由 A 到 B:根据动能定理: mgh 1 mv2 2
1 mv02 2
v 20m/s
m v0
(2) m 由 A 到 B,根据动能定理 3:
1 21 2
mgh W mvt mv0
2
2
W 1.95J
3a、运动员踢球的平均作用力为 200N,把一个静止的质量为
在水平面上运动 60m 后停下 . 求运动员对球做的功?
4、在距离地面高为 H 处,将质量为 m 的小钢球以初速度 v0竖直下抛,落地后,小钢球陷入泥 土中的深度为 h 求:
(1) 求钢球落地时的速度大小 v.
(2) 泥土对小钢球的阻力是恒力还是变力 ?
(3) 求泥土阻力对小钢球所做的功 . (4) 求泥土对小钢球的平均阻力大小 .
解: (1) m 由 A 到 B:根据动能定理:
WF f l cos180o 1 mvm2 0 2
l 800m
11. AB 是竖直平面内的四分之一圆弧轨道,在下端 B与水平直轨道相切,如图所示。一小球自
A 点起由静止开始沿轨道下滑。已知圆轨道半径为
R,小球的质量为 m ,不计各处摩擦。求
(1) 小球运动到 B点时的动能;
(2) 小球经过圆弧轨道的 B 点和水平轨道的 C点时,所受轨道支持力 N B、 N C各是多大 ?
动能定理的综合应用含答案

动能定理的综合应用1.如右图所示,半径R=2m 的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h=1.25m ,现将一质量m=0.2kg 的小滑块从A 点由静止释放,滑块沿圆弧轨道运动至B 点并以v=5m/s 的速度水平飞出(g 取10m /s 2).求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功;(2)小滑块经过B 点时对圆轨道的压力大小;(3)小滑块着地时的速度大小。
2.如图所示,质量为m =5kg 的摆球从图中A 位置由静止开始摆下,当小球摆至竖直位置到达B 点时绳子遇到B 点上方电热丝而被烧断。
已知摆线长为L =1.6m ,OA 与OB 的夹角为60o ,C 为悬点O 正下方地面上一点,OC 间的距离h =4.8m ,若不计空气阻力及一切能量损耗,g =10m/s 2,求: (1)小球摆到B 点时的速度大小;(2)小球落地点D 到C 点之间的距离; (3)小球的落地时的速度大小3、(14分)如图所示,一个人用一根长1m ,只能承受46N 拉力的绳子,拴着一个质量为1kg 的小球,在竖直平面内作圆周运动,已知圆心O 离地面h =6m 。
转动中小球运动到最低点时绳子突然断了,求(1)绳子断时小球运动的角速度多大?(2)绳断后,小球落地点与抛出点间的水平距离。
(取g =10m/s 2) 4.在光滑的水平面桌上有质量为m=0.2kg 的小球,它压缩着一个轻弹簧,弹簧一端固定,如图所示。
轻弹簧原来处于静止状态,具有弹性势能E P =10.6J ,现突然释放弹簧,小球脱离弹簧后滑向与水平面相切,半径为为R=0.625m 的竖直放置的光滑半圆形轨道。
取g=10m/s 2则:(1)试通过计算判断小球能否滑到B 点?(2)若小球能通过B 点,求此时它对轨道的压力为多大。
5.如图所示,半径R =0.40m 的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A 。
(完整版)动能定理习题(附答案)

1、 一质量为1kg 的物体被人用手由静止向上提高 (1)物体克服重力做功• (2)合外力对物体做功.解:⑴ m 由 A 到 B :W Gmgh 10J克服重力做功10W 克G W G 10J C12⑵m 由A 到B ,根据动能定理11: W -mv2⑶ m 由 A 到 B : W W G W FW F 12J2、 一个人站在距地面高 h = 15m 处,将一个质量为 上抛出• (1)若不计空气阻力,求石块落地时的速度 ⑵若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W.1 2 解:(1) m 由A 到B :根据动能定理: mgh mv⑵m 由A 到B ,根据动能定理12:1 2 1 2 mgh Wmv t mv oW 1.95J2 23a 、运动员踢球的平均作用力为200N ,把一个静止的质量为在水平面上运动 60m 后停下.求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:(3a)球由O 到A ,根据动能定理13:1 2 W mv 0 0 50J 2(3b)球在运动员踢球的过程中,根据动能定理14W 】mv 2-mv 22 210不能写成:W G mgh 10J .在没有特别说明的情况下,临 默认解释为重力所做的功,而在这个过程中重力所做的功为负. 11也可以简写成:“m : A B : Q W EJ',其中 W E k 表示动能定理. 12此处写 W 的原因是题目已明确说明 W 是克服空气阻力所做的功. 13踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功 14结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能, 然后其他形式的能又转化为动能,而前后动能相等(3)手对物体做功.B m0 2J* N hA±+ mgm = 100g 的石块以v o = 10m/s 的速度斜向 V.1kg 的球以10m/s 的速度踢出,v 0 0 v ; v 0m_O A Bmg mg1m ,这时物体的速度是 2m/s ,求:4、在距离地面高为 H 处,将质量为 m 的小钢球以初速度 v o 竖直下抛,落地后,小钢球陷入泥 土中的深度为h 求:(2)泥土对小钢球的阻力是恒力还是变力 (4)求泥土对小钢球的平均阻力大小 .解:(1) m 由A 到B :根据动能定理:(2) m 由1状态到3状态15 16:根据动能定理:Fs 1 cos0omgscos180° 0 0s 100m15也可以用第二段来算s 2,然后将两段位移加起来.计算过程如下: m 由2状态到3状态:根据动能定理:o12mgs 2 cos180 0 mv s 70m则总位移s s, s?100m .(1)求钢球落地时的速度大小v.(3)求泥土阻力对小钢球所做的功 mgmgH12 12 mv mv 0 2 2(2)变力 6.(3) m 由B 到C ,根据动能定理: mgh W1 2 mv 2W f1 2mv 0 mg v tW f2 mv 02mg Hcos180°2h5、在水平的冰面上,以大小为 F=20N 冰车受到的摩擦力是它对冰面压力的 进了一段距离后停止.取g = 10m/s 2. (1)撤去推力F 时的速度大小. I 程s. I 的水平推力,推着质量 0. 01倍,当冰车前进了 .求:(2)冰车运动的总路m=60kg S 1=30m 的冰车, 后,撤去推力F ,冰车又前 由静止开始运动•解:(1) m 由1状态到2状态:根据动能定理7 F& cos0oo1 2mgs cos180 — mv 014m/s 3.74m/sv6、如图所示,光滑1/4圆弧半径为0.8m,有一质量为1.0kg的物体自A点从静止开始下滑到B 点,然后沿水平面前进4m,到达C点停止.求:(1) 在物体沿水平运动中摩擦力做的功(2) 物体与水平面间的动摩擦因数.解:⑴m由A到C9:根据动能定理:mgR W f 0 0W f mgR 8J⑵ m 由 B 到C: W f mg x cos180°0.27、粗糙的1/4圆弧的半径为0.45m,有一质量为0.2kg的物体自最高点A从静止开始下滑到圆弧最低点B时,然后沿水平面前进0.4m到达C点停止.设物体与轨道间的动摩擦因数为0.5 (g =10m/s 2),求:(1) 物体到达B点时的速度大小•(2) 物体在圆弧轨道上克服摩擦力所做的功.解:⑴m由B到C :根据动能定理:mg I cos180°v B 2m/s1 2⑵ m由A到B:根据动能定理:mgR W f mv(3 02克服摩擦力做功W克f W f 0.5J8、质量为m的物体从高为h的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数证:设斜面长为I,斜面倾角为,物体在斜面上运动的水平位移为s,,在水平面上运动的位移为S2,如图所示10.m由A到B :根据动能定理:mgh mg cos I cos180o mgs2 cos180°0 0又Q I cos s i、s S1 S2h则: h s 0即:ss9也可以分段计算,计算过程略10、汽车质量为 m = 2 x 103kg ,沿平直的路面以恒定功率 达到最大速度20m/s.设汽车受到的阻力恒定.求:证毕•9、质量为m 的物体从高为h 的斜面顶端自静止开始滑下,最后停在平面上的 从斜面的顶端以初速度 v o 沿斜面滑下,则停在平面上的 C 点•已知AB = BC 克服摩擦力做的功• ° A 故功 解:设斜面长为I , AB 和BC 之间的距离均为s ,物体在斜面上摩擦力 O 到B :根据动能定理: mgh W f 2 s cos180o 0 0 O 到C :根据动能定理: mgh W f 2 2s cos180° 1 2mv 2mgB 点•若该物体 ,求物体在斜面上N i厂ABN 2W f-mv 2 mgh 2克服摩擦力做功W 克 f W fmgh 1 2mv o2(1)阻力的大小. ⑵这一过程牵引力所做的功 (3)这一过程汽车行驶的距离解12 : (1)汽车速度v 达最大v m 时,有F f ,故:P F v m f v mf 1000N(2)汽车由静止到达最大速度的过程中: 6 g Pt 1.2 10 J (2)汽车由静止到达最大速度的过程中,由动能定理: mg mg l cos180o 1 2mv m 2l 800m 11. AB 是竖直平面内的四分之一圆弧轨道,在下端 A 点起由静止开始沿轨道下滑。
(完整版)动能定理专项练习(带答案)

动能定理专项训练1. 下列说法正确的是()A.物体所受合力为0,物体动能可能改变B.物体所受合力不为0,动能一定改变C.物体的动能不变,它所受合力一定为0 D.物体的动能改变,它所受合力一定不为2. 一质量为2 kg 的滑块,以4 m/s 的速度在光滑的水平面上向左滑行,从某一时刻起,在滑 块上作用一向右的水平力,经过一段时间,滑块的速度方向变为向右,大小为4 m/s ,在这段时间里水平力做的功为() 3. 汽车在平直公路上行驶,在它的速度从零增至的速度从v 增大至2v 的过程中,汽车所做的功为 v 的过程中,汽车发动机做的功为 W,在它 W2,设汽车在行驶过程中发动机的牵引力和所受阻力不变,则有( )A . W =2WB . W =3WC 4 •如图所示,DC 是水平面,AB 是斜面,初速为 v o 的物体从D 点出发沿DBA #到A 点且速度刚好为零。
如果斜面改为 AC 让该物体从D 点出发沿DCA t 到A 点且速度 刚好为零,则物体具有初速度(已知物体与路面之间的动摩擦因数处处相同且不为 零)( ) A .大于v o B •等于v o C •小于v o D •取决于斜面的倾角5 .假设汽车紧急刹车制动后所受阻力的大小与汽车所受重力的大小差不多, 当汽车以20m/s 的速度行驶时,突然制动。
它还能继续滑行的距离约为( )6 •质量为m 的小球用长度为 L 的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空 气阻力作用•已知小球经过最低点时轻绳受的拉力为 7ng ,经过半周小球恰好能通过最高点, 则 此过程中小球克服空气阻力做的功为( A . ng L /4 B . m g L /3 C . m g L /2 D 8 .将小球以初速度 V 。
竖直上抛,在不计空气阻力的理想状况下, 由于有空气阻力,小球实际上升的最大高度只有该理想高度的 小球落回抛出点时的速度大小v 。
9 .如图所示,质量为 m 的钢珠从高出地面 h 处由静止自由下落,落到地面进入沙坑 h /10 停止,则1)钢珠在沙坑中受到的平均阻力是重力的多少倍?(2)若让钢珠进入沙坑 h /8 ,则钢珠在h 处的动能应为多少?设钢珠在沙坑中所受平均阻 力大小不随深度改变。
物理动能定理的综合应用题20套(带答案)

物理动能定理的综合应用题20套(带答案)一、高中物理精讲专题测试动能定理的综合应用1.为了备战2022年北京冬奥会,一名滑雪运动员在倾角θ=30°的山坡滑道上进行训练,运动员及装备的总质量m=70 kg.滑道与水平地面平滑连接,如图所示.他从滑道上由静止开始匀加速下滑,经过t=5s到达坡底,滑下的路程 x=50 m.滑雪运动员到达坡底后又在水平面上滑行了一段距离后静止.运动员视为质点,重力加速度g=10m/s2,求:(1)滑雪运动员沿山坡下滑时的加速度大小a;(2)滑雪运动员沿山坡下滑过程中受到的阻力大小f;(3)滑雪运动员在全过程中克服阻力做的功W f.【答案】(1)4m/s2(2)f = 70N (3)1.75×104J【解析】【分析】(1)运动员沿山坡下滑时做初速度为零的匀加速直线运动,已知时间和位移,根据匀变速直线运动的位移时间公式求出下滑的加速度.(2)对运动员进行受力分析,根据牛顿第二定律求出下滑过程中受到的阻力大小.(3)对全过程,根据动能定理求滑雪运动员克服阻力做的功.【详解】(1)根据匀变速直线运动规律得:x=1at22解得:a=4m/s2(2)运动员受力如图,根据牛顿第二定律得:mgsinθ-f=ma解得:f=70N(3)全程应用动能定理,得:mgxsinθ-W f =0解得:W f =1.75×104J【点睛】解决本题的关键要掌握两种求功的方法,对于恒力可运用功的计算公式求.对于变力可根据动能定理求功.2.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理3.如图所示,AB是竖直面内的四分之一圆弧形光滑轨道,下端B点与水平直轨道相切.一个小物块自A点由静止开始沿轨道下滑,已知轨道半径为R=0.2m,小物块的质量为m=0.1kg,小物块与水平面间的动摩擦因数μ=0.5,g取10m/s2.求:(1)小物块在B点时受到的圆弧轨道的支持力大小;(2)小物块在水平面上滑动的最大距离.【答案】(1)3N (2)0.4m【解析】(1)由机械能守恒定律,得在B点联立以上两式得F N=3mg=3×0.1×10N=3N.(2)设小物块在水平面上滑动的最大距离为l,对小物块运动的整个过程由动能定理得mgR-μmgl=0,代入数据得【点睛】解决本题的关键知道只有重力做功,机械能守恒,掌握运用机械能守恒定律以及动能定理进行解题.4.某滑沙场的示意图如图所示,某旅游者乘滑沙橇从A点由静止开始滑下,最后停在水平沙面上的C点.设滑沙橇和沙面间的动摩擦因数处处相同,斜面和水平面连接处可认为是圆滑的,滑沙者保持一定姿势坐在滑沙橇上不动,若测得AC间水平距离为x,A点高为h,求滑沙橇与沙面间的动摩擦因数μ.【答案】h/x【解析】【分析】对A到C的全过程运用动能定理,抓住动能的变化量为零,结合动能定理求出滑沙橇与沙面间的动摩擦因数.【详解】设斜面的倾角为θ,对全过程运用动能定理得,因为,则有,解得.【点睛】本题考查了动能定理的基本运用,运用动能定理解题关键选择好研究的过程,分析过程中有哪些力做功,再结合动能定理进行求解,本题也可以结合动力学知识进行求解.5.如图所示,倾斜轨道AB 的倾角为37°,CD 、EF 轨道水平,AB 与CD 通过光滑圆弧管道BC 连接,CD 右端与竖直光滑圆周轨道相连.小球可以从D 进入该轨道,沿轨道内侧运动,从E 滑出该轨道进入EF 水平轨道.小球由静止从A 点释放,已知AB 长为5R ,CD 长为R ,重力加速度为g ,小球与斜轨AB 及水平轨道CD 、EF 的动摩擦因数均为0.5,sin37°=0.6,cos37°=0.8,圆弧管道BC 入口B 与出口C 的高度差为l.8R .求:(在运算中,根号中的数值无需算出)(1)小球滑到斜面底端C 时速度的大小. (2)小球刚到C 时对轨道的作用力.(3)要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R /应该满足什么条件? 【答案】(1285gR(2)6.6mg ,竖直向下(3)0.92R R '≤ 【解析】试题分析:(1)设小球到达C 点时速度为v ,a 球从A 运动至C 过程,由动能定理有0021(5sin 37 1.8)cos3752c mg R R mg R mv μ+-⋅=(2分) 可得 5.6c v gR 1分)(2)小球沿BC 轨道做圆周运动,设在C 点时轨道对球的作用力为N ,由牛顿第二定律2c v N mg m r-=, (2分) 其中r 满足 r+r·sin530=1.8R (1分) 联立上式可得:N=6.6mg (1分)由牛顿第三定律可得,球对轨道的作用力为6.6mg ,方向竖直向下. (1分) (3)要使小球不脱离轨道,有两种情况:情况一:小球能滑过圆周轨道最高点,进入EF 轨道.则小球b 在最高点P 应满足2P v m mg R '≥(1分) 小球从C 直到P 点过程,由动能定理,有2211222P c mgR mg R mv mv μ--'⋅=-(1分) 可得230.9225R R R ='≤(1分) 情况二:小球上滑至四分之一圆轨道的Q 点时,速度减为零,然后滑回D .则由动能定理有2102c mgR mg R mv μ--⋅='-(1分)2.3R R '≥(1分)若 2.5R R '=,由上面分析可知,小球必定滑回D ,设其能向左滑过DC 轨道,并沿CB 运动到达B 点,在B 点的速度为v B ,,则由能量守恒定律有22111.8222c B mv mv mg R mgR μ=+⋅+(1分) 由⑤⑨式,可得0B v =(1分)故知,小球不能滑回倾斜轨道AB ,小球将在两圆轨道之间做往返运动,小球将停在CD 轨道上的某处.设小球在CD 轨道上运动的总路程为S ,则由能量守恒定律,有212c mv mgS μ=(1分) 由⑤⑩两式,可得 S=5.6R (1分)所以知,b 球将停在D 点左侧,距D 点0.6R 处. (1分)考点:本题考查圆周运动、动能定理的应用,意在考查学生的综合能力.6.如图所示,质量m =2.0×10-4 kg 、电荷量q =1.0×10-6 C 的带正电微粒静止在空间范围足够大的电场强度为E1的匀强电场中.取g =10 m/s 2. (1)求匀强电场的电场强度 E1的大小和方向;(2)在t =0时刻,匀强电场强度大小突然变为E2=4.0×103N/C ,且方向不变.求在t =0.20 s 时间内电场力做的功;(3)在t =0.20 s 时刻突然撤掉第(2)问中的电场,求带电微粒回到出发点时的动能.【答案】(1)2.0×103N/C ,方向向上 (2)8.0×10-4J (3)8.0×10-4J 【解析】 【详解】(1)设电场强度为E ,则:Eq mg =,代入数据解得:4362.01010/ 2.010/1010mg E N C N C q --⨯⨯===⨯⨯,方向向上 (2)在0t =时刻,电场强度突然变化为:32 4.010/E N C =⨯,设微粒的加速度为a ,在0.20t s =时间内上升高度为h ,电场力做功为W ,则:21qE mg ma -=解得:2110/a m s =根据:2112h a t =,解得:0.20=h m 电场力做功:428.010J W qE h -==⨯(3)设在0.20t s =时刻突然撤掉电场时粒子的速度大小为v ,回到出发点时的动能为k E ,则:v at =,212k E mgh mv =+解得:48.010J k E -=⨯7.如图所示,ABC 是一条长L =10m 的绝缘水平轨道,固定在离水平地面高h =1.25m 处,A 、C 为端点,B 为中点,轨道BC 处在方向竖直向上,大小E =5×105N/C 的匀强电场中,一质量m =0.5kg ,电荷量q =+1.0×10-5C 的可视为质点的滑块以初速度v 0=6m/s 在轨道上自A 点开始向右运动,经B 点进入电场,从C 点离开电场,已知滑块与轨道间动摩擦因数μ=0.2,g 取10m/s 2。
人教版2014年高考物理二轮复习专题:四 动能定理的综合应用(含答案解析)

专题四 动能定理的综合应用1. (多选)位于水平面上的物体在水平恒力F 1作用下,做速度为v 1的匀速运动.若作用力变为斜向上的恒力F 2,物体做速度为v 2的匀速运动,且F 1与F 2功率相同.则可能有( )A. F 2=F 1,v 1>v 2B. F 2=F 1,v 1<v 2C. F 2>F 1,v 1>v 2D. F 2<F 1,v 1<v 22. (多选)(2013·广东六校联考)某新型节能环保电动车在平直路面上启动时的速度图象如图所示,Oa 段为直线,ab 段为曲线,bc 段是水平直线.设整个过程中电动车所受的阻力不变,则下列说法中正确的是( )A. 0t 1时间内电动车做匀加速直线运动B. t 2t 3时间内电动车的牵引力为零C. t 1t 2时间内电动车的平均速度为12(v 1+v 2) D. t 1t 2时间内合外力对电动车做的功为12m 22v -12m 21v3. (多选)(2013·盐城中学)一质量为1kg的质点静止于光滑水平面上,从t=0时起,第1 s内受到2N的水平外力作用,第2 s内受到同方向的1N的外力作用.下列说法中正确的是( )A. 02 s内外力的平均功率是94 WB. 第2 s内外力所做的功是54 JC. 第2 s末外力的瞬时功率最大D. 第1 s内与第2 s内质点动能增加量的比值是4 54. (多选)(2013·扬泰南连淮三模)一质量为m的物体以速度v0在足够大的光滑水平面上运动,从零时刻起,对该物体施加一水平恒力F,经过时间t,物体的速度减小到最小值35v,此后速度不断增大. 则( )A. 水平恒力F大小为0 25 mvtB. 水平恒力作用2t时间,物体速度大小为v0C. 在t时间内,水平恒力做的功为-825m20vD. 若水平恒力大小为2F,方向不变,物体运动过程中的最小速度仍为35v5. (多选)如图所示,质量为m 的滑块以一定初速度滑上倾角为θ的固定斜面,同时施加一沿斜面向上的恒力F=mgsin θ;已知滑块与斜面间的动摩擦因数μ=tan θ,取出发点为参考点,能正确描述滑块运动到最高点过程中产生的热量Q,滑块动能E k 、势能E p 、机械能E 随时间t 、位移x 关系的是( )6. (多选)如图所示,圆心在O 点、半径为R 的光滑圆弧轨道ABC 竖直固定在水平桌面上,OC 与OA 的夹角为60°,轨道最低点A 与桌面相切. 一足够长的轻绳两端分别系着质量为m 1和m 2的两小球(均可视为质点),挂在圆弧轨道光滑边缘C 的两边,开始时m 1位于C 点,然后从静止释放.则( )A. 在m1由C点下滑到A点的过程中两球速度大小始终相等B. 在m1由C点下滑到A点的过程中重力对m1做功的功率先增大后减小C. 若m1恰好能沿圆弧下滑到A点,则m1=2m2D. 若m1恰好能沿圆弧下滑到A点,则m1=3m27. (2013·常州模拟)如图所示的木板由倾斜部分和水平部分组成,两部分之间由一段圆弧面相连接.在木板的中间有位于竖直面内的光滑圆槽轨道,斜面的倾角为θ.现有10个质量均为m、半径均为r的均匀刚性球,在施加于1号球的水平外力F的作用下均静止,力F与圆槽在同一竖直面内,此时1号球球心距它在水平槽运动时的球心高度差为h.现撤去力F使小球开始运动,直到所有小球均运动到水平槽内.重力加速度为g.求:(1) 水平外力F的大小.(2) 1号球刚运动到水平槽时的速度.(3) 整个运动过程中,2号球对1号球所做的功.8. 某缓冲装置的理想模型如图所示,劲度系数足够大的轻质弹簧与轻杆相连,轻杆可在固定的槽内移动,与槽间的滑动摩擦力恒为f. 轻杆向右移动不超过l 时,装置可安全工作. 一质量为m 的小车若以速度v 0 撞击弹簧,将导致轻杆向右移动4l. 轻杆与槽间的最大静摩擦力等于滑动摩擦力,且不计小车与地面的摩擦.(1) 若弹簧的劲度系数为k,求轻杆开始移动时,弹簧的压缩量x. (2) 求为使装置安全工作,允许该小车撞击的最大速度v m .(3) 讨论在装置安全工作时,该小车弹回速度v'和撞击速度v 的关系.专题四 动能定理的综合应用1. BD2. AD3. AD4. BCD5. CD6. BC7. (1) 以10个小球整体为研究对象,由力的平衡条件可得tan θ=10Fmg ,解得F=10mgtan θ.(2) 以1号球为研究对象,根据动能定理可得mgh=12m 21v -0,解得v 1=2gh .(3) 撤去水平外力F 后,以10个小球整体为研究对象,利用动能定理可得10mg(h+182rsin θ)=12·10m ·v 2-0,解得 v=2(9sin )g h r θ+.以1号球为研究对象,由动能定理得 mgh+W=12mv 2,解得W=9mgrsin θ.8. (1) 轻杆开始移动时,弹簧的弹力 F=kx, 且 F=f,解得 x=fk .(2) 设轻杆移动前小车对弹簧所做的功为W,则小车从撞击到停止的过程中根据动能定理有-f 4l -W=0-12m 20v ,同理,小车以v m 撞击弹簧时 -fl-W=0-12m 2m v ,解得v m =2032flv m +.(3) 设轻杆恰好移动时,小车撞击速度为v 1,12m 21v =W,解得v 1=2-2fl v m . 当v<20-2flv m 时,v'=v.当20-2fl v m ≤v ≤2032fl v m + 时,v'=20-2fl v m .。
动能定理典型例题附答案

动能定理典型例题附答案1、如图所⽰,质量m=0.5kg 的⼩球从距地⾯⾼H=5m 处⾃由下落,到达地⾯恰能沿凹陷于地⾯的半圆形槽壁运动,半圆槽半径R=0.4m.⼩球到达槽最低点时的速率为10m /s ,并继续滑槽壁运动直⾄槽左端边缘飞出,竖直上升,落下后恰好⼜沿槽壁运动直⾄从槽右端边缘飞出,竖直上升、落下,如此反复⼏次.设摩擦⼒⼤⼩恒定不变:(1)求⼩球第⼀次离槽上升的⾼度h.(2)⼩球最多能飞出槽外⼏次? (g 取10m /s 2 )2、如图所⽰,斜⾯倾⾓为θ,滑块质量为m ,滑块与斜⾯的动摩擦因数为µ,从距挡板为s 0的位置以v 0的速度沿斜⾯向上滑⾏.设重⼒沿斜⾯的分⼒⼤于滑动摩擦⼒,且每次与P 碰撞前后的速度⼤⼩保持不变,斜⾯⾜够长.求滑块从开始运动到最后停⽌滑⾏的总路程s.3、有⼀个竖直放置的圆形轨道,半径为R ,由左右两部分组成。
如图所⽰,右半部分AEB 是光滑的,左半部分BFA是粗糙的.现在最低点A 给⼀个质量为m 的⼩球⼀个⽔平向右的初速度,使⼩球沿轨道恰好运动到最⾼点B ,⼩球在B 点⼜能沿BFA 轨道回到点A ,到达A 点时对轨道的压⼒为4mg1、求⼩球在A 点的速度v 02、求⼩球由BFA 回到A 点克服阻⼒做的功4、如图所⽰,质量为m 的⼩球⽤长为L 的轻质细线悬于O 点,与O 点处于同⼀⽔平线上的P 点处有⼀根光滑的细钉,已知OP = L /2,在A 点给⼩球⼀个⽔平向左的初速度v 0,发现⼩球恰能到达跟P 点在同⼀竖直线上的最⾼点B .则:(1)⼩球到达B 点时的速率?(2)若不计空⽓阻⼒,则初速度v 0为多少?(3)若初速度v 0=3gL ,则在⼩球从A 到B 的过程中克服空⽓阻⼒做了多少功?5、如图所⽰,倾⾓θ=37°的斜⾯底端B 平滑连接着半径r =0.40m的竖直光滑圆轨道。
质量m =0.50kg 的⼩物块,从距地⾯h =2.7m 处沿斜⾯由静⽌开始下滑,⼩物块与斜⾯间的动摩擦因数µ=0.25,求:(sin 37°=0.6,cos 37°=0.8,g =10m/s 2)(1)物块滑到斜⾯底端B 时的速度⼤⼩。
物理动能定理的综合应用题20套(带答案)

(2)在2~10 s内小车牵引力的功率P是多大?
(3)小车在加速运动过程中的总位移x是多少?
【答案】(1)2 N;(2)12W (3)28.5 m;
【解析】
(1)在10s撤去牵引力后,小车只在阻力 作用下做匀减速运动,
设加速度大小为a,则 ,根据 ,
由图像可知 ,解得 ;
【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
(1)小球通过C点时的速度 ;
(2)小球从A点运动到C点的过程中,损失的机械能
【答案】(1) (2)1.5mgR
【解析】
【详解】
(1)小球恰能通过C点时,由重力提供向心力,由牛顿第二定律得:
则得:
(2)小球从A点运动到C点的过程中,根据动能定理得:
解得:
Wf=1.5mgR
则小球从A点运动到C点的过程中,损失的机械能
(2)小车的匀速阶段即7s~10s内,设牵引力为F,则
由图像可知 ,且 ;
(3)小车的加速运动过程可以分为0~1.5s和1.5s~7s两段,
设对应的位移分别为 和 ,在0~2s内的加速度大小为 ,
则由图像可得 , ,
在1.5s~7s内由动能定理可得 , ,
解得 ,
由
9.如图所示,半圆轨道的半径为R=10m,AB的距离为S=40m,滑块质量m=1kg,滑块在恒定外力F的作用下从光滑水平轨道上的A点由静止开始运动到B点,然后撤去外力,又沿竖直面内的光滑半圆形轨道运动,且滑块通过最高点C后又刚好落到原出发点A;g=滑块B从传送带右端滑出时的速度大小;
(3)滑块B落至P点距传送带右端的水平距离.
动能定理的应用(20个经典例题)

例18、如图所示,一半径为R的半圆形轨道BC与一水平面相连, C为轨道的最高点,一质量为m的小球以初速度v0从圆形轨道B点进 入,沿着圆形轨道运动并恰好通过最高点C,然后做平抛运动.求 : (1)小球平抛后落回水平面D点的位置距B点的距离; (2)小球由B点沿着半圆轨道到达C点的过程中,克服轨道摩擦 阻力做的功. [来源:]
0 f 0 0 . 2 × 3 × 1 0 2 2 a m / s 2 m / s 2 m 3
m在匀加速运动阶段的末速度为
2 v 2 a s 2 × 1 × 8 m / s 4 m / s 1 1 1
撤去 F 后,滑行 s 而停住, v 0 ,则 2 t=
2 2 v v 0 1 6 t 1 s m 4 m 2 2 a 2 × 2 2
(4)相等。即 W E E 300J k k 2 1
例2、某同学从高为h 处以速度v0 水平投 出一个质量为m 的铅球,求铅球落地时速度 大小。
解:铅球在空中运动时只有重力做功,动能增 加。设铅球的末速度为v,根据动能定理有 v0
1 2 1 2 mgh mv mv 0 2 2
mg
例10、在h高处,以初速度v0向
水平方向抛出一小球,不计空
气阻力,小球着地时速度大小
为(
C )
1 2 1 2 W 总 mv 2 mv 1 2 2
物理过程中不涉及到加 速度和时间,而只与物 体的初末状态有关的力 学问题,优先应用动能 定理。
例11、如图4所示,AB为1/4圆弧轨道,半径为 R=0.8m,BC是水平轨道,长l=3m,BC处的摩擦 系数为μ=1/15,今有质量m=1kg的物体,自A点 从静止起下滑到C点刚好停止。求物体在轨道AB 段所受的阻力对物体做的功。
四动能定理的应用练习题及答案

四动能定理的应用练习题及答案This manuscript was revised by the office on December 22, 2012hAlB θP Q O 四 动能定理的应用姓名 一、选择题(每小题中至少有一个选项是正确的)1.水平桌面上有一物体在一水平恒力作用下,速度由零到v 和由v 增加到2v 两阶段水平恒力F所做的功分别为W1和W2,则W1:W2为 ( )A .1:1;B .1:2;C .1:3;D .1:42.如图所示,一个质量m 为2kg 的物块,从高度h=5m 、长度l =10m 的光滑斜面的顶端A 由静止开始下滑,那么,物块滑到斜面底端B 时速度的大小是(不计空气阻力,g 取10m/s 2) ( ) A .10m/s B .102m/s C .100m/s D .200m/s 3.甲物的质量是乙物的质量的两倍,它们以相同的初速度开始在水平面上滑行,如果摩擦系数相同,两物体滑行的最远距离分别为S 1和S 2,则 ( )A .S 1=S 2B .S 1>S 2C .S 1<S 2D .以上答案都不对4.某消防队员从一平台上跳下,下落2米后双脚触地,接着他用双腿弯屈的方法缓冲,使自身重心又下降米。
在着地过程中地面对他双脚的平均作用力估计为 ( )A .自身所受重力的2倍B .自身所受重力的5倍C .自身所受重力的8倍D .自身所受重力的10倍5.一个质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 很缓慢地移动到Q 点,如图所示,则力F 所做的功为 ( ) A .θcos mgl B .θsin FlC .)cos 1(θ-mglD .)cos 1(θ-Fl6.在平直公路上,汽车由静止开始做匀加速运动,当速度达到v m 后立即关闭发动机直到停止,v -t 图象如图所示。
设汽车 的牵引力为F ,摩擦力为F f ,全过程中牵引力做功W 1,克服 摩擦力做功W 2,则 ( ) A .F ∶F f =1∶3 B .F ∶F f =4∶1C .W 1∶W 2=1∶1D .W 1∶W 2=1∶37.跳水运动员从高H 的跳台以速度V 1水平跳出,落水时速率为V 2,运动员质量为m ,若起跳时,运动员所做的功为W 1,在空气中克服阻力所做的功为W 2,则:( )A .W 1=2121mv ,B .W 1=mgH +2121mvC . W 2=2121mv +mgH -2221mv D .W 2=2121mv -2221mv*8.一小物体从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E ,它返回斜面底端的速度大小为v ,克服摩擦力做功为E/2。
高考物理动能定理的综合应用题20套(带答案)含解析

高考物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径2R m =的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h =1.25m ,现将一质量m =0.2kg 的小滑块从A 点由静止释放,滑块沿圆弧轨道运动至B 点以5/v m s =的速度水平飞出(g 取210/m s ).求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B 点时对圆轨道的压力大小; (3)小滑块着地时的速度大小.【答案】(1) 1.5f W J = (2) 4.5N F N = (3)152/v m s = 【解析】 【分析】 【详解】(1)滑块在圆弧轨道受重力、支持力和摩擦力作用,由动能定理mgR -W f =12mv 2W f =1.5J(2)由牛顿第二定律可知:2N v F mg m R-=解得:4.5N F N =(3)小球离开圆弧后做平抛运动根据动能定理可知:22111m m 22mgh v v =-解得:152m/s v =2.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;3.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC 长L =6m ,始终以v 0=6m/s 的速度顺时针运动.将一个质量m =1kg 的物块由距斜面底端高度h 1=5.4m 的A 点静止滑下,物块通过B 点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H =5m ,g 取10m/s 2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h4=9.0m所以当离传送带高度在1.8m~9.0m的范围内均能满足要求即1.8m≤h≤9.0m4.如图所示,半径为R的圆管BCD竖直放置,一可视为质点的质量为m的小球以某一初速度从A点水平抛出,恰好从B点沿切线方向进入圆管,到达圆管最高点D后水平射出.已知小球在D点对管下壁压力大小为12mg,且A、D两点在同一水平线上,BC弧对应的圆心角θ=60°,不计空气阻力.求:(1)小球在A 点初速度的大小; (2)小球在D 点角速度的大小;(3)小球在圆管内运动过程中克服阻力做的功.【答案】(3)14mgR【解析】 【分析】(1)根据几何关系求出平抛运动下降的高度,从而求出竖直方向上的分速度,根据运动的合成和分解求出初速度的大小.(2)根据向心力公式求出小球在D 点的速度,从而求解小球在D 点角速度. (3)对A 到D 全程运用动能定理,求出小球在圆管中运动时克服阻力做的功. 【详解】(1)小球从A 到B ,竖直方向: v y 2=2gR(1+cos 60°)解得v y在B 点:v 0=60y v tan(2)在D 点,由向心力公式得mg-12mg =2Dmv R解得v Dω=D v R (3)从A 到D 全过程由动能定理:-W 克=12mv D 2-12mv 02 解得W 克=14mgR. 【点睛】本题综合考查了平抛运动和圆周运动的基础知识,难度不大,关键搞清平抛运动在水平方向和竖直方向上的运动规律,以及圆周运动向心力的来源.5.如图,图象所反映的物理情景是:物体以大小不变的初速度v 0沿木板滑动,若木板倾角θ不同,物体沿木板上滑的距离S 也不同,便可得出图示的S -θ图象.问: (1)物体初速度v 0的大小.(2)木板是否粗糙?若粗糙,则动摩擦因数μ为多少? (3)物体运动中有否最大加速度以及它发生在什么地方?【答案】(1)017.3m /s v = (2)0.75μ= (3)最大加速度点坐标()53,12m sθ︒'==【解析】 【分析】 【详解】(1)当θ=90º时,物体做竖直上抛运动,根据速度位移公式可知:01210317.3m /s v gs ===(2)当θ=0º时,根据动能定理得,201mg 2s mv μ=,解得:203000.75221020v gs μ===⨯⨯(3)加速度cos sin 3cos sin cos sin 4mg mg a g g g mμθθμθθθθ+⎛⎫==+=+ ⎪⎝⎭得到,当θ=53º时,α有极大值2m 12.5m /s a = ,由动能定理得,20102mv mas '-= ,所以12m s '= 所以最大加速度点坐标()53,12m s θ︒'==6.质量为2kg 的物体,在竖直平面内高h = 1m 的光滑弧形轨道A 点,以v =4m/s 的初速度沿轨道滑下,并进入BC 轨道,如图所示。
动能和动能定理机械能守恒典型例题和练习

学习目标1. 能够推导并理解动能定理知道动能定理的适用范围2. 理解和应用动能定理,掌握外力对物体所做的总功的计算,理解“代数和”的含义。
3. 确立运用动能定理分析解决具体问题的步骤与方法类型一 .常规题型例1. 用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为,木箱与冰道间的动摩擦因数为,求木箱获得的速度αμ例2. 质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止起通过位移s 时的动能为E1,当物体受水平力2F 作用,从静止开始通过相同位移s ,它的动能为E2,则:A. E2=E1B. E2=2E1C. E2>2E1D. E1<E2<2E1针对训练 材料相同的两个物体的质量分别为m1和m2,且m m 124=,当它们以相同的初动能在水平面上滑行,它们的滑行距离之比s s 12:和滑行时间之比t t 12:分别是多少?(两物体与水平面的动摩擦因数相同)类型二、应用动能定理简解多过程问题例3:质量为m 的物体放在动摩擦因数为μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S 后撤去外力,物体还能运动多远?例4、一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.针对训练2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s2)针对训练3 质量为m 的球由距地面高为h 处无初速下落,运动过程中空气阻力恒为重力的0.2倍,球与地面碰撞时无能量损失而向上弹起,球停止后通过的总路程是多少?类型三、应用动能定理求变力的功例5. 质量为m 的小球被系在轻绳的一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。
高中物理动能定理的综合应用题20套(带答案)含解析

高中物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;2.如图所示,在粗糙水平面上有一质量为M 、高为h 的斜面体,斜面体的左侧有一固定障碍物Q,斜面体的左端与障碍物的距离为d .将一质量为m 的小物块置于斜面体的顶端,小物块恰好能在斜面体上与斜面体一起保持静止;现给斜面体施加一个水平向左的推力,使斜面体和小物块一起向左匀加速运动,当斜面体到达障碍物与其碰撞后,斜面体立即停止运动,小物块水平抛出,最后落在障碍物的左侧P 处(图中未画出),已知斜面体与地面间的动摩擦因数为μ1,斜面倾角为θ,重力加速度为g,滑动摩擦力等于最大静摩擦力,求:(1)小物块与斜面间的动摩擦因数μ2;(2)要使物块在地面上的落点P 距障碍物Q 最远,水平推力F 为多大; (3)小物块在地面上的落点P 距障碍物Q 的最远距离. 【答案】(1)2tan μθ= (2)()()1sin cos tan M m g F M m g sin θμθθθ+=++-(3)2sin cos tan tan hd hsin θθθθθ- 【解析】 【分析】对m 受力分析,由共点力平衡条件可以求出动摩擦因数;以m 为研究对象,求出最大加速度,以系统为研究对象,由牛顿第二定律求出最大推力;对系统由动能定理求出最大速度,然后由平抛运动规律求出最大水平位移. 【详解】(1)对m 由平衡条件得:mgsinθ-μ2mgcosθ=0 解得:μ2=tanθ(2)对m 设其最大加速度为a m ,由牛顿第二定律得 水平方向:Nsinθ+μ2Ncosθ=ma m 竖直方向:Ncosθ-μ2Nsinθ-mg =0 解得:2sin cos tan sin g a θθθθ=-对M 、m 整体由牛顿第二定律得:F -μ1(M +m )g =(M +m )a m 解得:()()12sin cos tan sin M m g F M m g θμθθθ+=++- (3)对M 、m 整体由动能定理得:()()2112Fd M m gd M m v μ-+=+ 解得:sin cos tan sin dg v θθθθ=-对m 由平抛运动规律得: 水平方向:tan p hx vt θ+= 竖直方向:212h gt =解得:2sin 2cos tan sin tan p hd hx θθθθθ=-- 【点睛】本题主要考查了应用平衡条件、牛顿第二定律、动能定理、平抛运动规律即可正确解题.3.如图所示,固定斜面的倾角α=30°,用一沿斜面向上的拉力将质量m =1kg 的物块从斜面底端由静止开始拉动,t =2s 后撤去该拉力,整个过程中物块上升的最大高度h =2.5m ,物块与斜面间的动摩擦因数μ=36.重力加速度g =10m/s 2.求:(1)拉力所做的功; (2)拉力的大小.【答案】(1)40J F W = (2)F =10N 【解析】 【详解】(1)物块从斜面底端到最高点的过程,根据动能定理有:cos 0sin F hW mg mgh μαα-⋅-= 解得拉力所做的功40F W J = (2)F W Fx =由位移公式有212x at = 由牛顿第二定律有cos sin F mg mg ma μαα--=解得拉力的大小F=10N.4.如图所示,一质量为m 的小球从半径为R 的竖直四分之一圆弧轨道的顶端无初速释放,圆弧轨道的底端水平,离地面高度为R 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四动能定理的应用练习
题及答案
集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]
h
A
l
B θ
P Q O 四 动能定理的应用
姓名 一、选择题(每小题中至少有一个选项是正确的)
1.水平桌面上有一物体在一水平恒力作用下,速度由零到v 和由v 增加到2v 两阶段水平恒力F所做的功分别为W1和W2,则W1:W2为 ( )
A .1:1;
B .1:2;
C .1:3;
D .1:4
2.如图所示,一个质量m 为2kg 的物块,从高度h=5m 、长度l =10m 的光滑斜面的顶端A 由静止开始下滑,那么,物块滑到斜面底端B 时
速度的大小是(不计空气阻力,g 取10m/s 2) ( ) A .10m/s B .102m/s C .100m/s D .200m/s 3.甲物的质量是乙物的质量的两倍,它们以相同的初速度开始在水平面上滑行,如果摩擦系数相同,两物体滑行的最远距离分别为S 1和S 2,则 ( )
A .S 1=S 2
B .S 1>S 2
C .S 1<S 2
D .以上答案都不对
4.某消防队员从一平台上跳下,下落2米后双脚触地,接着他用双腿弯屈的方法缓冲,使自身重心又下降米。
在着地过程中地面对他双脚的平均作用力估计为 ( )
A .自身所受重力的2倍
B .自身所受重力的5倍
C .自身所受重力的8倍
D .自身所受重力的10倍
5.一个质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平力
F 作用下,从平衡位置P 很缓慢地移动到Q 点,如图所示,则力F 所做的功为 ( ) A .θcos mgl B .θsin Fl
C .)cos 1(θ-mgl
D .)cos 1(θ-Fl
6.在平直公路上,汽车由静止开始做匀加速运动,当速度达到
v m 后立即关闭发动机直到停止,v -t 图象如图所示。
设汽车 的牵引力为F ,摩擦力为F f ,全过程中牵引力做功W 1,克服 摩擦力做功W 2,则 ( ) A .F ∶F f =1∶3 B .F ∶F f =4∶1
C .W 1∶W 2=1∶1
D .W 1∶W 2=1∶3
7.跳水运动员从高H 的跳台以速度V 1水平跳出,落水时速率为V 2,运动员质量为m ,若起跳时,运动员所做的功为W 1,在空气中克服阻力所做的功为W 2,则:( )
A .W 1=2121mv ,
B .W 1=mgH +2
121mv
C . W 2=212
1mv +mgH -222
1mv D .W 2=212
1mv -222
1mv
*8.一小物体从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为
E ,它返回斜面底端的速度大小为v ,克服摩擦力做功为E/2。
若小物块冲上斜面的初动
能为2E ,则 ( ) A .返回斜面底端时的动能为E B .返回斜面底端的动能为3E/2 C .返回斜面底端时的速度大小为2v D .返回斜面底端时的速度大小为v
*9.质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平方向射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s ,若木块对子弹的阻力
F 视为恒定,则下列关系式中正确的是 ( ) A .FL=21Mv 2 B . Fs=2
1mv 2
C .Fs=
2
1
mv 02-2
1(M+m )v 2
D .F (L+s )= 21mv 02-2
1mv 2
二、填空题
10.重20N 的铁球从离地面40m 高处由静止开始下落,若空气阻力是球重的倍,那么该铁球从开始下落到着地的过程中,重力对小球做功为 ,空气阻力对小球做功为 ,小球克服空气阻力做功为 。
11.一人坐在雪橇上,从静止开始沿着高度为10米的斜坡滑下,到达底部时速度为10米/秒。
人和雪橇的总质量为50千克,下滑过程中克服阻力做的功等于 __焦 (取g=10米/秒2)。
12.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为s ,如图所示,不考虑物体滑至斜面底端的碰撞作用,并认为
斜面与水平面对物体的动摩擦因数相同,则动摩擦因数μ为 。
*13.的铁链AB 质量为3千克,长为1米,盘在地面上,用恒力F=50N 的力提A ,到B 刚好离开地面,则人所做的功为 。
铁链的速度为 。
三、计算题
14.一个子弹以水平速度500m/s 射入一块固定的木板,射出时的速度为
400m/s ;如果子弹紧接着再射入一块同样的木板,则射出时子弹的速度为多大
*15如图,光滑圆弧的半径为80cm ,有一质量为的物体自A 点从静止开始下滑到B 点,然后又沿水平面前进4m ,到达C 点
停止,求:(1)物体到达B 点时的速
度;
(2)物体沿水平面运动的过程中摩擦力做的功; (3)物体与水平面间的动摩擦因数。
(g 取10m/s 2)
O A C
四 动能定理的应用参考答案
1、C
2、A
3、A
4、B
5、C
6、BC
7、AC
8、A 9、ACD 10、800J -160J 160J 11、2500焦 12、h/s 13、50J,
s m /83.43
210
14、265m/s 15、4m/s -8J。