高考数学二轮复习中档题专练八

合集下载

新高考二轮数学理科金版学案专题复习同步练习8.1函数与方程思想(含答案解析)

新高考二轮数学理科金版学案专题复习同步练习8.1函数与方程思想(含答案解析)

第一部分 知识复习专题专题八 思想方法专题 第一讲 函数与方程思想一、选择题1. (2014·安徽卷)设函数f(x)(x ∈R)满足f(x +π)=f(x)+sin x .当0≤x <π时,f(x)=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-12解析:由题意,f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫17π6+sin 17π6=f ⎝⎛⎭⎫11π6+sin 11π6+sin 17π6=f ⎝⎛⎭⎫5π6+sin5π6+sin 11π6+sin 17π6=0+12-12+12=12.故选A. 答案:A2.设a >1,若对于任意的x ∈[a ,2a],都有y ∈[a ,a 2]满足方程log a x +log a y =3,这时a 的取值的集合为( )A .{a|1<a≤2}B .{a|a ≥2}C .{a|2≤a ≤3}D .{2,3}解析:依题意得y =a 3x ,当x ∈[a ,2a]时,y =a 3x ∈⎣⎡⎦⎤12a 2,a 2 [a ,a 2],因此有12a 2≥a ,又a >1,由此解得a≥2.故选B.答案:B3.对任意a ∈[-1,1],函数f(x)=x 2+(a -4)x +4-2a 的值总大于零,则x 的取值范围是( )A.{}x |1<x <3B.{}x |x <1或x >3C.{}x |1<x <2D.{}x |x <1或x >2解析:由f(x)=x 2+(a -4)x +4-2a>0得 a(x -2)+x 2-4x +4>0.令g(a)=a(x -2)+x 2-4x +4,由不等式f (x)>0恒成立,即g(a)>0在[-1,1]上恒成立.∴有⎩⎪⎨⎪⎧g (-1)>0,g (1)>0,即⎩⎪⎨⎪⎧-(x -2)+x 2-4x +4>0,(x -2)+x 2-4x +4>0. 解得x<1或x>3. 答案:B4.椭圆x 24+y 2=1的两个焦点为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,其一交点为P ,则|PF 2|=( )A.32B. 3C.72D .4 解析:如图,令|F 1P|=r 1,|F 2P|=r 2,那么⎩⎪⎨⎪⎧r 1+r 2=2a =4,r 22-r 21=(2c )2=12⎩⎪⎨⎪⎧r 1+r 2=4,r 2-r 1=3 r 2=72.答案:C5.(2014·大纲卷)奇函数f(x)的定义域为R ,若f(x +2)为偶函数,且f(1)=1,则f(8)+f(9)=( )A .-2B .-1C .0D .1解析:因为函数f(x)是奇函数,所以f (-x)=-f(x), 又因为f(x +2)是偶函数,则f(-x +2)=f(x +2),所以f(8)=f(6+2)=f(-6+2)=f(-4)=-f(4),而f(4)=f(2+2)=f(-2+2)=f(0)=0,f(8)=0,同理f(9)=f(7+2)=f(-7+2)=f(-5)=-f(5);而f(5)=(3+2)=f(-3+2)=f(-1)=-f(1)=-1,f(9)=1,所以f(8)+f(9)=1.故选D.答案:D6.(2014·湖南卷)已知函数f(x)=x 2+e x -12(x <0)与g(x)=x 2+ln(x +a)图象上存在关于y 轴对称的点,则a 的取值范围是( )A.⎝⎛⎭⎫-∞,1e B.()-∞,e C.⎝⎛⎭⎫ -1e ,e D.⎝⎛⎭⎫-e ,1e解析:由题可得存在x 0∈(-∞,0)满足f(x 0)=g(-x 0) x 20+ex 0-12=(-x 0)2+ln(-x 0+a) ex 0-ln(-x 0+a)-12=0,令h(x)=e x -ln(-x +a)-12,因为函数y =e x 和y =-ln(-x +a)在定义域内都是单调递增的,所以函数h(x)=e x -ln(-x +a)-12在定义域内是单调递增的,又因为x 趋近于-∞时,函数h(x)<0且h(x)=0在(-∞,0)上有解(即函数h(x)有零点),所以h(0)=e 0-ln(0+a)-12>0 ln a <ln e a < e.故选B.答案:B二、填空题7.若关于x 的方程(2-2-|x -2|)2=2+a 有实根,则实数a 的取值范围是________.解析:令f(x)=(2-2-|x -2|)2,∵-|x -2|≤0,∴0<2-|x -2|≤1.∴f(x)∈[1,4).∵方程有实根, ∴1≤2+a<4,解得-1≤a<2. 答案:[-1,2)8. (2014·陕西卷)已知4a =2,lg x =a ,则x =________.解析:由4a =2得a =12,所以lg x =12,解得x =10.答案:10三、解答题9.已知函数f(x)(x∈R)满足f(x)=2bxax-1,a≠0,f(1)=1且使f(x)=2x成立的实数x只有一个,求函数f(x)的表达式.解析:∵f(x)=2bxax-1,f(1)=1,∴2ba-1=1.∴a=2b+1.又f(x)=2x,即2bxax-1=2x只有一个解,也就是2ax2-2(1+b)x=0(a≠0)只有一解.∴Δ=[-2(1+b)]2-4×2a×0=0,即(1+b)2=0.得b=-1.∴a=-1.故f(x)=2xx+1.10.某地区要在如图所示的一块不规则用地规划建成一个矩形商业楼区,余下的作为休闲区,已知AB⊥BC,OA∥BC,且AB=BC=2OA=4 km,曲线OC段是以O为顶点且开口向上的抛物线的一段,如果矩形的两边分别落在AB,BC上,且一个顶点在曲线OC段上,应当如何规划才能使矩形商业楼区的用地面积最大?并求出最大的用地面积.解析:以点O为原点,OA所在的直线为x轴,建立直角坐标系,设抛物线的方程为x2=2py,由C(2,4)代入得:p=1 2,所以曲线段OC的方程为:y=x2(x∈[0,2]).A(-2,0),B(-2,4),设P(x,x2)(x∈[0,2])在OC上,过P作PQ⊥AB于Q,PN ⊥BC于N,故PQ =2+x ,PN =4-x 2, 则矩形商业楼区的面积 S =(2+x)(4-x 2)(x ∈[0,2]).S =-x 3-2x 2+4x +8,令S′=-3x 2-4x +4=0得x =23或x =-2(舍去),当x ∈⎣⎡⎦⎤0,23时,S ′>0,S 是x 的增函数, 当x ∈⎣⎡⎦⎤23,2时,S ′<0,S 是x 的减函数, 所以当x =23时,S 取得最大值,此时PQ =2+x =83,PN =4-x 2=329,S max =83×329=25627(km 2).故该矩形商业楼区规划成长为329 km ,宽为83 km 时,用地面积最大为25627km 2.11.进入2007年以来,猪肉价格上涨,养猪所得利润比原来有所增加.某养殖户拟建一座平面图(如图所示)是矩形且面积为200平方米的猪舍养殖生猪,由于地形限制,猪舍的宽x 不少于5米,不多于a 米,如果该养殖户修建猪舍的地基平均每平方米需投入10元,房顶(房顶与地面形状相同)每平方米需投入15元,猪舍外面的四周墙壁每米需投入20元,中间四条隔墙每米需投入10元.问:当猪舍的宽x 定为多少时,该养殖户投入的资金最少?最少是多少元?解析:设该养殖户投入资金为y 元,易知猪舍的长为200x米, ∵y =200×10+200×15+⎝⎛⎭⎫2x +2×200x ×20+4x ×10=80⎝⎛⎭⎫x +100x +5 000(5≤x≤a), ∵函数f(x)=x +100x在[5,10]上单调递减,在[10,+∞)上单调递增, ∴当a≥10时,y min =6 600,此时x =10;当5≤a <10时,y min =80⎝⎛⎭⎫a +100a +5 000,此时x =a. ∴若a≥10米,猪舍的宽定为10米,该养殖户投入的资金最少是6 600元;若5≤a <10米,猪舍的宽就定为a 米,该养殖户投入的资金最少是[80⎝⎛⎭⎫a +100a +5 000]元.12.直线m :y =kx +1和双曲线x 2-y 2=1的左支交于A ,B 两点,直线l 过点P(-2,0)和线段AB 的中点M ,求l 在y 轴上的截距b 的取值范围.解析:由⎩⎪⎨⎪⎧y =kx +1,x 2-y 2=1(x≤-1)消去y , 得(k 2-1)x 2+2kx +2=0.①(联立方程是解决交点问题的一般方法)因为直线m 与双曲线的左支有两个交点,所以方程①有两个不相等的负实数根.所以⎩⎨⎧Δ=4k 2+8(1-k 2)>0,x 1+x 2=2k 1-k 2<0,x 1·x 2=-21-k2>0,解得1<k < 2.设M(x 0,y 0),则⎩⎪⎨⎪⎧x 0=x 1+x 22=k1-k2,y 0=kx 0+1=11-k 2.由P(-2,0),M ⎝⎛⎭⎫k 1-k 2,11-k 2,Q(0,b)三点共线,得出b =2-2k 2+k +2,……(构造出b 和k 的函数关系式)设f(k)=-2k 2+k +2=-2⎝⎛⎭⎫k -142+178,…(使函数更加清晰) 则f(k)在(1,2)上为减函数, ∴f(2)<f(k)<f(1),且f(k)≠0. ∴-(2-2)<f(k)<0或0<f(k)<1. ∴b <-2-2或b >2.∴b 的取值范围是(-∞,-2-2)∪(2,+∞).13.若关于x 的方程4x +a·2x +a +1=0有实数解,求实数a 的取值范围.解析:解法一 令2x =t(t >0),则原方程可化为 t 2+at +a +1=0,(*)问题转化为方程(*)在(0,+∞)上有实数解,求a 的取值范围. ①当方程(*)的根都在(0,+∞)上时,可得下式 ⎩⎪⎨⎪⎧Δ=a 2-4(a +1)≥0,t 1+t 2=-a >0,t 1·t 2=a +1>0⎩⎪⎨⎪⎧a≤2-22或a≥2+22,a <0,a >-1,即-1<a≤2-22,②当方程(*)的根一个在(0,+∞)上,另一根在(-∞,0]上时, 令f(t)=t 2+at +a +1得f(0)≤0,即a≤-1. 由①②知满足条件的a 的取值范围为 (-∞,2-22]. 解法二 令t =2x (t >0), 则原方程可化为t 2+at +a +1=0. 变形为a =-1+t 21+t =-(t 2-1)+21+t=-⎣⎡⎦⎤(t -1)+2t +1=-⎣⎡⎦⎤(t +1)+2t +1-2≤-(22-2)=2-2 2.当且仅当t =2-1时取等号. 所以a 的取值范围是(-∞,2-22).。

2020高考理科数学二轮考前复习方略练习:专题八 第1讲 数学文化练典型习题 提数学素养 Word版含解析

2020高考理科数学二轮考前复习方略练习:专题八 第1讲 数学文化练典型习题 提数学素养 Word版含解析

[练典型习题·提数学素养] 一、选择题1.“干支纪年法”是中国自古以来就一直使用的纪年方法.干支是天干和地支的总称.天干、地支互相配合,配成六十组为一周,周而复始,依次循环.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号为天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥为地支.如:公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年.则2049年为农历( )A .己亥年B .己巳年C .己卯年D .戊辰年解析:选B .法一:由公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年,可知以公元纪年的尾数在天干中找出对应该尾数的天干,再将公元纪年除以12,用除不尽的余数在地支中查出对应该余数的地支,这样就得到了公元纪年的干支纪年.2049年对应的天干为“己”,因其除以12的余数为9,所以2049年对应的地支为“巳”,故2049年为农历己巳年.故选B .法二:易知(年份-3)除以10所得的余数对应天干,则2 049-3=2 046,2 046除以10所得的余数是6,即对应的天干为“己”.(年份-3)除以12所得的余数对应地支,则2 049-3=2 046,2 046除以12所得的余数是6,即对应的地支为“巳”,所以2049年为农历己巳年.故选B .2.北宋数学家沈括的主要成就之一为隙积术,所谓隙积,即“积之有隙”者,如累棋、层坛之类,这种长方台形状的物体垛积.设隙积共n 层,上底由a ×b 个物体组成,以下各层的长、宽依次增加一个物体,最下层(即下底)由c ×d 个物体组成,沈括给出求隙积中物体总数的公式为s =n 6[(2a +c )b +(2c +a )d ]+n6(c -a ),其中a 是上底长,b 是上底宽,c 是下底长,d 是下底宽,n 为层数.已知由若干个相同小球粘黏组成的隙积的三视图如图所示,则该隙积中所有小球的个数为( )A .83B .84C .85D .86解析:选C .由三视图知,n =5,a =3,b =1,c =7,d =5,代入公式s =n6[(2a +c )b+(2c +a )d ]+n6(c -a )得s =85,故选C .3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其意思为:“有一个人要走378里路,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,走了六天后(第六天刚好用完)到达目的地.”若将此问题改为“第6天到达目的地”,则此人第二天至少走了( )A .96里B .48里C .72里D .24里解析:选A .根据题意知,此人每天行走的路程构成了公比为12的等比数列.设第一天走a 1里,则第二天走a 2=12a 1(里).易知a 1[1-⎝⎛⎭⎫126]1-12≥378,则a 1≥192.则第二天至少走96里.故选A .4.《数术记遗》相传是汉末徐岳(约公元2世纪)所著,该书主要记述了:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算、计数共14种计算方法.某研究性学习小组3人分工搜集整理该14种计算方法的相关资料,其中一人4种,其余两人每人5种,则不同的分配方法种数是( )A .C 414C 510C 55A 33A 22B .C 414C 510C 55A 22C 55A 33 C .C 414C 510C 55A 22D .C 414C 510C 55解析:选A .先将14种计算方法分为三组,方法有C 414C 510C 55A 22种,再分配给3个人,方法有C 414C 510C 55A 22×A 33种.故选A . 5.我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(ɡuǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四个节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是( )A .五寸B .二尺五寸C .三尺五寸D .四尺五寸解析:选B .设从夏至到冬至的晷长依次构成等差数列{a n },公差为d ,a 1=15,a 13=135,则15+12d =135,解得d =10.所以a 2=15+10=25,所以小暑的晷长是25寸.故选B .6.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( )A .π15B .2π5C .2π15D .4π15解析:选C .因为该直角三角形两直角边长分别为5步和12步,所以其斜边长为13步,设其内切圆的半径为r ,则12×5×12=12(5+12+13)r ,解得r =2.由几何概型的概率公式,得此点取自内切圆内的概率P =4π12×5×12=2π15.故选C .7.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依次符号为“”,其表示的十进制数是()A.33 B.34C.36 D.35解析:选B.由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B .8.《九章算术》中有如下问题:“今有卖牛二、羊五,以买一十三豕,有余钱一千;卖牛三、豕三,以买九羊,钱适足;卖六羊、八豕,以买五牛,钱不足六百,问牛、羊、豕价各几何?”依上文,设牛、羊、豕每头价格分别为x 元、y 元、z 元,设计如图所示的程序框图,则输出的x ,y ,z 的值分别是( )A .1 3009,600,1 1203B .1 200,500,300C .1 100,400,600D .300,500,1 200解析:选B .根据程序框图得:①y =300,z =4603,x =6 4009,i =1,满足i <3;②y =400,z =6803,x =8 6009,i =2,满足i <3;③y =500,z =300,x =1 200,i =3,不满足i <3; 故输出的x =1 200,y =500,z =300.故选B .9.(2019·洛阳市统考)如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为30°,若向弦图内随机抛掷200颗米粒(大小忽略不计,取3≈1.732),则落在小正方形(阴影)内的米粒数大约为( )A .20B .27C .54D .64解析:选B .设大正方形的边长为2,则小正方形的边长为3-1,所以向弦图内随机投掷一颗米粒,落入小正方形(阴影)内的概率为(3-1)24=1-32,向弦图内随机抛掷200颗米粒,落入小正方形(阴影)内的米粒数大约为200×(1-32)≈27,故选B . 10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈7264L 2h相当于将圆锥体积公式中的π近似取为( )A .227B .258C .15750D .355113解析:选A .依题意,设圆锥的底面半径为r ,则V =13πr 2h ≈7264L 2h =7264(2πr )2h ,化简得π≈227.故选A .11.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为( )A .392B .752C .39D .6018解析:选B .设下底面的长为x ⎝⎛⎭⎫92≤x <9,则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9-x )]=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-⎝⎛⎭⎫922+92×172+392=752.故选B .12.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,如图所示,鳖臑ABCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则函数y =f (x )的图象大致是( )解析:选A .如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则PQ ∥AB ,QR ∥CD .因为PQ ⊥BD ,又PQ ∩QR =Q ,所以BD ⊥平面PQR ,所以BD ⊥PR ,即PR 为△PBD 中BD 边上的高.设AB =BD =CD =1,则CP AC =x 3=PQ 1,即PQ =x3,又QR 1=BQ BC =APAC =3-x 3,所以QR =3-x 3, 所以PR =PQ 2+QR 2=⎝⎛⎭⎫x 32+⎝ ⎛⎭⎪⎫3-x 32=332x 2-23x +3, 所以f (x )=362x 2-23x +3=66⎝⎛⎭⎫x -322+34,故选A .二、填空题13.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k边形数中第n 个数的表达式:三角形数 N (n ,3)=12n 2+12n ;正方形数 N (n ,4)=n 2; 五边形数 N (n ,5)=32n 2-12n ;六边形数 N (n ,6)=2n 2-n ; ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________.解析:易知n 2前的系数为12(k -2),而n 前的系数为12(4-k ).则N (n ,k )=12(k -2)n 2+12(4-k )n ,故N (10,24)=12×(24-2)×102+12×(4-24)×10=1 000.答案:1 00014. (2019·湖南师大附中模拟)庄子说:“一尺之棰,日取其半,万世不竭.”这句话描述的是一个数列问题,现用程序框图描述,如图所示,若输入某个正整数n 后,输出的S ∈⎝⎛⎭⎫1516,6364,则输入的n 的值为________.解析:框图中首先给累加变量S 赋值0,给循环变量k 赋值1, 输入n 的值后,执行循环体,S =12,k =1+1=2.若2>n 不成立,执行循环体,S =34,k =2+1=3.若3>n 不成立,执行循环体,S =78,k =3+1=4.若4>n 不成立,执行循环体,S =1516,k =4+1=5.若5>n 不成立,执行循环体,S =3132,k =5+1=6.若6>n 不成立,执行循环体,S =6364,k =6+1=7.…由输出的S ∈(1516,6364),可得当S =3132,k =6时,应该满足条件6>n ,所以5≤n <6,故输入的正整数n 的值为5.答案:515.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺.莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:“今有蒲草第1天长高3尺,莞草第1天长高1尺.以后,蒲草每天长高前一天的一半,莞草每天长高前一天的2倍.问第几天蒲草和莞草的高度相同?”根据上述的已知条件,可求得第________天时,蒲草和莞草的高度相同.(结果采取“只入不舍”的原则取整数,相关数据:lg 3≈0.477 1,lg 2≈0.301 0).解析:由题意得,蒲草的长度组成首项为a 1=3,公比为12的等比数列{a n },设其前n 项和为A n ;莞草的长度组成首项为b 1=1,公比为2的等比数列{b n },设其前n 项和为B n .则A n =3⎝⎛⎭⎫1-12n 1-12,B n =2n -12-1,令3⎝⎛⎭⎫1-12n 1-12=2n -12-1,化简得2n +62n =7(n ∈N *),解得2n =6,所以n =lg 6lg 2=1+lg 3lg 2≈3,即第3天时蒲草和莞草长度相等. 答案:316.刘徽《九章算术注》记载:“邪解立方,得两堑堵.邪解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”意即把一长方体沿对角面一分为二,这相同的两块叫堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值2∶1,这一结论今称刘徽原理.如图是一个阳马的三视图,则其外接球的体积为________.解析:由三视图得阳马是一个四棱锥,如图中四棱锥P -ABCD ,其中底面是边长为1的正方形,侧棱P A ⊥底面ABCD 且P A =1,所以PC =3,PC 是四棱锥P -ABCD 的外接球的直径,所以此阳马的外接球的体积为4π3⎝⎛⎭⎫323=3π2.答案:3π2。

专题八 概率与统计 第二讲 概率,随机变量及分布列——2023届高考数学二轮复习重点练(含解析)

专题八 概率与统计  第二讲 概率,随机变量及分布列——2023届高考数学二轮复习重点练(含解析)

专题八 概率与统计 第二讲 概率,随机变量及分布列1.为了援助湖北抗击疫情,全国各地的白衣天使走上战场的第一线,他们分别乘坐6架我国自主生产的“运20”大型运输机,编号分别为1,2,3,4,5,6,同时到达武汉天河飞机场,每五分钟降落一架,其中1号与6号相邻降落的概率为( ) A.112B.16C.15D.132.一个不透明的袋子中装有4个完全相同的小球,球上分别标有数字为0,1,2,3.现甲从中摸出1个球后放回,乙再从中摸出1个球,谁摸出的球上的数字大谁获胜,则甲、乙各摸一次球后,甲获胜且乙摸出的球上数字为偶数的概率为( ) A.14B.13C.49D.3163.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A.110B.15C.310D.254.某次战役中,狙击手A 受命射击敌机,若要击落敌机,需命中机首2次或命中机中3次或命中机尾1次,已知A 每次射击,命中机首、机中、机尾的概率分别为0.2,0.4,0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 至多射击2次,则他能击落敌机的概率为( ) A.0.23B.0.2C.0.16D.0.15.设两个相互独立事件A ,B 都不发生的概率为19,则A 与B 都发生的概率的取值范围是( )A.80,9⎡⎤⎢⎥⎣⎦B.15,99⎡⎤⎢⎥⎣⎦C.28,39⎡⎤⎢⎥⎣⎦D.40,9⎡⎤⎢⎥⎣⎦6.一个旅行团到漳州旅游,有百花村与云洞岩两个景点可选择,该旅行团选择去哪个景点相互独立.若旅行团选择两个景点都去的概率是49,只去百花村不去云洞岩与只去云洞岩不去百花村的概率相等,则旅行团选择去百花村的概率是( ) A.23B.13C.49D.197.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师各自分别将活动通知的信息独立且随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( )A.25B.1225C.1625D.458.(多选)从甲袋中摸出1个红球的概率是13,从乙袋中摸出1个红球的概率是12.从甲袋、乙袋各摸出1个球,则下列结论正确的是( )A.2个球都是红球的概率为16B.2个球不都是红球的概率为13C.至少有1个红球的概率为23D.2个球中恰有1个红球的概率为129. (多选)在4件产品中,有一等品2件,二等品1件(一等品与二等品都是正品),次品1件,现从中任取2件,则下列说法正确的是( )A.两件都是一等品的概率是13B.两件中有1件是次品的概率是12C.两件都是正品的概率是13D.两件中至少有1件是一等品的概率是5610. (多选)在一次随机试验中,A,B,C,D是彼此互斥的事件,且A B C D+++是必然事件,则下列说法正确的是( )A.A B+与C是互斥事件,也是对立事件B.B+C与D是互斥事件,但不是对立事件C.A C+与B D+是互斥事件,但不是对立事件D.A与B C D++是互斥事件,也是对立事件11.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为__________.12.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.13.从甲、乙、丙、丁四人中随机选取两人,则甲、乙两人中有且只有一人被选取的概率为_____________.14.一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率.(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求2n m<+的概率..假定甲、乙两位同学15.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.答案以及解析1.答案:D解析:6架飞机的降落顺序有66A 种,而1号与6号相邻降落的顺序有2525A A 种,所以所求事件的概率252566A A 1A 3P ==.故选D.2.答案:A解析:甲、乙各摸一次球,有可能的结果有4416⨯=(种),甲摸的数字在前,乙摸的数字在后,则甲获胜的情况有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),共6种. 其中甲、乙各摸一次球后,甲获胜且乙摸出的球上数字为偶数有4种,则所求概率41164P ==. 3.答案:D解析:先后有放回地抽取2张卡片的情况有(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25种.其中满足条件的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共10种情况.因此所求的概率102255P ==.故选D. 4.答案:A解析:A 每次射击,命中机首、机中、机尾的概率分别为0.2,0.4,0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 射击1次就击落敌机,则他击中了敌机的机尾,概率为0.1;若A 射击2次就击落敌机,则他2次都击中了敌机的机首,概率为0.20.20.04⨯=或者第1次没有击中机尾且第2次击中了机尾,概率为0.90.10.09⨯=,因此若A 至多射击2次,则他能击落敌机的概率为0.10.040.090.23++=.故选A. 5.答案:D解析:设事件A ,B 发生的概率分别为()P A x =,()P B y =,则1()()()(1)(1)9P AB P A P B x y ==-⋅-=,即11199xy x y +=++≥+x y =时取“=”,211)9∴≥23≤43(舍去),409xy ∴≤≤.4()()()0,9P AB P A P B xy ⎡⎤∴==∈⎢⎥⎣⎦.6.答案:A解析:用事件A 表示“旅行团选择去百花村”,事件B 表示“旅行团选择去云洞岩”,A ,B 相互独立,则4()9P AB =,()()P AB P AB =.设()P A x =,()P B y =,则4,9(1)(1),xy x y x y ⎧=⎪⎨⎪-=-⎩解得2,323x y ⎧=⎪⎪⎨⎪=⎪⎩或2,323x y ⎧=-⎪⎪⎨⎪=-⎪⎩(舍去),故旅行团选择去百花村的概率是23.故选A.7.答案:C解析:设“甲同学收到李老师的信息”为事件A ,“收到张老师的信息”为事件B ,A ,B 相互独立,42()()105P A P B ===,则甲同学收到李老师或张老师所发活动通知的信息的概率为33161()1(1())(1())15525P AB P A P B -=---=-⨯=.故选C. 8.答案:ACD解析:设“从甲袋中摸出1个红球”为事件1A ,“从乙袋中摸出1个红球为事件2A ,则()113P A =,()212P A =,且1A ,2A 独立.对于A 选项,2个球都是红球为12A A ,其概率为111326⨯=,故A 正确;对于B 选项,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为15166-=,故B 错误;对于C 选项,2个球中至少有1个红球的概率为()()1221211323P A P A -=-⨯=,故C 正确;对于D 选项,2个球中恰有1个红球的概率为1121132322⨯+⨯=,故D 正确.故选ACD. 9.答案:BD解析:由题意设一等品编号为a ,b ,二等品编号为c ,次品编号为d ,从中任取2件的基本情况有(,)a b ,(,)a c ,(,)a d ,(,)b c ,(,)b d ,(,)c d ,共6种. 对于A ,两件都是一等品的基本情况有(,)a b ,共1种,故两件都是一等品的概率116P =,故A 错误; 对于B ,两件中有1件是次品的基本情况有(,)a d ,(,)b d ,(,)c d ,共3种,故两件中有1件是次品的概率23162P ==,故B 正确;对于C ,两件都是正品的基本情况有(,)a b ,(,)a c ,(,)b c ,共3种,故两件都是正品的概率33162P ==,故C 错误;对于D ,两件中至少有1件是一等品的基本情况有(,)a b ,(,)a c ,(,)a d ,(,)b c ,(,)b d ,共5种,故两件中至少有1件是一等品的概率456P =,故D 正确. 10.答案:BD解析:由于A ,B ,C ,D 彼此互斥,且A B C D +++是必然事件,故事件的关系如图所示.由图可知,任何一个事件与其余三个事件的和事件互为对立,任何两个事件的和事件与其余两个事件中任何一个是互斥事件,任何两个事件的和事件与其余两个事件的和事件互为对立,故B,D 中的说法正确.11.答案:35解析:设此队员每次罚球的命中率为p ,则216125p -=,所以35p =. 12.答案:16;23解析:甲,乙两球都落入盒子的概率为111236⨯=.方法一:甲、乙两球至少有一个落入盒子的情形包括:①甲落入、乙未落入的概率为121233⨯=;②甲未落入,乙落入的概率为111236⨯=;③甲,乙均落入的概率为111236⨯=.所以甲、乙两球至少有一个落入盒子的概率为11123663++=.方法二:甲,乙两球均未落入盒子的概率为121233⨯=,则甲、乙两球至少有一个落入盒子的概率为12133-=.13.答案:23解析:从甲、乙、丙、丁四人中随机选取两人,有{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁},共6种结果;其中甲、乙两人中有且只有一人被选取,有甲,丙},{甲,丁},{乙,丙},{乙,丁},共4种结果. 故甲、乙两人中有且只有一人被选取的概率为4263=. 14.答案:(1)13. (2)概率为1316. 解析:(1)从袋中随机取两个球,其一切可能的结果组成的样本点有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个, 因此所求事件的概率为2163P ==.(2)先从袋中随机取一个球,记下编号为,放回后,再从袋中随机取一个球,记下编号为m , 试验的样本空间{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),Ω=(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)},共16个样本点.又满足条件2n m ≥+的样本点有:(1,3),(1,4),(2,4),共3个. 所以满足条件2n m ≥+的事件的概率为1316P =,故满足条件2n m <+的事件的概率为1313111616P -=-=. 15.答案:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概均为23,故2~3,3X B ⎛⎫ ⎪⎝⎭,从而3321()C ,0,1,2,333kkk P X k k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.所以随机变量X的分布列为随机变量X 的数学期望2()323E X =⨯=.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~3,3Y B ⎛⎫⎪⎝⎭,且{3,1}{2,0}M X Y X Y ===⋃==.由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{}1Y =,事件{}2X =与{}0Y =均相互独立,从而由(1)知()P M =({3,1}{2,0})(3,1)(2,P X Y X Y P X Y P X ==⋃=====+=8240)(3)(1)(2)(0)2799Y P X P Y P X P Y ====+===⨯+⨯12027243=.。

高考数学二轮复习 专题八 附加题 第2讲 计数原理、随机变量、数学归纳法学案

  高考数学二轮复习 专题八 附加题 第2讲 计数原理、随机变量、数学归纳法学案

—————————— 教育资源共享 步入知识海洋 ————————第2讲 计数原理、随机变量、数学归纳法[考情考向分析] 1.考查分类计数原理、分步计数原理与排列、组合的简单应用,B 级要求. 2.考查n 次独立重复试验的模型及二项分布、离散型随机变量的数学期望与方差,B 级要求.3.考查数学归纳法的简单应用,B 级要求.热点一 计数原理与二项式定理例1 (2018·苏州调研)已知f n (x )=⎝⎛⎭⎪⎫x 2+3a x 3n ,n ∈N *.(1)当a =1时,求f 5(x )展开式中的常数项;(2)若二项式f n (x )的展开式中含有x 7的项,当n 取最小值时,展开式中含x 的正整数次幂的项的系数之和为10,求实数a 的值.解 二项式⎝⎛⎭⎪⎫x 2+3a x 3n的展开式通项为T r +1=C r n ()x 2n -r ⎝ ⎛⎭⎪⎫3a x 3r =C r n (3a )r x2n -5r(r =0,1,2,…,n ), (1)当n =5,a =1时,f (x )的展开式的常数项为T 3=9C 25=90. (2)令2n -5r =7,则r =2n -75∈N ,所以n 的最小值为6,当n =6时,二项式⎝⎛⎭⎪⎫x 2+3a x 36的展开式通项为T r +1=C r 6(3a )r x12-5r(r =0,1,2,…,6), 则展开式中含x 的正整数次幂的项为T 1,T 2,T 3,它们的系数之和为 C 06+C 16(3a )+C 26(3a )2=135a 2+18a +1=10, 即15a 2+2a -1=0,解得a =-13或15.思维升华 涉及二项式定理的试题要注意以下几个方面:(1)某一项的二项式系数与这一项的系数是两个不同的概念,必须严格加以区别. (2)根据所给式子的结构特征,对二项式定理的逆用或变用,注意活用二项式定理是解决二项式问题应具备的基本素质.(3)关于x 的二项式(a +bx )n(a ,b 为常数)的展开式可以看成是关于x 的函数,且当x 给予某一个值时,可以得到一个与系数有关的等式,所以,当展开式涉及到与系数有关的问题时,可以利用函数思想来解决.跟踪演练1 (2018·江苏丹阳高级中学期中)设n ≥3,n ∈N *,在集合{}1,2,…,n 的所有元素个数为2的子集中,把每个子集的较大元素相加,和记为a ,较小元素之和记为b . (1)当n =3时,求a ,b 的值;(2)求证:对任意的n ≥3,n ∈N *,b a为定值.(1)解 当n =3时,集合{}1,2,3的所有元素个数为2的子集为{}1,2, {}1,3,{}2,3,所以a =2+3+3=8,b =1+1+2=4.(2)证明 当n ≥3,n ∈N *时,依题意,b =1×C 1n -1+2×C 1n -2+3×C 1n -3+…+()n -2×1(2)C n n --+()n -1×1(1)C n n --, a =2×C 11+3×C 12+4×C 13+…+()n -1×C 1n -2+n ×C 1n -1=2×1+3×2+4×3+…+()n -1×()n -2+n ×()n -1.则a2=C 22+C 23+C 24+…+C 2n =C 33+C 23+C 24+…+C 2n =C 34+C 24+…+C 2n =…=C 3n +1, 所以a =2C 3n +1.又a +b =(n -1)(1+2+3+…+n )=n ()n +12×()n -1=3C 3n +1,所以b =C 3n +1.故b a =12.热点二 随机变量及其概率分布例2 (2018·南京师大附中考前模拟)如图,设P 1,P 2,…,P 6为单位圆上逆时针均匀分布的六个点.现任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S .(1)求S =32的概率; (2)求S 的概率分布及数学期望E (S ).解 (1)从六个点中任选三个不同点构成一个三角形共有C 36种不同选法, 其中S =32的为有一个角是30°的直角三角形,(如△P 1P 4P 5),共6×2=12种,所以P ⎝ ⎛⎭⎪⎫S =32=12C 36=35. (2)S 的所有可能取值为34,32,334. S =34的为顶角是120°的等腰三角形(如△P 1P 2P 3), 共6种,所以P ⎝ ⎛⎭⎪⎫S =34=6C 36=310. S =334的为等边三角形(如△P 1P 3P 5), 共2种,所以P ⎝⎛⎭⎪⎫S =334=2C 36=110.又由(1)知P ⎝ ⎛⎭⎪⎫S =32=12C 36=35,故S 的概率分布为所以E (S )=34×310+32×35+334×110=9320. 思维升华 求解一般的随机变量的数学期望的基本方法先根据随机变量的意义,确定随机变量可以取哪些值,然后根据随机变量取这些值的意义求出取这些值的概率,列出概率分布,根据数学期望公式计算.跟踪演练2 (2018·南通、徐州、扬州等六市模拟)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的3×3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X 元.(1)求概率P ()X =600;(2)求X 的概率分布及数学期望E (X ).解 (1)从3×3表格中随机不重复地点击3格,共有C 39种不同情形,则事件“X =600”包含两类情形:第一类是3格各得奖200元;第二类是1格得奖300元,一格得奖200元,一格得奖100元,其中第一类包含C 34种情形,第二类包含C 11·C 14·C 14种情形. ∴P ()X =600=C 34+C 11·C 14·C 14C 39=521. (2)X 的所有可能值为300,400,500,600,700. 则P ()X =300=C 34C 39=484=121,P ()X =400=C 14·C 24C 39=2484=27,P ()X =500=C 11·C 24+C 14·C 24C 39=3084=514, P (X =600)=521,P ()X =700=C 11·C 24C 39=684=114.∴X 的概率分布为∴E ()X =300×121+400×27+500×514+600×521+700×114=500.热点三 数学归纳法例3 (2018·江苏姜堰、溧阳、前黄中学联考)已知数列{}a n 满足a n =C 0n +C 1n +12+C 2n +222+C 3n +323+…+C nn +n 2n ,n ∈N *. (1)求a 1, a 2, a 3的值;(2)猜想数列{}a n 的通项公式,并证明. 解 (1)a 1=2, a 2=4, a 3=8. (2)猜想: a n =2n (n ∈N *). 证明如下:①当n =1时,由(1)知结论成立; ②假设当n =k (k ∈N *,k ≥1)时结论成立, 则有a k =C 0k +C 1k +12+C 2k +222+C 3k +323+…+C kk +k 2k =2k.则当n =k +1时,a k +1=C 0k +1+C 1k +1+12+C 2k +1+222+C 3k +1+323+…+C k +1k +1+k +12k +1.由C k +1n +1=C k +1n +C kn 得a k +1=C 0k +C 1k +1+C 0k +12+C 2k +2+C 1k +222+C 3k +3+C 2k +323+…+C k k +k +C k -1k +k 2k+C k +1k +1+k +12k +1 =2k+C 0k +12+C 1k +222+C 2k +323+…+C k -1k +k 2k +C k +1k +1+k +12k +1=2k+12⎝ ⎛⎭⎪⎫C 0k +1+C 1k +22+C 2k +322+…+C k -1k +k 2k -1+C k +1k +1+k +12k =2k+12⎝ ⎛⎭⎪⎫C 0k +1+C 1k +22+C 2k +322+…+C k -1k +1+k -12k -1+C k k +1+k +C k +1k +1+k 2k . 又Ck +1k +1+k=()2k +1!k !()k +1!=()2k +1!()k +1()k +1k !()k +1!=12()2k +1!()2k +2()k +1!()k +1!=12C k +1k +1+k +1, a k +1=2k+12⎝ ⎛⎭⎪⎫C 0k +1+C 1k +22+C 2k +322+…+C k -1k +1+k -12k -1+C k k +1+k 2k +C k +1k +1+k +12k +1,于是a k +1=2k+12a k +1.所以a k +1=2k +1,故n =k +1时结论也成立.由①②得,a n =2n,n ∈N *.思维升华 在数学归纳法中,归纳奠基和归纳递推缺一不可.在较复杂的式子中,注意由n =k 到n =k +1时,式子中项数的变化应仔细分析,观察通项.同时还应注意,不用假设的证法不是数学归纳法.跟踪演练3 (2018·常州期末)记()x +1×⎝ ⎛⎭⎪⎫x +12×…×⎝ ⎛⎭⎪⎫x +1n (n ≥2且n ∈N *)的展开式中含x 项的系数为S n ,含x 2项的系数为T n . (1)求S n ;(2)若T nS n=an 2+bn +c 对n =2,3,4成立,求实数a ,b ,c 的值; (3)对(2)中的实数a ,b ,c 用数学归纳法证明:对任意n ≥2且n ∈N*, T nS n=an 2+bn +c 都成立. (1)解 S n =1+2+…+nn != n +12()n -1!.(2)解T 2S 2=23, T 3S 3=116, T 4S 4=72,则⎩⎪⎨⎪⎧23=4a +2b +c ,116=9a +3b +c ,72=16a +4b +c ,解得a =14, b =-112, c =-16,(3)证明 ①当n =2时,由(2)知等式成立; ②假设n =k (k ∈N *,且k ≥2)时,等式成立,即T k S k =14k 2-112k -16. 当n =k +1时,由f (x )=()x +1×⎝ ⎛⎭⎪⎫x +12×…×⎝ ⎛⎭⎪⎫x +1k ×⎝ ⎛⎭⎪⎫x +1k +1=⎣⎢⎡⎦⎥⎤()x +1×⎝ ⎛⎭⎪⎫x +12×…×⎝ ⎛⎭⎪⎫x +1k ×⎝ ⎛⎭⎪⎫x +1k +1=⎝ ⎛⎭⎪⎫1k !+S k x +T k x 2+…⎝ ⎛⎭⎪⎫x +1k +1,知T k +1=S k +1k +1T k =k +12()k -1!·⎣⎢⎡⎦⎥⎤1+1k +1⎝ ⎛⎭⎪⎫14k 2-112k -16,所以T k +1S k +1= k +12()k -1!⎣⎢⎡⎦⎥⎤1+1k +1⎝ ⎛⎭⎪⎫14k 2-112k -16k +1+12k !=k k +2⎝ ⎛⎭⎪⎫k +1+3k 2-k -212=k ()3k +512,又14()k +12-112()k +1-16 =k ()3k +512, 等式也成立;综上可得,对任意n ≥2且n ∈N *,都有T n S n =n 24-n 12-16成立.1.(2018·全国大联考江苏卷)(1)求4C 47-7C 36+k C k n n C k -1n -1(n ≥k ,且n ,k ∈N *)的值.(2)设f (n )=1·C 1n ·3+2·C 2n ·32+…+n C n n ·3n (n ∈N *),求方程f (n )=3 840的所有解. 解 (1)因为4C 47=4×35=140, 7C 36=7×20=140,k C k n =k ·n !k !(n -k )!= n ·(n -1)!(k -1)![(n -1)-(k -1)]!=n C k -1n -1(n ≥k ,且n ,k ∈N *). 所以4C 47-7C 36+k C knn C k -1n -1=1.(2)由(1)知k C k n =n C k -1n -1对1≤k ≤n ,且n ,k ∈N *成立. 所以f (n )=n (C 0n -13+C 1n -132+…+C n -1n -13n), 所以f (n )=3n (C 0n -1+C 1n -13+…+C n -1n -13n -1)=3n (1+3)n -1=3n ·4n -1(n ∈N *).又因为f (n +1)f (n )=3(n +1)·4n 3n ·4n -1 =4(n +1)n =4+4n>1,即f (n +1)>f (n )对n ∈N *成立, 所以f (n )是关于n (n ∈N *)的递增函数. 又因为f (n )=3 840=3×5×44=f (5),所以当且仅当n =5时才满足条件,即n =5是方程f (n )=3 840的唯一解.2.(2018·江苏)设n ∈N *,对1,2,…,n 的一个排列i 1i 2…i n ,如果当s <t 时,有i s >i t ,则称(i s ,i t )是排列i 1i 2…i n 的一个逆序,排列i 1i 2…i n 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n (k )为1,2,…,n 的所有排列中逆序数为k 的全部排列的个数. (1)求f 3(2),f 4(2)的值;(2)求f n (2)(n ≥5)的表达式(用n 表示).解 (1)记τ(abc )为排列abc 的逆序数,对1,2,3的所有排列,有τ(123)=0,τ(132)=1,τ(213)=1,τ(231)=2,τ(312)=2,τ(321)=3, 所以f 3(0)=1,f 3(1)=f 3(2)=2.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f 4(2)=f 3(2)+f 3(1)+f 3(0)=5.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以f n (0)=1. 逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以f n (1)=n -1.为计算f n +1(2),当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,f n +1(2)=f n (2)+f n (1)+f n (0)=f n (2)+n .当n ≥5时,f n (2)=[f n (2)-f n -1(2)]+[f n -1(2)-f n -2(2)]+…+[f 5(2)-f 4(2)]+f 4(2)=(n -1)+(n -2)+…+4+f 4(2)=n 2-n -22,因此,当n ≥5时,f n (2)=n 2-n -22.3.已知实数数列{a n }满足:a 1=3,a n =n +23n·(a n -1+2),n ≥2. 证明:当n ≥2时,{a n }是单调减数列. 证明 当n ≥1时,有a n +1-a n =⎣⎢⎡⎦⎥⎤n +33(n +1)-1a n +2(n +3)3(n +1)=23(n +1)(n +3-na n).下面用数学归纳法证明:a n >1+3n(n ≥2,n ∈N *).(1)当n =2时,a 2=46(3+2)=103>1+32;(2)假设当n =k (k ∈N *,k ≥2)时,结论成立,即a k >1+3k.那么,a k +1=k +33(k +1)(a k +2)>k +33(k +1)⎝ ⎛⎭⎪⎫1+3k +2=1+3k >1+31+k.故由(1)(2)知,a n >1+3n(n ≥2,n ∈N *).因此,当n ≥2,n ∈N *时,a n +1-a n =23(n +1)(n +3-na n )<0,即当n ≥2时,{a n }是单调减数列.4.(2018·江苏盐城中学模拟)某乐队参加一户外音乐节,准备从3首原创新曲和5首经典歌曲中随机选择4首进行演唱.(1)求该乐队至少演唱1首原创新曲的概率;(2)假定演唱一首原创新曲观众与乐队的互动指数为a (a 为常数),演唱一首经典歌曲观众与乐队的互动指数为2a .求观众与乐队的互动指数之和X 的概率分布及数学期望.解 (1)设“至少演唱1首原创新曲”为事件A ,则事件A 的对立事件A 为“没有1首原创新曲被演唱”.所以P (A )=1-P (A )=1-C 45C 48=1314.所以该乐队至少演唱1首原创新曲的概率为1314.(2)设随机变量x 表示被演唱的原创新曲的首数,则x 的所有可能值为0,1,2,3. 依题意知,X =ax +2a (4-x ),故X 的所有可能值依次为8a,7a,6a,5a .则P (X =8a )=P (x =0)=C 45C 48=114,P (X =7a )=P (x =1)=C 13C 35C 48=37,P (X =6a )=P (x =2)=C 23C 25C 48=37,P (X =5a )=P (x =3)=C 33C 15C 48=114.从而X 的概率分布为所以X 的数学期望E (X )=8a ×114+7a ×37+6a ×37+5a ×114=132a .A 组 专题通关1.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程. (1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X ,求X 的概率分布与数学期望E (X ). 解 (1)这两个班“在星期一不同时上综合实践课”的概率为P =1-33×3=23.(2)由题意得X ~B ⎝ ⎛⎭⎪⎫5,13, P (X =k )=C k5⎝ ⎛⎭⎪⎫13k ⎝ ⎛⎭⎪⎫235-k ,k =0,1,2,3,4,5. 所以X 的概率分布为所以X 的数学期望E (X )=5×13=53.2.(2018·江苏省南京师大附中模拟)设集合A ,B 是非空集合M 的两个不同子集.(1)若M ={a 1,a 2},且A 是B 的子集,求所有有序集合对(A ,B )的个数;(2)若M ={a 1,a 2,a 3,…,a n },且A 的元素个数比B 的元素个数少,求所有有序集合对(A ,B )的个数.解 (1)若集合B 含有2个元素,即B ={a 1,a 2}, 则A =∅,{}a 1,{}a 2,则(A ,B )的个数为3;若集合B 含有1个元素,则B 有C 12种,不妨设B ={a 1},则A =∅,此时(A ,B )的个数为C 12×1=2.综上,(A ,B )的个数为5.(2)集合M 有2n个子集,又集合A ,B 是非空集合M 的两个不同子集, 则不同的有序集合对(A ,B )的个数为2n (2n-1).若A 的元素个数与B 的元素个数一样多,则不同的有序集合对(A ,B )的个数为 C 0n (C 0n -1)+C 1n (C 1n -1)+C 2n (C 2n -1)+…+C n n (C nn -1)= ()C 0n 2+()C 1n 2+()C 2n 2+…+()C n n 2-(C 0n +C 1n +C 2n +…+C nn ),又(x +1)n(x +1)n的展开式中x n的系数为()C 0n 2+()C 1n 2+()C 2n 2+…+()C n n 2,且(x +1)n (x +1)n =(x +1)2n 的展开式中x n 的系数为C n2n , 所以()C 0n 2+()C 1n 2+()C 2n 2+…+()C n n 2=C n2n .因为C 0n +C 1n +C 2n +…+C n n =2n,所以当A 的元素个数与B 的元素个数一样多时, 有序集合对(A ,B )的个数为C n 2n -2n.所以,A 的元素个数比B 的元素个数少时,有序集合对(A ,B )的个数为 2n (2n -1)-(C n 2n -2n )2=22n -C n2n2.3.已知()1+x 2n +1=a 0+a 1x +a 2x 2+…+a 2n +1x2n +1,n ∈N *.记T n =∑nk =0()2k +1a n -k .(1)求T 2的值;(2)化简T n 的表达式,并证明:对任意的n ∈N *,T n 都能被4n +2整除. 解 由二项式定理,得a i =C i2n +1(i =0,1,2,…,2n +1). (1)T 2=a 2+3a 1+5a 0=C 25+3C 15+5C 05=30. (2)∵()n +1+k C n +1+k2n +1=()n +1+k ·()2n +1!()n +1+k !()n -k !=()2n +1·()2n !()n +k !()n -k !=()2n +1C n +k2n ,∴T n =∑nk =0()2k +1a n -k =∑nk =0()2k +1Cn -k 2n +1=∑nk =0()2k +1C n +1+k2n +1=∑nk =0[]2()n +1+k -()2n +1C n +1+k2n +1=2∑nk =0()n +1+k Cn +1+k 2n +1-()2n +1∑nk =0C n +1+k2n +1=2()2n +1∑nk =0Cn +k 2n-()2n +1∑nk =0C n +1+k 2n +1=2()2n +1·12·()22n +C n 2n -()2n +1·12·22n +1=()2n +1C n 2n .∴T n =()2n +1C n2n =()2n +1()C n -12n -1+C n2n -1=2()2n +1C n2n -1.∵C n 2n -1∈N *,∴T n 能被4n +2整除.4.是否存在正整数m 使得f (n )=(2n +7)·3n+9对任意正整数n 都能被m 整除?若存在,求出最大的m 的值,并证明你的结论;若不存在,说明理由.解 由f (n )=(2n +7)·3n+9,得f (1)=36,f (2)=3×36,f (3)=10×36,f (4)=34×36,由此猜想m =36. 下面用数学归纳法证明: ①当n =1时,结论显然成立;②假设当n =k (k ∈N *,k ≥1)时,结论成立,即f (k )能被36整除, 设f (k )=(2k +7)·3k +9=t ·36. 当n =k +1时,f (k +1)=[2(k +1)+7]·3k +1+9=(2k +7)·3k +1+2·3k +1+9=3[(2k +7)·3k+9]+18(3k -1-1)=3·36t +18·2s =36(3t +s ). 所以当n =k +1时结论成立.由①②可知,对一切正整数n ,存在正整数m ,使得f (n )=(2n +7)·3n +9都能被m 整除,m 的最大值为36.B 组 能力提高5.(2018·常州模拟)已知正四棱锥P -ABCD 的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制); 若这两条棱所在的直线平行,则ξ=0;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制). (1)求P ()ξ=0的值;(2)求随机变量ξ的概率分布及数学期望E ()ξ.解 根据题意,该四棱锥的四个侧面均为等边三角形,底面为正方形,容易得到△PAC ,△PBD 为等腰直角三角形, ξ的可能取值为: 0, π3, π2,共C 28=28种情况,其中,当ξ=0时,有2种;当ξ=π3时,有3×4+2×4=20(种);当ξ=π2时,有2+4=6(种).(1)P ()ξ=0=228=114. (2)P ⎝ ⎛⎭⎪⎫ξ=π3=2028=57, P ⎝ ⎛⎭⎪⎫ξ=π2=628=314, 根据(1)的结论,随机变量的概率分布如下表:根据上表, E ()ξ=0×114+π3×57+π2×314=2984π. 6.设P (n ,m )=∑k =0n(-1)k C knmm +k,Q (n ,m )=C n n +m ,其中m ,n ∈N *.(1)当m =1时,求P (n,1)·Q (n,1)的值;(2)对∀m ∈N *,证明:P (n ,m )·Q (n ,m )恒为定值.(1)解 当m =1时,P (n,1)=∑k =0n(-1)k C kn11+k=1n +1∑k =0n (-1)k C k +1n +1=1n +1, 又Q (n,1)=C nn +1=n +1,显然P (n,1)·Q (n,1)=1.(2)证明 P (n ,m )=∑k =0n(-1)k C knmm +k=1+∑k =1n -1(-1)k(C kn -1+C k -1n -1)mm +k+(-1)nmm +n=1+∑k =1n -1(-1)k Ck n -1mm +k+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )-m n ∑k =0n (-1)k C k n m m +k=P (n -1,m )-m nP (n ,m ). 即P (n ,m )=nm +nP (n -1,m ), 由累乘,易求得P (n ,m )=n !m !(n +m )!=1C n n +m,又Q (n ,m )=C nn +m ,所以P (n ,m )·Q (n ,m )=1.7.已知数列{a n }是等差数列,且a 1,a 2,a 3是⎝ ⎛⎭⎪⎫1+12x m展开式的前三项的系数.(1)求⎝ ⎛⎭⎪⎫1+12x m展开式的中间项;(2)当n ≥2时,试比较1a n +1a n +1+1a n +2+…+1a n 2与13的大小.解 (1)⎝ ⎛⎭⎪⎫1+12x m =1+C 1m ⎝ ⎛⎭⎪⎫12x +C 2m ⎝ ⎛⎭⎪⎫12x 2+…+C m m ⎝ ⎛⎭⎪⎫12x m,依题意a 1=1,a 2=12m ,a 3=m (m -1)8,由2a 2=a 1+a 3,可得m =1(舍去)或m =8.所以⎝ ⎛⎭⎪⎫1+12x m展开式的中间项是第五项,T 5=C 48⎝ ⎛⎭⎪⎫12x 4=358x 4. (2)由(1)知,a n =3n -2,当n =2时,1a n +1a n +1+1a n +2+…+1a n 2=1a 2+1a 3+1a 4=14+17+110=69140>13;当n =3时,1a n +1a n +1+1a n +2+…+1a n 2=1a 3+1a 4+1a 5+…+1a 9=17+110+113+116+119+122+125=17+⎝ ⎛⎭⎪⎫110+113+116+⎝ ⎛⎭⎪⎫119+122+125 >18+⎝ ⎛⎭⎪⎫116+116+116+⎝ ⎛⎭⎪⎫132+132+132 =18+316+332>18+316+116>13. 猜测:当n ≥2时,1a n +1a n +1+1a n +2+…+1a n 2>13.以下用数学归纳法加以证明: ①当n =2时,结论成立.②假设当n =k (k ≥2,k ∈N *)时,1a k +1a k +1+1a k +2+…+1a k 2>13,则当n =k +1时,1a k +1+1a (k +1)+1+1a (k +1)+2+…+1a (k +1)2=⎣⎢⎡⎦⎥⎤1a k +1a k +1+1a (k +1)+1+1a (k +1)+2+…+1a k 2+⎣⎢⎡⎦⎥⎤1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+⎣⎢⎡⎦⎥⎤1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+2k +1a (k +1)2-1a k=13+2k +13(k +1)2-2-13k -2=13+(2k +1)(3k -2)-[3(k +1)2-2][3(k +1)2-2](3k -2) =13+3k 2-7k -3[3(k +1)2-2](3k -2). 由k ≥3可知,3k 2-7k -3>0, 即1a k +1+1a (k +1)+1+1a (k +1)+2+…+1a (k +1)2>13. 综合①②,可得当n ≥2时, 1a n +1a n +1+1a n +2+…+1a n 2>13. 8.设|θ|<π2,n 为正整数,数列{a n }的通项公式a n =sin n π2·tan nθ,其前n 项和为S n .(1)求证:当n 为偶数时,a n =0;当n 为奇数时,a n =(-1)12n -tan nθ.(2)求证:对任意正整数n ,S 2n =12sin 2θ·[1+(-1)n +1·tan 2nθ].证明 (1)因为a n =sinn π2tan nθ.当n 为偶数时,设n =2k (k ∈N *),a n =a 2k =sin 2k π2tan 2k θ=sin k π·tan 2kθ=0,a n =0.当n 为奇数时,设n =2k -1(k ∈N *),a n =a 2k -1 =sin (2k -1)π2tan 2k -1θ=sin ⎝ ⎛⎭⎪⎫k π-π2·tan 2k -1θ.当k =2m (m ∈N *)时,a n =a 2k -1=sin ⎝⎛⎭⎪⎫2m π-π2·tan 4m -1θ=sin ⎝ ⎛⎭⎪⎫-π2·tan 4m -1θ=-tan 4m -1θ,此时n -12=2m -1,a n =a 2k -1=-tan 4m -1θ=(-1)2m -1tan 4m -1θ=(-1)12n -tan nθ.当k =2m -1(m ∈N *)时,a n =a 2k -1=sin ⎝⎛⎭⎪⎫2m π-3π2·tan 4m -3θ =sin ⎝ ⎛⎭⎪⎫-3π2·tan 4m -3θ=tan 4m -3θ,此时n -12=2m -2,a n =a 2k -1=tan4m -3θ=(-1)2m -2tan4m -3θ=(-1)12n -tan nθ.综上,当n 为偶数时,a n =0; 当n 为奇数时,a n =(-1)12n -tan nθ.(2)当n =1时,由(1)得S 2=a 1+a 2=tan θ, 12sin 2θ[1+(-1)n +1tan 2n θ]=12sin 2θ(1+tan 2θ) =sin θ·cos θ·1cos 2θ=tan θ. 故当n =1时,命题成立.假设当n =k (k ∈N *,k ≥1)时命题成立, 即S 2k =12sin 2θ·[1+(-1)k +1tan 2kθ].当n =k +1时,由(1)得S 2(k +1)=S 2k +a 2k +1+a 2k +2=S 2k +a 2k +1=12sin 2θ·[1+(-1)k +1tan 2k θ]+(-1)k tan 2k +1θ=12sin 2θ·⎣⎢⎡⎦⎥⎤1+(-1)k+1tan2kθ+(-1)k·2sin 2θtan2k+1θ=12sin 2θ·⎣⎢⎡⎦⎥⎤1+(-1)k+2·tan2k+2θ⎝⎛⎭⎪⎫-1tan2θ+2sin 2θtan θ=12sin 2θ·⎣⎢⎡⎦⎥⎤1+(-1)k+2·tan2k+2θ⎝⎛⎭⎪⎫-cos2θsin2θ+1sin2θ=12sin 2θ·[1+(-1)k+2·tan2k+2θ].即当n=k+1时命题成立.综上所述,对正整数n,命题成立.。

专题8.3 空间几何中的平行、垂直(练习)【必考点专练】2023届高考数学二轮复习专题

专题8.3 空间几何中的平行、垂直(练习)【必考点专练】2023届高考数学二轮复习专题

专专8.3空间几何中的平行、垂直一、单选题1. 设,l m 表示两条不同的直线,,αβ表示两个不同的平面,Q 表示一个点,给出下列四个命题,其中正确的命题是( )①,Q l Q l αα∈⊂⇒∈②,l m Q m l ββ⋂=⊂⇒⊂③//,,,l m l Q m Q m ααα⊂∈∈⇒⊂④,αβ⊥且,,,m Q Q l l l αββαβ⋂=∈∈⊥⇒⊂A. ①②B. ①③C. ②④D. ③④ 2. 如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A. 直线1A D 与直线1D B 垂直,直线//MN 平面ABCDB. 直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC. 直线1A D 与直线1D B 相交,直线//MN 平面ABCDD. 直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B3. 如图A ,B ,C ,D 为空间四点,在ABC 中,2AB =,2AC BC ==,等边三角形ADB 以AB 为轴旋转,当平面ADB ⊥平面ABC 时,CD =( )A. 3B. 2C. 5D. 14. 如图,四边形ABCD 中,//AD BC ,AD AB =,45BCD ︒∠=,90BAD ︒∠=,将ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A BCD -,则在三棱锥A BCD -中,下列命题正确的是( )A. 平面ABD ⊥平面ABCB. 平面ADC ⊥平面BDCC. 平面ABC ⊥平面BDCD. 平面ADC ⊥平面ABC二、多选题 5. 如图,在正方体1111ABCD A B C D -中,点P 为线段1B C 上一动点,则( )A. 直线1BD ⊥平面11AC DB. 异面直线1B C 与11A C 所成角为45︒C. 三棱锥11P A DC -的体积为定值D. 平面11AC D 与底面ABCD 的交线平行于11A C6. 如图所示,矩形ABCD 中,E 为边AB 的中点,将ADE 沿直线DE 翻转成1A DE ,若M 为线段1A C 的中点,则在ADE 翻转过程中,下列命题正确的是( )A. ||BM 是定值B. 点M 在球面上运动C. 一定存在某个位置,使1DE A C ⊥D. 一定存在某个位置,使//MB 平面1A DE7. 如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的有( )A. B 、E 、C 、F 四点不共面B. 存在点F ,使得//CF 平面BAEC. 三棱锥B ADC -的体积为定值D. 存在点E 使得直线BE 与直线CD 垂直三、填空题 8. 《九章算术》中将底面是长方形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的四面体称为鳖臑.在如图所示的阳马P ABCD -中,PA ⊥底面ABCD ,且22BC DC PA ==,AM PD ⊥于M ,MN PD ⊥,MN 与PC 交于点.N 则(1)AM 与CD 的关系__________(填“垂直”或“平行”);(2)PN PC=__________. 9. 如图,在正方形ABCD 中,,E F 分别是,BC CD 的中点,G 是EF 的中点.现在沿,AE AF 及EF 把这个正方形折成一个空间图形,使,,B C D 三点重合,重合后的点记为.H 下列说法错误的是__________(将符合题意的选项序号填到横线上).①AG EFH ⊥所在平面;②AH EFH ⊥所在平面;③HF AEF ⊥所在平面;④HG AEF ⊥所在平面.10. 如图,在Rt ABC 中,1AC =,BC x =,D 为斜边AB 的中点.将BCD 沿直线CD 翻折.若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是__________.11. 如图所示,正方体1111ABCD A B C D -的棱长为1,BD AC O ⋂=,M 是线段1D O 上的动点,过点M 作平面1ACD 的垂线交平面1111A B C D 于点N ,则点N 到点A 距离的最小值为__________.四、解答题12. 在三棱柱111ABC A B C -中,AB AC ⊥,1B C ⊥平面ABC ,E ,F 分别是AC ,1B C 的中点.(1)求证://EF 平面11AB C ;(2)求证:平面1AB C ⊥平面1.ABB13. 在平行六面体1111ABCD A B C D -中,1AA AB =,111.AB B C ⊥求证:(1)//AB 平面11A B C ;(2)平面11ABB A ⊥平面1.A BC14. 如图所示,四棱锥P ABCD -的底面ABCD 为矩形,PA 是四棱锥P ABCD -的高,,,E F M 分别为,,AB CD PD 的中点.(1)求证:平面//AMF 平面PEC ;(2)若24PA AB BC ===,求多面体PECFMA 的体积.15. 如图,四边形ABCD 为菱形,60.ABC PA ︒∠=⊥平面ABCD ,E 为PC 中点. ()Ⅰ求证:平面BED ⊥平面ABCD ;()Ⅱ求平面PBA 与平面EBD 所成二面角(锐角)的余弦值.16. 如图,已知三棱柱111ABC A B C -,平面11AC A C ⊥平面ABC ,ABC=90︒∠,BAC=30︒∠,11==AC A A AC ,E ,F 分别是AC ,11A B 的中点.()Ⅰ证明:EF BC ⊥;()Ⅱ求直线EF 与平面1BC A 所成角的余弦值.17. 如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于.F(1)证明:1//AA MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为111A B C 的中心,若6AO AB ==,//AO 平面11EB C F ,且3MPN π∠=,求四棱锥11B EB C F -的体积.18. 如图,在直三棱柱111ABC A B C -中,2AB AC ==,12BC AA ==,O ,M 分别为BC ,1AA 的中点.(1)求证://OM 平面11CB A ;(2)求点M 到平面11CB A 的距离.19. 如图,在正三棱柱111ABC A B C -中,2AB =,13AA =,M 为BC 的中点,N 在线段1AA 上.(1)设1=AN NA λ,当λ为何值时,11//?MN ACB 平面 (2)若1AN =,求直线MN 与直线11A C 所成角的正弦值.20. 如图,在四棱锥P ABCD -,底面ABCD 为平行四边形,PCD 为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(1)设G ,H 分别为PB ,AC 的中点,求证://GH 平面PAD ;(2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.答案和解析1.【答案】D解:①Q α∈,l α⊂,点Q 可以不在直线l 上,故A 错误; ②直线l 可以只有一点在面内,故B 错误;③因为//l m ,l α⊂,若m 不在平面α内,//m α,由Q m ∈, 可得Q 在平面α外,这与可点Q α∈相矛盾,故C 正确; ④αβ⊥且m αβ⋂=,Q β∈,Q l ∈,l l αβ⊥⇒⊂, 由面面垂直的性质定理知D 正确.故选.D2.【答案】A解:连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊂/平面,ABCD AB ⊂平面ABCD ,所以//MN 平面.ABCD因为AB 不垂直BD ,所以MN 不垂直BD ,则MN 不垂直平面11BDD B ,所以选项B ,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥, 1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥, 且直线11,A D D B 是异面直线,所以选项C 错误,选项A 正确. 故选.A3.【答案】B解:由题意,取AB 的中点E ,连接DE ,CE ,因为三角形ADB 为等边三角形,所以DE AB ⊥,当平面ADB ⊥平面ABC 时,且平面ADB ⋂平面ABC AB =,又DE ⊂平面ADB ,所以DE ⊥平面ABC ,又CE ⊂平面ABC ,所以DE EC ⊥,又2AB =,2AC BC ==, 所以222AC BC AB +=,所以AC BC ⊥,又BE AE =,所以112CE AB ==, 又332322DE BD ==⨯=, 所以此时2231 2.CD DE CE =+=+=故选.B4.【答案】D解:在四边形ABCD 中,//AD BC ,AD AB =,45BCD ︒∠=,90BAD ︒∠=, BD CD ∴⊥,又平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,CD ⊂平面BCD , 故CD ⊥平面ABD ,则CD AB ⊥,又AD AB ⊥,AD CD D ⋂=,AD ,CD ⊂平面ADC ,AB ∴⊥平面ADC ,又AB ⊂平面ABC ,∴平面ABC ⊥平面.ADC故选.D5.【答案】ACD解:在A 中,1111A C B D ⊥,111AC BB ⊥,1111B D BB B ⋂=,11B D ,1BB ⊂平面11BB D , 11A C ∴⊥平面11BB D ,1BD ⊂平面11BB D ,111AC BD ∴⊥,同理,11DC BD ⊥,1111A C DC C ⋂=,11A C ,1DC ⊂平面11AC D ,∴直线1BD ⊥平面11AC D ,故A 正确;对于B ,易知11//A D B C ,在11A DC 中,1111A D DC AC ==,可得11A DC 为正三角形,异面直线1BC 与11A C 所成角为60︒,故B 错误;对于C ,11//A D B C ,1A D ⊂平面11AC D ,1B C ⊂/平面11AC D ,1//B C ∴平面11AC D , 点P 在线段1B C 上运动,P ∴到平面11AC D 的距离为定值,又11AC D 的面积是定值,∴三棱锥11P A C D -的体积为定值,故C 正确;对于D ,设平面11AC D 与底面ABCD 的交线为m ,11A C 是平面11AC D 和平面1111A B C D 的交线,平面//ABCD 平面1111A B C D ,所以11//A C m ,故D 选项正确.故选.ACD6.【答案】ABD解:A 对,取CD 中点N ,连接MN 、NB ,则1//MN A D 、//NB DE ,1A DE MNB ∠=∠,112MN A D ==定值,NB DE ==定值,根据余弦定理得,2222cos MB MN NB MN NB MNB =+-⋅⋅∠,||BM ∴是定值,B 对,B 是定点,M ∴是在以B 为球心,MB 为半径的球面上,C 错,当矩形ABCD 满足AC DE ⊥时存在,其他情况不存在,D 对,取CD 中点N ,连接MN 、NB ,则1//MN A D 、//NB DE ,因为MN ⊂/平面1A DE ,1A D ⊂平面1A DE ,所以//MN 平面1A DE ,同理//BN 平面1A DE ,又MN NB N ⋂=,∴平面//MNB 平面1A DE ,MB ⊂平面MNB ,//MB ∴平面1.A DE故选.ABD7.【答案】AB解:对于A :假设直线BE 与直线CF 在同一平面上,所以:点E 在平面BCF 上,又点E 在线段BC 上,BC ⋂平面BCF C =,所以点E 与点C 重合,与点E 异于C 矛盾,所以直线BE 与CF 必不在同一平面上,即B 、E 、C 、F 四点不共面,故A 正确; 对于B :当点F 为线段BD 的中点时,12EC AD =,再取AB 的中点G , 则//FG AD 且12FG AD =, 则//EC FG ,且EC FG =,所以:四边形ECFG 为平行四边形,所以//FC EG ,又因为,EG ABE FC ABE ⊂⊄平面平面,则:直线//CF 平面BAE ,故B 正确;对于C :由题B ADC V -,底面ACD 的面积不变,但E 的移动会导致点B 到平面ACD 的距离在变化,所以B ADC V -的体积不是定值,故C 错误;对于D :过点B 作BO AE ⊥于O ,由于平面BAE ⊥平面AECD ,平面BAE ⋂平面AECD AE =,所以BO ⊥平面AECD ,过点D 作DH AE ⊥于H ,因为平面BAE ⊥平面AECD ,平面BAE ⋂平面AECD AE =,所以DH ⊥平面BAE ,又因为BE ABE ⊂平面,所以DH BE ⊥,若存在点E 使得直线BE 与直线CD 垂直,DH ⊂平面AECD ,DC ⊂平面AECD ,DH DC D ⋂=,所以BE ⊥平面AECD ,所以E 和O 重合,与ABE 是以点B 为直角的三角形矛盾,所以不存在点E ,使得直线BE 与直线CD 垂直,故D 错误.故选:.AB8.【答案】垂直23解:(1)由题意易得CD ⊥平面PAD ,所以CD AM ⊥,又AM PD ⊥于M ,CD PD D ⋂=,进而得AM ⊥平面PCD ,得.AM CD ⊥(2)设BC DC PA a ===,则PD ==,Rt PAD中,PM PA PA PD ==,则PM =, 易得CD ⊥平面PAD ,因为MN PD ⊥,所以//MN CD ,得2.3PN PM PC PD === 故答案为(1)垂直;2(2).39.【答案】①③④解:折之前AG EF ⊥,CG EF ⊥,折之后也垂直,所以EF ⊥平面AHG ,折之前B ∠,D ∠,C ∠均为直角,折之后三点重合, 所以折之后AH ,EH ,FH 三条直线两两垂直,所以AH EFH ⊥所在平面,②对;同时可知AH HG ⊥,又HF AEH ⊥所在平面,过AE 不可能做两个平面与直线HF 垂直,③错; 如果HG AEF ⊥所在平面,则有HG AG ⊥,与②中AH HG ⊥矛盾,④错;若AG EFH ⊥所在平面,则有AG HG ⊥,与②中AH HG ⊥矛盾,所以①也错.故答案为①③④.10.【答案】(0,3] 解:由题意得,212x AD CD BD +===,BC x =, 取BC 中点E ,翻折前,在图1中,连接DE ,CD ,则12DE =,1AC =, 翻折后,在图2中,此时 .CB AD ⊥BC DE ⊥,BC AD ⊥,DE AD D ⋂=,,DE AD ADE ⊂平面,BC ∴⊥平面ADE ,AE ADE ⊂平面,BC AE ∴⊥,DE BC ⊥,又BC AE ⊥,E 为BC 中点,1AB AC ∴==,2114AE x ∴=-,212x AD +=, 在ADE 中:①221111224x x ++>-,②221111224x x +<+-,③0x >, 由①②③,得0 3.x <<如图3,翻折后,当1B CD 与ACD 在一个平面上,AD 与1B C 交于M ,且1AD B C ⊥,1AD B D CD BD ===,1CBD BCD B CD ∠=∠=∠, 又190CBD BCD B CD ︒∠+∠+∠=,130CBD BCD B CD ︒∴∠=∠=∠=,60A ︒∴∠=,tan 60BC AC ︒=,此时1x ==综上,x 的取值范围为故答案为:11.【答案】2解:由题易知,DO AC ⊥,1D O AC ⊥,1DO D O O ⋂=,DO ,1D O ⊂平面11BDD B , AC ∴⊥平面11BDD B ,又AC ⊂平面1ACD ,∴平面1ACD ⊥平面11BDD B , 又MN ⊥平面1ACD ,平面1ACD ⋂平面111BDD B D O =,MN ∴⊂平面11BDD B ,且N 在平面1111A B C D 内,11N B D ∴∈,过N 作11NG A B ⊥,交11A B 于G ,将平面1111A B C D 展开,如图:设NG x =,(01)x ,11NG A B ⊥,1111A D A B ⊥,11//NG A D ∴,又11A D ⊥平面11ABB A ,NG ∴⊥平面11ABB A ,且AG ⊂平面11ABB A ,NG AG ∴⊥, 22221(1)222AN x x x x ∴=+-+=-+21362()222x =-+, 当12x =时,AN 取最小值6.2 故答案为:6.212.【答案】证明:(1)E ,F 分别是AC ,1B C 的中点.所以1//EF AB ,因为EF ⊂/平面11AB C ,1AB ⊂平面11AB C ,所以//EF 平面11AB C ;(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥,又因为AB AC ⊥,1AC B C C ⋂=,AC ⊂平面1AB C ,1B C ⊂平面1AB C , 所以AB ⊥平面1AB C ,因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1.ABB13.【答案】证明:(1)平行六面体1111ABCD A B C D -中,11//AB A B ,又AB ⊂平面1111,A B C A B ⊂/平面11A B C ;得//AB 平面11A B C ;(2)在平行六面体1111ABCD A B C D -中,1AA AB =,得四边形11ABB A 是菱形,11.AB A B ⊥在平行六面体1111ABCD A B C D -中,1AA AB =,1111.AB B C AB BC ⊥⇒⊥ 又1A B BC C ⋂=,1A B ⊂平面1A BC ,BC ⊂平面1A BC得1AB ⊥面1A BC ,且1AB ⊂平面11ABB A∴平面11ABB A ⊥平面1.A BC14.【答案】(1)证明:矩形ABCD ,且E ,F 是AB 、CD 中点,//AE CF ∴且AE CF =,∴四边形AECF 是平行四边形,//CE AF ∴,又CE ⊂/面AMF ,AF ⊂面AMF ,//CE ∴平面AMF ;又M 是PD 中点,则//MF PC ,同理可得//PC 平面AMF ,又CE ⊂平面PEC ,PC ⊂平面PEC ,CE PC C ⋂=,∴平面//AMF 平面PEC ;(2)解:棱锥M AFD -的高等于PA 的一半,则多面体PECFMA 的体积 111120(12)44142.32323P AECD M AFD V V V --=-=⨯+⨯⨯-⨯⨯⨯⨯=15.【答案】()Ⅰ证明:连接AC 交BD 于点O ,连接OE , 则O 是AC 的中点.又知E 是PC 中点,//EO PA ∴,PA ⊥平面ABCD ,OE ∴⊥平面.ABCD又知OE ⊂平面BED ,∴平面BED ⊥平面.ABCD()Ⅱ解:过B 作BM ⊥平面ABCD ,连接PM ,ME ,如图,由()Ⅰ可知,////PA EO MB ,则MB 是平面PBA 与平面EBD 的交线,由BM ⊥平面ABCD ,AB ,BO ⊂平面ABCD ,可得MB AB ⊥,MB BO ⊥,则ABO ∠即平面PBA 与平面EBD 所成二面角的平面角,四边形ABCD 为菱形,60.ABC ︒∠=可知30ABO ︒∠=,3cos cos30.2ABO ︒∠== 所以,平面PBA 与平面EBD 所成二面角(锐角)的余弦值为3.216.【答案】证明:()Ⅰ连结1A E ,11A A A C =,E 是AC 的中点,1A E AC ∴⊥,又平面11A ACC ⊥平面ABC ,1A E ⊂平面11A ACC ,平面11A ACC ⋂平面ABC AC =,1A E ∴⊥平面ABC ,又BC ⊂平面ABC ,1A E BC ∴⊥,1//A F AB ,90ABC ︒∠=,1BC A F ∴⊥,111A E A F A ⋂=,1A E 、1A F ⊂平面1A EF ,BC ∴⊥平面1A EF ,又EF ⊂平面1A EF ,EF BC ∴⊥;解:()Ⅱ取BC 中点G ,连结EG 、GF ,则1EGFA 是平行四边形,由于1A E ⊥平面ABC ,故1A E EG ⊥,∴平行四边形1EGFA 是矩形,由()Ⅰ得BC ⊥平面1EGFA ,则平面1A BC ⊥平面1EGFA ,EF ∴在平面1A BC 上的射影在直线1A G 上,连结1A G ,交EF 于O ,则EOG ∠是直线EF 与平面1A BC 所成角(或其补角),不妨设4AC =,则在1Rt A EG 中,123A E =,3EG =,O 是1A G 的中点,故11522A G EO OG ===, 2223cos 25EO OG EG EOG EO OG +-∴∠==⨯⨯,∴直线EF 与平面1A BC 所成角的余弦值为3.517.【答案】(1)证明:由题意知111////AA BB CC ,又因为侧面11BB C C 是矩形且M ,N 分别是BC ,11B C 的中点,所以1//MN BB ,1BB BC ⊥,所以1//AA MN ,11MN B C ⊥,又底面为正三角形,所以AM BC ⊥,111A N B C ⊥,又因为1MN A N N ⋂=,1,MN A N ⊂平面1A AMN ,所以11B C ⊥平面1A AMN ,又11B C ⊂平面11EB C F ,所以平面11EB C F ⊥平面1.A AMN(2)解:因为//AO 平面11EB C F ,AO ⊂平面1A NMA ,平面1A NMA ⋂平面11EB C F NP =, 所以//AO NP ,又因为//NO AP ,所以6AO NP ==,3ON AP ==, 过M 作MH NP ⊥,垂足为H ,因为平面11EB C F ⊥平面1A AMN ,平面11EB C F ⋂平面1A AMN NP =,MH ⊂平面1A AMN ,所以MH ⊥平面11EB C F ,因为3MPN π∠=,所以sin33MH PM π=⋅=, 在ABC 中,EF AP BC AM = 可得2AP BC EF AM⋅== , 11111()242EB C F S B C EF NP =+⋅=四边形, 又//BC 平面11EB C F ,所以1111B EB C F M EB C F V V --=11124.3EB C F S MH =⋅⋅=18.【答案】(1)证明:如图,连接1BC ,交1CB 于点N ,连接1A N ,.ON 则N 为1CB 的中点,又O 为BC 的中点,1//ON BB ∴,且112ON BB =, 又M 为1AA 的中点,11//MA BB ∴,且1112MA BB =, 1//ON MA ∴且1ON MA =,∴四边形1ONA M 为平行四边形,1//OM NA ∴,又1NA ⊂平面11CB A ,OM ⊂/平面11CB A ,//OM ∴平面11.CB A(2)解:如图,连接AO ,1OB ,1.ABAB AC =,O 为BC 的中点,AO BC ∴⊥, 又直三棱柱111ABC A B C -中,平面11CBB C ⊥平面ABC ,平面11CBB C ⋂平面ABC BC =,AO ⊂平面.ABCAO ∴⊥平面11.CBB C由(1)可知//OM 平面11CB A ,∴点M 到平面11CB A 的距离等于点O 到平面11CB A 的距离,设其为d , 在直三棱柱111ABC A B C -中,由AB AC ==12BC AA ==可得,1AO =,11A B =1AC =1BC=,11CB A ∴是直角三角形,且1112CB A S = 由11111_{_}O CB A A A COB V V COB V --=-=得:111111213332COB d S AO =⨯⨯=⨯⨯⨯⨯,故d =即点M 到平面11CB A19.【答案】解:(1)连接1BC ,交1CB 于点O ,则O 为1CB 的中点,连接1A O ,MO因为M 为BC 的中点,所以1//MO BB ,所以1//MO NA ,从而M ,O ,1A ,N 四点共面.因为//MN 平面11A CB ,MN ⊂平面1MOA N ,平面1MOA N ⋂平面111=ACB AO , 所以1//.MN AO又1//MO NA ,所以四边形1MOA N 为平行四边形, 所以1111122NA MO BB AA ===, 所以1=1.AN NA (2)因为11//A C AC ,所以直线MN 与直线11A C 所成角即为直线MN 与直线AC 所成角或者其补角. 取AB 的中点G ,连接,MG NG ,M 为BC 的中点,易得//AC GM ,则所求角为GMN ∠或者其补角GMN 中,112GM AC ==, 222GN AG AN =+=,222MN AM AN =+=由余弦定理可得1423cos 2124GMN +-∠==⨯⨯, 则7sin 4GMN ∠=, 所以,直线MN 与直线11A C 所成角的正弦值为7.420.【答案】证明:(1)如图:证明:连接BD ,由题意得AC BD H ⋂=,BH DH =,又由BG PG =,得//GH PD ,GH ⊂/平面PAD ,PD ⊂平面PAD ,//GH ∴平面PAD ;(2)证明:取棱PC 中点N ,连接DN ,依题意得DN PC ⊥, 又平面PAC ⊥平面PCD ,平面PAC ⋂平面PCD PC =,DN ⊂平面PCD , DN ∴⊥平面PAC ,又PA ⊂平面PAC ,DN PA ∴⊥,又PA CD ⊥,CD DN D ⋂=,CD ⊂平面PCD ,DN ⊂平面PCD ,PA ∴⊥平面PCD ;(3)解:连接AN ,由(2)中DN ⊥平面PAC ,知DAN ∠是直线AD 与平面PAC 所成角, PCD 是等边三角形,2CD =,且N 为PC 中点, 3DN ∴=,又DN ⊥平面PAC ,AN PAC ⊂平面,DN AN ⊥,在Rt AND 中,3sin .3DN DAN DA ∠== ∴直线AD 与平面PAC 所成角的正弦值为3.3。

2023年高考数学二轮复习讲练测(新高考)专题08 立体几何解答题常考全归类(原卷版)

2023年高考数学二轮复习讲练测(新高考)专题08 立体几何解答题常考全归类(原卷版)

专题08 立体几何解答题常考全归类【命题规律】空间向量是将空间几何问题坐标化的工具,是常考的重点,立体几何解答题的基本模式是论证推理与计算相结合,以某个空间几何体为依托,分步设问,逐层加深.解决这类题目的原则是建系求点、坐标运算、几何结论.作为求解空间角的有力工具,通常在解答题中进行考查,属于中等难度.【核心考点目录】核心考点一:非常规空间几何体为载体核心考点二:立体几何探索性问题核心考点三:立体几何折叠问题核心考点四:立体几何作图问题核心考点五:立体几何建系繁琐问题核心考点六:两角相等(构造全等)的立体几何问题核心考点七:利用传统方法找几何关系建系核心考点八:空间中的点不好求核心考点九:创新定义【真题回归】1.(2022·天津·统考高考真题)直三棱柱111ABC A B C 中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.2.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.3.(2022·浙江·统考高考真题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.4.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.5.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.6.(2022·全国·统考高考真题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.7.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C 中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.8.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C 的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【方法技巧与总结】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的.(3)计算:在证明的基础上计算得出结果.简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin h l,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°.4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【核心考点】核心考点一:非常规空间几何体为载体【规律方法】关键找出三条两两互相垂直的直线建立空间直角坐标系.【典型例题】例1.(2022·陕西安康·统考一模)如图,已知AB 为圆锥SO 底面的直径,点C 在圆锥底面的圆周上,2BS AB ==,6BAC π∠=,BE 平分SBA ∠,D 是SC 上一点,且平面DBE ⊥平面SAB .(1)求证:SA BD ⊥;(2)求二面角E BD C --的正弦值.例2.(2022·安徽·校联考二模)如图,将长方形11OAAO (及其内部)绕1OO 旋转一周形成圆柱,其中11,2OA O O ==,劣弧11A B 的长为,6AB π为圆O 的直径.(1)在弧AB 上是否存在点C (1,C B 在平面11OAAO 的同侧),使1BC AB ⊥,若存在,确定其位置,若不存在,说明理由;(2)求平面11A O B 与平面11B O B 夹角的余弦值.例3.(2022·山东东营·胜利一中校考模拟预测)如图,,AB CD 分别是圆台上、下底面的直径,且AB CD ,点E 是下底面圆周上一点,AB =(1)证明:不存在点E 使平面AEC ⊥平面ADE ;(2)若4DE CE ==,求二面角D AE B --的余泫值.例4.(2022·河北·统考模拟预测)如图,在圆台1OO 中,上底面圆1O 的半径为2,下底面圆O 的半径为4,过1OO 的平面截圆台得截面为11ABB A ,M 是弧AB 的中点,MN 为母线,cos NMB ∠=(1)证明:1AB ⊥平面1AOM ; (2)求二面角M NB A --的正弦值.核心考点二:立体几何探索性问题【规律方法】与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题.处理原则:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.【典型例题】例5.(2022·上海虹口·统考一模)如图,在三棱柱111ABC A B C 中,底面ABC 是以AC 为斜边的等腰直角三角形,侧面11AAC C 为菱形,点1A 在底面上的投影为AC 的中点D ,且2AB =.(1)求证:1BD CC ⊥;(2)求点C 到侧面11AA B B 的距离;(3)在线段11A B 上是否存在点E ,使得直线DE 与侧面11AA B B 请求出1A E 的长;若不存在,请说明理由.例6.(2022春·山东·高三山东省实验中学校考阶段练习)如图,在三棱柱111ABC A B C 中,1AB C 为等边三角形,四边形11AA B B 为菱形,AC BC ⊥,4AC =,3BC =.(1)求证:11AB AC ⊥;(2)线段1CC 上是否存在一点E ,使得平面1AB E 与平面ABC 的夹角的余弦值为14?若存在,求出点E 的位置;若不存在,请说明理由.例7.(2022春·黑龙江绥化·高三海伦市第一中学校考期中)如图1,在矩形ABCD 中,AB =2,BC =1,E 是DC 的中点,将DAE 沿AE 折起,使得点D 到达点P 的位置,且PB =PC ,如图2所示.F 是棱PB 上的一点.(1)若F 是棱PB 的中点,求证://CF 平面P AE ;(2)是否存在点F ,使得二面角F AE C --?若存在,则求出PF FB 的值;若不存在,请说明理由.例8.(2022·广东韶关·统考一模)已知矩形ABCD 中,4AB =,2BC =,E 是CD 的中点,如图所示,沿BE 将BCE 翻折至BFE △,使得平面BFE ⊥平面ABCD .(1)证明:BF AE ⊥;(2)若(01)DP DB λλ=<<是否存在λ,使得PF 与平面DEF 求出λ的值;若不存在,请说明理由.核心考点三:立体几何折叠问题【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质.【典型例题】例9.(2022春·江苏南通·高三期中)已知梯形ABCD 中,//AD BC ,π2∠=∠=ABC BAD ,24AB BC AD ===,E ,F 分别是AB ,CD 上的点,//EF BC ,AE x =,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)当2x =时①求证:BD EG ⊥;②求二面角D BF C --的余弦值;(2)三棱锥D FBC -的体积是否可能等于几何体ABE FDC -体积的一半?并说明理由.例10.(2022春·辽宁·高三辽宁实验中学校考期中)如图1,在平面四边形ABCD 中,已知ABDC ,AB DC ∥,142AD DC CB AB ====,E 是AB 的中点.将△BCE 沿CE 翻折至△PCE ,使得2DP =,如图2所示.(1)证明:DP CE ⊥;(2)求直线DE 与平面P AD 所成角的正弦值.例11.(2022春·湖南长沙·高三宁乡一中校考期中)如图,平面五边形P ABCD 中,PAD 是边长为2的等边三角形,//AD BC ,AB =2BC =2,AB BC ⊥,将PAD 沿AD 翻折成四棱锥P -ABCD ,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且PC =(1)证明:AB FM ⊥;(2)当直线EF 与平面P AD 所成的角最大时,求平面ACE 与平面P AD 夹角的余弦值.例12.(2022·四川雅安·统考模拟预测)如图①,ABC 为边长为6的等边三角形,E ,F 分别为AB ,AC 上靠近A 的三等分点,现将AEF △沿EF 折起,使点A 翻折至点P 的位置,且二面角P EF C --的大小为120°(如图②).(1)在PC 上是否存在点H ,使得直线//FH 平面PBE ?若存在,确定点H 的位置;若不存在,说明理由. (2)求直线PC 与平面PBE 所成角的正弦值.核心考点四:立体几何作图问题 【规律方法】(1)利用公理和定理作截面图(2)利用直线与平面平行的性质定理作平行线 (3)利用平面与平面垂直作平面的垂线 【典型例题】例13.(2022·贵州·校联考模拟预测)如图,已知平行六面体1111ABCD A B C D -的底面ABCD 是菱形,112CD CC AC ===,3DCB π∠=且113cos cos 4C CD C CB ∠=∠=.(1)试在平面ABCD 内过点C 作直线l ,使得直线//l 平面1C BD ,说明作图方法,并证明:直线11//l B D ; (2)求点C 到平面1A BD 的距离.例14.(2022秋·河北石家庄·高一石家庄市第十五中学校考期中)如图为一块直四棱柱木料,其底面ABCD 满足:AB AD ⊥,AD BC ∥.(1)要经过平面11CC D D 内的一点P 和棱1BB 将木料锯开,在木料表面应该怎样画线?(借助尺规作图,并写出作图说明,无需证明)(2)若2AD AB ==,11BC AA ==,当点P 是矩形11CDD C 的中心时,求点1D 到平面1APB 的距离.例15.(2022·全国·高三专题练习)如图多面体ABCDEF 中,面FAB ⊥面ABCD ,FAB 为等边三角形,四边形ABCD 为正方形,//EF BC ,且332EF BC ==,H ,G 分别为CE ,CD 的中点.(1)求二面角C FH G --的余弦值;(2)作平面FHG 与平面ABCD 的交线,记该交线与直线AB 交点为P ,写出APAB的值(不需要说明理由,保留作图痕迹).例16.(2022·全国·高三专题练习)四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,23DAB π∠=.ACBD O =,且PO ⊥平面ABCD ,PO =点,F G 分别是线段.PB PD 上的中点,E 在PA 上.且3PA PE =.(Ⅰ)求证://BD 平面EFG ;(Ⅰ)求直线AB 与平面EFG 的成角的正弦值;(Ⅰ)请画出平面EFG 与四棱锥的表面的交线,并写出作图的步骤.核心考点五:立体几何建系繁琐问题 【规律方法】 利用传统方法解决 【典型例题】例17.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例18.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.例19.(2022春·福建南平·高三校考期中)在三棱柱111ABC A B C 中,AB AC ⊥,1B C ⊥平面ABC ,E 、F 分别是棱AC 、11A B 的中点.(1)设G 为11B C 的中点,求证://EF 平面11BCC B ;(2)若2AB AC ==,直线1BB 与平面1ACB 所成角的正切值为2,求多面体1B EFGC -的体积V .核心考点六:两角相等(构造全等)的立体几何问题 【规律方法】 构造垂直的全等关系 【典型例题】例20.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例21.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.核心考点七:利用传统方法找几何关系建系【规律方法】利用传统方法证明关系,然后通过几何关系建坐标系. 【典型例题】例22.如图:长为3的线段PQ 与边长为2的正方形ABCD 垂直相交于其中心()O PO OQ >. (1)若二面角P AB Q --的正切值为3-,试确定O 在线段PQ 的位置;(2)在(1)的前提下,以P ,A ,B ,C ,D ,Q 为顶点的几何体PABCDQ 是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.例23.在四棱锥P ABCD -中,E 为棱AD 的中点,PE ⊥平面ABCD ,//AD BC ,90ADC ∠=︒,2ED BC ==,3EB =,F 为棱PC 的中点.(Ⅰ)求证://PA 平面BEF ;(Ⅰ)若二面角F BE C --为60︒,求直线PB 与平面ABCD 所成角的正切值.例24.三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,侧面11BCC B 为矩形,123A AB π∠=,二面角1A BC A --的正切值为12. (Ⅰ)求侧棱1AA 的长;(Ⅰ)侧棱1CC 上是否存在点D ,使得直线AD 与平面1A BC ,若存在,判断点的位置并证明;若不存在,说明理由.核心考点八:空间中的点不好求 【规律方法】 方程组思想 【典型例题】例25.(2022·江苏南京·模拟预测)已知三棱台111ABC A B C 的体积为143,且π2ABC ∠=,1A C ⊥平面11BB C C . (1)证明:平面11A B C ⊥平面111A B C ;(2)若11AC B C =,11112A B B C ==,求二面角1B AA C --的正弦值.例26.(2022春·浙江·高三浙江省新昌中学校联考期中)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是边长为2的菱形,3DAB π∠=,平面11BDD B ⊥平面ABCD ,点1,O O 分别为11,B D BD 的中点,1111,,O B A AB O BO ∠∠=均为锐角.(1)求证:1AC BB ⊥;(2)若异面直线CD 与1AA ,四棱锥1A ABCD -的体积为1,求二面角1B AA C --的平面角的余弦值.例27.(2022春·辽宁沈阳·高三沈阳市第一二〇中学校考期中)如图,在几何体ABCDE 中,底面ABC 为以AC为斜边的等腰直角三角形.已知平面ABC ⊥平面ACD ,平面ABC ⊥平面,//BCE DE 平面,ABC AD DE ⊥.(1)证明;DE ⊥平面ACD ;(2)若22AC CD ==,设M 为棱BE 的中点,求当几何体ABCDE 的体积取最大值时,AM 与CD 所成角的余弦值.核心考点九:创新定义 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例28.(2022·安徽合肥·合肥一六八中学校考模拟预测)已知顶点为S 的圆锥面(以下简称圆锥S )与不经过顶点S 的平面α相交,记交线为C ,圆锥S 的轴线l 与平面α所成角θ是圆锥S 顶角(圆S 轴截面上两条母线所成角θ的一半,为探究曲线C 的形状,我们构建球T ,使球T 与圆锥S 和平面α都相切,记球T 与平面α的切点为F ,直线l 与平面α交点为A ,直线AF 与圆锥S 交点为O ,圆锥S 的母线OS 与球T 的切点为M ,OM a =,MS b =.(1)求证:平面SOA ⊥平面α,并指出a ,b ,θ关系式; (2)求证:曲线C 是抛物线.例29.(2022·全国·高三专题练习)类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA ,PB ,PC 构成的三面角-P ABC ,APC α∠=,BPC β∠=,APB γ∠=,二面角A PC B --的大小为θ,则cos cos cos sin sin cos γαβαβθ=+.(1)当α、π0,2β⎛⎫∈ ⎪⎝⎭时,证明以上三面角余弦定理;(2)如图2,四棱柱1111ABCD A B C D -中,平面11AA C C ⊥平面ABCD ,160A AC ∠=︒,45BAC ∠=︒, ①求1A AB ∠的余弦值;②在直线1CC 上是否存在点P ,使//BP 平面11DA C ?若存在,求出点P 的位置;若不存在,说明理由.例30.(2022·全国·校联考模拟预测)蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H ABC -,J CDE -,K EFA -,再分别以AC ,CE ,EA 为轴将ACH ∆,CEJ ∆,EAK ∆分别向上翻转180︒,使H ,J ,K 三点重合为点S 所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱的侧面积一定,当蜂房表面积最小时,求其顶点S 的曲率的余弦值.【新题速递】1.(2022·重庆沙坪坝·重庆八中校考模拟预测)如图,在三棱柱111ABC A B C 中,1BC CC =,1AC AB =.(1)证明:平面1ABC ⊥平面11BCC B ;(2)若BC =,1AB B C =,160CBB ∠=︒,求直线1BA 与平面111A B C 所成角的正弦值.2.(2022·四川达州·统考一模)如图,三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,112AB AC BB ===,,160ABB ∠=.(1)证明: 1AB B C ⊥;(2)若12B C =,求1AC 与平面1BCB 所成角的正弦值.3.(2022·陕西宝鸡·统考一模)如图在四棱锥P ABCD -中,PA ⊥底面ABCD ,且底面ABCD 是平行四边形.已知2,1,PA AB AD AC E ====是PB 中点.(1)求证:平面PBC ⊥平面ACE ;(2)求平面PAD 与平面ACE 所成锐二面角的余弦值.4.(2022·广东广州·统考一模)如图,已知四棱锥P ABCD -的底面ABCD 是菱形,平面PBC ⊥平面ABCD ,30,ACD E ∠=为AD 的中点,点F 在PA 上,3AP AF =.(1)证明:PC //平面BEF ;(2)若PDC PDB ∠∠=,且PD 与平面ABCD 所成的角为45,求平面AEF 与平面BEF 夹角的余弦值.5.(2022·上海奉贤·统考一模)如图,在四面体ABCD 中,已知BA BD CA CD ===.点E 是AD 中点.(1)求证:AD ⊥平面BEC ;(2)已知95,arccos,625AB BDC AD ∠===,作出二面角D BC E --的平面角,并求它的正弦值.6.(2022·上海浦东新·统考一模)如图,三棱锥-P ABC 中,侧面P AB 垂直于底面ABC ,PA PB =,底面ABC 是斜边为AB 的直角三角形,且30ABC ∠=︒,记O 为AB 的中点,E 为OC 的中点.(1)求证:PC AE ⊥;(2)若2AB =,直线PC 与底面ABC 所成角的大小为60°,求四面体P AOC 的体积.7.(2022·四川成都·石室中学校考模拟预测)如图,在四棱锥P ABCD -中,AB BD BP ===PA PD ==90APD ∠=︒,E 是棱PA 的中点,且BE 平面PCD(1)证明:CD ⊥平面PAD ;(2)若1CD =,求二面角A PB C --的正弦值.8.(2022春·江苏徐州·高三期末)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD ∥BC ,N 为PB 的中点.(1)若点M 在AD 上,2AM MD =,34AD BC =,证明:MN 平面PCD ; (2)若3PA AB AC AD ====,4BC =,求二面角D AC N --的余弦值.9.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD ED FA ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求二面角F AC E --的大小.10.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD FA ED ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求点A 到平面FBD 的距离.11.(2022·四川广安·广安二中校考模拟预测)APD △是等腰直角三角形,AP PD ⊥且AD =ABCD 是直角梯形,AB BC ⊥,DC BC ⊥,且222AB BC CD ===,平面APD ⊥平面ABCD .(1)求证:AP ⊥平面BPD ;(2)若点E 是线段PB 上的一个动点,问点E 在何位置时三棱锥D APE -.12.(2022·四川南充·统考一模)在平面五边形ABCDE 中(如图1),ABCD 是梯形,//AD BC ,2AD BC ==AB =90ABC ∠=︒,ADE 是等边三角形.现将ADE 沿AD 折起,连接EB ,EC 得四棱锥E ABCD -(如图2)且CE =(1)求证:平面EAD ⊥平面ABCD ;(2)在棱EB 上有点F ,满足13EF EB =,求二面角E AD F --的余弦值.13.(2022·贵州贵阳·贵阳六中校考一模)如图,在四棱锥P ABCD -中,DA AB ⊥,PD PC ⊥,PB PC ⊥,1AB AD PD PB ====,4cos 5DCB ∠=.(1)求证:BD ⊥平面PAC .(2)设E 为BC 的中点,求PE 与平面ABCD 所成角的正弦值.14.(2022春·广东广州·高三校考期中)如图所示,在四棱锥P ABCD -中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AB AD ⊥,//,222AB CD PC AB AD CD ====,点E 在侧棱PB 上.(1)求证:平面EAC ⊥平面PBC ;(2)若平面PAC 与平面ACE PE BE 的值.。

2011届高考数学二轮复习专题八备考易错笔记

2011届高考数学二轮复习专题八备考易错笔记

在平时的学习过程中,考生应注意对做过的题进行适当的
上 页
下 页
再犯类似的错误.
专 题 八 备 考 易 错 笔 记
一、集合 1.忽视空集等概念,导致解题失误 空集是不含任何元素的集合,A∩B=∅,则表示集
上 页
合A与集合B没有公共元素.另外,在处理有关
A⊆B的问题时,一定要分A=∅和A≠∅两种情况进
上 页
下 页
3.不理解分段函数的概念导致失误 专 题 八 备 考 易 错 笔 记
由于分段函数的解析式不统一,需要对自变量的取值
加以讨论,分段进行解决,然后取其公共部分.
上 页
挑战三
x (x>1) a f(x)= 是 R 上的单 a (x≤1) (4-2)x+2 调递增函数,则实数 a 的取值范围为( ) A.(1,+∞) B.[4,8) C.(4,8) D.(1,8)
下 页
专 题 八 备 考 易 错 笔 记
【解析】因为 f(x)是 R 上的单调递增函数,所 以可得 a>1, 4-a>0, 2 a a≥4- +2, 2
上 页
解得 4≤a<8,故选 B.
下 页
【答案】
B
4.滥用函数的性质致误 专 题 八 备 考 易 错 笔 记
挑战四
设函数y=f(x)的定义域在实数集上,则函数y =f(x-1)与y=f(1-x)的图象关于( )
5x+6 的单调递减区间,所以选 C.该解法没有考虑到 函数的定义域,从而导致函数的单调区间范围扩大.
上 页
下 页
专 题 八 备 考 易 错 笔 记
【正解】由定义域为(-∞,2)∪(3,+∞),排除 A、 1 C,因为 y=log2u 为减函数,故只需找 u=x2-5x 1 2 +6 的单调递减区间,故 y=log2(x -5x+6)的单调 递增区间为(-∞,2).故选 D.

2019年高考数学(理科)大二轮复习练习:专题二 函数与导数 专题能力训练8

2019年高考数学(理科)大二轮复习练习:专题二 函数与导数 专题能力训练8

专题能力训练8利用导数解不等式及参数的取值范围一、能力突破训练1.设f(x)=x ln x-ax2+(2a-1)x,a∈R.(1)令g(x)=f'(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.2.(2018全国Ⅲ,理21)已知函数f(x)=(2+x+ax2)·ln(1+x)-2x.(1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.3.已知函数f(x)=ax+x ln x的图象在x=e(e为自然对数的底数)处的切线的斜率为3.(1)求实数a的值;(2)若f(x)≤kx2对任意x>0成立,求实数k的取值范围;(3)当n>m>1(m,n∈N*)时,证明:.4.设函数f(x)=ax2-a-ln x,其中a∈R.(1)讨论f(x)的单调性;(2)确定a的所有可能取值,使得f(x)> -e1-x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).5.设函数f(x)=a ln x,g(x)=x2.(1)记g'(x)为g(x)的导函数,若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]内有解,求实数a的取值范围;(2)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.6.已知函数f(x)=-2(x+a)ln x+x2-2ax-2a2+a,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.二、思维提升训练7.已知函数f(x)= x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈,使得f(x0)=f.专题能力训练8利用导数解不等式及参数的取值范围一、能力突破训练1.解(1)由f'(x)=ln x-2ax+2a,可得g(x)=ln x-2ax+2a,x∈(0,+∞).则g'(x)=-2a=,当a≤0时,x∈(0,+∞)时,g'(x)>0,函数g(x)单调递增;当a>0时,x时,g'(x)>0,函数g(x)单调递增,x时,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)单调增区间为,单调减区间为(2)由(1)知,f'(1)=0.①当a≤0时,f'(x)单调递增,所以当x∈(0,1)时,f'(x)<0,f(x)单调递减.当x∈(1,+∞)时,f'(x)>0,f(x)单调递增.所以f(x)在x=1处取得极小值,不合题意.②当0<a<时,>1,由(1)知f'(x)在区间内单调递增,可得当x∈(0,1)时,f'(x)<0,x时,f'(x)>0.所以f(x)在区间(0,1)内单调递减,在区间内单调递增,所以f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f'(x)在区间(0,1)内单调递增,在区间(1,+∞)内单调递减,所以当x∈(0,+∞)时,f'(x)≤0,f(x)单调递减,不合题意.④当a>时,0<<1,当x时,f'(x)>0,f(x)单调递增,当x∈(1,+∞)时,f'(x)<0,f(x)单调递减,所以f(x)在x=1处取极大值,合题意.综上可知,实数a的取值范围为a>2.解(1)当a=0时,f(x)=(2+x)ln(1+x)-2x,f'(x)=ln(1+x)-,设函数g(x)=f'(x)=ln(1+x)-,则g'(x)=,当-1<x<0时,g'(x)<0;当x>0时,g'(x)>0.故当x>-1时,g(x)≥g(0)=0,且仅当x=0时,g(x)=0,从而f'(x)≥0,且仅当x=0时,f'(x)=0.所以f(x)在(-1,+∞)内单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)①若a≥0,由(1)知,当x>0时,f(x)≥(2+x)·ln(1+x)-2x>0=f(0),这与x=0是f(x)的极大值点矛盾.②若a<0,设函数h(x)= =ln(1+x)-由于当|x|<min时,2+x+ax2>0,故h(x)与f(x)符号相同.又h(0)=f(0)=0,故x=0是f(x)的极大值点当且仅当x=0是h(x)的极大值点.h'(x)=若6a+1>0,则当0<x<-,且|x|<min时,h'(x)>0,故x=0不是h(x)的极大值点.若6a+1<0,则a2x2+4ax+6a+1=0存在根x1<0,故当x∈(x1,0),且|x|<min时,h'(x)<0,所以x=0不是h(x)的极大值点.若6a+1=0,则h'(x)=则当x∈(-1,0)时,h'(x)>0;当x∈(0,1)时,h'(x)<0.所以x=0是h(x)的极大值点,从而x=0是f(x)的极大值点.综上,a=-3.解(1)∵f(x)=ax+x ln x,∴f'(x)=a+ln x+1.又f(x)的图象在点x=e处的切线的斜率为3,∴f'(e)=3,即a+ln e+1=3,∴a=1.(2)由(1)知,f(x)=x+x ln x,若f(x)≤kx2对任意x>0成立,则k对任意x>0成立.令g(x)=,则问题转化为求g(x)的最大值,g'(x)==-令g'(x)=0,解得x=1.当0<x<1时,g'(x)>0,∴g(x)在区间(0,1)内是增函数;当x>1时,g'(x)<0,∴g(x)在区间(1,+∞)内是减函数.故g(x)在x=1处取得最大值g(1)=1,∴k≥1即为所求.(3)证明:令h(x)=,则h'(x)=由(2)知,x≥1+ln x(x>0),∴h'(x)≥0,∴h(x)是区间(1,+∞)内的增函数.∵n>m>1,∴h(n)>h(m),即,∴mn ln n-n ln n>mn ln m-m ln m,即mn ln n+m ln m>mn ln m+n ln n,∴ln n mn+ln m m>ln m mn+ln n n.整理,得ln(mn n)m>ln(nm m)n.∴(mn n)m>(nm m)n,4.解(1)f'(x)=2ax-(x>0).当a≤0时,f'(x)<0,f(x)在区间(0,+∞)内单调递减.当a>0时,由f'(x)=0,有x=此时,当x时,f'(x)<0,f(x)单调递减;当x时,f'(x)>0,f(x)单调递增.(2)令g(x)=,s(x)=e x-1-x.则s'(x)=e x-1-1.而当x>1时,s'(x)>0,所以s(x)在区间(1,+∞)内单调递增.又由s(1)=0,有s(x)>0,从而当x>1时,g(x)>0.当a≤0,x>1时,f(x)=a(x2-1)-ln x<0.故当f(x)>g(x)在区间(1,+∞)内恒成立时,必有a>0.当0<a<时,>1.由(1)有f<f(1)=0,而g>0,所以此时f(x)>g(x)在区间(1,+∞)内不恒成立.当a时,令h(x)=f(x)-g(x)(x≥1).当x>1时,h'(x)=2ax--e1-x>x->0.因此,h(x)在区间(1,+∞)单调递增.又因为h(1)=0,所以当x>1时,h(x)=f(x)-g(x)>0,即f(x)>g(x)恒成立.综上,a5.解(1)不等式f(x)+2g'(x)≤(a+3)x-g(x),即a ln x+2x≤(a+3)x-x2,化简,得a(x-ln x)x2-x.由x∈[1,e]知x-ln x>0,因而a设y=,则y'=∵当x∈(1,e)时,x-1>0,x+1-ln x>0,∴y'>0在x∈[1,e]时成立.由不等式有解,可得a≥y min=-,即实数a的取值范围是(2)当a=1时,f(x)=ln x.由m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,得mg(x1)-x1f(x1) >mg(x2)-x2f(x2)恒成立, 设t(x)=x2-x ln x (x>0).由题意知x1>x2>0,则当x∈(0,+∞)时函数t(x)单调递增,∴t'(x)=mx-ln x-1≥0恒成立,即m恒成立.因此,记h(x)=,得h'(x)=∵函数在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,∴函数h(x)在x=1处取得极大值,并且这个极大值就是函数h(x)的最大值.由此可得h(x)max=h(1)=1,故m≥1,结合已知条件m∈Z,m≤1,可得m=1.6.(1)解由已知,函数f(x)的定义域为(0,+∞),g(x)=f'(x)=2(x-a)-2ln x-2,所以g'(x)=2-当0<a<时,g(x)在区间内单调递增, 在区间内单调递减;当a时,g(x)在区间(0,+∞)内单调递增.(2)证明由f'(x)=2(x-a)-2ln x-2=0,解得a=令φ(x)=-2ln x+x2-2x-2则φ(1)=1>0,φ(e)=--2<0.故存在x0∈(1,e),使得φ(x0)=0.令a0=,u(x)=x-1-ln x(x≥1).由u'(x)=1-0知,函数u(x)在区间(1,+∞)内单调递增.所以0==a0<<1.即a0∈(0,1).当a=a0时,有f'(x0)=0,f(x0)=φ(x0)=0.由(1)知,f'(x)在区间(1,+∞)内单调递增,故当x∈(1,x0)时,f'(x)<0,从而f(x)>f(x0)=0;当x∈(x0,+∞)时,f'(x)>0,从而f(x)>f(x0)=0.所以,当x∈(1,+∞)时,f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.二、思维提升训练7.解(1)f'(x)=x2+2x+a,方程x2+2x+a=0的判别式为Δ=4-4a,①当a≥1时,Δ≤0,则f'(x)≥0,此时f(x)在R上是增函数;②当a<1时,方程x2+2x+a=0两根分别为x1=-1-,x2=-1+,解不等式x2+2x+a>0,解得x<-1-或x>-1+,解不等式x2+2x+a<0,解得-1-<x<-1+,此时,函数f(x)的单调递增区间为(-∞,-1-)和(-1+,+∞),单调递减区间为(-1-,-1+).综上所述,当a≥1时,函数f(x)的单调递增区间为(-∞,+∞);当a<1时,函数f(x)的单调递增区间为(-∞,-1-)和(-1+,+∞),单调递减区间为(-1-,-1+).(2)f(x0)-f+ax0+1--a-1=+a=+a+x0+(4+14x0+7+12a).若存在x0,使得f(x0)=f,则4+14x0+7+12a=0在内有解.由a<0,得Δ=142-16(7+12a)=4(21-48a)>0,故方程4+14x0+7+12a=0的两根为x1'=,x'2=由x0>0,得x0=x'2=,依题意,0<<1,即7<<11,所以49<21-48a<121,即-<a<-, 又由得a=-,故要使满足题意的x0存在,则a≠-综上,当a时,存在唯一的x0满足f(x0)=f,当a时,不存在x0满足f(x0)=f。

2020年新课标高考数学二轮复习-中档解答题规范练(6套)

2020年新课标高考数学二轮复习-中档解答题规范练(6套)

2020年新课标高考数学二轮复习-中档解答题规范练(6套)目录2020年新课标高考数学二轮复习-中档解答题规范练(6套) (1)1、三角函数与解三角形 (2)2、数列 (8)3、立体几何 (14)4、概率与统计 (24)5、坐标系与参数方程 (35)6、不等式选讲 (41)1、三角函数与解三角形1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b =3,cos A sin B +(c -sin A )·cos(A +C )=0. (1)求角B 的大小;(2)若△ABC 的面积为32,求sin A +sin C 的值. 解 (1)由cos A sin B +(c -sin A )cos(A +C )=0, 得cos A sin B -(c -sin A )cos B =0,即sin(A +B )=c cos B ,sin C =c cos B ,sin Cc =cos B , 因为sin C c =sin B b , 所以sin B 3=cos B ,即tan B =3,又0<B <π,所以B =π3. (2)由S =12ac sin B =32,得ac =2,由b =3及余弦定理得(3)2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac , 所以a +c =3,所以sin A +sin C =sin B b (a +c )=32.2.已知函数f (x )=12sin 2ωx cos φ+cos 2ωx sin φ+12cos ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),其图象上相邻两条对称轴之间的距离为π,且过点⎝ ⎛⎭⎪⎫π6,12.(1)求ω和φ的值;(2)求函数y =f (2x ),x ∈⎣⎢⎡⎦⎥⎤0,π2的值域.解 (1)f (x )=12sin 2ωx cos φ+1+cos 2ωx 2sin φ-12sin φ =12(sin 2ωx cos φ+cos 2ωx sin φ)=12sin(2ωx +φ). 由题意可知,T =2π=2π|2ω|,则ω=±12,当ω=12,把点⎝ ⎛⎭⎪⎫π6,12代入f (x )=12sin(2ωx +φ)中,可得φ=π3+2k π,k ∈Z ,而0<φ<π,解得φ=π3.当ω=-12,把点⎝ ⎛⎭⎪⎫π6,12代入f (x )=12sin(2ωx +φ)中,可得φ=2π3+2k π,k ∈Z ,而0<φ<π,解得φ=2π3.(2)由题可知,当ω=12,f (2x )=12sin ⎝ ⎛⎭⎪⎫2x +π3,0≤x ≤π2,∴π3≤2x +π3≤4π3,则函数f (2x )的值域为⎣⎢⎡⎦⎥⎤-34,12.当ω=-12时,f (2x )=12sin ⎝ ⎛⎭⎪⎫-2x +2π3=12sin ⎝ ⎛⎭⎪⎫2x +π3,∵0≤x ≤π2,∴π3≤2x +π3≤4π3,则函数f (2x )的值域为⎣⎢⎡⎦⎥⎤-34,12.综上,函数f (2x )的值域为⎣⎢⎡⎦⎥⎤-34,12.3.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足a =1,sin (2A +B )sin A =2(1-cos C ). (1)求b 的值;(2)若△ABC 的面积为32,求c 的值. 解 (1)∵sin(2A +B )=2sin A (1-cos C ), ∴sin[(A +B )+A ]=2sin A -2sin A cos C ,sin(A +B )cos A +cos(A +B )sin A =2sin A +2sin A cos(A +B ), sin(A +B )cos A -cos(A +B )sin A =2sin A , ∴sin B =2sin A ,由正弦定理得b =2a ,又a =1, ∴b =2.(2)∵S △ABC =12ab sin C =12×1×2sin C =32, ∴sin C =32,cos C =±12,当cos C =12时,cos C =a 2+b 2-c 22ab =1+4-c 24=12,∴c =3;当cos C =-12时,cos C =a 2+b 2-c 22ab =1+4-c 24=-12,∴c =7. 故c =3或c =7.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,角A ,B ,C 的度数成等差数列,b =13.(1)若3sin C =4sin A ,求c 的值; (2)求a +c 的最大值.解 (1)由角A ,B ,C 的度数成等差数列,得2B =A +C . 又A +B +C =π,所以B =π3. 由正弦定理,得3c =4a ,即a =3c4. 由余弦定理,得b 2=a 2+c 2-2ac cos B , 即13=⎝ ⎛⎭⎪⎫3c 42+c 2-2×3c 4×c ×12,解得c =4.(2)由正弦定理,得asin A=csin C=bsin B=1332=2133,所以a=2133sin A,c=2133sin C.所以a+c=2133(sin A+sin C)=2133[sin A+sin(A+B)]=2133⎣⎢⎡⎦⎥⎤sin A+sin⎝⎛⎭⎪⎫A+π3=2133⎝⎛⎭⎪⎫32sin A+32cos A=213sin⎝⎛⎭⎪⎫A+π6.由0<A<2π3,得π6<A+π6<5π6.所以当A+π6=π2,即A=π3时,(a+c)max=213.5.在△ABC中,角A,B,C的对边分别为a,b,c,已知向量m=()cos A,cos B,n=()a,2c-b,且m∥n.(1)求角A的大小;(2)若a=4,求△ABC面积的最大值.解(1)∵m∥n,∴a cos B-()2c-b cos A=0,由正弦定理得sin A cos B-()2sin C-sin B cos A=0,∴sin A cos B+sin B cos A=2sin C cos A,∴sin(A+B)=2sin C cos A,由A+B+C=π,得sin C=2sin C cos A由于0<C<π,因此sin C>0,∴cos A=12,由于0<A<π,∴A=π3.(2)由余弦定理得a2=b2+c2-2bc cos A,∴16=b 2+c 2-bc ≥2bc -bc =bc ,∴bc ≤16,当且仅当b =c =4时,等号成立, ∴△ABC 面积S =12bc sin A ≤43, ∴△ABC 面积的最大值为4 3.6.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示.(1)求函数f (x )的解析式;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若(2a -c )cos B =b cos C ,求f ⎝ ⎛⎭⎪⎫A 2的取值范围. 解 (1)由图象知A =1,T =4⎝ ⎛⎭⎪⎫5π12-π6=π,ω=2,将点⎝ ⎛⎭⎪⎫π6,1代入解析式得sin ⎝ ⎛⎭⎪⎫π3+φ=1,因为|φ|<π2,所以φ=π6, 所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6. (2)由(2a -c )cos B =b cos C 及正弦定理, 得(2sin A -sin C )cos B =sin B cos C . 所以2sin A cos B =sin(B +C ), cos B =12,B =π3,A +C =2π3,f ⎝ ⎛⎭⎪⎫A 2=sin ⎝ ⎛⎭⎪⎫A +π6,0<A <2π3,π6<A +π6<5π6,所以sin ⎝ ⎛⎭⎪⎫A +π6∈⎝ ⎛⎦⎥⎤12,1,所以f ⎝ ⎛⎭⎪⎫A 2的取值范围是⎝ ⎛⎦⎥⎤12,1.2、数列1.已知S n =na 1+(n -1)a 2+…+2a n -1+a n ,n ∈N *. (1)若{a n }是等差数列,且S 1=5,S 2=18,求a n ; (2)若{a n }是等比数列,且S 1=3,S 2=15,求S n .解 (1)设{a n }的公差为d ,则S 1=a 1=5,S 2=2a 1+a 2=10+a 2=18, 所以a 2=8,d =a 2-a 1=3,a n =5+3(n -1)=3n +2.(2)设{a n }的公比为q ,则S 1=a 1=3,S 2=2a 1+a 2=6+a 2=15, 所以a 2=9,q =a 2a 1=3,a n =3×3n -1=3n ,所以S n =n ×3+(n -1)×32+…+2×3n -1+3n , ① 3S n =n ×32+(n -1)×33+…+2×3n +3n +1,②②-①,得2S n =-3n +(32+33+…+3n )+3n +1=-3n +32(1-3n -1)1-3+3n +1=-3n -92+3n +12+3n +1=3n +2-6n -92,所以S n =3n +2-6n -94.2.已知等差数列{a n }的前n 项和为S n ,且a 3=5,S 3=9. (1)求数列{a n }的通项公式;(2)设等比数列{b n }的前n 项和为T n ,若q >0且b 3=a 5,T 3=13,求T n ; (3)设c n =1a n a n +1,求数列{c n }的前n 项和S n .解(1)⎩⎨⎧a 3=a 1+2d =5,S 3=3a 1+3×22d =9,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以a n =a 1+(n -1)d =2n -1.(2)由题意可知,b 3=a 5=9,T 3=13,所以公比q =3, 从而b 1=1,所以T n =b 1(1-q n )1-q =1×(1-3n )1-3=12(3n-1).(3)由(1)知,a n =2n -1.所以c n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1, 所以S n =c 1+c 2+…+c n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1.3.设数列{a n }的前n 项之积为T n ,且log 2T n =n (n -1)2,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =λa n -1(n ∈N *),数列{b n }的前n 项之和为S n .若对任意的n ∈N *,总有S n+1>S n ,求实数λ的取值范围.解 (1)由log 2T n =n (n -1)2,n ∈N *,得T n =(1)22n n -,所以T n -1=(1)(2)22n n --(n ∈N *,n ≥2),所以a n =T nT n -1=(1)(1)(1)(2)222(1)(2)2222n n n n n n n n -------==2n -1,n ∈N *,n ≥2.又a 1=T 1=20=1,所以a n =2n -1,n ∈N *. (2)由b n =λa n -1=λ2n -1-1,得S n =λ·1-2n1-2-n =()2n-1λ-n ,所以S n +1>S n ⇔()2n +1-1λ-()n +1>()2n -1λ-n ⇔2nλ>1⇔λ>12n ,因为对任意的n ∈N *,12n ≤12, 故所求的λ的取值范围是⎝ ⎛⎭⎪⎫12,+∞.4.已知数列{a n }的前n 项和为S n ,向量a =(S n ,n ),b =(9n -7,2),且a 与b 共线.(1)求数列{}a n 的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(9m ,92m )内的项的个数记为b m ,求数列{b m }的前m 项和T m .解 (1)a 与b 共线,S n =n (9n -7)2=92n 2-72n ,a 1=1,a n =S n -S n -1=9n -8,n ≥2,所以a n =9n -8,n ∈N *. (2)对m ∈N *,若9m <a n <92m , 则9m +8<9n <92m +8. 因此9m -1+1≤n ≤92m -1. 故得b m =92m -1-9m -1. 于是T m =b 1+b 2+…+b m=(9+93+…+92m -1)-(1+9+…+9m -1) =9(1-81m )1-81-1-9m 1-9=9×92m +1-10×9m80.5.已知数列{a n }的通项公式为a n =n ·3n3n-1(n ≥1,n ∈N *).(1)求a 1,a 2,a 3的值;(2)求证:对任意的自然数n ∈N *,不等式a 1·a 2·…·a n <2·n !成立. (1)解 将n =1,2,3代入可得a 1=32,a 2=94,a 3=8126. (2)证明 由a n =n ·3n3n-1=n1-13n(n ≥1,n ∈N *)可得 a 1·a 2·…·a n =n !⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-132…⎝ ⎛⎭⎪⎫1-13n ,因此欲证明不等式a 1·a 2·…·a n <2·n !成立,只需要证明对任意非零自然数n ,不等式⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-132…⎝ ⎛⎭⎪⎫1-13n >12恒成立即可,显然左端每个因式都为正数,因为1-⎝ ⎛⎭⎪⎫13+132+…+13n =1-13⎝ ⎛⎭⎪⎫1-13n 1-13=1-12⎝ ⎛⎭⎪⎫1-13n >1-12=12.故只需证明对每个非零自然数,不等式⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-132…⎝ ⎛⎭⎪⎫1-13n ≥1-⎝ ⎛⎭⎪⎫13+132+…+13n 恒成立即可.(*)下面用数学归纳法证明该不等式成立: ①显然当n =1时,不等式(*)恒成立;②假设当n =k (k ≥1,k ∈N *)时不等式(*)也成立,即不等式 ⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-132…⎝ ⎛⎭⎪⎫1-13k ≥1-⎝ ⎛⎭⎪⎫13+132+…+13k 成立. 那么当n =k +1时,⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-132…⎝ ⎛⎭⎪⎫1-13k ⎝ ⎛⎭⎪⎫1-13k +1≥⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13+132+…+13k ⎣⎢⎡⎦⎥⎤1-13k +1,即⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-132…⎝ ⎛⎭⎪⎫1-13k +1≥1-⎝ ⎛⎭⎪⎫13+132+…+13k -13k +1+13k +1⎝ ⎛⎭⎪⎫13+132+…+13k ,注意到13k +1⎝⎛⎭⎪⎫13+132+…+13k >0,所以⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-132…⎝ ⎛⎭⎪⎫1-13k +1≥1-⎝ ⎛⎭⎪⎫13+132+…+13k +13k +1,这说明当n =k +1时,不等式(*)也成立.因此由数学归纳法可知,不等式(*)对任意非零自然数都成立,即 ⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-132…⎝ ⎛⎭⎪⎫1-13n ≥1-⎝ ⎛⎭⎪⎫13+132+…+13n >12恒成立, 故不等式a 1·a 2·…·a n <2·n !对任意非零自然数都成立.6.(2017·北京)设{a n }和{b n }是两个等差数列,记c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }(n =1,2,3,…),其中max{x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n -1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,c nn >M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列. (1)解 c 1=b 1-a 1=1-1=0,c 2=max{b 1-2a 1,b 2-2a 2}=max{1-2×1,3-2×2}=-1,c 3=max{b 1-3a 1,b 2-3a 2,b 3-3a 3}=max{1-3×1,3-3×2,5-3×3}=-2. 当n ≥3时,(b k +1-na k +1)-(b k -na k )=(b k +1-b k )-n (a k +1-a k )=2-n <0, 所以b k -na k 在k ∈N *时单调递减.所以c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }=b 1-a 1n =1-n . 所以对任意n ≥1,c n =1-n ,于是c n +1-c n =-1, 所以{c n }是等差数列.(2)证明 设数列{a n }和{b n }的公差分别为d 1,d 2,则b k -na k =b 1+(k -1)d 2-[a 1+(k -1)d 1]n =b 1-a 1n +(d 2-nd 1)(k -1). 所以c n =⎩⎪⎨⎪⎧b 1-a 1n +(n -1)(d 2-nd 1),d 2>nd 1,b 1-a 1n ,d 2≤nd 1.①当d 1>0时,取正整数m >d 2d 1,则当n ≥m 时,nd 1>d 2,因此,c n =b 1-a 1n ,此时,c m ,c m +1,c m +2,…是等差数列. ②当d 1=0时,对任意n ≥1,n ∈N *,c n =b 1-a 1n +(n -1)max{d 2,0}=b 1-a 1+(n -1)(max{d 2,0}-a 1). 此时,c 1,c 2,c 3,…,c n ,…是等差数列. ③当d 1<0时,当n >d 2d 1时,有nd 1<d 2,所以c n n =b 1-a 1n +(n -1)(d 2-nd 1)n =n (-d 1)+d 1-a 1+d 2+b 1-d 2n≥n (-d 1)+d 1-a 1+d 2-|b 1-d 2|. 对任意正数M ,取正整数m >max ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫M +|b 1-d 2|+a 1-d 1-d 2-d 1,d 2d 1, 故当n ≥m 时,c nn >M .3、立体几何1.(2017·全国Ⅲ)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.(1)证明由题设可得△ABD≌△CBD.从而AD=CD,又△ACD为直角三角形,所以∠ADC=90°,取AC的中点O,连接DO,BO,则DO⊥AC,DO=AO,又因为△ABC是正三角形,故BO⊥AC,所以∠DOB为二面角D-AC-B的平面角,在Rt△AOB中,BO2+OA2=AB2,又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,故∠DOB=90°,所以平面ADC⊥平面ABC.(2)解由题设及(1)知,OA,OB,OD两两垂直,以O为坐标原点,OA →为x 轴正方向,OB →为y 轴正方向,OD →为z 轴正方向,|OA →|为单位长度,建立如图所示的空间直角坐标系Oxyz ,则O (0,0,0),A ()1,0,0,D ()0,0,1,B ()0,3,0,C (-1,0,0), 由题意知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝ ⎛⎭⎪⎫0,32,12,故AE →=⎝⎛⎭⎪⎫-1,32,12,AD →=()-1,0,1,OA→=()1,0,0. 设平面AED 的法向量为n 1=(x 1,y 1,z 1),平面AEC 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧ AE →·n 1=0,AD →·n 1=0,解得n 1=⎝ ⎛⎭⎪⎫1,33,1,⎩⎪⎨⎪⎧AE →·n 2=0,OA →·n 2=0,解得n 2=(0,-1,3),设二面角D -AE -C 为θ,易知θ为锐角, 则cos θ=|n 1·n 2||n 1||n 2|=77.2.在如图所示的直三棱柱ABC -A 1B 1C 1中,D ,E 分别是BC ,A 1B 1的中点. (1)求证:DE ∥平面ACC 1A 1;(2)若AB ⊥BC ,AB =BC ,∠ACB 1=60°,求直线BC 与平面AB 1C 所成角的正切值.(1)证明取AB中点F,连接DF,EF.在△ABC中,因为D,F分别为BC,AB的中点,所以DF∥AC,又DF⊄平面ACC1A1,AC⊂平面ACC1A1,所以DF∥平面ACC1A1. 在矩形ABB1A1中,因为E,F分别为A1B1,AB的中点,所以EF∥AA1,又EF⊄平面ACC1A1,AA1⊂平面ACC1A1,所以EF∥平面ACC1A1.因为DF∩EF=F,所以平面DEF∥平面ACC1A1.因为DE⊂平面DEF,故DE∥平面ACC1A1.(2)解因为三棱柱ABC-A1B1C1为直三棱柱,所以BC⊥BB1,又AB⊥BC,AB∩BB1=B,所以BC⊥平面ABB1A1.因为AB=BC,BB1=BB1,所以△ABB1≌△CBB1,AB1=CB1,又∠ACB1=60°,所以△AB1C为正三角形,所以AB1=AB2+BB21=AC=2AB,所以BB1=AB.取AB1的中点O,连接BO,CO,所以AB1⊥BO,AB1⊥CO,所以AB1⊥平面BCO,所以平面AB1C⊥平面BCO,点B在平面AB1C上的射影在CO上,所以∠BCO即为直线BC与平面AB1C所成的角.在Rt △BCO 中,BO =22AB =22BC , 所以tan ∠BCO =BO BC =22.3.如图,在矩形ABCD 中,AB =1,AD =a ,P A ⊥平面ABCD ,且P A =1,E ,F 分别为AD ,P A 的中点,在BC 上有且只有一个点Q ,使得PQ ⊥QD .(1)求证:平面BEF ∥平面PDQ ; (2)求二面角E -BF -Q 的余弦值.(1)证明 方法一 (向量法)以A 点为原点,分别以AB →,AD →,AP →的方向为x 轴,y轴,z 轴的正方向,建立空间直角坐标系Axyz ,则A (0,0,0),B (1,0,0),D (0,a ,0),P (0,0,1), 设Q (1,x ,0),则PQ→=(1,x ,-1),QD →=(-1,a -x ,0),若PQ ⊥QD ,则PQ →·QD →=-1+x (a -x )=0,即x 2-ax +1=0,Δ=a 2-4=0, ∴a =2,x =1.∴Q ()1,1,0,QD→=()-1,1,0, 又E 是AD 的中点,∴E ()0,1,0,BE→=()-1,1,0,∴QD →=BE →, ∴BE ∥DQ ,又BE ⊄平面PDQ ,DQ ⊂平面PDQ , ∴BE ∥平面PDQ , 又F 是P A 的中点, ∴EF ∥PD ,∵EF ⊄平面PDQ ,PD ⊂平面PDQ , ∴EF ∥平面PDQ ,∵BE ∩EF =E ,BE ,EF ⊂平面BEF , ∴平面BEF ∥平面PDQ .方法二 (几何法)题意转化为矩形ABCD 中AQ 垂直于QD 的点Q 只有一个,则以AD 为直径的圆与线段BC 相切,易得BC =2,Q 是线段BC 的中点,由BE ∥QD ,EF ∥DP ,易得两平面平行.(2)解 设平面BFQ 的一个法向量m =()x ,y ,z , 则m ·BF →=m ·BQ→=0, 由(1)知,BF →=⎝ ⎛⎭⎪⎫-1,0,12,BQ →=()0,1,0, ∴-x +12z =y =0,取z =2,得m =()1,0,2,同样求得平面BEF 的一个法向量n =()1,1,2,cos 〈m ,n 〉=m ·n ||m ||n =306, ∵二面角E -BF -Q 为锐角, ∴二面角E -BF -Q 的余弦值为306.4.在四棱锥P-ABCD中,底面ABCD是正方形,侧面P AD⊥底面ABCD,且P A=PD=22AD,E,F分别为PC,BD的中点.(1)求证:EF∥平面P AD;(2)在线段AB上是否存在点G,使得二面角C-PD-G的余弦值为33,若存在,请求出点G的位置;若不存在,请说明理由.(1)证明连接AC,由正方形性质可知,AC与BD相交于点F,所以在△P AC中,EF∥P A,又P A⊂平面P AD,EF⊄平面P AD,所以EF∥平面P AD.(2)解取AD的中点O,连接OP,OF,因为P A=PD,所以PO⊥AD,又因为侧面P AD⊥底面ABCD,交线为AD,所以PO⊥平面ABCD,以O为原点,分别以射线OA,OF和OP为x轴,y轴和z轴建立空间直角坐标系Oxyz,不妨设AD =2,则P ()0,0,1,D ()-1,0,0,C ()-1,2,0,假设在AB 上存在点G ()1,a ,0,0<a <2,则PC→=()-1,2,-1,PD →=()-1,0,-1,DG →=()2,a ,0. 因为侧面P AD ⊥底面ABCD ,交线为AD ,且底面是正方形, 所以CD ⊥平面P AD ,则CD ⊥P A , 由P A 2+PD 2=AD 2,得PD ⊥P A , 又PD ∩CD =D ,PD ,CD ⊂平面PDC ,所以P A ⊥平面PDC ,即平面PDC 的一个法向量为P A →=(1,0,-1). 设平面PDG 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧PD →·n =0,DG →·n =0,即⎩⎪⎨⎪⎧-x -z =0,2x +ay =0,亦即⎩⎨⎧z =-x ,y =-2xa ,可取n =(a ,-2,-a ). 所以|cos 〈P A →,n 〉|=|P A →·n ||P A →||n |=2a 2×4+2a2=33, 解得a =1或a =-1(舍去).所以线段AB 上存在点G ,且G 为AB 的中点,使得二面角C -PD -G 的余弦值为33.5.已知三棱锥A -BCD 中,△ABC 是等腰直角三角形,且AC ⊥BC ,BC =2,AD ⊥平面BCD ,AD =1.(1)求证:平面ABC ⊥平面ACD ;(2)若E 为AB 的中点,求二面角A -CE -D 的余弦值.(1)证明 因为AD ⊥平面BCD ,BC ⊂平面BCD ,所以AD ⊥BC , 又因为AC ⊥BC ,AC ∩AD =A ,AD ,AC ⊂平面ACD , 所以BC ⊥平面ACD ,又BC ⊂平面ABC , 所以平面ABC ⊥平面ACD .(2)解 由已知可得CD =3,如图所示建立空间直角坐标系,由已知C (0,0,0),B (0,2,0),A (3,0,1),D (3,0,0),E ⎝ ⎛⎭⎪⎫32,1,12,则CE →=⎝ ⎛⎭⎪⎫32,1,12,CA →=(3,0,1),CD→=(3,0,0), 设平面ACE 的法向量n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n ·CA →=0,n ·CE →=0,⎩⎨⎧3x 1+z 1=0,32x 1+y 1+12z 1=0,令x 1=1,得n =(1,0,-3),设平面CED 的法向量m =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧m ·CD →=0,m ·CE →=0,⎩⎨⎧3x 2=0,32x 2+y 2+12z 2=0,令y 2=1,得m =(0,1,-2),二面角A -CE -D 的余弦值cos 〈m ,n 〉=|n ·m ||n ||m |=2325=155.6.如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠ABC =60°,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,CF =1.(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角为θ()θ≤90°,试求cos θ的取值范围. (1)证明 在梯形ABCD 中,因为AB ∥CD ,AD =DC =CB =1,∠ABC =60°,所以AB =2, 所以AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3, 所以AB 2=AC 2+BC 2,所以BC ⊥AC .因为平面ACFE ⊥平面ABCD ,平面ACFE ∩平面ABCD =AC , BC ⊂平面ABCD ,所以BC ⊥平面ACFE .(2)解 建立以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的空间直角坐标系如图所示,令FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1), 所以AB→=(-3,1,0),BM →=(λ,-1,1), 设n 1=(x ,y ,z )为平面MAB 的一个法向量, 由⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BM →=0,得⎩⎪⎨⎪⎧-3x +y =0,λx -y +z =0,取x =1,所以n 1=(1,3,3-λ), 因为n 2=(1,0,0)是平面FCB 的一个法向量. 所以cos θ=|n 1·n 2||n 1||n 2|=11+3+(3-λ)2×1=1(λ-3)2+4.因为0≤λ≤3,所以当λ=0时,cos θ有最小值77, 当λ=3时,cos θ有最大值12.所以cos θ∈⎣⎢⎡⎦⎥⎤77,12.4、概率与统计1.某学校甲、乙两个班各派10名同学参加英语口语比赛,并记录他们的成绩,得到如图所示的茎叶图.现拟定在各班中分数超过本班平均分的同学为“口语王”.(1)记甲班“口语王”人数为m ,乙班“口语王”人数为n ,比较m ,n 的大小; (2)随机从“口语王”中选取2人,记X 为来自甲班“口语王”的人数,求X 的分布列和期望.解 (1)因为x 甲=60+72+75+77+80+80+84+88+91+9310=80,所以m =4,x 乙=61+64+70+72+73+85+86+88+94+9710=79,所以n =5,所以m <n .(2)X 取0,1,2,所以P (X =0)=C 04C 25C 29=518,P (X =1)=C 14C 15C 29=59,P (X =2)=C 24C 05C 29=16,所以X 的分布列为所以E (X )=0×518+1×59+2×16=89.2.为了解我校2017级本部和大学城校区的学生是否愿意参加自主招生培训的情况,对全年级2 000名高三学生进行了问卷调查,统计结果如下表:(1)若从愿意参加自主招生培训的同学中按分层抽样的方法抽取15人,则大学城校区应抽取几人;(2)现对愿意参加自主招生的同学组织摸底考试,考试共有5道题,每题20分,对于这5道题,考生“如花姐”完全会答的有3题,不完全会的有2道,不完全会的每道题她得分S的概率满足:P(S=6k)=4-k6,k=1,2,3,假设解答各题之间没有影响,①对于一道不完全会的题,求“如花姐”得分的期望E(S);②试求“如花姐”在本次摸底考试中总得分的期望.解(1)大学城校区应抽取15×80220+80=4(人).(2)①由题知:对一道不完全会的题,“如花姐”得分的分布列为P(S=6k)=4-k 6,k=1,2,3,即所以对于一道不完全会的题,“如花姐”得分的期望为E (S )=6×12+12×13+18×16=10.②记ξ为“如花姐”做2道不完全会的题的得分总和, 则ξ=12,18,24,30,36, P (ξ=12)=12×12=14; P (ξ=18)=12×13×2=13; P (ξ=24)=12×16×2+13×13=518; P (ξ=30)=13×16×2=19; P (ξ=36)=16×16=136;E (ξ)=12×14+18×13+24×518+30×19+36×136=20. 所以“如花姐”最后得分的期望为20×3+E (ξ)=80.3.某中学拟在高一下学期开设游泳选修课,为了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为35.(1)请将上述列联表补充完整:并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;(2)针对问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选2人作为宣传组的组长,设这两人中男生人数为X ,求X 的分布列和期望. 下面的临界值表仅供参考:参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解 (1)因为从100人中随机抽取1人抽到喜欢游泳的学生的概率为35, 所以喜欢游泳的学生人数为100×35=60.其中女生有20人,则男生有40人,列联表补充如下:因为K 2=100(40×30-20×10)260×40×50×50≈16.67>10.828.所以有99.9%的把握认为喜欢游泳与性别有关.(2)喜欢游泳的共60人,按分层抽样抽取6人,则每个个体被抽到的概率均为110, 从而需抽取男生4人,女生2人. 故X 的所有可能取值为0,1,2.P(X=0)=C22C26=115,P(X=1)=C14C12C26=815,P(X=2)=C24C26=615=25,所以X 的分布列为E (X )=0×115+1×815+2×25=43.4.(2017·全国Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得x -=116∑i =116x i =9.97,s =116∑i =116(x i -x -)2=116(∑i =116x 2i -16x -2)≈0.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x -作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.997 4,0.997 416≈0.959 2,0.008≈0.09.解 (1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.997 4,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.002 6,故X ~B (16,0.002 6). 因此P (X ≥1)=1-P (X =0)=1-0.997 416≈0.040 8. X 的期望E (X )=16×0.002 6=0.041 6.(2)(ⅰ)如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.002 6,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.040 8,发生的概率很小,因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由x =9.97,s ≈0.212,得μ的估计值μ^=9.97,σ的估计值σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115×(16×9.97-9.22)=10.02.因此μ的估计值为10.02.i =116x 2i =16×0.2122+16×9.972≈1 591.134.剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008,因此σ的估计值为0.008≈0.09.5.(2017·重庆市调研)为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过100 km/h的有20人,不超过100 km/h 的有10人.在20名女性驾驶员中,平均车速超过100 km/h的有5人,不超过100 km/h的有15人.(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100 km/h的人与性别有关;(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过100 km/h的车辆数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列和期望.参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d. 参考数据:解 (1)∵K 2=50(20×15-10×5)230×20×25×25=253≈8.333>7.879,∴有99.5%的把握认为平均车速超过100 km/h 与性别有关.(2)根据样本估计总体的理想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为女性且车速不超过100 km/h 的车辆的概率为1550=310. ∴ξ的可能取值为0,1,2,3,且ξ~B ⎝ ⎛⎭⎪⎫3,310,∴P (ξ=0)=C 03⎝ ⎛⎭⎪⎫3100⎝ ⎛⎭⎪⎫7103=3431 000,P (ξ=1)=C 13⎝ ⎛⎭⎪⎫3101⎝ ⎛⎭⎪⎫7102=4411 000,P (ξ=2)=C 23⎝⎛⎭⎪⎫3102⎝ ⎛⎭⎪⎫7101=1891 000, P (ξ=3)=C 33⎝ ⎛⎭⎪⎫3103⎝ ⎛⎭⎪⎫7100=271 000, ∴ξ的分布列为E(ξ)=0×3431 000+1×4411 000+2×1891 000+3×271 000=910=0.9或E(ξ)=np=3×310=0.9.6.(2017届湖南株州模拟)某市对某环城快速车道进行限速,为了调查该道路车速情况,于某个时段随机对100辆车的速度进行取样,测量的车速制成如下条形图:经计算:样本的平均值μ=85,标准差σ=2.2,以频率值作为概率的估计值.已知车速过慢与过快都被认为是需矫正速度,现规定车速小于μ-3σ或车速大于μ+2σ是需矫正速度.(1)从该快速车道上所有车辆中任取1个,求该车辆是需矫正速度的概率;(2)从样本中任取2个车辆,求这2个车辆均是需矫正速度的概率;(3)从该快速车道上所有车辆中任取2个,记其中是需矫正速度的个数为ξ,求ξ的分布列和期望.解(1)记事件A为“从该快速车道上所有车辆中任取1个,该车辆是需矫正速度”.因为μ-3σ=78.4,μ+2σ=89.4,由样本条形图可知,所求的概率为P(A)=P(x<μ-3σ)+P(x>μ+2σ)=P(x<78.4)+P(x>89.4)=1100+4100=120.(2)记事件B为“从样本中任取2个车辆,这2个车辆均是需矫正速度”.由题设可知,样本容量为100,又需矫正速度个数为5,故所求概率为P(B)=C25C2100=1495.(3)需矫正速度的个数ξ服从二项分布,即ξ~B ⎝ ⎛⎭⎪⎫2,120,所以P ()ξ=0=C 02⎝ ⎛⎭⎪⎫1200⎝ ⎛⎭⎪⎫19202=361400, P ()ξ=1=C 12⎝ ⎛⎭⎪⎫1201⎝ ⎛⎭⎪⎫19201=19200, P ()ξ=2=C 22⎝ ⎛⎭⎪⎫1202⎝ ⎛⎭⎪⎫19200=1400,因此ξ的分布列为由ξ~B ⎝ ⎛⎭⎪⎫2,120知,期望E (ξ)=2×120=110.5、坐标系与参数方程1.在平面直角坐标系中xOy 中,已知直线l 的参数方程为⎩⎨⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2s 2,y =22s(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.解 直线l 的普通方程为x -2y +8=0, 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线的距离d =|2s 2-42s +8|5=|2(s -2)2+4|5,当s =2时,d min =455.因此当点P 的坐标为(4,4)时,曲线C 上的点P 到直线l 的距离取到最小值455. 2.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =2+t sin α(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=6sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(1,2),求||P A +||PB 的最小值. 解 (1)由ρ=6sin θ,得ρ2=6ρsin θ, 化为直角坐标方程为x 2+y 2=6y ,即x 2+(y -3)2=9.(2)将l 的参数方程代入圆C 的直角坐标方程, 得t 2+2(cos α-sin α)t -7=0, 由Δ=(2cos α-2sin α)2+4×7>0, 故可设t 1,t 2是上述方程的两根, 所以⎩⎪⎨⎪⎧t 1+t 2=-2()cos α-sin α,t 1·t 2=-7,又直线l 过点()1,2, 故结合t 的几何意义得||P A +||PB =⎪⎪⎪⎪t 1||+t 2||=t 1-t 2=()t 1+t 22-4t 1t 2=4()cos α-sin α2+28=32-4sin 2α≥32-4=27,所以||P A +||PB 的最小值为27.3.在直角坐标系xOy 中,已知点P ()0,3,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =2sin φ(φ为参数).以原点为极点, x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρ=32cos ⎝ ⎛⎭⎪⎫θ-π6.(1)判断点P 与直线l 的位置关系并说明理由; (2)设直线l 与曲线C 的两个交点分别为A , B ,求1||P A +1||PB 的值. 解 (1)点P 在直线上,理由如下: 直线l :ρ=32cos ⎝ ⎛⎭⎪⎫θ-π6,即2ρcos ⎝ ⎛⎭⎪⎫θ-π6=3,即3ρcos θ+ρsin θ=3,所以直线的直角坐标方程为3x +y =3,易知点P 在直线上. (2)由题意,可得直线l 的参数方程为⎩⎪⎨⎪⎧x =-12t ,y =3+32t ,(t 为参数),曲线C 的普通方程为x 22+y 24=1,将直线l 的参数方程代入曲线C 的普通方程, 得2⎝ ⎛⎭⎪⎫-12t 2+⎝ ⎛⎭⎪⎫3+32t 2=4,∴5t 2+12t -4=0,两根为t 1, t 2, ∴t 1+t 2=-125,t 1t 2=-45<0, 故t 1与t 2异号, ∴||P A +||PB =||t 1-t 2=()t 1+t 22-4t 1t 2=4145,∴||P A ||PB =|t 1||t 2|=-t 1t 2=45,∴1||P A +1||PB =||P A +||PB ||P A ||PB =14. 4.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+2cos φ,y =2sin φ(φ为参数).以原点O 为极点, x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin θ.(1)求曲线C 1的普通方程和C 2的直角坐标方程;(2)已知曲线C 3的极坐标方程为θ=α(0<α<π,ρ∈R ),点A 是曲线C 3与C 1的交点,点B 是曲线C 3与C 2的交点,且A , B 均异于原点O ,且||AB =42,求α的值.解 (1)由⎩⎪⎨⎪⎧x =2+2cos φ,y =2sin φ消去参数φ可得C 1的普通方程为(x -2)2+y 2=4.∵ρ=4sin θ, ∴ρ2=4ρsin θ, 由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得曲线C 2的直角坐标方程为x 2+(y -2)2=4. (2)由(1)得曲线C 1:(x -2)2+y 2=4, 其极坐标方程为ρ=4cos θ, 由题意设A (ρ1,α), B (ρ2,α), 则||AB =||ρ1-ρ2=4||sin α-cos α =42⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π4=42, ∴ sin ⎝ ⎛⎭⎪⎫α-π4=±1,∴ α-π4=π2+k π(k ∈Z ), 又 0<α<π, ∴ α=3π4.5.已知曲线C 1:⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数), C 2:⎩⎪⎨⎪⎧x =-32t ,y =233+t 2(t 为参数).(1)曲线C 1,C 2的交点为A ,B ,求||AB ;(2)以原点O 为极点, x 轴正半轴为极轴,建立极坐标系,过极点的直线l 1与曲线C 1交于O , C 两点,与直线ρsin θ=2交于点D ,求||OC ||OD 的最大值.解 (1)方法一 曲线C 1:(x -1)2+y 2=1,将C 2的参数方程代入,得⎝ ⎛⎭⎪⎫-32t -12+⎝ ⎛⎭⎪⎫233+t 22=1,化简得,t 2+533t +43=0, 所以||AB =||t 1-t 2=()t 1+t 22-4t 1t 2=3.方法二 曲线C 2的直角坐标方程为y =-33x +233, 过点()2,0, C 1过点()2,0,不妨令A ()2,0, 则∠OBA =90°, ∠OAB =30°, 所以||AB =2×32= 3.(2)C 1的极坐标方程为ρ=2cos θ, 令l 1的极角为α,则||OD =ρ1=2sin α,||OC =ρ2=2cos α,||OC ||OD =sin αcos α=12sin 2α≤12, 当α=π4时取得最大值12.6.已知α∈[)0,π,在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t为参数);在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,直线l 2的极坐标方程是ρcos ()θ-α=2sin ⎝ ⎛⎭⎪⎫α+π6.(1)求证:l 1⊥l 2;(2)设点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3, P 为直线l 1, l 2的交点,求||OP ·||AP 的最大值. (1)证明 易知直线l 1的普通方程为x sin α-y cos α=0. 又ρcos ()θ-α=2sin ⎝ ⎛⎭⎪⎫α+π6可变形为 ρcos θcos α+ρsin θsin α =2sin ⎝ ⎛⎭⎪⎫α+π6,即直线l 2的直角坐标方程为 x cos α+y sin α-2sin ⎝ ⎛⎭⎪⎫α+π6=0. 因为sin α·cos α+()-cos αsin α=0, 根据两直线垂直的条件可知, l 1⊥l 2. (2)解 当ρ=2, θ=π3时,ρcos ()θ-α=2cos ⎝ ⎛⎭⎪⎫π3-α=2sin ⎝ ⎛⎭⎪⎫α+π6,所以点A ⎝ ⎛⎭⎪⎫2,π3在直线ρcos ()θ-α=2sin ⎝ ⎛⎭⎪⎫α+π6上.设点P 到直线OA 的距离为d ,由l 1⊥l 2可知, d 的最大值为||OA 2=1. 于是||OP ·||AP =d ·||OA =2d ≤2, 所以||OP ·||AP 的最大值为2.6、不等式选讲1.(2017·全国Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.解 (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0.① 当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0,得1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -1≤x ≤-1+172.(2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]上的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].2.已知函数f (x )=⎪⎪⎪⎪2x -a ||+x -1, a ∈R .(1)若不等式f (x )≥2-||x -1恒成立,求实数a 的取值范围;(2)当a =1时,直线y =m 与函数f (x )的图象围成三角形,求m 的取值范围. 解 (1)因为f (x )≥2-||x -1恒成立,即⎪⎪⎪⎪⎪⎪x -a 2+|x -1|≥1恒成立, 所以⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪x -a 2+|x -1|min ≥1成立, 由⎪⎪⎪⎪⎪⎪x -a 2+|x -1|≥⎪⎪⎪⎪⎪⎪x -a 2-x +1=⎪⎪⎪⎪⎪⎪a 2-1, 得⎪⎪⎪⎪⎪⎪a 2-1≥1, 解得a ≤0或a ≥4,所以a 的取值范围为(-∞,0]∪[4,+∞). (2)当a =1时, f (x )=⎪⎪⎪⎪2x -1||+x -1=⎩⎪⎨⎪⎧ 2-3x ,x ≤12,x ,12<x <1,3x -2,x ≥1,作出f (x )的图象,如图所示.由图象可知,当12<m ≤1时,直线y =m 与函数f (x )的图象围成三角形,故所求m 的取值范围为⎝ ⎛⎦⎥⎤12,1. 3.设函数f (x )=⎪⎪⎪⎪x +2||-x -1.(1)求不等式f (x )>1的解集;(2)若关于x 的不等式f (x )+4≥||1-2m 有解,求实数m 的取值范围.解 (1)函数f (x )可化为f (x )=⎩⎪⎨⎪⎧ -3,x ≤-2,2x +1,-2<x <1,3,x ≥1,当x ≤-2时, f (x )=-3<0,不合题意;当-2<x <1时, f (x )=2x +1>1⇒x >0,即0<x <1;当x ≥1时, f (x )=3>1,即x ≥1.综上,不等式f (x )>1的解集为(0,+∞).(2)关于x 的不等式f (x )+4≥||1-2m 有解等价于()f (x )+4max ≥||1-2m , 由(1)可知,f (x )max =3,(也可由||f (x )=⎪⎪⎪⎪⎪⎪⎪⎪x +2||-x -1||≤()x +2-(x -1)=3,得f (x )max =3),即||1-2m ≤7,解得-3≤m ≤4.4.已知f (x )=||x +a , g (x )=||x +3-x ,记关于x 的不等式f (x )<g (x )的解集为M .(1)若a -3∈M ,求实数a 的取值范围;(2)若[]-1,1⊆M ,求实数a 的取值范围.解 (1)依题意有||2a -3<||a -()a -3,若a ≥32,则2a -3<3,∴32≤a <3,若0≤a <32,则3-2a <3,∴0<a <32,若a ≤0,则3-2a <-a -()a -3,无解.综上所述, a 的取值范围为()0,3.(2)由题意可知,当x ∈[]-1,1时,f (x )<g (x )恒成立,∴||x +a <3恒成立,即-3-x <a <3-x ,当x ∈[]-1,1时,-2<a <2.5.已知函数f (x )=2||x +a +⎪⎪⎪⎪⎪⎪x -1a ()a ≠0. (1)当a =1时,解不等式f (x )<4;(2)求函数g (x )=f (x )+f (-x )的最小值.解 (1)∵ a =1,∴原不等式为2⎪⎪⎪⎪x +1||+x -1<4,∴⎩⎪⎨⎪⎧ x <-1,-2x -2-x +1<4或⎩⎪⎨⎪⎧-1≤x ≤1,2x +2-x +1<4或⎩⎪⎨⎪⎧ x >1,2x +2+x -1<4,∴-53<x <-1或-1≤x <1或∅,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪⎪⎪-53<x <1. (2)由题意得g (x )=f (x )+f (-x )=2⎝⎛⎭⎫||x +a +||x -a +⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪x +1a +⎪⎪⎪⎪⎪⎪x -1a ≥2||2a +2||a =4||a +2||a ≥42, 当且仅当2||a =1||a ,即a =±22,且-22≤x ≤22时,g (x )取最小值4 2.6.已知f (x )=||x -a +||2x +1(1)若a =1,解不等式f (x )≤3;(2)f (x )≤2a +x 在[)a ,+∞上有解,求a 的取值范围. 解 (1)⎩⎨⎧ x <-12,1-x -1-2x ≤3或⎩⎨⎧ -12≤x ≤1,1-x +2x +1≤3或⎩⎪⎨⎪⎧ x >1,x -1+2x +1≤3,-1≤x <-12或-12≤x ≤1或∅,所以原不等式解集为{x |-1≤x ≤1}.(2)因为x ∈[)a ,+∞,所以f (x )=||x -a +⎪⎪⎪⎪2x +1||=x -a +2x +1≤2a +x ,推出||2x +1≤3a 有解,所以a ≥0,所以不等式化为2x +1≤3a 有解, 即2a +1≤3a ⇒a ≥1.所以a 的取值范围为[1,+∞).。

江苏省2019高考数学二轮复习自主加餐的3大题型14个填空题强化练八不等式含解析

江苏省2019高考数学二轮复习自主加餐的3大题型14个填空题强化练八不等式含解析

14个填空题专项强化练(八) 不 等 式A 组——题型分类练题型一 一元二次不等式1.已知函数f (x )=ax 2+bx +c (a ≠0),若不等式f (x )<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <12或x >3,则f (e x)>0(e 是自然对数的底数)的解集是________________.解析:法一:依题意可得f (x )=a ⎝ ⎛⎭⎪⎫x -12(x -3)(a <0),则f (e x)=a ⎝⎛⎭⎪⎫e x -12(e x -3)(a <0),由f (e x)=a ⎝⎛⎭⎪⎫e x -12(e x -3)>0可得12<e x <3,解得-ln 2<x <ln 3.法二:由题知,f (x )>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <3, 令12<e x<3,得-ln 2<x <ln 3. 答案:{x |-ln 2<x <ln 3}2.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-4x ,x ≤0,则不等式f (x )>3的解集为________________.解析:当x >0时,2x -1>3,解得x >2,当x ≤0时,-x 2-4x >3,即x 2+4x +3<0,解得-3<x <-1,所以所求不等式的解集为{x |x >2或-3<x <-1}.答案:{x |x >2或-3<x <-1}3.(2018·镇江高三期末)已知函数f (x )=x 2-kx +4,对任意的x ∈[1,3],不等式f (x )≥0恒成立,则实数k 的最大值为________.解析:由题意得x 2-kx +4≥0对任意的x ∈[1,3]恒成立,所以k ≤x +4x对任意的x ∈[1,3]恒成立,因为x +4x≥4(当且仅当x =2时取等号),所以k ≤4,故实数k 的最大值为4.答案:44.已知函数f (x )=⎩⎪⎨⎪⎧-x +1,x ≥0,-x 2+1,x <0,则关于x 的不等式f (x 2)>f (2-x )的解集是________________.解析:由x 2≥0,得f (x 2)=-x 2+1, 所以原不等式可转化为f (2-x )<-x 2+1, 则当2-x ≥0,即x ≤2时,由-(2-x )+1<-x 2+1,得-2<x <1, 所以-2<x <1;当2-x <0,即x >2时,由-(2-x )2+1<-x 2+1,得x ∈∅.综上得,关于x 的不等式f (x 2)>f (2-x )的解集是{x |-2<x <1}. 答案:{x |-2<x <1} [临门一脚]1.一元二次不等式解集的端点值是相应一元二次方程的根,也是相应的二次函数图象与x 轴交点的横坐标,即二次函数的零点.2.不等式(x -a )(x -b )<0(a <b )的解集是(a ,b );不等式(x -a )(x -b )>0(a <b )的解集是(-∞,a )∪(b ,+∞).3.对于含参数的不等式ax 2+bx +c <0的求解,应注意对参数进行分类讨论,分类讨论的常见情况有:(1)二次项系数的符号(包含是否为0);(2)计算判别式,判断对应方程根的情况:若有两根,则需要比较两根的大小. 题型二 基本不等式 1.若x >1,则x +4x -1的最小值为________. 解析:由x >1,得x -1>0,则x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.故x +4x -1的最小值为5. 答案:52.已知0<x <1,则x (3-3x )取得最大值时x 的值为________. 解析:由0<x <1,故3-3x >0,则x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.答案:123.已知正数a ,b 满足1a +9b=ab -5,则ab 的最小值为________.解析:因为正数a ,b 满足1a +9b=ab -5,所以ab -5≥21a ×9b,可化为(ab )2-5ab -6≥0,解得ab ≥6,即ab ≥36,当且仅当1a =9b,即a =2,b =18时取等号.即ab 的最小值为36. 答案:364.已知正数x ,y 满足x 2+4y 2+x +2y ≤2-4xy ,则1x +1y的最小值为________.解析:由题意得(x +2y )2+(x +2y )-2≤0,且x >0,y >0,所以0<x +2y ≤1,所以1x +1y=⎝ ⎛⎭⎪⎫1x +1y ·1≥⎝ ⎛⎭⎪⎫1x +1y ·(x +2y )=3+2y x +x y ≥3+22,当且仅当⎩⎪⎨⎪⎧x +2y =1,2y x =xy,即⎩⎪⎨⎪⎧x =2-1,y =1-22时,1x +1y取得最小值3+2 2.答案:3+2 25.(2018·南京高三模拟)若正数a ,b ,c 成等差数列,则c 2a +b +b a +2c的最小值为________.解析:由正数a ,b ,c 成等差数列,知2b =a +c ,则c 2a +b +b a +2c =2c 5a +c +a +c 2a +4c,令5a +c =m,2a +4c =n ,m >0,n >0,则a =4m -n 18,c =5n -2m 18,故c 2a +b +b a +2c =118⎝ ⎛⎭⎪⎫10n -4m m +4n +2m n =19⎝ ⎛⎭⎪⎫5n m +m n ≥259,当且仅当m =5n 时取等号,故c 2a +b +b a +2c 的最小值为259.答案:259[临门一脚] 1.利用基本不等式x +y2≥xy 时,要注意“正、定、等”三要素,“正”,即x ,y 都是正数;“定”,即不等式另一边为定值;“等”,即当且仅当x =y 时取等号.2.利用基本不等式x +y2≥xy 时,要注意“积定和最大,和定积最小”这一口诀,并且适当运用拆、拼、凑等技巧,但应该注意,一般不要出现两次不等号,若出现,则要看两次等号成立的条件是否同时成立.3.利用基本不等式解决二元多项式之间的大小关系,符合极值定理时,才能够求最值. 4.求一元函数最值时如等号取不到时,要借助函数图象,利用函数单调性求解最值.题型三 简单的线性规划问题1.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -5≤0,2x -y +2≥0,y ≥0,则目标函数z =x -y 的最小值为________.解析:根据题意,画出可行域如图所示,易知当目标函数z =x -y 经过点A (1,4)时,取得最小值-3.答案:-32.(2018·南京高三模拟)若实数x ,y 满足⎩⎪⎨⎪⎧x -y -3≤0,x +2y -5≥0,y -2≤0,则yx的取值范围为________.解析:作出不等式组表示的平面区域如图中阴影部分所示,其中点A (1,2),B (5,2),C ⎝ ⎛⎭⎪⎫113,23.yx表示可行域内的点(x ,y )与原点O 连线的斜率.连接OA ,OC ,则k OA =2,k OC =211,结合图形可知y x 的取值范围是⎣⎢⎡⎦⎥⎤211,2.答案:⎣⎢⎡⎦⎥⎤211,23.设不等式⎩⎪⎨⎪⎧x ≥1,x -y ≤0,x +y ≤4,表示的平面区域为M ,若直线l :y =kx -2上存在M 内的点,则实数k 的取值范围是________.解析:作出不等式组所表示的可行域如图中阴影部分所示. 因为直线l :y =kx -2的图象过定点A (0,-2),且斜率为k , 由图知,当直线l 过点B (1,3)时,k 取最大值3+21-0=5,当直线l 过点C (2,2)时,k 取最小值2+22-0=2,故实数k 的取值范围是[2,5]. 答案:[2,5]4.已知约束条件⎩⎪⎨⎪⎧x -2y +1≤0,ax -y ≥0,x ≤1表示的平面区域为D ,若区域D 内至少有一个点在函数y =e x的图象上,那么实数a 的取值范围为________.解析:由题意作出约束条件表示的平面区域及函数y =e x的图象,结合函数图象知,当x =1时,y =e ,把点(1,e)代入ax -y ≥0,则a ≥e.故实数a 的取值范围为[e ,+∞).答案:[e ,+∞) [临门一脚]1.简单的线性规划问题解题步骤:一画二移三算四答,充分挖掘目标对象的几何意义,通常与直线的纵截距、斜率,圆的半径或半径的平方有关.2.画可行域要特别注意边界能否取到,当区域不包含边界时,取值范围中等号取不到,如果忽视这一点,容易在等号上出错.B 组——高考提速练1.不等式x +1x<2的解集为______________. 解析:∵x +1x <2,∴x +1x-2<0, 即x +-2x x =1-xx<0,∴1-xx<0等价于x (x -1)>0,解得x <0或x >1,∴不等式x +1x<2的解集为{x |x <0或x >1}. 答案:{x |x <0或x >1} 2.若实数x ,y 满足⎩⎪⎨⎪⎧2x +y ≤4,x +3y ≤7,x ≥0,y ≥0,则z =3x +2y 的最大值为________.解析:作出不等式组所表示的平面区域如图中阴影部分所示. 由z =3x +2y 得y =-32x +12z ,平移直线y =-32x +12z ,由图象可知当直线y =-32x +12z 经过点A 时,直线y =-32x +12z的截距最大,此时z 最大.由⎩⎪⎨⎪⎧2x +y =4,x +3y =7,解得A (1,2),代入目标函数z =3x +2y ,得z =3×1+2×2=7.即目标函数z =3x +2y 的最大值为7. 答案:73.已知函数f (x )=4x +a x(x >0,a >0)在x =2时取得最小值,则实数a =________. 解析:当x =2时,函数f (x )=4x +a x 有最小值,由基本不等式知取等号的条件为4x =a x,即4×2=a2,得a =16. 答案:16 4.函数f (x )=1lg x-2的定义域为________. 解析:由题意得1lg x -2≥0,即1-2lg x lg x ≥0,从而0<lg x ≤12,故1<x ≤10,从而函数f (x )的定义域为(1,10 ].答案:(1,10 ]5.若a ,b 均为大于1的正数,且ab =100,则lg a ·lg b 的最大值为________. 解析:因为a >1,b >1,所以lg a >0,lg b >0. lg a ·lg b ≤a +lg b24=ab24=1.当且仅当a =b =10时取等号, 故lg a ·lg b 的最大值为1.答案:16.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________________. 解析:因为不等式x 2+ax +4<0的解集不是空集, 所以Δ=a 2-4×4>0,即a 2>16. 所以a >4或a <-4.答案:(-∞,-4)∪(4,+∞)7.若关于x 的不等式ax 2-6x +a 2<0的解集是(1,m ),则m 的值为________. 解析:根据不等式与方程之间的关系知1为方程ax 2-6x +a 2=0的一个根,即a 2+a -6=0,解得a =2或a =-3,当a =2时,不等式ax 2-6x +a 2<0的解集是(1,2),符合要求;当a =-3时,不等式ax 2-6x +a 2<0的解集是(-∞,-3)∪(1,+∞),不符合要求,舍去.故m =2.答案:28.已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是________.解析:因为x 2+2xy -3=0,所以y =3-x 22x ,所以2x +y =2x +3-x 22x =3x 2+32x =3x 2+32x≥23x 2×32x =3.当且仅当3x 2=32x ,即x =1时取等号,故2x +y 的最小值为3. 答案:39.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-log 2x ,则不等式f (x )<0的解集是________.解析:当x <0时,f (x )=-f (-x )=log 2(-x )-1,f (x )<0,即log 2(-x )-1<0,得-2<x <0;当x >0时,f (x )=1-log 2x ,f (x )<0,即1-log 2x <0,解得x >2.综上所述,不等式f (x )<0的解集是(-2,0)∪(2,+∞).答案:(-2,0)∪(2,+∞)10.已知点P 是△ABC 内一点(不包括边界),且AP ―→=m AB ―→+n AC ―→,m ,n ∈R ,则(m -2)2+(n -2)2的取值范围是________.解析:因为点P 是△ABC 内一点(不包括边界),且AP ―→=m AB ―→+n AC ―→,所以m ,n 满足条件⎩⎪⎨⎪⎧m >0,n >0,m +n <1,作出不等式组所表示的平面区域如图所示.因为(m -2)2+(n -2)2表示的是区域内的动点(m ,n )到点A (2,2)的距离的平方.因为点A 到直线m +n =1的距离为|2+2-1|2=32,故⎝ ⎛⎭⎪⎫322<(m -2)2+(n -2)2<OA 2,即(m -2)2+(n -2)2的取值范围是⎝ ⎛⎭⎪⎫92,8.答案:⎝ ⎛⎭⎪⎫92,8 11.若关于x 的不等式(ax -1)(ln x +ax )≥0在(0,+∞)上恒成立,则实数a 的取值范围是________.解析:(ax -1)(ln x +ax )≥0⇔⎝ ⎛⎭⎪⎫a -1x ⎝ ⎛⎭⎪⎫a +ln x x ≥0⇔⎩⎪⎨⎪⎧a ≤1x ,a ≤-ln x x 或⎩⎪⎨⎪⎧a ≥1x,a ≥-ln x x .设函数f (x )=1x ,g (x )=-ln xx,在同一平面直角坐标系内画出它们的图象如图所示,由图象可得实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,-1e ∪{e}.答案:⎝⎛⎦⎥⎤-∞,-1e ∪{e}12.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得 a m a n =4a 1,则1m+4n的最小值为________.解析:设正项等比数列{a n }的公比为q ,由a 7=a 6+2a 5,得q 2-q -2=0,解得q =2(q =-1,舍去)由a m a n =4a 1,即2m +n -22=4,得2m +n -2=24,即m +n =6.故1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n=56+16⎝ ⎛⎭⎪⎫4m n +n m ≥56+46=32, 当且仅当4m n =nm即m =2,n =4时等号成立,即1m +4n 的最小值为32. 答案:3213.已知A ,B ,C 是平面上任意三点,BC =a ,CA =b ,AB =c ,则y =ca +b +b c的最小值是________.解析:y 要取最小值,则a 要最大,而a 的最大值是b +c ,所以y =c a +b +b c ≥c2b +c+b c =12⎝ ⎛⎭⎪⎫b c +12+⎝ ⎛⎭⎪⎫b c +12-12≥ 2-12,当且仅当12⎝ ⎛⎭⎪⎫b c +12=b c +12时取等号,即y 的最小值是2-12. 答案:2-1214.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a 不是最大边,已知a 2-b 2=2bc sin A ,则tan A -9tan B 的最小值为________.解析:由余弦定理,a 2=b 2+c 2-2bc cos A 及a 2-b 2=2bc sin A ,得c 2-2bc cos A =2bc sinA ,即c -2b cos A =2b sin A ,再由正弦定理, 得sin C -2sin B cos A =2sin B sin A , 即sin(A +B )-2sin B cos A =2sin B sin A , 即sin A cos B -cos A sin B =2sin A sin B , 所以tan A -tan B =2tan A tan B . 所以tan B =tan A 2tan A +1,由题意知tan A >0,所以2tan A +1>0, 所以tan A -9tan B =tan A -9tan A2tan A +1=12(2tan A +1)+9A +-5≥212A +9A +-5=-2.当且仅当12(2tan A +1)=9A +,即tan A =1时取“=”.故tan A -9tan B 的最小值为-2. 答案:-2。

高考数学二轮复习练习:专项限时集训8 函数最值、恒成立及存在性问题 含答案

高考数学二轮复习练习:专项限时集训8 函数最值、恒成立及存在性问题  含答案

专项限时集训(八) 函数最值、恒成立及存在性问题(限时:60分钟)1.(本小题满分14分)(镇江市2019届高三上学期期末)已知函数f (x )=x ln x ,g (x )=λ(x 2-1)(λ为常数).(1)若函数y =f (x )与函数y =g (x )在x =1处有相同的切线,求实数λ的值; (2)若λ=12,且x ≥1,证明:f (x )≤g (x );(3)若对任意x ∈[1,+∞),不等式f (x )≤g (x )恒成立,求实数λ的取值范围. [解](1)f ′(x )=ln x +1,则f ′(1)=1且f (1)=0. 所以函数y =f (x )在x =1处的切线方程为:y =x -1, 从而g ′(x )=2λx ,g ′(1)=2λ=1,即λ=12.2分(2)证明:由题意知:设函数h (x )=x ln x -12(x 2-1),则h ′(x )=ln x +1-x ,设p (x )=ln x +1-x ,从而p ′(x )=1x-1≤0对任意x ∈[1,+∞)恒成立,所以p (x )=ln x +1-x ≤p (1)=0,即h ′(x )≤0, 因此函数h (x )=x ln x -12(x 2-1)在[1,+∞)上单调递减,即h (x )≤h (1)=0,所以当x ≥1时,f (x )≤g (x )成立. 6分(3)设函数H (x )=x ln x -λ()x 2-1,从而对任意x ∈[1,+∞),不等式H (x )≤0=H (1)恒成立. 又H ′(x )=ln x +1-2λx ,当H ′(x )=ln x +1-2λx ≤0,即ln x +1x≤2λ恒成立时,函数H (x )单调递减.设r (x )=ln x +1x ,则r ′(x )=-ln x x2≤0, 所以r (x )max =r (1)=1,即1≤2λ⇒λ≥12,符合题意;当λ≤0时,H ′(x )=ln x +1-2λx ≥0恒成立,此时函数H (x )单调递增. 于是,不等式H (x )≥H (1)=0对任意x ∈[1,+∞)恒成立,不符合题意;当0<λ<12时,设q (x )=H ′(x )=ln x +1-2λx ,则q ′(x )=1x -2λ=0⇒x =12λ>1,当x ∈⎝ ⎛⎭⎪⎫1,12λ时,q ′(x )=1x -2λ>0,此时q (x )=H ′(x )=ln x +1-2λx 单调递增,所以H ′(x )=ln x +1-2λx >H ′(1)=1-2λ>0, 故当x ∈⎝ ⎛⎭⎪⎫1,12λ时,函数H (x )单调递增.于是当x ∈⎝ ⎛⎭⎪⎫1,12λ时,H (x )>0成立,不符合题意; 综上所述,实数λ的取值范围为λ≥12.14分2.(本小题满分14分)已知函数f (x )=a ln x -bx 3,a ,b 为实数,b ≠0,e 为自然对数的底数,e≈2.71828.(1)当a <0,b =-1时,设函数f (x )的最小值为g (a ),求g (a )的最大值; (2)若关于x 的方程f (x )=0在区间(1,e]上有两个不同的实数解,求a b的取值范围.【导学号:56394114】[解](1)b =-1时,f (x )=a ln x +x 3,则f ′(x )=a +3x 3x,令f ′(x )=0,解得:x =3-a3,∵a <0,∴3-a3>0, x ,f ′(x ),f (x )的变化如下:故g (a )=f ⎝⎛⎭⎪⎫3-a 3=a 3ln ⎝ ⎛⎭⎪⎫-a 3-a3, 令t (x )=-x ln x +x ,则t ′(x )=-ln x ,令t ′(x )=0,解得:x =1, 且x =1时,t (x )有最大值1, 故g (a )的最大值是1,此时a =-3;8分(2)由题意得:方程a ln x -bx 3=0在区间(1,e]上有2个不同的实数根,故a b =x 3ln x在区间(1,e]上有2个不同实数根, 即函数y 1=a b 的图象与函数m (x )=x 3ln x 的图象有2个不同的交点,∵m ′(x )=x 2 3ln x -1 ln x 2,令m ′(x )=0,得:x =3e , x ,m ′(x ),m (x )的变化如下:∴x ∈(1,3e)时,m (x )∈(3e ,+∞),x ∈(3e ,e]时,m (x )∈(3e ,e 3], 故a ,b 满足的关系式是3e <a b≤e 3,即a b的范围是(3e ,e 3].14分3.(本小题满分14分)(江苏省镇江市丹阳高中2019届高三下学期期中)已知函数f (x )=x -1x,(1)函数F (x )=f (e x)-k ⎝ ⎛⎭⎪⎫x +x 36,其中k 为实数, ①求F ′(0)的值;②对∀x ∈(0,1),有F (x )>0,求k 的最大值;(2)若g (x )=x 2+2ln xa(a 为正实数),试求函数f (x )与g (x )在其公共点处是否存在公切线,若存在,求出符合条件的a 的个数,若不存在,请说明理由. [解](1)由F (x )=e x-1e x -k ⎝ ⎛⎭⎪⎫x +x 36得F ′(x )=e x+1e x -k ⎝ ⎛⎭⎪⎫1+x 22,①F ′(0)=2-k ,②记h (x )=F ′(x ),则h ′(x )=e x-1ex -kx ,记m (x )=h ′(x ),则m ′(x )=e x +1e x -k ,当x ∈(0,1)时,e x+1e x ∈⎝ ⎛⎭⎪⎫2,e +1e .3分(ⅰ)当k ≤2时,m ′(x )>2-k ≥0,x ∈(0,1),即m (x )在(0,1)上是增函数, 又m (0)=0,则h ′(x )>0,x ∈(0,1),即h (x )在(0,1)上是增函数,又F ′(0)=2-k ≥0, 则F ′(x )>0,x ∈(0,1),即F (x )在(0,1)上是增函数,故F (x )>F (0)=0,x ∈(0,1). (ⅱ)当k >2时,则存在x 0∈(0,1),使得m ′(x )在(0,x 0)小于0,即m (x )在(0,x 0)上是减函数,则h ′(x )<0,x ∈(0,x 0), 即h (x )在(0,x 0)上是减函数,又F ′(0)=2-k <0, 则F ′(x )<0,x ∈(0,x 0),又F ′(0)=2-k <0, 即F (x )在(0,x 0)上是减函数, 故F (x )<F (0)=0,x ∈(0,x 0),矛盾. 故k 的最大值为2.8分(2)设函数f (x )与g (x )在其公共点x =x 1处存在公切线,则⎩⎨⎧x 1-1x 1=x 21+2ln x 1a, ①1+1x 21=2x 1+2x 1a , ②由②得(2x 1-a )(x 21+1)=0,即x 1=a2,代入①得8ln a -8ln2-a 2+8=0,记G (a )=8ln a -8ln2-a 2+8,则G ′(a )=8a-2a ,得G (a )在(0,2)上是增函数,(2,+∞)上是减函数, 又G (2)=4>0,G (4)=8ln2-8<0,G ⎝ ⎛⎭⎪⎫2e =-4e 2<0, 得符合条件的a 的个数为2.(未证明小于0的扣2分)14分4.(本小题满分16分)(无锡市2019届高三上学期期末)已知f (x )=x 2+mx +1(m ∈R ),g (x )=e x.(1)当x ∈[0,2]时,F (x )=f (x )-g (x )为增函数,求实数m 的取值范围; (2)若m ∈(-1,0),设函数G (x )=f xg x ,H (x )=-14x +54,求证:对任意x 1,x 2∈[1,1-m ],G (x 1)<H (x 2)恒成立.[解](1)∵F (x )=x 2+mx +1-e x ,∴F ′(x )=2x +m -e x. ∵当x ∈[0,2]时,F (x )=f (x )-g (x )为增函数, ∴F ′(x )≥0即2x +m -e x≥0在[0,2]上恒成立, 即m ≥e x-2x 在[0,2]上恒成立. 令h (x )=e x-2x ,x ∈[0,2],则h ′(x )=e x-2,令h ′(x )=0,则x =ln2.∴h (x )在[0,ln2]上单调递减,在[ln2,2]上单调递增. ∵h (0)=1,h (2)=e 2-4>1, ∴h (x )max =h (2)=e 2-4, ∴m ≥e 2-4.6分(2)证明:G (x )=x 2+mx +1ex,则G ′(x )=-x 2+ 2-m x +m -1e x =- x -1 [x - 1-m ]e x. 要证任给x 1,x 2∈[1,1-m ],G (x 1)≤H (x 2)恒成立,即证G (x )max ≤H (x )min , ∵x ∈[1,1-m ],∴G (x )在[1,1-m ]上单调递增,G (x )max =G (1-m )=2-me 1-m ,∵H (x )在[1,1-m ]上单调递减,H (x )min =H (1-m )=-14(1-m )+54.10分要证G (x )max ≤H (x )min ,即证2-m e 1-m ≤-14(1-m )+54,即证4(2-m )≤e1-m[5-(1-m )].令1-m =t ,则t ∈(1,2).设r (x )=e x(5-x )-4(x +1),x ∈[1,2],即r (x )=5e x-x e x-4x -4.r ′(x )=(4-x )e x -4≥2e x -4>0,∴r (x )=e x(5-x )-4(x +1)在[1,2]上单调递增, ∵r (1)=4e -8>0,∴e x(5-x )≥4(x +1),从而有-14(1-m )+54≥2-m e ,即当x ∈[1,1-m ]时,G (x )max ≤H (x )min 成立.16分5.(本小题满分16分)(苏北四市(徐州、淮安、连云港、宿迁)2019届高三上学期期末)已知函数f (x )=x 22e-ax ,g (x )=ln x -ax ,a ∈R .(1)解关于x (x ∈R )的不等式f (x )≤0; (2)证明:f (x )≥g (x );(3)是否存在常数a ,b ,使得f (x )≥ax +b ≥g (x )对任意的x >0恒成立?若存在,求出a ,b 的值;若不存在,请说明理由.【导学号:56394115】[解](1)当a =0时,f (x )=x 22e,所以f (x )≤0的解集为{0};当a ≠0时,f (x )=x ⎝⎛⎭⎪⎫x 2e -a , 若a >0,则f (x )≤0的解集为[0,2e a ]. 若a <0,则f (x )≤0的解集为[2e a,0]. 综上所述,当a =0时,f (x )≤0的解集为{0};当a >0时,f (x )≤0的解集为[0,2e a ]; 当a <0时,f (x )≤0的解集为[2e a,0].4分(2)证明:设h (x )=f (x )-g (x )=x 22e -ln x ,则h ′(x )=x e -1x =x 2-ee x.令h ′(x )=0,得x =e ,列表如下:所以函数h (x )所以h (x )=x 22e-ln x ≥0,即f (x )≥g (x ).8分(3)假设存在常数a ,b 使得f (x )≥ax +b ≥g (x )对任意的x >0恒成立, 即x 22e≥2ax +b ≥ln x 对任意的x >0恒成立. 而当x =e 时,ln x =x 22e =12,所以12≥2a e +b ≥12,所以2a e +b =12,则b =12-2a e ,所以x 22e -2ax -b =x 22e -2ax +2a e -12≥0(*)恒成立,①当a ≤0时,2a e -12<0,所以(*)式在(0,+∞)上不恒成立;②当a >0时,则4a 2-2e (2a e -12)≤0,即⎝ ⎛⎭⎪⎫2a -1e 2≤0,所以a =12e,则b =-12. 令φ(x )=ln x -1ex +12,则φ′(x )=e -x e x,令φ′(x )=0,得x =e ,当0<x <e 时,φ′(x )>0,φ(x )在(0,e)上单调递增; 当x >e 时,φ′(x )<0,φ(x )在(e ,+∞)上单调递减. 所以φ(x )的最大值为φ(e)=0.所以ln x -1ex +12≤0恒成立.所以存在a =12e,b =-12符合题意.16分6.(本小题满分16分)(江苏省南京市、盐城市2019届高三第一次模拟)设函数f (x )=ln x ,g (x )=ax +a -1x-3(a ∈R ). (1)当a =2时,解关于x 的方程g (e x)=0(其中e 为自然对数的底数);(2)求函数φ(x )=f (x )+g (x )的单调增区间;(3)当a =1时,记h (x )=f (x )·g (x ),是否存在整数λ,使得关于x 的不等式2λ≥h (x )有解?若存在,请求出λ的最小值:若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986)[解](1)当a =2时,方程g (e x )=0即为2e x+1e x -3=0,去分母,得2(e x )2-3e x +1=0,解得e x =1或e x=12,故所求方程的根为x =0或x =-ln2. 2分(2)因为φ(x )=f (x )+g (x )=ln x +ax +a -1x-3(x >0), 所以φ′(x )=1x +a -a -1x 2=ax 2+x - a -1 x2= ax - a -1 x +1x2(x >0), ①当a =0时,由φ′(x )>0,解得x >0; ②当a >1时,由φ′(x )>0,解得x >a -1a; ③当0<a <1时,由φ′(x )>0,解得x >0; ④当a =1时,由φ′(x )>0,解得x >0; ⑤当a <0时,由φ′(x )>0,解得0<x <a -1a . 综上所述,当a <0时,φ(x )的增区间为⎝⎛⎭⎪⎫0,a -1a ; 当0≤a ≤1时,φ(x )的增区间为(0,+∞);a >1时,φ(x )的增区间为⎝⎛⎭⎪⎫a -1a ,+∞.6分(3)法一:当a =1时,f (x )=ln x ,g (x )=x -3,h (x )=(x -3)ln x ,所以h ′(x )=ln x +1-3x 单调递增,h ′⎝ ⎛⎭⎪⎫32=ln 32+1-2<0,h ′(2)=ln2+1-32>0, 所以存在唯一x 0∈⎝ ⎛⎭⎪⎫32,2,使得h ′(x 0)=0,即ln x 0+1-3x 0=0,当x ∈(0,x 0)时,h ′(x )<0,当x ∈(x 0,+∞)时,h ′(x )>0,所以h (x )min =h (x 0)=(x 0-3)ln x 0=(x 0-3)⎝ ⎛⎭⎪⎫3x 0-1=- x 0-3 2x 0=6-⎝⎛⎭⎪⎫x 0+9x 0,记函数r (x )=6-⎝ ⎛⎭⎪⎫x +9x ,则r (x )在⎝ ⎛⎭⎪⎫32,2上单调递增,所以r ⎝ ⎛⎭⎪⎫32<h (x 0)<r (2),即h (x 0)∈⎝ ⎛⎭⎪⎫-32,-12,由2λ≥-32,且λ为整数,得λ≥0,所以存在整数λ满足题意,且λ的最小值为0. 16分法二:当a =1时,f (x )=ln x ,g (x )=x -3, 所以h (x )=(x -3)ln x ,由h (1)=0得,当λ=0时,不等式2λ≥h (x )有解,下证:当λ≤-1时,h (x )>2λ恒成立,即证(x -3)ln x >-2恒成立. 显然当x ∈(0,1]∪[3,+∞)时,不等式恒成立, 只需证明当x ∈(1,3)时,(x -3)ln x >-2恒成立. 即证明ln x +2x -3<0.令m (x )=ln x +2x -3, 所以m ′(x )=1x -2 x -3 2=x 2-8x +9x x -3 2,由m ′(x )=0,得x =4-7,当x ∈(1,4-7)时,m ′(x )>0;当x ∈(4-7,3)时,m ′(x )<0; 所以m (x )max =m (4-7)=ln(4-7)-7+13<ln(4-2)-2+13=ln2-1<0. 所以当λ≤-1时,h (x )>2λ恒成立.综上所述,存在整数λ满足题意,且λ的最小值为0. 16分。

专题8.1 空间几何体的结构特征及表面积体积(练习)【必考点专练】2023届高考数学二轮复习专题

专题8.1 空间几何体的结构特征及表面积体积(练习)【必考点专练】2023届高考数学二轮复习专题

专专8.1空间几何体的结构特征及表面积体积一、单选题1. 给出下列命题中正确的是( )A. 棱柱被平面分成的两部分可以都是棱柱B. 底面是矩形的平行六面体是长方体C. 棱柱的底面一定是平行四边形D. 棱锥的底面一定是三角形2. 已知A ,B ,C 为球O 的球面上的三个点,1O 为ABC 的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π3. 设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为D ABC -体积的最大值为( )A. B. C. D.4. 已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒,若SAB 的面积为,则该圆锥的侧面积为(( )A. B. C. D.5. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.14B.12C.14+ D.12+ 6. 已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕,将ABC 折成直二面角B AD C --,则过A ,B ,C ,D 四点的球的表面积为( )A. 3πB. 4πC. 5πD. 6π7. 已知三棱锥P ABC -中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C都在半径为1的球面上,则球心到平面ABC 的距离为( )A.36B.12C.13D.328. 沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm ,细沙全部在上部,其高度为圆锥高度的2(3细管长度忽略不计).假设该沙漏每秒钟漏下30.02cm 的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥沙堆.以下结论正确的是( )A. 沙漏的侧面积是2165cm πB. 沙漏中的细沙体积为31024cm πC. 细沙全部漏入下部后此锥形沙堆的高度约为1.2cmD. 该沙漏的一个沙时大约是1985秒( 3.14)π≈9. 如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==,1cos 3ABC ∠=, P 是1A B 上的一动点,则1AP PC +的最小值为( )A. 5B. 7C. 13+D. 310. 在棱长为1的正方体1111ABCD A B C D -中,E ,F ,G ,H 分别为11A B ,11C D ,AB ,CD 的中点,点P 从G 出发,沿折线GBCH 匀速运动,点Q 从H 出发,沿折线HDAG 匀速运动,且点P 与点Q 运动的速度相等,记以E ,F ,P , Q 四点为顶点的三棱锥的体积为V ,点P 运动的路程为x ,在02x 时,V 与x 满足的函数解析式的图象应为( )A.B.C.D.二、多选题11. 将边长为2的正方形沿对角线BD 折成直二面角BD A C --,如图所示,点E ,F 分别为线段BC,AD 的中点,则( )A. EF BC ⊥B. 四面体BCD A -的表面积为4+23C. 四面体BCD A -的外接球的体积为823π D. 过EF 且与BD 平行的平面截四面体BCD A -所得截面的面积为212. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为线段11B D 上一动点(包括端点),则以下结论正确的有( )A. 三棱锥1P A BD -的体积为定值13B. 过点P 平行于平面1A BD 的平面被正方体1111ABCD A B C D -截得的多边形的面积为32C. 直线1PA 与平面1A BD 所成角的正弦值的范围为D. 当点P 与1B 重合时,三棱锥1P A BD -的外接球的体积为32π13. 如图,在三棱锥P ABC -中,D 、E 、F 分别为棱PC 、AC 、AB 的中点,PA ⊥平面ABC ,90ABC ∠=︒,6,8,AB PA BC ===则( )A. 三棱锥D BEF -的体积为6B. 直线PB 与直线DF 垂直C. 平面DEF 截三棱锥P ABC -所得的截面面积为12D. 点P 与点A 到平面BDE 的距离相等三、填空题14. 正方体1111ABCD A B C D -的棱长为2,则平面11AC D 与平面ABCD 所成角为__________;设P 为1CC 的中点,过点A ,P ,1D 的平面截该正方体所得截面的面积为__________.15. 中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有__________个面,其棱长为__________.16. 学生到工厂劳动实践,利用3D 打印技术制作模型,如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,==6AB BC cm ,1=4AA cm ,3D 打印所用的材料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为__________.g17. 如图,在平面四边形PQRS 中,2QPS π∠=,2QSR π∠=, 2.PQ PS SR ===将该平面图形沿线QS 折成一个直二面角P QS R --,三棱锥P QRS -的体积为__________ ,三棱锥P QRS -的外接球的体积为__________ .18. 如图,在一个底面边长为2,侧棱长为10的正四棱锥-P ABCD 中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的体积为__________.四、解答题19. 如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面.ABCD(1)证明:平面AEC ⊥平面BED ;(2)若120ABC ︒∠=,AE EC ⊥,三棱锥E ACD -,求该三棱锥的侧面积.答案和解析1.【答案】A解:平行于棱柱底面的平面可以把棱柱分成两个棱柱,故A 正确; 三棱柱的底面是三角形,故C 错误;底面是矩形的平行六面体的侧面不一定是矩形,故它也不一定是长方体,故B 错误; 四棱锥的底面是四边形,故D 错误. 故选:.A2.【答案】A解:由题意可知图形如图:1O 的面积为4π,可得12O A =,由题知ABC 是等边三角形,根据等边三角形性质, 得13sin 602AO AB ︒=,13322AO AB =, 123AB BC AC OO ∴====,外接球的半径为:22114R AO OO =+=,球O 的表面积:24464.ππ⨯⨯=故选:.A3.【答案】B解:ABC 为等边三角形且面积为2AB =6AB =, 设球心为O ,三角形ABC 的外心为O ',显然D 为O O '的延长线与球的交点时,三棱锥的体积最大.如图:2362332O C '=⨯⨯=,224(23)2OO '=-=,则三棱锥D ABC -高的最大值为:6, 则三棱锥D ABC -体积的最大值为:2136618 3.34⨯⨯⨯= 故选:.B4.【答案】A解:因为2211sin 22SAB Sl ASB l =∠==,所以l =l =,所以r =,则12.2S rl rl πππ=⨯==⋅=侧 故选:.A5.【答案】C解:设正四棱锥的高为h ,底面边长为a ,侧面三角形底边上的高为h ',则依题意有:因此有222151()4()2()10(224a h h h h ah a a a '''+'-='⇒--=⇒=负值舍去); 故选:.C6.【答案】C解:如图所示:边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕, 将ABC 折成直二面角B AD C --,则AD ,BD ,DC 两两垂直, 将四面体ABCD 扩展为以D 为顶点的长方体,其中 3AD =,1BD CD ==,设过A ,B ,C ,D 四点的球的半径为r , 故:2(2)1135r =++=, 所以:254r =, 所以254454S r πππ==⋅=, 故过A ,B ,C ,D 四点的球的表面积为5.π 故选:.C7.【答案】C解:三棱锥P ABC -中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O ,且体对角线为球O 的直径,球O 的半径为1,设正方体的边长为a 2=,解得a =,∴PA PB PC ===, 球心到截面ABC 的距离即正方体中心到截面ABC 的距离, 设P 到截面ABC 的距离为h ,则正三棱锥P ABC -的体积13ABCV Sh =⨯13PABS PC =⨯31132=⨯⨯,由勾股定理易知ABC 的正三角形,2ABCS==,则3111332h =⨯⨯,23h ∴=, 由正方体的几何形状可知,直线PO 经过三菱锥P ABC -以P 为顶点的高线, 所以球心到平面ABC 的距离为113h -=, ∴球心(即正方体中心)O 到截面ABC 的距离为1.3故选:.C8.【答案】D解:对于A ,沙漏的侧面积为,故A 错误;对于B ,设细沙在上部时,细沙的底面半径为r ,则28433r cm =⨯=, 所以细沙的体积为23118161024()33381V cm ππ=⨯⨯=,故B 错误; 对于C ,设细沙流入下部后的高度为1h ,根据细沙体积不变可知:,解得1642.427h cm =≈,故C 错误; 对于D ,该沙漏的一个沙时为:10241024 3.140.025*********π⨯÷=⨯≈秒,故D 正确. 故选:.D9.【答案】B解:连接1BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为1AP PC +的最小值, 由题意知11AA =,3AB BC ==,1cos 3ABC ∠=,得112A B BC AC ='='=,1160AA B BAC ∠=∠'=︒, 所以在1AAC '中,114212()7.2AC '=+-⨯⨯⨯-= 故选.B10.【答案】C解:(1)当102x时,点P 与点Q 运动的速度相等根据下图得出:面OEF 把几何体PEFQ 分割为相等的几何体,111122OEFS=⨯⨯=,P 到面OEF 的距离为x , 112223263PEFQ P OEF x xV V x -==⨯⨯=⋅=四面体三棱锥,(2)当1322x <<时,P 在BC 上,Q 在AD 上, P 到平面OEF 的距离为12,111122OEFS =⨯⨯=, 1111223226PEFQ P OEF V V -==⨯⨯⨯==四面体三棱锥定值.(3)当322x 时,111122OEFS =⨯⨯=,P 到面OEF 的距离为2x -, 112122(2)3233PEFQ P OEF V V x x -==⨯⨯⨯-=-四面体三棱锥,,故选:.C11.【答案】BCD解:选项A ,如图,取BD 中点为原点,建立空间直角坐标系,坐标如下:(0,-2,0)B ,(2,0,0)C ,22(,-,0)22E ,22(0,,)22F ,(0,0,2)A ,22EF=(,2,)22∴-,BC=(2,2,0),22EF BC=-2+22+0=1022∴⋅⨯⨯⨯≠,EF ∴与BC 不垂直,故A 错误;选项B ,22|AC |+=2+2=2AO CO =,∴四面体的表面积131131=+++=22+22+22+22=23+4222222ABC ABD ACD BCD S S S S S ∆∆∆∆⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯,故B 正确;选项C ,BCD ∆外接圆半径=2r ,锥高=2h ,外接球半径R 满足222()+=R h r R -,解得=2R ,∴四面体外接球体积为3482=33R ππ⋅⋅,故C 正确;选项D ,如图,分别取AB ,CD 中点M ,N ,MF//BD ,EN//BD ,1MF=EN=BD=22,∴四边形ENFM 为平行四边形,EN//BD ,EN ⊂平面ENFM ,BD/⊂平面ENFM ,BD//∴平面ENFM ,由选项A 可知22(,,0)22N ,22(0,-,)22M ,EN=(0,2,0),22EM=(,0,)22-,EN EM=0∴⋅,EN EM ∴⊥,ENFM ∴是矩形,面积=EN ME=21=2S ⨯⨯,故D 正确.12.【答案】BCD解:A 选项:111211213226P A BD A PBD V V --==⨯⨯⨯⨯=,A 不正确; B 选项:此平面为平面11B D C ,故三角形11B D C 的面积为233(2)42⨯=,B 选项正确; C 选项:设点P 到平面1A BD 的距离为h , 由1116P A BD A PBD V V --==知,点P 到平面1A BD 的距离为33h =,当点P 在线段11B D 上运动时,1max ||1(PA P =为端点时),1min 2||2PA =, 设直线1PA 与平面1A BD 所成角为θ,,则,C 正确;D 选项:11190B BD B A D ︒∠=∠=,所以三棱锥1P A BD -的外接球的球心为1B D 的中点, 故外接球半径为32,三棱锥1P A BD -的外接球的体积为32π,D 正确. 故选.BCD13.【答案】ACD解:D ,E 分别为棱PC ,AC 的中点,则//DE PA , 又PA ⊥平面ABC ,则DE ⊥平面ABC ,即DE ⊥平面FBE , 90ABC ︒∠=,6AB PA ==,8BC =,所以13462EFB S ∆=⨯⨯=,132DE PA ==,所以三棱锥D BEF -的体积为16363⨯⨯=,故A 正确;假设PB DF ⊥,PA ⊥平面ABC ,BC ⊂平面ABC ,BC PA ∴⊥,又BC AB ⊥,PA AB A ⋂=,PA ,AB ⊂平面PAB ,BC ∴⊥平面PAB ,E ,F 分别为AC ,AB 的中点,//EF BC ∴,EF ∴⊥平面PAB , AB ⊂平面PAB ,EF AB ∴⊥,DE ⊥平面ABC ,AB ⊂平面ABC ,AB DE ∴⊥,EF DE E ⋂=,EF ,DE ⊂平面DEF ,AB ∴⊥平面DEF ,DF ⊂平面DEF ,AB DF ∴⊥,又假设PB DF ⊥,AB PB B ⋂=,AB ,PB ⊂平面PAB ,DF ∴⊥平面PAB , 显然不成立,不符合题意,故假设不成立,故B 错误;取PB 的中点Q ,连DQ ,FQ ,则//DQ EF ,DQ EF =,四边形DQFE 为平行四边形,DE ⊥平面EFB ,EF ⊂平面EFB ,DE EF ⊥, 所以平行四边形DEFQ 为矩形,3DE =,4EF =,所以截面面积为12,故C 正确;因为//DE PA ,PA ⊂/平面BDE ,DE ⊂平面BDE ,所以//PA 平面.BDE 所以点P 与点A 到平面BDE 的距离相等,故D 正确; 故选.ACD14.【答案】4π 92解:连接1BC ,在正方体1111ABCD A B C D -中,易知11//AB C D 且11AB C D =,则四边形11ABC D 为平行四边形,即B ∈平面11AC D ,因为正方体中,AB BC ⊥,1AB BB ⊥,且1,BC BB ⊂平面11BB C C , 则AB ⊥侧面11BB C C ,所以1AB BC ⊥, 又平面11AC D ⋂平面ABCD AB =,则1C BC ∠即等于平面11AC D 与平面ABCD 所成的角,所以11tan 1CC C BC BC∠==, 即14C BC π∠=;取BC 中点为Q ,连接PQ ,AQ ,因为P 为1CC 的中点,则1//PQ BC , 又11//AD BC ,则1//PQ AD ,即A ,1D ,P ,Q 四点共面, 即梯形1AD PQ 即为过点A ,P ,1D 的平面截该正方体所得截面,因为正方体棱长为2,则11AD BC ===,11PC BQ ==,所以112PQ BC ==,AQ ==1PD == 即梯形1AD PQ 为等腰梯形,分别作1PM AD ⊥于点M ,1PN AD ⊥于点N ,则11122AD NM AD PQ D M AN --====,所以2PM ===, 因此梯形1AD PQ 的面积为故答案为:4π;9.215.【答案】261-解:该半正多面体中间层是一个正八棱柱,有8个侧面, 故该半正多面体共有888226+++=个面;设其棱长为x ,因为每个顶点都在棱长为1的正方体上,则122x x x ++=,解得 1.x =故答案为26 1.-16.【答案】118.8解:该模型为长方体1111ABCD A B C D -,挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H ,分别为所在棱的中点,6AB BC cm ==,14AA cm =,∴该模型体积为:1111ABCD A B C D O EFGH V V ---11664(46432)332=⨯⨯-⨯⨯-⨯⨯⨯⨯314412132()cm =-=,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,∴制作该模型所需原料的质量为:1320.9118.8().g ⨯=故答案为118.8.17.【答案】43解:如图,平面PQS ⊥平面QRS ,且平面PQS ⋂平面QRS QS =,QS SR ⊥, SR ∴⊥平面PQS ,PQ ⊂平面PQS ,从而SR PQ ⊥,PQ PS ⊥,且PS SR S ⋂=,PQ ∴⊥平面PRS ,PR ⊂平面PRS ,得PQ PR ⊥,QR ∴是三棱锥P QRS -的外接球的直径,在Rt QSR 中,2223QR QS SR =+=,则球的半径3R =,则外接球的体积为34433R ππ=; 三棱锥P QRS -的体积为1114222.3323PQSSSR ⨯=⨯⨯⨯⨯=故答案为:43;43.π18.【答案】24解:设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO , 则=1OM ,22=-=10-1=3PM PA AM ,=9-1=22PO ,如图,在截面PMO 中,设N 为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1=O N R , 因为1sin ==3OM MPO PM ∠,所以111=3NO PO ,则1=3PO R , 11=+=4=22PO PO OO R ,所以2=2R , 设球1O 与球2O 相切于点Q ,则=-2=2PQ PO R R ,设球2O 的半径为r , 同理可得=4PQ r ,所以2==24R r , 故小球2O 的体积342V=r =324ππ, 故答案为2.24π19.【答案】证明:(1)四边形ABCD 为菱形,AC BD ∴⊥,BE ⊥平面ABCD ,AC ⊂平面ABCD ,AC BE ∴⊥,BD ,BE ⊂平面BED ,BD BE B ⋂=, 则AC ⊥平面BED ,AC ⊂平面AEC ,∴平面AEC ⊥平面BED ;解:(2)设AB x =,在菱形ABCD 中,由120ABC ︒∠=, 得2AG GC x ==,2x GB GD ==,BE ⊥平面ABCD ,BG ⊂平面ABCD ,BE BG ∴⊥,则EBG 为直角三角形,1322EG AC AG x ∴===, 则2222BE EG BG x =-=, 三棱锥E ACD -的体积3116632243V AC GD BE x =⨯⋅⋅==, 解得2x =,即2AB =,120ABC ︒∠=,22212cos 44222()122AC AB BC AB BC ABC ∴=+-⋅∠=+-⨯⨯⨯-=,即1223AC ==,在三个直角三角形EBA ,EBD ,EBC 中,斜边AE EC ED ==,AE EC ⊥,EAC ∴为等腰三角形,则22212AE EC AC +==, 即2212AE =,26AE ∴=,则6AE =,∴从而得6AE EC ED ===,EAC ∴的面积1166322S EA EC =⨯⋅=⨯⨯=,在等腰三角形EAD 中,过E 作EF AD ⊥于F , 则6AE =,112122AF AD ==⨯=, 则22(6)15EF =-=,EAD ∴的面积和ECD 的面积均为12552S =⨯⨯=,故该三棱锥的侧面积为32 5.+。

高考数学二轮复习中档题专练八(含参考答案)

高考数学二轮复习中档题专练八(含参考答案)

高考数学二轮复习:中档题专练(八)1.已知向量a=(2sinx,cosx),b=(√3cosx,2cosx).(1)若x≠kπ+π2,k∈Z,且a∥b,求2sin2x-cos2x的值;(2)定义函数f(x)=a·b-1,求函数f(x)的单调递减区间,并求当x∈[0,π2]时,函数f(x)的值域.2.(2018苏锡常镇四市高三调研(一))如图,正三棱柱ABC-A1B1C1的高为√6,其底面边长为2.已知点M,N分别是棱A1C1,AC的中点,点D是棱CC1上靠近C的三等分点.求证:(1)B1M∥平面A1BN;(2)AD⊥平面A1BN.3.(2018江苏海安高级中学高三月考)在平面直角坐标系xOy中,椭圆C:x2x2+x2x2=1(a>b>0)的离心率为√32,且点(√2,√22)在椭圆C上.(1)求椭圆C的方程;(2)设P 为椭圆上第一象限内的点,点P 关于原点O 的对称点为A,点P 关于x 轴的对称点为Q,设xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λxx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,直线AD 与椭圆C 的另一个交点为B,若PA⊥PB,求实数λ的值.4.(2018苏锡常镇四市高三调研(一))如图,某景区内有一半圆形花圃,其直径AB 为6,O 是圆心,且OC⊥AB.在OC 上有一座观赏亭Q,其中∠AQC=2π3.计划在xx ⏜上再建一座观赏亭P,记∠POB=θ(0<x <π2),连接PQ.(1)当θ=π3时,求∠OPQ 的大小;(2)当∠OPQ 越大时,游客在观赏亭P 处的观赏效果越佳,求游客在观赏亭P 处的观赏效果最佳时角θ的正弦值.答案精解精析1.解析 (1)因为a∥b,所以4sinxcosx-√3cos 2x=0, 因为x≠kπ+π2,k∈Z,所以cosx≠0,即tanx=√34, 所以2sin 2x-cos 2x=2tan 2x -1tan 2x +1=-1019.(2)f(x)=a·b -1=2√3sinxcosx+2cos 2x-1=√3sin2x+cos2x=2sin (2x +π6), 令2kπ+π2≤2x+π6≤2kπ+3π2,k∈Z,得kπ+π6≤x≤kπ+2π3,k∈Z.所以f(x)的单调递减区间为[x π+π6,kπ+2π3](k∈Z).因为x∈[0,π2],所以2x+π6∈[π6,7π6],所以sin (2x +π6)∈[-12,1],所以当x∈[0,π2]时,函数f(x)的值域为[-1,2].2.证明 (1)连接MN,正三棱柱ABC-A 1B 1C 1中,AA 1∥CC 1且AA 1=CC 1,则四边形AA 1C 1C 是平行四边形,因为点M,N 分别是棱A 1C 1,AC 的中点,所以MN∥AA 1且MN=AA 1,又正三棱柱ABC-A 1B 1C 1中AA 1∥BB 1且AA 1=BB 1,所以MN∥BB 1且MN=BB 1,所以四边形MNBB 1是平行四边形,所以B 1M∥BN,又B 1M ⊄平面A 1BN,BN ⊂平面A 1BN, 所以B 1M∥平面A 1BN.(2)正三棱柱ABC-A 1B 1C 1中,AA 1⊥平面ABC, BN ⊂平面ABC,所以BN⊥AA 1,正△ABC 中,N 是AC 的中点,所以BN⊥AC, 又AA 1、AC ⊂平面AA 1C 1C,AA 1∩AC=A, 所以BN⊥平面AA 1C 1C,又AD ⊂平面AA 1C 1C, 所以AD⊥BN,因为AA 1=√6,AC=2,AN=1,CD=√63,所以xx 1xx =xx xx =√32, 又∠A 1AN=∠ACD=π2,所以△A 1AN∽△ACD,则∠AA 1N=∠CAD, 所以∠ANA 1+∠CAD=∠ANA 1+∠AA 1N=π2,则AD⊥A 1N,又BN∩A 1N=N,BN,A 1N ⊂平面A 1BN, 所以AD⊥平面A 1BN.3.解析 (1)因为点(√2,√22)在椭圆C 上,所以2x 2+12x 2=1, 又椭圆C 的离心率为√32,可得x x =√32,即c=√32a,所以b 2=a 2-c 2=a2-(√32a )2=14a 2,代入上式,可得2x 2+2x 2=1, 解得a 2=4,故b 2=14a 2=1. 所以椭圆C 的方程为x 24+y 2=1.(2)设P(x 0,y 0),则A(-x 0,-y 0),Q(x 0,-y 0).因为xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λxx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则(0,y D -y 0)=λ(0,-2y 0),故y D =(1-2λ)y 0. 所以点D 的坐标为(x 0,(1-2λ)y 0).设B(x 1,y 1),k PB ·k BA =x 1-x 0x 1-x 0·x 1+x 0x 1+x 0=x 12-x 02x 12-x 02=(1-x 124)-(1-x 024)x 12-x 02=-14,又k BA =k AD =(1-2x )x 0-(-x 0)x 0-(-x 0)=(1-x )x 0x 0,故k PB =-14xxx=-x04(1-x )x 0.又PA⊥PB,k PA =x0x 0,所以k PB ·k PA =-1, 即-x 04(1-x )x 0·x0x 0=-1,解得λ=34.所以λ=34.4.解析 (1)设∠OPQ=α,在Rt△OAQ 中,OA=3,∠AQO=π-∠AQC=π-2π3=π3,所以OQ=√3,在△OPQ 中,OP=3,∠POQ=π2-θ=π2-π3=π6.由正弦定理得xx sin∠xxx =xxsin∠xxx,即√3sin x =3sin (π-x -π6), 所以√3sinα=sin (π-x -π6)=sin (5π6-α),则√3sinα=sin5π6cosα-cos5π6sinα=12cosα+√32sinα,所以√3sinα=cosα,因为α为锐角,所以cosα≠0,所以tanα=√33,得α=π6.所以∠OPQ 的大小为π6.(2)设∠OPQ=β,在△OPQ 中,OP=3,∠POQ=π2-θ, 由正弦定理得OQsin∠OPQ =OPsin∠OQP ,即√3sinβ=3sin[π-β-(π2-θ)], 所以√3sinβ=sin [π-β-(π2-θ)]=sin [π2-(β-θ)]=cos(β-θ)=cosβcosθ+sinβsinθ, 从而(√3-sinθ)sinβ=cosβcosθ,其中√3-sinθ≠0,cosβ≠0, 所以tanβ=3-sinθ,记f(θ)=√3-sinθ,则f'(θ)=√3sinθ(√3-sinθ)2,θ∈(0,π2), 令f'(θ)=0,则sinθ=√33,存在唯一θ0∈(0,π2)使得sinθ0=√33,当θ∈(0,θ0)时,f'(θ)>0,f(θ)单调递增,当θ∈(θ0,π2)时,f'(θ)<0,f(θ)单调递减, 所以当θ=θ0时,f(θ)最大,即tan∠OPQ 最大, 又∠OPQ 为锐角,从而∠OPQ 最大时sinθ=√33. 答:观赏效果达到最佳时,θ的正弦值为√33.。

高考数学二轮复习之专练二中档小题(八)

高考数学二轮复习之专练二中档小题(八)

中档小题(八)1.(2013·江西省高三上学期七校联考)已知条件p :x ≤1,条件q :1x<1,则綈p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件2.如图,一个简单几何体的正视图和侧视图相同,是由一个正方形与一个正三角形构成,俯视图中圆的半径为 3.则该几何体的表面积为( )A .15πB .18πC .21πD .24π3.(2013·湖北省八校高三第二次联考)两个正数a ,b 的等差中项是92,一个等比中项是25,且a >b ,则抛物线y 2=-b ax 的焦点坐标为( ) A .(-516,0) B .(-15,0) C .(15,0) D .(-25,0) 4.(2013·高考安徽卷)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A.23 B.25C.35D.9105.(2013·高考陕西卷)已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定6.2013年,各大品牌汽车继续在中国的汽车市场上相互博弈,汽车的配置与销售价格以及维修费用等成为人们购买汽车时需要考虑的因素,某汽车制造商为了进一步拓宽市场,统计了某种品牌的汽车的使用年限x 和所支出的维修费用y (万元),得到的统计资料如表所示:若由资料,可知15年,若该品牌汽车在使用10年时报废,则这10年的维修总费用约为( )A .11.28万元B .11.38万元C .12.28万元D .12.38万元 7.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≥0x -2y +k ≥0x -1≤0,如果目标函数z =3x -2y 的取值范围为[-4,3],则k 的值为( )A .5B .4C .3D .28.若不等式|a -2x |≤x +3对任意x ∈[0,2]恒成立,则实数a 的取值范围是( )A .(-1,3)B .[-1,3]C .(1,3)D .[1,3]9.(2013·郑州市高中毕业年级第一次质量预测))设函数f (x )=sin x +cos x ,把f (x )的图象按向量a =(m ,0)(m >0)平移后的图象恰好是函数y =-f ′(x )的图象,则m 的最小值为( ) A.π4 B.π3C.π2D.2π310.执行如图所示的程序框图,则输出的S 的值为( )A .25B .9C .17D .20 11.(2013·广东省惠州市高三第三次调研考试)sin(α+π4)=24,则sin 2α=________. 12.(2013·安徽省“江南十校”高三联考)若不等式组⎩⎪⎨⎪⎧x -y +2≥0ax +y -2≤0y ≥0表示的平面区域的面积为3,则实数a 的值是________.13.(2013·海淀区高三年级第二学期期中练习)某几何体的三视图如图所示,则它的体积为________.14.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A 且k +1∉A ,那么称k 是集合A 的一个“好元素”.给定集合S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“好元素”的集合共有________个.备选题1.(2013·高考课标全国卷Ⅰ)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .52.函数f (x )=log a |x |+1(0<a <1)的图象大致为( )3.已知函数f (x )=2x -12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________. 4.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a ,b ,c 成递减的等差数列.若A =2C ,则a c的值为________.答案:1.【解析】选A.由x >1得1x <1;反过来,由1x<1不能得知x >1,即綈p 是q 的充分不必要条件.2.【解析】选C.由三视图可知,该几何体是圆锥与等底面的圆柱组合而成的几何体,所以该几何体的表面积是圆锥的侧面积、圆柱的侧面积和底面圆的面积的和,所以该几何体的表面积S =12×2π×3×23+2π×3×23+π×(3)2=21π.3.【解析】选B.由两个正数a ,b 的等差中项是92得a +b =9;a ,b 的一个等比中项是25得ab =20,且a >b ,故a =5,b =4,又由b a =45=2p 得p 2=15,故抛物线y 2=-b ax 的焦点坐标为(-15,0). 4.【解析】选D.由题意,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙、丁、戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P =910. 5.【解析】选B.由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b2<1,故直线与圆相交. 6.【解析】选D.x =15(2+3+4+5+6)=4,y =15(2.2+3.8+5.5+6.5+7.0)=5,b = 错误!=1.23,a =5-1.23×4=0.08.所以回归直线方程为错误!=0.08+1.23x ,当x =10时,y ^=0.08+1.23×10=12.38(万元).7.【解析】选B.作出不等式组对应的可行域,如图中阴影部分所示,由z =3x -2y 得y=32x -z 2,由图象可知当直线y =32x -z 2经过点C (4-k 5,2+2k 5)时,直线y =32x -z 2的截距最大,而此时z =3x -2y 取得最小值-4,所以12-3k 5-4+4k 5=-4,解得k =4. 8.【解析】选B.不等式|a -2x |≤x +3等价于-x -3≤a -2x ≤x +3,即x -3≤a ≤3x +3对任意x ∈[0,2]恒成立.所以当x ∈[0,2]时,(x -3)max ≤a ≤(3x +3)min ,即-1≤a ≤3.9.【解析】选C.f (x )=sin x +cos x =2sin(x +π4),y =-f ′(x )=-(cos x -sin x )=2sin(x -π4),∵将f (x )的图象按向量a =(m ,0)(m >0)平移后得到y =2sin(x -π4)的图象,∴2sin(x +π4-m )=2sin(x -π4).故m =π2+2k π,k ∈N ,故m 的最小值为π2. 10.【解析】选C.由题知,第一次运行:S =1,T =0,不满足T >S ,则S =1+8=9,n =0+2=2,T =0+22=4;第二次运行:S =9,T =4,不满足T >S ,则S =9+8=17,n =2+2=4,T =4+24=20,此时20>17满足T >S ,故输出的S 的值为17.11.【解析】sin(α+π4)=22sin α+22cos α=24,∴sin α+cos α=12,(sin α+cos α)2=sin 2α+cos 2α+2sin αcos α=1+sin 2α=14,故sin 2α=-34. 【答案】-3412.【解析】作出可行域,如图中阴影部分所示,区域面积S =12(2a+2)×2=3,解得a =2.【答案】213.【解析】依题意得,该几何体是一个四棱锥,其中底面是一个直角梯形(上底长是2、下底长是4、高是4),一个侧面垂直于底面,因此该几何体的体积等于13×12×(2+4)×4×4=16.【答案】1614.【解析】依题意可知,若由S 的3个元素构成的集合不含“好元素”,则这3个元素一定是紧邻的3个数,故这样的集合共有6个.【答案】6备选题1.【解析】选D.由23cos 2A +cos 2A =0,得23cos 2A +2cos 2A -1=0,解得cos A =±15. ∵A 是锐角,∴cos A =15. 又a 2=b 2+c 2-2bc cos A ,∴49=b 2+36-2×b ×6×15, ∴b =5或b =-135. 又∵b >0,∴b =5.2.【解析】选A.由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称,设g (x )=log a |x |,先画出x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位即得f (x )的图象,结合图象知选A.3.【解析】当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0. 【答案】04.【解析】依题意知b =a +c 2,a c =sin A sin C =sin2C sin C =2cos C =2×a 2+b 2-c 22ab ,即a c =a 2+b 2-c 2ab=(a +c )(a -c )+b 2ab =2b (a -c )+b 2ab =2(a -c )+b a ,所以a 2=c [2(a -c )+a +c 2],即(2a -3c )(a -c )=0,又由a >c ,因此有2a =3c ,故a c =32. 【答案】32。

2020高考数学二轮复习专题突破练8应用导数求参数的值或范围理

2020高考数学二轮复习专题突破练8应用导数求参数的值或范围理

专题突破练8应用导数求参数的值或范围1.(2019北京顺义统考二,文18)设函数f(x)=a√x-ln x,a∈R.(1)若点(1,1)在曲线y=f(x)上,求在该点处曲线的切线方程;(2)若f(x)有极小值2,求a.2.(2019山东潍坊二模,文21)已知函数f(x)=x e x-a ln x(无理数e=2.718…).(1)若f(x)在(0,1)单调递减,求实数a的取值范围;(2)当a=-1时,设g(x)=x(f(x)-x e x)-x3+x2-b,若函数g(x)存在零点,求实数b的最大值.3.设函数f(x)=e mx+x2-mx.(1)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.4.(2019湘赣十四校联考二,理21)已知函数f(x)=(ax-1)e x+a.(1)若f(x)≥f(0)恒成立,求f(x)在(1,f(1))处的切线方程;(2)若f(x)<ax有且只有两个整数解,求a的取值范围.5.(2019四川第二次诊断,理21)已知f (x )=x ln x.(1)求f (x )的极值;(2)若f (x )-ax x =0有两个不同解,求实数a 的取值范围.6.(2019山东德州一模,理21,文21)已知函数f (x )=e 2x-3-(2x-3)2.(1)证明:当x ≥32时,f (x )≥1;(2)设g (x )=14+ln x 2,若存在实数x 1,x 2,使得f (x 1)+(2x 1-3)2=g (x 2),求x 2-x 1的最小值.参考答案专题突破练8应用导数求参数的值或范围1.解(1)因为点(1,1)在曲线y=f(x)上,所以a=1,f(x)=√x-ln x.又f'(x)=√x2x −1x=√x-22x,所以f'(1)=-12.在该点处曲线的切线方程为y-1=-12(x-1), 即x+2y-3=0.(2)f(x)的定义域为(0,+∞),f'(x)=x√x2x −1x=x√x-22x.讨论:①当a≤0时,f'(x)<0,此时f(x)在(0,+∞)上单调递减,所以不存在极小值.②当a>0时,令f'(x)=0可得x=4x2,当x发生变化时,f'(x),f(x)的变化情况如下表:0,4a24a2,+∞-0 +所以f(x)在0,4x2上单调递减,在4x2,+∞上单调递增,所以f(x)极小值=f4x2=2-ln4x2,所以2-ln4x2=2,解得a=2(负值舍去).2.解(1)f'(x)=(x+1)e x-xx =(x2+x)e x-xx.由题意可得f'(x)≤0,x∈(0,1)恒成立.即(x2+x)e x-a≤0,也就是a≥(x2+x)e x在x∈(0,1)恒成立.设h(x)=(x2+x)e x,则h'(x)=(x2+3x+1)e x.当x∈(0,1)时,x2+3x+1>0,h'(x)>0在x∈(0,1)单调递增.即h(x)<h(1)=2e.故a≥2e.(2)当a=-1时,f(x)=x e x+ln x.g(x)=x ln x-x3+x2-b,由题意得问题等价于方程b=x ln x-x3+x2,在(0,+∞)上有解.先证明ln x≤x-1.设u(x)=ln x-x+1,x∈(0,+∞),则u'(x)=1x -1=1-xx.可得当x=1时,函数u(x)取得极大值,∴u(x)≤u(1)=0.因此ln x≤x-1,所以b=x ln x-x3+x2≤x(x-1)-x3+x2=-x(x2-2x+1)≤0.当x=1时,取等号.故实数b的最大值为0.3.解(1)f'(x)=m(e mx-1)+2x.若m≥0,则当x∈(-∞,0)时,e mx-1≤0,f'(x)<0;当x∈(0,+∞)时,e mx-1≥0,f'(x)>0.若m<0,则当x∈(-∞,0)时,e mx-1>0,f'(x)<0;当x∈(0,+∞)时,e mx-1<0,f'(x)>0.所以,f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m ,f (x )在[-1,0]单调递减,在[0,1]单调递增,故f (x )在x=0处取得最小值. 所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是{x (1)-x (0)≤e -1,x (-1)-x (0)≤e -1,即{e x -x ≤e -1,e -x +x ≤e -1.① 设函数g (t )=e t -t-e +1,则g'(t )=e t -1.当t<0时,g'(t )<0;当t>0时,g'(t )>0.故g (t )在(-∞,0)单调递减,在(0,+∞)单调递增.又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0.当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立;当m>1时,由g (t )的单调性,g (m )>0,即e m -m>e -1;当m<-1时,g (-m )>0,即e -m +m>e -1.综上,m 的取值范围是[-1,1].4.解(1)∵f (x )=(ax-1)e x +a ,∴f'(x )=(ax-1+a )e x .∵f (x )≥f (0)恒成立,∴f'(0)=a-1=0,∴a=1.当a=1时,f'(x )=x e x ,∴f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.∴f (x )≥f (0)恒成立,∴a=1符合题意.∴f(x)=(x-1)e x+1,f'(x)=x e x,故f(1)=1,f'(1)=e,∴f(x)在(1,f(1))处的切线方程为y-1=e(x-1),即y=e x-e+1.(2)∵f(x)=(ax-1)e x+a<ax,化简即a(x e x-x+1)<e x.①当a≤0时,x>0时,x e x-x+1>0,∴a(x e x-x+1)≤0<e x恒成立, 此时f(x)=(ax-1)e x+a<ax有无数个整数解,不合题意.②当a>0时,原不等式可化为1x >x-xe x+1e x.令h(x)=x-xe x +1e x.∴h'(x)=e x+x-2e x,令φ(x)=e x+x-2,∴φ'(x)=e x+1,∴φ(x)在R上单调递增.又φ(0)=-1<0,φ(1)=e-1>0,∴存在唯一x0∈(0,1),使得φ(x0)=0.∴h(x)在(-∞,x0)上单调递减,在(x0,+∞)上单调递增,且x0∈(0,1).又h(0)=1,h(1)=1,h(-1)=2e-1,h(2)=2-1e2,∴当原不等式有且只有两个整数解时,1<1x ≤2-1e2,即e22e2-1≤a<1.5.解(1)f(x)的定义域是(0,+∞),f'(x)=ln x+1.令f'(x )>0,解得x>1e .令f'(x )<0,解得0<x<1e .所以f (x )在0,1e 内递减,在1e ,+∞内递增,故当x=1e 时,f (x )极小值=f 1e =-1e .(2)记t=x ln x ,t ≥-1e ,则e t =e x ln x =(e ln x )x =x x,故f (x )-ax x =0,即t-a e t =0,a=xe x .令g (t )=xe x ,g'(t )=1-x e x .令g'(t )>0,解得0<t<1.令g'(t )<0,解得t>1.故g (t )在(0,1)递增,在(1,+∞)内递减, 故g (t )max =g (1)=1e .由t=x ln x ,t ≥-1e ,a=g (t )=xe x 的图象和性质有:①0<a<1e ,y=a 和g (t )有两个不同交点(t 1,a ),(t 2,a ),且0<t 1<1<t 2, t 1=x ln x ,t 2=x ln x 各有一解,即f (x )-ax x =0有2个不同解. ②-e 1-ee <a<0,y=a 和g (t )=x e x 仅有1个交点(t 3,a ),且-1e <t 3<0,t 3=x ln x 有2个不同的解,即f (x )-ax x =0有两个不同解.③a 取其他值时,f (x )-ax x =0最多1个解, 综上,a 的范围是(-e 1-ee ,0)∪0,1e .6.解(1)令t=2x-3,当x ≥32时,f (x )≥1等价于当t ≥0时,e t -t 2-1≥0.设函数u (t )=e t -t 2-1,则u'(t )=e t -2t.[u'(t )]'=e t -2.当t ∈[0,ln2)时,u'(t )为减函数,当t ∈(ln2,+∞)时,u'(t )为增函数.所以u'(t )≥u'(ln2)=2-2ln2>0.所以u (t )在[0,+∞)内为增函数,所以u (t )≥u (0)=0.即当x ≥32时,f (x )≥1.(2)设f (x 1)+(2x 1-3)2=g (x 2)=m ,则e 2x 1-3=14+ln x22=m.因为x 1∈R ,所以e 2x 1-3>0,即m>0, 所以2x 1-3=ln m ,ln x 22=m-14,所以x 1=ln x +32,x 2=2e x -14,x 2-x 1=2e x -14−ln x +32(m>0).令h (x )=2e x -14−ln x +32(x>0),则h'(x )=2e x -14−12x ,所以[h'(x )]'=2e x -14+12x 2>0,所以h'(x )在(0,+∞)内为增函数,且h'14=0. 当x>14时,h'(x )>0;当0<x<14时,h'(x )<0.所以,h (x )在0,14内为减函数,在14,+∞内为增函数.故当x=14时,h (x )min =h 14=ln4+12,即x 2-x 1的最小值为ln4+12.。

高考数学二轮复习练习:中档大题满分练(八)含答案

高考数学二轮复习练习:中档大题满分练(八)含答案

中档大题满分练8.立体几何(B组)中档大题集训练,练就慧眼和规范,筑牢高考满分根基!1.如图,在多面体AEDBC中,BD⊥平面ABC,AE∥BD,AB⊥AC,BC=BD=2AE,直线CD与平面ABDE所成的角为30°,M为CD的中点.(1)求证:平面BCD⊥平面CDE.(2)求二面角C-BE-M的大小.【解析】(1)连接AD,取BC的中点O,连接AO,OM.因为BD⊥平面ABC,AC⊂平面ABC,所以BD⊥AC,又AB⊥AC,BD∩AB=B,所以AC⊥平面ABDE,则∠CDA为直线CD与平面ABDE所成的角,即∠CDA=30°.所以AC=CD=·BC=BC,所以△ABC是等腰直角三角形,则AO⊥BC,又BD⊥平面ABC,所以BD⊥AO,BD∩BC=B,所以AO⊥平面BCD.又M,O分别是CD,BC的中点,所以MO BD,又AE∥BD,BD=2AE,所以OM AE,故四边形AEMO是平行四边形,所以AO∥EM,所以EM⊥平面BCD,又EM⊂平面CDE,所以平面BCD⊥平面CDE.(2)以A为原点,AC,AB,AE分别为x轴,y轴和z轴建立空间直角坐标系,不妨设AE=1,则C(,0,0),B(0,,0),E(0,0,1),D(0,,2),M,所以=(,-,0),=(0,-,1),=.设平面 BCE的法向量为n1=(x,y,z),则即解得令y=1,得n1=(1,1,);设平面BEM的法向量为n2=(x,y,z),则即解得令y=1,得n2=(-1,1,);所以cos<n1,n2>===,所以二面角C-BE-M的大小为60°.2.如图,在空间四边形P-ABC中,PA⊥AC,PA=AC,PC=2,BC=2,∠ACB=90°,且平面PAC⊥平面ABC.(1)求证:PA⊥BC.(2)若直线PC与平面ABM所成角的余弦值为,求PM.【解析】(1)因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PA⊂平面PAC,PA⊥AC,所以PA⊥平面ABC,又因为BC⊂平面ABC,所以PA⊥BC.(2)过点A在平面ABC内作AE⊥AC,由(1)知PA⊥平面ABC,AE⊂平面ABC,AC⊂平面ABC,所以PA⊥AE,PA ⊥AC,以A为坐标原点,分别以,,的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,则A(0,0,0),B(2,2,0),C(0,2,0),P(0,0,2), 由此=(0,2,-2),=(2,2,0),设=λ (0<λ<1),则M(0,2λ,2-2λ),=(0,2λ,2-2λ).设平面AMB的法向量n=(x,y,z),则即令x=1,得n=.设直线PC与平面ABM所成角为θ,因为直线PC与平面ABM所成角的余弦值为,即cos θ=,则sin θ=|cos <n,>|===, 解得λ=或λ=,所以PM=PC=或PM=PC=.。

高考数学课标版二轮习题:中档提升练 第八练 含解析

高考数学课标版二轮习题:中档提升练 第八练 含解析

第八练一、选择题1.设函数f(x)=x(e x+e-x),则f(x)()A.是奇函数,且在(0,+∞)上是增函数B.是偶函数,且在(0,+∞)上是增函数C.是奇函数,且在(0,+∞)上是减函数D.是偶函数,且在(0,+∞)上是减函数答案A通解:由条件可知,f(-x)=(-x)(e-x+e x)=-x(e x+e-x)=-f(x),故f(x)为奇函数. f'(x)=e x+e-x+x(e x-e-x),当x>0时,e x>e-x,所以x(e x-e-x)>0,又e x+e-x>0,所以f'(x)>0,所以f(x)在(0,+∞)上是增函数,故选A.优解:根据题意知f(-1)=-f(1),所以函数f(x)为奇函数.又f(1)<f(2),所以f(x)在(0,+∞)上是增函数,故选A.2.某几何体的三视图如图所示,则该几何体的表面积为()A.(8+4√2)πB.(8+2√2)πC.(4+4√2)πD.(4+2√2)π答案A由三视图知,该几何体的上部分为半径为2的半球,下部分为底面半×4π×22+2π×2√2=(8+4√2)π.故选径为2,高为2的圆锥,则该几何体的表面积为12A.3.已知函数f(x)=2sin(ωx+π)在区间(0,π8)上单调递增,则ω的最大值为()4B.1A.12C.2D.4答案C解法一:因为x∈(0,π),所以ωx+π4∈(π4,ωπ8+π4),因为f(x)=2sin(ωx+π4)在8)上单调递增,所以ωπ8+π4≤π2,所以ω≤2,即ω的最大值为2,故选C.(0,π8解法二:将选项逐个代入函数f(x)进行验证,选项D不满足条件,选项A、B、C满足条件f(x)在(0,π)上单调递增,所以ω的最大值为2,故选C.8则满足f(x)+f(x+1)>1 4.(2019甘肃、青海、宁夏联考,11)已知函数f(x)={2x+1,x≤1,lnx+1,x>1,的x的取值范围是()A.(-1,+∞)B.(-3,+∞)4C.(0,+∞)D.(1,+∞)答案B根据函数的解析式可知,当{x≤1,即x≤0时,f(x)+f(x+1)=2x+1+2x+3>1,x+1≤1,<x≤0;解得-34即0<x≤1时,1<x+1≤2,当{x≤1,x+1>1,所以f(x)+f(x+1)=2x+1+ln(x+1)+1>1恒成立;当{x>1,即x>1时,ln x+1>1,x+1>1,所以f(x)+f(x+1)=ln x+1+ln(x+1)+1>1恒成立.,故选B.综上,x>-34二、填空题5.设函数f(x)的定义域为R,且f(x)是周期为2的奇函数,当0<x<1时,f(x)=log3x, 则f(37)+f(1)=.9答案-2解析∵函数f(x)的定义域为R,且f(x)是周期为2的奇函数,∴f(37)=f(2×2+19)=f(19)=log319=-2,9f(-1)=-f(1),f(-1)=f(-1+2)=f(1), ∴f(1)=-f(1),∴f(1)=0, ∴f (379)+f(1)=-2. 6.在平面直角坐标系中,O 为坐标原点,A(8,0),以OA 为直径的圆与直线y=2x 在第一象限的交点为B,则直线AB 的方程为 . 答案 x+2y-8=0解析 解法一:如图,由题意知OB ⊥AB,因为直线OB 的方程为y=2x,所以直线AB 的斜率为-12,因为A(8,0),所以直线AB 的方程为y-0=- 12(x-8), 即x+2y-8=0.解法二:依题意,以OA 为直径的圆的方程为(x-4)2+y2=16,解方程组{(x -4)2+y 2=16,y =2x,得{x =85,y =165或{x =0,y =0(舍去),即B (85,165),因为A 的坐标为(8,0),所以k AB =165-085-8=-12,所以直线AB 的方程为y-0=-12(x-8),即x+2y-8=0. 三、解答题7.已知{a n }为正项等比数列,a 1+a 2=6,a 3=8. (1)求数列{a n }的通项公式; (2)若b n =log 2a na n,且{b n }的前n 项和为T n ,求T n .解析 (1)依题意,设等比数列{a n }的公比为q,则有{a 1+a 1q =6,a 1q 2=8,则3q 2-4q-4=0,又q>0,∴q=2.于是a 1=2,∴数列{a n }的通项公式为a n =2n . (2)由(1)得b n =log 2a n a n=n2n , ∴T n =12+222+323+…+n 2n ,12T n =122+223+…+n -12n +n2n+1,两式相减得,12T n=12+122+123+…+12n-n2n+1,∴T n=1+12+122+…+12n-1-n2n=1-12n1-12-n2n=2-n+22n.8.过点Q(√22,1)作圆x2+y2=1的两条切线,切点分别为M,N,直线MN恰好经过椭圆C:x2a2+y2b2=1(a>b>0)的右顶点和上顶点.(1)求椭圆C的方程;(2)过椭圆C的左焦点F的直线l交椭圆C于A,B两点,若椭圆上存在一点P,使得四边形OAPB为平行四边形,求直线l的方程.解析(1)过点Q(√22,1)作圆x2+y2=1的两条切线,一条切线为直线y=1,切点为M(0,1).设另一条切线的方程为y-1=k(x-√22)(k≠0),即2kx-2y+2-√2k=0,由直线与圆x2+y2=1相切可得√2k|√4k+4=1,即k2+2√2k=0,解得k=0(舍去)或k=-2√2.∴另一条切线的方程为y=-2√2x+3.由{y=-2√2x+3,x2+y2=1解得{x=2√23,y=13,∴N(2√23,1 3 ),∴直线MN的方程为y=-√22x+1.由此可知,椭圆C的上顶点的坐标为(0,1),右顶点的坐标为(√2,0),∴椭圆C的方程为x22+y2=1.(2)当直线l的斜率不存在或为零时,在椭圆上不存在点P,使得四边形OAPB为平行四边形.故直线l的斜率存在,且不为零.易知椭圆的左焦点为(-1,0),设点A(x1,y1),B(x2,y2),直线l的方程为y=k(x+1)(k≠0).联立得{y =k(x +1),x 22+y 2=1,得(1+2k 2)x 2+4k 2x+2(k 2-1)=0,Δ=8k 2+8>0,x 1+x 2=-4k21+2k 2.若四边形OAPB 为平行四边形,则OP ⃗⃗⃗⃗ =OA ⃗⃗⃗⃗ +OB ⃗⃗⃗⃗ =(x 1+x 2,y 1+y 2)=(x 1+x 2,k(x 1+x 2+2))=(-4k21+2k 2,2k1+2k 2), ∴P (-4k21+2k 2,2k 1+2k 2),又点P 在椭圆上, ∴(-4k 21+2k 2)2+2(2k1+2k 2)2=2,整理得4k 4=1,解得k=±√22.∴直线l 的方程为y=±√22(x+1).。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中档题专练(八)
1.已知向量a=(2sinx,cosx),b=(√3cosx,2cosx).
(1)若x≠kπ+π
2
,k∈Z,且a∥b,求2sin2x-cos2x的值;
(2)定义函数f(x)=a·b-1,求函数f(x)的单调递减区间,并求当x∈[0,π
2
]时,函数f(x)的值域.
2.(苏锡常镇四市高三调研(一))如图,正三棱柱ABC-A1B1C1的高为√6,其底面边长为2.已知点M,N分别是棱A1C1,AC的中点,点D是棱CC1上靠近C的三等分点.
求证:(1)B1M∥平面A1BN;
(2)AD⊥平面A1BN.
3.(江苏海安高级中学高三月考)在平面直角坐标系xOy中,椭圆C:x2
x2+x2
x2
=1(a>b>0)的离心率为√3
2
,且点
(√2,√2
2
)在椭圆C上.
(1)求椭圆C的方程;
(2)设P为椭圆上第一象限内的点,点P关于原点O的对称点为A,点P关于x轴的对称点为Q,设xx
⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λxx
⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,直线AD与椭圆C的另一个交点为B,若PA⊥PB,求实数λ的值.
4.(苏锡常镇四市高三调研(一))如图,某景区内有一半圆形花圃,其直径AB 为6,O 是圆心,且OC⊥AB.在OC 上有一座观赏亭Q,其中∠AQC=2π3
.计划在xx ⏜上再建一座观赏亭P,记∠POB=θ(0<x <π
2),连接
PQ.
(1)当θ=π
3时,求∠OPQ 的大小;
(2)当∠OPQ 越大时,游客在观赏亭P 处的观赏效果越佳,求游客在观赏亭P 处的观赏效果最佳时角θ的正弦值.
答案精解精析
1.解析 (1)因为a∥b,所以4sinxcosx-√3cos 2
x=0, 因为x≠kπ+π
2,k∈Z,所以cosx≠0,即tanx=√3
4
,
所以2sin 2x-cos 2
x=
2tan 2x-1tan 2x +1
=-10
19
.
(2)f(x)=a·b -1=2√3sinxcosx+2cos 2
x-1=√3sin2x+cos2x=2sin (2x +π
6),
令2kπ+π
2≤2x+π
6≤2kπ+3π2
,k∈Z,
得kπ+π
6≤x≤kπ+
2π3
,k∈Z.
所以f(x)的单调递减区间为[x π+π6
,kπ+
2π3
](k∈Z).
因为x∈[0,π2],所以2x+π6∈[π6,7π6
],
所以sin (2x +π
6)∈[-1
2,1],
所以当x∈[0,π
2]时,函数f(x)的值域为[-1,2].
2.证明 (1)连接MN,正三棱柱ABC-A 1B 1C 1中,AA 1∥CC 1且AA 1=CC 1,则四边形AA 1C 1C 是平行四边形,因为点M,N 分别是棱A 1C 1,AC 的中点,所以MN∥AA 1且MN=AA 1,
又正三棱柱ABC-A 1B 1C 1中AA 1∥BB 1且AA 1=BB 1,所以MN∥BB 1且MN=BB 1,所以四边形MNBB 1是平行四边形,所以B 1M∥BN,又B 1M ⊄平面A 1BN,BN ⊂平面A 1BN, 所以B 1M∥平面A 1BN.
(2)正三棱柱ABC-A 1B 1C 1中,AA 1⊥平面ABC, BN ⊂平面ABC,所以BN⊥AA 1,
正△ABC 中,N 是AC 的中点,所以BN⊥AC, 又AA 1、AC ⊂平面AA 1C 1C,AA 1∩AC=A, 所以BN⊥平面AA 1C 1C,又AD ⊂平面AA 1C 1C, 所以AD⊥BN,
因为AA 1=√6,AC=2,AN=1,CD=√63
,所以
xx 1xx =xx xx =√3
2
, 又∠A 1AN=∠ACD=π
2,所以△A 1AN∽△ACD,则∠AA 1N=∠CAD, 所以∠ANA 1+∠CAD=∠ANA 1+∠AA 1N=π
2, 则AD⊥A 1N,又BN∩A 1N=N,BN,A 1N ⊂平面A 1BN, 所以AD⊥平面A 1BN.
3.解析 (1)因为点(√2,√22)在椭圆C 上,所以2x 2+1
2x 2=1, 又椭圆C 的离心率为√32,可得x x =√32,即c=√3
2a, 所以b 2
=a 2
-c 2
=a
2
-(√3
2a )2
=14a 2,代入上式,可得2x 2+2x 2=1,
解得a 2=4,故b 2
=1
4a 2
=1. 所以椭圆C 的方程为
x 24
+y 2
=1.
(2)设P(x 0,y 0),则A(-x 0,-y 0),Q(x 0,-y 0).
因为xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λxx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则(0,y D -y 0)=λ(0,-2y 0),故y D =(1-2λ)y 0. 所以点D 的坐标为(x 0,(1-2λ)y 0).设B(x 1,y 1),
k PB ·k BA =x 1-x 0x 1-x 0·x 1+x 0x 1+x 0=x 12-x 02x 12-x 0
2=(1-x 124
)-(1-
x 024
)
x 12-x 0
2
=-1
4
,
又k BA =k AD =(1-2x )x 0-(-x 0)x 0-(-x 0)
=
(1-x )x 0
x 0
,
故k PB =-
1
4x xx
=-
x 0
4(1-x )x 0
.又
PA⊥PB,k PA =
x 0
x 0
, 所以k PB ·k PA =-1, 即-x 04(1-x )x 0·x
0x 0
=-1,解得
λ=3
4
.
所以λ=3
4.
4.解析 (1)设∠OPQ=α,在Rt△OAQ 中,OA=3,∠AQO=π-∠AQC=π-2π3
=π3,所以OQ=√3,
在△OPQ 中,OP=3,∠POQ=π2-θ=π2-π3=π
6. 由正弦定理得xx sin∠xxx =xx
sin∠xxx , 即
√3
sin x =3sin (π-x -π6
)
, 所以√3sinα=sin (π-x -π6)=sin (
5π6
-α),
则√3sinα=sin
5π6
cosα-cos
5π6
sinα=12
cosα+√32
sinα,
所以√3sinα=cosα,
因为α为锐角,所以cosα≠0,所以tanα=√33,得α=π
6. 所以∠OPQ 的大小为π
6.
(2)设∠OPQ=β,在△OPQ 中,OP=3,∠POQ=π
2-θ, 由正弦定理得xx sin∠xxx =xx
sin∠xxx , 即√3
sin x =
3
sin [π-x -(π2
-θ)]
,
所以√3sinβ=sin [π-x -(π2-θ)]=sin [π
2-(β-θ)]=cos(β-θ)=cosβcosθ+sinβsinθ, 从而(√3-sinθ)sinβ=cosβcosθ,其中√3-sinθ≠0,cosβ≠0, 所以tanβ=√3-sin x
,
记f(θ)=
√3-sin x
,则f'(θ)=
√3sin x 2
,θ∈(0,π
2
),
令f'(θ)=0,则sinθ=√3
3,存在唯一θ0∈(0,π
2)使得sinθ0=√3
3
,
当θ∈(0,θ0)时,f'(θ)>0,f(θ)单调递增,当θ∈(x 0,π
2)时,f'(θ)<0,f(θ)单调递减, 所以当θ=θ0时,f(θ)最大,即tan∠OPQ 最大, 又∠OPQ 为锐角,从而∠OPQ 最大时sinθ=√33
. 答:观赏效果达到最佳时,θ的正弦值为√3
3.。

相关文档
最新文档