必修二立体几何单元测试题(详细答案)
人教版高中数学必修第二册第三单元《立体几何初步》测试卷(包含答案解析)
一、选择题1.已知空间中不同直线m 、n 和不同平面α、β,下面四个结论:①若m 、n 互为异面直线,//m α,//n α,//m β,βn//,则//αβ;②若m n ⊥,m α⊥,βn//,则αβ⊥;③若n α⊥,//m α,则n m ⊥;④若αβ⊥,m α⊥,//n m ,则βn//.其中正确的是( )A .①②B .②③C .③④D .①③ 2.古代数学名著《数学九章》中有云:“有木长三丈,围之八尺,葛生其下,缠木两周,上与木齐,问葛长几何?”意思为:圆木长3丈,圆周为8尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长多少尺(注:1丈即10尺)( ) A .30尺 B .32尺 C .34尺 D .36尺 3.如图,在长方体1111ABCD A B C D -中,13,2,4AA AB AD ===,点M 是棱AD 的中点,点N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内的一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .[3,17]B .[2,3]C .[6,22]D .[17,5] 4.某几何体的三视图如图所示(单位:cm ),则该几何体的侧面积(单位:2cm )是( )A .10B .105+C .1625+D .135+5.设l 是直线,α,β是两个不同的平面,则正确的结论是( )A .若l ∥α,l ∥β,则α∥βB .若l ∥α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β,l ∥α,则l ⊥β6.在棱长为a 的正方体1111ABCD A B C D -中,M 为AB 的中点, 则点C 到平面1A DM的距离为( )A .6aB .6aC .2aD .12a 7.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC 2aD .22a 8.3P -ABC 的顶点都在球O 的球面上,PA ⊥平面ABC ,PA =2,∠ABC =120°,则球O 的体积的最小值为( )A .73 B 287 C 1919 D .193π 9.已知三棱锥A BCD -的所有棱长都为2,且球O 为三棱锥A BCD -的外接球,点M 是线段BD 上靠近D 的四等分点,过点M 作平面α截球O 得到的截面面积为Ω,则Ω的取值范围为( )A .π3π,42⎡⎤⎢⎥⎣⎦B .3π3π,42⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .,42ππ⎡⎤⎢⎥⎣⎦ 10.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) A .若m n ⊥,//n α,则m α⊥ B .若//m β,βα⊥,则m α⊥ C .若m β⊥,n β⊥,n α⊥,则m α⊥ D .若m n ⊥,n β⊥,βα⊥,则m α⊥ 11.在三棱锥P ABC -中,AB BC ⊥,P 在底面ABC 上的投影为AC 的中点D ,1DP DC ==.有下列结论:①三棱锥P ABC -的三条侧棱长均相等;②PAB ∠的取值范围是,42ππ⎛⎫ ⎪⎝⎭; ③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为23π;④若AB BC =,E 是线段PC 上一动点,则DE BE +的最小值为622+. 其中正确结论的个数是( )A .1B .2C .3D .412.如图,正方体1111ABCD A B C D -的棱长为2,点O 为底面ABCD 的中心,点P 在侧面11BB C C 的边界及其内部运动.若1D O OP ⊥,则11D C P △面积的最大值为( )A 25B .455C 5D .2513.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊂,则下列命题中真命题是( )A .若l β⊥,则αβ⊥B .若l m ⊥,则αβ⊥C .若αβ⊥,则l m ⊥D .若//αβ,则//l m 14.αβ、是两个不同的平面,mn 、是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥;②αβ⊥;③n β⊥;④.m α⊥以其中三个论断作为条件,余下一个作为结论,其中正确命题的个数是( )A .1个B .2个C .3个D .4个 二、解答题15.如图,在正四棱柱1111ABCD A B C D -中(底面是正方形的直四棱柱),底面正方形ABCD 的边长为1,侧棱1AA 的长为2,E 、M 、N 分别为11A B 、11B C 、1BB 的中点.AD平面EMN;(1)求证:1//AD与BE所成角的余弦值.(2)求异面直线116.如图所示的四棱锥E-ABCD中,底面ABCD为矩形,AE=EB=BC=2,AD⊥平面ABE,且CE上的点F满足BF⊥平面ACE.(1)求证:AE∥平面BFD;(2)求三棱锥C-AEB的体积.17.如图甲,平面四边形ABCD中,已知45∠=,90︒A︒∠=∠=,ADC︒C,105 ==,现将四边形ABCD沿BD折起,使得平面ABD⊥平面BDC (如图乙),设2AB BD点E,F分别是棱AC,AD的中点.(1)求证:DC⊥平面ABC;(2)求三棱锥A BEF -的体积.18.在四棱锥P ABCD -中,//AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,3=CD CE ,⊥AP ED .(1)求证:DE ⊥面PEA ;(2)已知点F 为AB 中点,点P 在底面ABCD 上的射影为点Q ,直线AP 与平面ABCD 所成角的余弦值为3,当三棱锥-P QDE 的体积最大时,求异面直线PB 与QF 所成角的余弦值.19.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.20.如图,在四棱锥P ABCD -中,PA ⊥平面ABC ,//,90AD BC ABC ︒∠=,2AD =,23AB =6BC =.(1)求证:平面PBD ⊥平面PAC ;(2)PA 长为何值时,直线PC 与平面PBD 所成角最大?并求此时该角的正弦值. 21.已知三棱柱ABC -A 1B 1C 1中BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C(1)求证:C 1B ⊥平面ABC ;(2)求三棱柱ABC -A 1B 1C 1的体积,(3)试在棱CC 1(不包含端点C ,C 1)上确定一点E ,使得EA ⊥EB 1;22.如图,在平行四边形ABCD 中,4AB =,60DAB ∠=︒.点G ,H 分别在边CD ,CB 上,点G 与点C ,D 不重合,GH AC ⊥,GH 与AC 相交于点O ,沿GH 将CGH 翻折到EGH 的位置,使二面角E GH B --为90°,F 是AE 的中点.(1)请在下面两个条件:①AB AD =,②AB BD ⊥中选择一个填在横线处,使命题P :若________,则BD ⊥平面EOA 成立,并证明.(2)在(1)的前提下,当EB 取最小值时,求直线BF 与平面EBD 所成角的正弦值. 23.如图,已知PA ⊥平面ABCD ,ABCD 为矩形,M 、N 分别为AB 、PC 的中点,,2,2PA AD AB AD ===.(1)求证:平面MPC ⊥平面PCD ;(2)求三棱锥B MNC -的高.24.如图,在棱长为1的正方体1111ABCD A B C D -中,点O 是BD 中点.(1)求证:平面11BDD B ⊥平面1C OC ;(2)求二面角1C BD C --的正切值.25.如图,已知三棱柱111ABC A B C -中,AB AC =,D 为BC 上一点,1A B 平面1AC D .(1)求证:D 为BC 的中点;(2)若平面ABC ⊥平面11BCC B ,求证:1AC D ∆为直角三角形.26.如图,在四棱锥P ABCD -中,//AB CD ,2CD AB =,CD ⊥AD ,平面PAD ⊥平面ABCD ,,E F 分别是CD 和PC 的中点.求证:(1)BF //平面PAD(2)平面BEF ⊥平面PCD参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由线面和面面平行和垂直的判定定理和性质定理即可得解.【详解】解:对于①,由面面平行的判定定理可得,若m 、n 互为异面直线,//m α,//n β,则//αβ或相交,又因为//m β,//n α,则//αβ,故①正确;对于②,若m n ⊥,m α⊥,//n β,则//αβ或α,β相交,故②错误, 对于③,若n α⊥,//m α,则n m ⊥;故③正确,对于④,若αβ⊥,m α⊥,//n m ,则//n β或n β⊂,故④错误,综上可得:正确的是①③,故选:D .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.2.C解析:C【分析】由题意,圆柱的侧面展开图是矩形,葛藤长是两个矩形相连所成矩形的对角线的长,画出图形,即可求出葛藤长.【详解】由题意,圆柱的侧面展开图是矩形,葛藤长是两个矩形相连所成矩形的对角线的长. 如图所示矩形ABCD 中,30AD =尺,2816AB =⨯=尺, 所以葛藤长2222301634AC AD AB =+=+=尺.故选:C .【点睛】本题考查圆柱的侧面展开图,考查学生的空间想象能力,属于基础题. 3.C解析:C【分析】首先找出过点1C 且与平面CMN 平行的平面,然后可知点P 的轨迹即为该平面与侧面四边形11ADD A 的交线段,进而可以利用解三角形的知识求出线段1C P 长度的取值范围.【详解】如图所示:,取11A D 的中点G ,取MD 的中点E ,1A G 的中点F ,1D D 的三等分点H 靠近D ,并连接起来.由题意可知1//C G CM ,//GH MN ,所以平面1//C GH 平面CMN .即当点P 在线段GH 上时,1//C P 平面CMN . 在1H C G 中,2212222C G =+=2212222C H =+=22GH =,所以1H C G 为等边三角形,取GH 的中点O ,122sin606C O ==,故线段1C P 长度的取值范围是[6,22].故选:C .【点睛】 本题主要考查线面平行,面面平行的判定定理和性质定理的应用,以及解三角形,意在考查学生的逻辑推理能力和数学运算能力,属于中档题.4.B解析:B【分析】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,由矩形的面积公式得出该几何体的侧面积.【详解】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,如下图所示2211125AD A D ==+=∴该几何体的侧面积为122222521025⨯+⨯+⨯=+故选:B【点睛】本题主要考查了由三视图计算几何体的侧面积,属于中档题.5.B解析:B【分析】根据直线、平面间平行、垂直的位置关系判断.【详解】若l ∥α,l ∥β,则α∥β或,αβ相交,A 错;若l ∥α,由线面平行的性质得,知α内存在直线b 使得//l b (过l 作平面与α相交,交线即是平行线),又l ⊥β,∴b β⊥,∴α⊥β,B 正确;若α⊥β,l ⊥α,则不可能有l ⊥β,否则由l ⊥α,l ⊥β,得//αβ,矛盾,C 错; 若α⊥β,l ∥α,则l 与β可能平行,可能在平面内,可能相交也可能垂直,D 错. 故选:B .【点睛】本题考查空间直线、平面间平行与垂直关系的判断,掌握直线、平面间位置关系是解题关键.6.A解析:A 【分析】根据等体积法有11A CDM C A DM V V --=得解. 【详解】画出图形如下图所示,设C 到平面1A DM 的距离为h , 在△1A DM 中115,2,2A M DM a A D a === 1A ∴到DM 的距离为3a则根据等体积法有11A CDM C A DM V V --=,即11113232322a a a a a h ⋅⋅⋅⋅=⋅⋅⋅⋅,解得6h a =, 故选:A.【点睛】本题考查利用等体积法求距离,属于基础题.7.D解析:D 【分析】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,证明平面1//A BGE 平面1B HI ,得到1//B F 面1A BE ,则F 落在线段HI 上,求出11222HI CD a == 【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,1//A B EG ,则1A BEG 四点共面,11//,//EG HI B H A E , 平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上, 正方体1111ABCD A B C D -中的棱长为a , 1122HI CD a ∴==,即F 在侧面11CDD C 上的轨迹的长度是2a . 故选:D .【点睛】本题考查利用线面平行求线段长度,找到动点的运动轨迹是解题的关键,属于基础题.8.B解析:B 【分析】根据三棱锥的体积求出S △ABC 33,在三角形ABC 中,根据余弦定理和正弦定理求出△ABC 外接圆的半径r 的最小值,从而可求出外接球半径的最小值和外接球体积的最小值. 【详解】设AB =c ,BC =a ,AC =b 313×S △ABC ×2,解得S △ABC 33. 因为∠ABC =120°,S △ABC 3312ac sin 120°,所以ac =6, 由余弦定理可得b 2=a 2+c 2-2ac cos 120°=a 2+c 2+ac ≥2ac +ac =3ac =18,当且仅当a =c 时取等号,此时b min =2.设△ABC 外接圆的半径为r ,则sin120b=2r (b 最小,则外接圆半径最小),故3232=2r min ,所以r min =6.如图,设O 1为△ABC 外接圆的圆心,D 为PA 的中点,R 为球的半径,连接O 1A ,O 1O ,OA ,OD ,PO ,易得OO 1=1,R 2=r 2+OO =r 2+1,当r min =6时,2min R =6+1=7,R min =7,故球O 体积的最小值为43π3min R =437)3287. 故选:B 【点睛】本题考查了三棱锥的体积公式,考查了球的体积公式,考查了正弦定理,考查了余弦定理,属于中档题.9.B解析:B 【分析】求出三棱锥A BCD -的外接球半径R ,可知截面面积的最大值为2πR ,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,截面圆的半径的最小值22R OM -,进而可求出截面面积的最小值. 【详解】三棱锥A BCD -是正四面体,棱长为2,将三棱锥A BCD -放置于正方体中, 可得正方体的外接球就是三棱锥A BCD -的外接球. 因为三棱锥A BCD -的棱长为22, 可得外接球直径22226R =++=6R =, 故截面面积的最大值为2263πππ2R ==⎝⎭. 因为M 是BD 上的点,当球心O 到截面的距离最大时,截面面积最小, 此时球心O 到截面的距离为OM ,△OBD 为等腰三角形, 过点O 作BD 的垂线,垂足为H ,222662,122OD OH OD HD ⎛⎫==-=-= ⎪ ⎪⎝⎭, 得222113244OM OH HM =+=+=, 则所得截面半径的最小值为22633444R OM -=-=, 所以截面面积的最小值为233ππ()44=. 故Ω的取值范围为3π3π,42⎡⎤⎢⎥⎣⎦.故选:B. 【点睛】外接球问题与截面问题是近年来的热点问题,平常学习中要多积累,本题考查学生的空间想象能力、推理能力及计算求解能力,属于中档题.10.C解析:C 【分析】根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果. 【详解】对于A ,当m 为α内与n 垂直的直线时,不满足m α⊥,A 错误; 对于B ,设l αβ=,则当m 为α内与l 平行的直线时,//m β,但m α⊂,B 错误; 对于C ,由m β⊥,n β⊥知://m n ,又n α⊥,m α∴⊥,C 正确;对于D ,设l αβ=,则当m 为β内与l 平行的直线时,//m α,D 错误.故选:C . 【点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.11.C解析:C 【分析】作出三棱锥P ABC -的图象,逐一判断各命题,即可求解. 【详解】作出三棱锥P ABC -的图象,如图所示:.对于①,根据题意可知,PD ⊥平面ABC ,且1DP DC ==,所以2PA PB PC ===①正确;对于②,在PAB △中,2PA PB ==02AB <<,所以2cos 222AB PAB PA ⎛∠== ⎝⎭, 即PAB ∠的取值范围是,42ππ⎛⎫⎪⎝⎭,②正确; 对于③,因为DP DA DB DC ===, 所以三棱锥P ABC -外接球的球心为D , 半径为1,其体积为43π,③不正确; 对于④,当AB BC =时,BD AC ⊥,所以2BC =将平面PBC 沿翻折到平面PAC 上, 则DE BE +的最小值为线段BD 的长,在展开后的DCB 中,6045105DCB ∠=+=, 根据余弦定理可得6221221cos1052BD =+-⨯⨯⨯=, ④正确. 故选:C . 【点睛】本题主要考查棱锥的结构特征,三棱锥外接球的体积求法,以及通过展开图求线段和的最小值,意在考查学生的直观想象能力和数学运算能力,属于中档题.12.C解析:C 【分析】取1BB 的中点F ,由题意结合正方体的几何特征及平面几何的知识可得1OD OC ⊥,1OD OF ⊥,由线面垂直的判定与性质可得1OD CF ⊥,进而可得点P 的轨迹为线段CF ,找到1C P 的最大值即可得解.取1BB 的中点F ,连接OF 、1D F 、CF 、1C F ,连接DO 、BO 、OC 、11D B 、1D C ,如图:因为正方体1111ABCD A B C D -的棱长为2, 所以11B F BF ==,2DO BO OC ===11122D B DC ==1BB ⊥平面ABCD ,1BB ⊥平面1111D C B A ,11C D ⊥平面11BB C C ,所以22116OD OD DD =+=223OF OB BF =+=2211113D F D B B F =+=,所以22211OD OF D F +=,22211OD OC D C +=,所以1OD OC ⊥,1OD OF ⊥, 由OCOF O =可得1OD ⊥平面OCF ,所以1OD CF ⊥,所以点P 的轨迹为线段CF , 又221111152C F B C B F C C =+=>=,所以11D C P △面积的最大值1111125522S C F D C =⋅=⨯=. 故选:C. 【点睛】本题考查了正方体几何特征的应用,考查了线面垂直的判定与性质,关键是找到点P 的轨迹,属于中档题.13.A解析:A 【分析】利用平面与平面垂直的判定定理,平面与平面垂直、平行的性质定理判断选项的正误即可.由α,β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊂,知: 在A 中,l β⊥,则αβ⊥,满足平面与平面垂直的判定定理,所以A 正确; 在B 中,若l m ⊥,不能得到l β⊥,也不能得到m α⊥,所以得不到αβ⊥,故B 错误;在C 中,若αβ⊥,则l 与m 可能相交、平行或异面,故C 不正确;在D 中,若//αβ,则由面面平行的性质定理得l β//,不一定有//l m ,也可能异面,故D 错误.故选:A . 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.14.B解析:B 【分析】分别以①②③④作为结论,另外三个作条件,根据线面垂直和面面垂直的判定定理依次判断真假. 【详解】若m n ⊥,αβ⊥,n β⊥,则m 与α可能平行可能相交,即①②③不能推出④; 同理①②④不能推出③;若m n ⊥,n β⊥,m α⊥,两个平面的垂线互相垂直则这两个平面垂直,则αβ⊥,即①③④能够推出②;若αβ⊥,n β⊥,m α⊥,两个平面互相垂直,则这两个平面的垂线互相垂直,即m n ⊥,所以②③④能够推出①. 所以一共两个命题正确. 故选:B 【点睛】此题考查空间直线与平面位置关系的辨析,根据选择的条件推出结论,关键在于熟练掌握空间垂直关系的判定和证明.二、解答题15.(1)证明见解析(2)85【分析】(1)通过证明1//AD MN 可证1//AD 平面EMN ;(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,根据余弦定理计算可得结果. 【详解】(1)连1BC ,1EC ,如图:因为//AB CD ,AB CD =,且11//CD C D ,11CD C D =, 所以11//AB C D ,11AB C D =,所以四边形11ABC D 为平行四边形,所以11//AD BC ,因为M 、N 分别为11B C 、1BB 的中点,所以1//MN BC ,所以1//AD MN , 因为1AD ⊄平面EMN ,MN ⊄平面EMN , 所以1//AD 平面EMN .(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,依题意知12BB =,112EB =,111B C =, 所以22211117444BE BB EB =+=+=,2221111415BC BB B C =+=+=,222111115144EC EB B C =+=+=, 所以2221111cos 2BE BC EC EBC BE BC +-∠==⋅17554417252+-⨯⨯88585=. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.16.(1)证明见解析;(2)43. 【分析】(1)由ABCD 为矩形,易得G 是AC 的中点,又BF ⊥平面ACE ,BC =BE ,则F 是EC 的中点,从而FG ∥AE ,再利用线面平行的判定定理证明.(2)根据AD ⊥平面ABE ,易得AE ⊥BC ,再由BF ⊥平面ACE ,得到AE ⊥BF ,进而得到AE ⊥平面BCE ,然后由C AEB A BCE V V --=求解. 【详解】 (1)如图所示:因为底面ABCD 为矩形,所以AC ,BD 的交点G 是AC 的中点,连接FG , ∵BF ⊥平面ACE ,则CE ⊥BF ,而BC =BE , ∴F 是EC 的中点, ∴FG ∥AE .又AE ⊄平面BFD ,FG ⊂平面BFD , ∴AE ∥平面BFD .(2)∵AD ⊥平面ABE ,AD ∥BC , ∴BC ⊥平面ABE ,则AE ⊥BC . 又BF ⊥平面ACE ,则AE ⊥BF , ∴AE ⊥平面BCE .∴三棱锥C -AEB 的体积11142223323C AEB A BCE BCE V V S AE --⎛⎫==⋅=⨯⨯⨯⨯= ⎪⎝⎭△.【点睛】方法点睛:1、判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). 17.(1)证明见解析;(2)312. 【分析】(1)在图甲中先证AB BD ⊥,在图乙中由面面垂直的性质定理先证AB CD ⊥,由条件可得DC BC ⊥,进而可判定DC ⊥平面AB C ; (2)利用等体积法进行转化计算即可. 【详解】(1)图甲中,∵AB BD =且45A ︒∠=,45ADB ︒∴∠=,()()180180454590ABD ADB A ︒︒︒︒︒∴∠=-∠+∠=-+=,即AB BD ⊥,图乙中,∵平面ABD ⊥平面BDC ,且平面ABD 平面BDC BD =, ∴AB ⊥平面BDC ,又CD ⊂平面BDC ,∴AB CD ⊥, 又90DCB ︒∠=,∴DC BC ⊥,且AB BC B ⋂=, 又AB ,BC ⊂平面AB C ,∴DC ⊥平面AB C ; (2)因为点E ,F 分别是棱AC ,AD 的中点, 所以//EF DC ,且12EF DC =,所以EF ⊥平面ABC , 由(1)知,AB ⊥平面BDC ,又BC ⊂平面BDC ,所以AB BC ⊥,105ADC ︒∠=,45ADB ︒∠=,1054560CDB ADC ADB ︒︒︒∴∠=∠-∠=-=,90906030CBD CDB ︒︒︒︒∴∠=-∠=-=,cos3022BC BD ︒∴=⋅=⨯=1sin 30212DC BD ︒=⋅=⨯=,所以12ABC S AB BC =⨯⨯△12ABE ABC S S ==△△1122EF DC ==,所以111332A BEF F ABE ABE V V EF S --==⋅⋅=⋅=△ 【点睛】方法点睛:计算三棱锥体积时,常用等体积法进行转化,具体的方法为:①换顶点,换底面;②换顶点,不换底面;③不换顶点,换底面.18.(1)证明见解析;(2. 【分析】(1)在直角梯形ABCD 中先求出,,CD CE BE ,然后可求得,DE AE ,从而可证明DE AE ⊥,由线面垂直判定定理证明线面垂直;(2)由(1)得面面垂直,知Q 在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos 3AQ PAQ AP ∠==,设AQ x =(0x <≤-P QDE 的体积,由二次函数知识求得最大值,及此时x 的值,得Q 为AE 中点,从而有//FQ BE ,PBE ∠为异面直线PB 与QF 所成角(或补角),由余弦定理可得.【详解】(1)证明://AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,∴CD ===CD ,∴1CE =,CD =2BE =,由余弦定理得222cos120AE BE AB BE B =+-⋅︒22122222232⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭, 又2222(3)12DE CD CE =+=+=,∴222DE AE AD ,∴AD DE ⊥,∵AP DE ⊥,又AP AE A =,AP AE ⊂、平面APE ,∴DE ⊥平面APE .(2)由(1)DE ⊥平面APE .DE ⊂平面ABCD ,∴平面ABCD ⊥平面PAE ,∴Q 点在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角, 3cos AQ PAQ AP ∠==, 设AQ x =(023x <≤),则2PQ x =,23QE x =-, 12(23)232QDE S x x =⨯⨯-=-△, 212(23)33P QDE QDE V PQ S x x -=⋅=--△22(3)223x =--+≤,当且仅当3x =时等号成立,则当P QDE V -最大时,3AQ =,∴Q 为AE 中点,∵F 为AB 中点,∴//FQ BC ,∴PBE ∠为异面直线PB 与QF 所成角(或补角),1,3QB QE ==,则由PQ ⊥平面ABCD 得3,7PE PB ==,又2BE =,则2227cos 214PB BE PE PBE PB BE +-∠==⋅, ∴异面直线PB 与QF 所成角的余弦值为714.【点睛】本题考查线面垂直的判定定理,考查直线与平面所成的角,异面直线所成的角,三棱锥的体积等,旨在考查学生的空间想象能力,运算求解能力,逻辑推理能力.属于中档题.19.(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点.连结PO ,又因为P 是1DD 的中点,所以1//PO BD .又因为PO ⊂平面PAC ,1BD ⊄平面PAC所以直线1//BD 平面PAC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==212AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30.【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m nm n α=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.20.(1)证明见解析;(2)PA =PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【分析】 (1)根据已知条件,得到BD PA ⊥,再利用正切函数的性质,求得0030,BAC 60ABD ∠=∠=,得到BD AC ⊥,进而可证得平面PBD ⊥平面PAC ;(2)建立空间坐标系,得到()BD =-,()0,2,DP t =-,()2PC t =-,进而得到平面PBD的一个法向量为1,3,n ⎛= ⎝⎭,进而可利用向量的公式求解 【详解】(1)∵PA ⊥平面,ABCD BD ⊂平面ABCD ,∴BD PA ⊥,又tan tan AD BC ABD BAC AB AB∠==∠== ∴0030,BAC 60ABD ∠=∠=,∴090AEB ∠=,即BD AC ⊥(E 为AC 与BD 交点).又PA AC ,∴BD ⊥平面PAC ,又因为BD ⊂平面PBD ,所以,平面PAC ⊥平面PBD(2)如图,以AB 为x 轴,以AD 为y轴,以AP 为z 轴,建立空间坐标系,如图, 设AP t =,则()()()(),,0,2,0,0,0,B C D P t ,则()BD =-,()0,2,t DP =-,()23,6,PC t =-,设平面PBD 法向量为(),,n x y z =, 则00n BD n DP ⎧⋅=⎨⋅=⎩,即2020y y tz ⎧-+=⎪⎨-+=⎪⎩,取1x =,得平面PBD 的一个法向量为1,3,n t ⎛= ⎪ ⎪⎝⎭,所以cos ,48PC n PC n PC n⋅==因为22144515175t t +++=≥,当且仅当t = 所以5c 3353os ,PC n ≤=,记直线PC 与平面PBD 所成角为θ,则sin cos ,PC n θ=,故3sin 5θ≤,即23t =时,直线PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【点睛】关键点睛:解题关键在于利用定义和正切函数的性质,得到BD ⊥平面PAC ,进而证明平面PAC ⊥平面PBD ;以及建立空间直角坐标系,求出法向量,进行求解直线PC 与平面PBD 所成角的最大值,难度属于中档题21.(1)证明见解析;(2)62;(3)E 为CC 1的中点时,EA ⊥EB 1. 【分析】(1)证明11,AB BC BC BC ⊥⊥然后证明1C B ⊥平面ABC ;(2)求出ABC S ,求出13C B =,然后求解三棱柱111ABC A B C -的体积;(3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE ,证明1EB ⊥平面ABE ,得到EA ⊥EB 1.【详解】(1)∵BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C∴AB ⊥BC 1在△BCC 1中,由余弦定理得BC =3,则BC 2+BC 2=CC 2,∴BC ⊥BC 1又∵BC ∩AB =B ,且AB ,BC ⊂平面ABC, ∴C 1B ⊥平面ABC .(2)由已知可得S △ABC =12AB ·BC =12×2×1=22由(1)知C 1B ⊥平面ABC ,C 1B =3,所以三棱柱ABC -A 1B 1C 1的体积V =S △ABC ·C 1B =2×3=62. (3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE .∵EA ⊥1EB ,AB ⊥1EB ,AB ∩AE=A ,AB ,AE ⊂平面ABE ,∴1EB ⊥平面ABE .又∵BE ⊂平面ABE ,∴BE ⊥1EB .不妨设CE =x (0<x <2),则C 1E =2x -,在△BCE 中,由余弦定理得BE =221x x +-在△B 1C 1E 中,∠B 1C 1E =120°,由余弦定理得B 1E 2=257x x -+在Rt △BEB 1中,由B 1E 2+BE 2=B 1B 2,得()()222225714x x x x -+++-=, 解得x =1或x =2(舍去).故E 为CC 1的中点时,EA ⊥EB 1.【点睛】关键点点睛:在确定动点位置时,设CE =x (0<x <2),则C 1E =2x -,根据条件,建立关于x 的方程,求解确定动点位置,属于常用方法.22.(1)答案见解析;(2)11. 【分析】(1)选择①,结合直二面角的定义,证明BD ⊥平面EOA 内的两条相交直线,EO AO ;(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =CO x =,可得EB 关于x 的函数,求出EB 取得最小值时x 的值,连结EM ,作QF EM ⊥于F ,连结BF ,求出sin QBF ∠的值,即可得答案;【详解】解:(1)命题P :若AB AD =,则BD ⊥平面EOA .∵AC GH ⊥,∴AO GH ⊥,EO GH ⊥,又二面角E GH B --的大小为90°,∴90AOE ∠=︒,即EO AO ⊥,∴EO ⊥平面ABCD ,∴EO BD ⊥,又AB BC =,∴AO BD ⊥, AO EO O =,∴BD ⊥平面EOA .(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =设CO x =,OM x =,222216OB OM MB x =+=-+,2222216EB EO OB x =+=-+,当x =min EB =连结EM ,作QF EM ⊥于F ,连结BF ,由(1)知BD ⊥平面EOA ,∴BD QF ⊥,∴QF ⊥平面EBD ,∴QBF ∠即为QB 与平面EBD 所成角,在Rt EMB 中,10EB =,2BM =,6EM =,30AE =, 由()222222(2)22QB AE AB BE QB +=+⇒=, 62QF =, ∴33sin 11QF QBF QB ∠==,即QB 与平面EBD 所成角得正弦值为3311.【点睛】求线面角首先要根据一作、二证、三求找出线面角,然后利用三角函数的知识,求出角的三角函数值即可.23.(1)证明见解析;(2)2. 【详解】(1)取PD 的中点G ,连接NG ,AG ,如图所示:因为G ,N 分别为PD ,PC 的中点,所以//GN CD ,1=2GN CD . 又因为M 为AB 的中点,所以//AM CD ,1=2AM CD . 所以//AM GN ,=AM GN ,四边形AMNG 为平行四边形,所以//AG MN .又因为22213PM PA AM =+=+=22123MC MB BC =+=+= 所以PM MC =,则MN PC ⊥.又因为AD PA =,G 为PD 中点,所以AG PD ⊥.又因为//AG MN ,所以MN PD ⊥.所以MN PD MN PCMN PC PD P ⊥⎧⎪⊥⇒⊥⎨⎪=⎩平面PCD . 又MN ⊂平面MPC ,所以平面MPC ⊥平面PCD .(2)设点B 到平面MNC 的距离为h ,因为B MNC N MBC V V --=,所以111332MNC MBC S h S PA ⋅=⋅△△.因为12MBC S BC MB =⋅⋅=△,112MN AG PD ====,NC ===所以122MNC S MN NC =⋅⋅=△所以1132322h ⨯⨯=⨯2h =. 【点睛】 关键点点睛:本题主要考查了面面垂直的证明和三棱锥的高,属于中档题,其中等体积转化B MNC N MBC V V --=为解决本题的关键.24.(1)证明见解析;(2.【分析】(1)在正方体1111ABCD A B C D -中,易证1,C O BD CO BD ⊥⊥,由线面垂直的判定定理得到BD ⊥平面1C OC ,然后再利用面面垂直的判定定理证明.(2)由(1)知BD ⊥平面1C OC ,且平面1C BD ⋂平面CBD BD =,得到1C OC ∠是二面角1C BD C --的平面角 ,然后在1Rt C OC ∆中求解.【详解】(1)∵在正方体1111ABCD A B C D -中, 点O 是BD 中点 ,又11BC DC = , BC DC = ,∴ 1,C O BD CO BD ⊥⊥11,C O CO O C O =⊂平面1,C OC CO ⊂平面1C OC ,BD ∴⊥平面1C OC ,又∵BD ⊂平面11BDD B ,∴平面11BDD B ⊥平面1C OC .…(2)由(1)知:平面1C BD ⋂平面CBD BD =,11,C O BD C O ⊥⊂半平面1;,C BD CO BD CO ⊥⊂ 半平面;CBD所以1C OC ∠是二面角1C BD C --的平面角则在正方体1111ABCD A B C D -中121,2C C OC ==∴在1Rt C OC ∆中,11tan 2C C C OC OC∠== 故二面角1C BD C --的正切值为2 .【点睛】本题主要考查线面垂直,面面垂直的判定定理以及二面角的求法,还考查了逻辑推理和运算求解的能力,属于中档题. 25.(1)见解析(2)见解析【分析】(1)连接A 1C 交AC 1于O ,连接OD ,利用线面平行的性质定理和中位线的定义,即可证明D 为BC 的中点;(2)由等腰三角形的性质和面面垂直的性质定理,证明AD ⊥C 1D 即可.【详解】证明:(1) 联结1A C 交1AC 于O ,联结OD .∵四边形11ACC A 是棱柱的侧面, ∴四边形11ACC A 是平行四边形.∵O 为平行四边形11ACC A 对角线的交点, ∴O 为1A C 的中点.∵1A B 平面1AC D ,平面1A BC ⋂平面1AC D OD =,1A B ⊂平面1A BC ,∴1A B OD∴OD 为1A BC ∆的中位线, ∴D 为BC 的中点.(2)∵AB AC =,D 为BC 的中点,∴AD BC ⊥.∵平面ABC ⊥平面11BCC B ,AD ⊂平面ABC ,平面ABC平面11BCC B BC =,∴AD ⊥平面11BCC B .∵1C D ⊂平面11BCC B ,∴AD ⊥ 1C D ,∴1AC D ∆为直角三角形.【点睛】本题考查线面平行的性质定理和面面垂直的性质定理的应用.26.(1)证明见解析;(2)证明见解析.【分析】(1)若要证BF //平面PAD ,只要BF 所在面和平面PAD 平行即可;(2)若要证平面BEF ⊥平面PCD ,只要证平面PCD 内的一条直线和平面BEF 垂直即可.【详解】(1)∵AB CD ∥,2CD AB =,E 是CD 的中点, ∴AB DE ,即ABED 是平行四边形.∴BE AD .∵BE ⊄平面,PAD AD ⊄平面PAD , ∴BE 平面PAD ,又EF PD ,EF ⊄平面PAD ,PD ⊂平面PAD , ∴EF 平面PAD ,EF ,BE ⊂平面BEF ,且EFBE E =,∴平面BEF 平面PAD . ∵BF ⊂平面BEF ,∴BF ∥平面PAD .(2)由题意,平面PAD ⊥平面ABCD ,且两平面交线为AD ,CD ⊂平面ABCD ,CD AD ⊥,∴CD ⊥平面PAD .∴CD PD ⊥.∴CD EF ⊥.又CD BE ⊥,BE ,EF ⊂平面BEF ,且EE EF E ⋂=,∴CD ⊥平面BEF .∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .【点睛】本题考查了线面平行和面面垂直的证明,解决此类问题的关键是能利用线面关系的定理和性质进行逻辑推理,往往使用逆推法进行证明,需要较强的空间感和空间预判,属于较难题.。
人教版高中数学必修第二册第三单元《立体几何初步》测试卷(含答案解析)
一、选择题1.设m ,n 是两条异面直线,下列命题中正确的是( )A .过m 且与n 平行的平面有且只有一个B .过m 且与n 垂直的平面有且只有一个C .m 与n 所成的角的范围是()0,πD .过空间一点P 与m 、n 均平行的平面有且只有一个2.在四面体S ABC -中,SA ⊥平面ABC ,9021ABC SA AC AB ︒∠====,,,则该四面体的外接球的表面积为( )A .23πB .43πC .4πD .5π3.球面上有,,,A B C D 四个点,若,,AB AC AD 两两垂直,且4AB AC AD ===,则该球的表面积为( )A .803πB .32πC .42πD .48π 4.如图,梯形ABCD 中,AD ∥BC ,1AD AB ==,AD AB ⊥,45BCD ∠= ,将ABD ∆沿对角线BD 折起.设折起后点A 的位置为A ',并且平面A BD '⊥平面BCD . 给出下面四个命题: ①A D BC '⊥;②三棱锥A BCD '-的体积为22; ③CD ⊥平面A BD ';④平面A BC '⊥平面A DC '.其中正确命题的序号是( )A .①②B .③④C .①③D .②④ 5.如图所示,AB 是⊙O 的直径,VA 垂直于⊙O 所在的平面,点C 是圆周上不同于A ,B 的任意一点,M ,N 分别为VA ,VC 的中点,则下列结论正确的是( )A .MN //AB B .MN 与BC 所成的角为45°C .OC ⊥平面VACD .平面VAC ⊥平面VBC 6.已知m ,n 是不重合的直线,α,β是不重合的平面,则下列说法中正确的是( ) A .若m ⊂α,n ⊂α,则//m nB .若//m α,//m β,则//αβC .若n αβ=,//m n ,则//m α且//m βD .若m α⊥,m β⊥,则//αβ7.如图,在长方体1111ABCD A B C D -中,13,2,4AA AB AD ===,点M 是棱AD 的中点,点N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内的一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .[3,17]B .[2,3]C .[6,22]D .[17,5] 8.已知平面α与平面β相交,直线m ⊥α,则( )A .β内必存在直线与m 平行,且存在直线与m 垂直B .β内不一定存在直线与m 平行,不一定存在直线与m 垂直C .β内必存在直线与m 平行,不一定存在直线与m 垂直D .β内不一定存在直线与m 平行,但必存在直线与m 垂直9.某几何体的三视图如图所示(单位:cm ),则该几何体的侧面积(单位:2cm )是( )A .10B .105+C .1625+D .135+10.如图,在长方体1111ABCD A B C D -中,若,,,EFGH 分别是棱111111,,,A B BB CC C D 的中点,则必有( )A .1//BD GHB .//BD EFC .平面//EFGH 平面ABCDD .平面//EFGH 平面11A BCD11.已知三棱锥A BCD -中,侧面ABC ⊥底面BCD ,ABC 是边长为3的正三角形,BCD 是直角三角形,且90BCD ∠=︒,2CD =,则此三棱锥外接球的体积等于( )A .43πB .323πC .12πD .643π 12.在长方体1111ABCD A B C D -中,P 为BD 上任意一点,则一定有( ) A .1PC 与1AA 异面B .1PC 与1A C 垂直 C .1PC 与平面11ABD 相交 D .1PC 与平面11AB D 平行13.如图是正方体的展开图,则在这个正方体中:①AF 与CN 是异面直线; ②BM 与AN 平行; ③AF 与BM 成60角; ④BN 与DE 平行. 以上四个命题中,正确命题的序号是( )A .①②③B .②④C .③④D .②③④ 14.已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行截面间的距离是( )A .1B .2C .1或7D .2或6二、解答题15.如图,圆柱的轴截面ABCD 是正方形,点E 是底面圆周上异于,A B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 16.如图,在四棱锥P ABCD -中,底面ABCD 为正方形, PA ⊥底面ABCD ,2AB AP ==,E 为棱PD 的中点.(Ⅰ)求证CD AE ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值;(Ⅲ)求点A 到平面PBD 的距离.17.如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 平面1ABB 所成的角的正弦值.18.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.19.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD 为等边三角形,平面PAC ⊥平面PCD ,,3,5PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证://GH 平面PAD ;(2)求证:PA ⊥平面PCD ;(3)求三棱锥-D PAC 的体积.20.如图,在斜三棱柱111ABC A B C -中,点O .E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,AO ⊥平111A B C .已知90BCA ∠=︒,12AA AC BC ===.(1)求证://EF 平面11BB C C ;(2)求11A C 与平面11AA B 所成角的正弦值.21.如图,在直三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 是CC 1上的中点,且BC =1,BB 1=2.(1)证明:B 1E ⊥平面ABE ;(2)若三棱锥A -BEA 1的体积是33,求异面直线AB 和A 1C 1所成角的大小. 22.如图,在四棱锥P ABCD -中,ABCD 为菱形,PA ⊥平面ABCD ,连接AC ,BD 交于点O ,6AC =,8BD =,E 是棱PC 上的动点,连接DE .(1)求证:平面BDE ⊥平面PAC ;(2)当BED 面积的最小值是6时,求此时点E 到底面ABCD 的距离.23.如图,在三棱锥D -ABC 中,已知△BCD 是正三角形,AB ⊥平面BCD ,AB =BC =a ,E 为BC 中点,F 在棱AC 上,且AF =3FC .(1)求三棱锥D -ABC 的体积;(2)求证:AC ⊥平面DEF ;(3)若M 为DB 中点,N 在棱AC 上,且3,8CN CA =求证:MN //平面DEF . 24.如图,在平行四边形ABCD 中,4AB =,60DAB ∠=︒.点G ,H 分别在边CD ,CB 上,点G 与点C ,D 不重合,GH AC ⊥,GH 与AC 相交于点O ,沿GH 将CGH 翻折到EGH 的位置,使二面角E GH B --为90°,F 是AE 的中点.(1)请在下面两个条件:①AB AD =,②AB BD ⊥中选择一个填在横线处,使命题P :若________,则BD ⊥平面EOA 成立,并证明.(2)在(1)的前提下,当EB 取最小值时,求直线BF 与平面EBD 所成角的正弦值. 25.如图,四边形ABCD 是正方形,MA ⊥平面ABCD ,//MA PB ,且2PB AB ==.(1)求证://DM 平面PBC ;(2)求点C 到平面 APD 的距离. 26.如图所示,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,过E 点作EF PB ⊥交PB 于点F .求证:(1)//PA 平面EDB ;(2)PB ⊥平面EFD .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】在A 中,过m 上一点作n 的平行线,只能作一条l ,l 与m 是相交关系,故确定一平面与n 平行;在B 中,只有当m 与n 垂直时才能;在C 中,两异面直线所成的角的范围是0,2π⎛⎫ ⎪⎝⎭; 在D 中,当点P 与m ,n 中一条确定的平面与另一条直线平行时,满足条件的平面就不存在.【详解】在A 中,过m 上一点P 作n 的平行直线l ,m l P ⋂=,由公理三的推论可得m 与l 确定唯一的平面α,l ⊂α,n ⊄α,故//n α.故A 正确.在B 中,设过m 的平面为β,若n ⊥β,则n ⊥m ,故若m 与n 不垂直,则不存在过m 的平面β与n 垂直,故B 不正确. 在C 中,根据异面直线所成角的定义可知,两异面直线所成的角的范围是0,2π⎛⎫ ⎪⎝⎭,故C 不正确.在D 中,当点P 与m ,n 中一条确定的平面与另一条直线平行时,满足条件的平面就不存在,故D 不正确.故选:A .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于中档题.2.C解析:C【分析】根据题目条件先确定出外接球的球心,得出外接球半径,然后计算表面积.【详解】因为SA ⊥平面ABC ,BC ⊂平面ABC ,所以SA ⊥BC ,又90ABC ∠=,SA AB A ⋂=,且AB平面SAB ,SA ⊂平面SAB , 所以BC ⊥平面ABC ,所以BC SB ⊥. 因为21SA AC AB ===,,所以2SC =,3SB =,1BC =,根据该几何体的特点可知,该四面体的外接球球心位于SC 的中点,则外接球半径112R SC ==, 故该四面体的外接球的表面积为244R ππ=.故选:C.,【点睛】本题考查棱锥的外接球问题,难度一般,根据几何条件确定出球心是关键.3.D解析:D【分析】分析:首先求得外接球半径,然后求解其表面积即可.详解:由题意可知,该球是一个棱长为4的正方体的外接球,设球的半径为R ,由题意可得:()22222444R =++,据此可得:212R =,外接球的表面积为:2441248S R πππ==⨯=.本题选择D 选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.4.B解析:B【分析】利用折叠前四边形ABCD 中的性质与数量关系,可证出BD DC ⊥,然后结合平面A BD ' ⊥平面BCD ,可得CD ⊥平面A BD ',从而可判断①③;三棱锥'A BCD -的体积为1132⋅=,可判断②;因为CD ⊥平面A BD ',从而证明CD A B '⊥,再证明'A B ⊥平面A DC ',然后利用线面垂直证明面面垂直.【详解】①90,BAD AD AB ︒∠==,45ADB ABD ︒∴∠=∠=,//,45AD BC BCD ︒∠=,BD DC ∴⊥,平面A BD ' ⊥平面BCD ,且平面A BD '平面BCD BD =, CD 平面A BD ',A D '⊂平面A BD ',CD A D '∴⊥,若A D BC '⊥则A D '⊥面BCD ,则A D '⊥BD ,显然不成立, 故A D BC '⊥不成立,故①错误;②棱锥'A BCD -的体积为1132⋅=,故②错误; ③由①知CD ⊥平面A BD ',故③正确;④由①知CD ⊥平面A BD ',又A B '⊂平面A BD ',CD A B '∴⊥, 又A B A D ''⊥,且'A D 、CD ⊂平面A DC ',A D CD D '=,A B '∴⊥平面A DC ',又A B '⊂平面'A BC ,∴平面'A BC ⊥平面A DC ',故④正确.故选:B .【点睛】本题通过折叠性问题,考查了面面垂直的性质,面面垂直的判定,考查了体积的计算,关键是利用好直线与平面、平面与平面垂直关系的转化,也要注意利用折叠前后四边形ABCD 中的性质与数量关系.5.D解析:D【分析】由中位线性质,平移异面直线即可判断MN 不与AB 平行,根据异面直线平面角知MN 与BC 所成的角为90°,应用反证知OC 不与平面VAC 垂直,由面面垂直的判定知面VAC ⊥面VBC ,即可知正确选项.【详解】M ,N 分别为VA ,VC 的中点,在△VAC 中有//MN AC ,在面ABC 中AB AC A =,MN 不与AB 平行;AC BC C =,知:MN 与BC 所成的角为90BCA ∠=︒;因为OC ⋂面VAC C =,OC 与平面内交线,AC VC 都不垂直,OC 不与平面VAC 垂直; 由VA ⊥面ABC ,BC ⊂面ABC 即VA BC ⊥,而90BCA ∠=︒知AC BC ⊥,AC VA A ⋂=有BC ⊥面VAC ,又BC ⊂面VBC ,所以面VAC ⊥面VBC ;故选:D【点睛】本题考查了异面直线的位置关系、夹角,以及线面垂直的性质,面面垂直判定的应用,属于基础题.6.D解析:D【分析】由空间中直线与直线、直线与平面位置关系的判定逐一分析四个选项得答案.【详解】对于A ,若m ⊂α,n ⊂α,则//m n 或m 与n 相交,故A 错误;对于B ,若//m α,//m β,则//αβ或α与β相交,故B 错误;对于C ,若n αβ=,//m n ,则//m α且//m β错误,m 有可能在α或β内; 对于D ,若m α⊥,m β⊥,则//αβ,故D 正确,故选:D.【点睛】本题考查空间中直线与直线、直线与平面位置关系的判定及其应用,考查空间想象能力与思维能力,属于中档题.7.C解析:C【分析】首先找出过点1C 且与平面CMN 平行的平面,然后可知点P 的轨迹即为该平面与侧面四边形11ADD A 的交线段,进而可以利用解三角形的知识求出线段1C P 长度的取值范围.【详解】如图所示:,取11A D 的中点G ,取MD 的中点E ,1A G 的中点F ,1D D 的三等分点H 靠近D ,并连接起来.由题意可知1//C G CM ,//GH MN ,所以平面1//C GH 平面CMN .即当点P 在线段GH 上时,1//C P 平面CMN .在1H C G 中,2212222C G =+=,2212222C H =+=,22GH =, 所以1H C G 为等边三角形,取GH 的中点O ,122sin606C O ==,故线段1C P 长度的取值范围是[6,22].故选:C .【点睛】本题主要考查线面平行,面面平行的判定定理和性质定理的应用,以及解三角形,意在考查学生的逻辑推理能力和数学运算能力,属于中档题.8.D解析:D【分析】可在正方体中选择两个相交平面,再选择由顶点构成且与其中一个面垂直的直线,通过变化直线的位置可得正确的选项.【详解】如图,平面ABCD 平面11D C BA AB =,1BB ⊥平面ABCD ,但平面11D C BA 内无直线与1BB 平行,故A 错.又设平面α平面l β=,则l α⊂,因m α⊥,故m l ⊥,故B 、C 错,综上,选D .【点睛】本题考察线、面的位置关系,此种类型问题是易错题,可选择合适的几何体去构造符合条件的点、线、面的位置关系或不符合条件的反例.9.B解析:B【分析】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,由矩形的面积公式得出该几何体的侧面积.【详解】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,如下图所示2211125AD A D ==+=∴该几何体的侧面积为122222521025⨯+⨯+⨯=+故选:B【点睛】本题主要考查了由三视图计算几何体的侧面积,属于中档题.10.D解析:D【分析】根据“过直线外一点有且只有一条直线与已知直线平行”来判断AB 选项的正确性,根据平行直线的性质判断C 选项的正确性,根据面面平行的判定定理判断D 选项的正确性.【详解】选项A:由中位线定理可知:1//GH D C ,因为过直线外一点有且只有一条直线与已知直线平行,所以1,BD GH 不可能互相平行,故A 选项是错误的;选项B: 由中位线定理可知:1//EF A B ,因为过直线外一点有且只有一条直线与已知直线平行,所以,BD EF 不可能互相平行,故B 选项是错误的;选项C: 由中位线定理可知:1//EF A B ,而直线1A B 与平面ABCD 相交,故直线EF 与平面ABCD 也相交,故平面EFGH 与平面ABCD 相交,故C 选项是错误的;选项D:由三角形中位线定理可知:111//,//EF A B EH A D ,EF ⊄平面11A BCD ,1A B ⊂平面11A BCD ,EH ⊄平面11A BCD ,11A D ⊂平面11A BCD ,所以有//EF 平面11A BCD ,//EH 平面11A BCD ,而EF EH E =,因此平面//EFGH 平面11A BCD .所以D 选项正确.故本选:D【点睛】本小题主要考查面面平行的判定定理,考查线线平行的性质,属于中档题.11.B解析:B【分析】把三棱锥放入长方体中,根据长方体的结构特征求出三棱锥外接球的半径,再计算三棱锥外接球的体积.【详解】三棱锥A BCD -中,侧面ABC ⊥底面BCD ,把该三棱锥放入长方体中,如图所示;且333AM AB == 设三棱锥外接球的球心为O ,则2233333AG AM ===112OG CD ==, 所以三棱锥外接球的半径为22221(3)2R OA OG AG =+=+=, 所以三棱锥外接球的体积为3344232333R V πππ===.故选:B .【点睛】本题考查了三棱锥外接球的体积计算问题,也考查了数形结合与转化思想,是中档题. 12.D解析:D【分析】取P 为BD 的中点可判断A 、B 、C 选项的正误;证明平面1//BC D 平面11AB D ,可判断D 选项的正误.【详解】如下图所示:对于A 选项,当点P 为BD 的中点时,1PC ⊂平面11AAC C ,则直线1PC 与1AA 相交,A 选项错误;对于B 选项,当点P 为BD 的中点时,1AC P ∠为锐角,1PC 与1A C 不垂直,B 选项错误;对于C 选项,当点P 为BD 的中点时,连接11A C 、11B D 交于点O ,则O 为11A C 的中点, 在长方体1111ABCD A B C D -中,11//AA CC 且11AA CC =,则四边形11AAC C 为平行四边形,11//AC AC ∴且11AC A C =, O 、P 分别为11A C 、AC 的中点,则1//AP OC 且1AP OC =,∴四边形1OAPC 为平行四边形,1//PC AO ∴,AO ⊂平面11AB D ,1PC ⊄平面11AB D ,1//PC ∴平面11AB D ,C 选项错误;对于D 选项,在长方体1111ABCD A B C D -中,11//BB DD 且11BB DD =,则四边形11BB D D 为平行四边形,11//BD B D ∴,BD ∴⊄平面11AB D ,11B D ⊂平面11AB D ,//BD ∴平面11AB D ,同理可证1//BC 平面11AB D ,1BD BC B ⋂=,∴平面1//BC D 平面11AB D ,1PC ⊂平面1BC D ,1//PC ∴平面11AB D .D 选项正确.故选:D.【点睛】本题考查空间中直线与直线、直线与平面位置关系的判断,考查推理能力,属于中等题. 13.A解析:A【分析】将正方体的展开图还原为正方体ABCD -EFMN ,对选项逐一判断,即得答案.【详解】将正方体的展开图还原为正方体ABCD -EFMN ,如图所示可得:AF 与CN 是异面直线,故①正确;连接AN ,则BM 与AN 平行,故②正确;//,BM AN NAF ∴∠是异面直线AF 与BM 所成的角,NAF 为等边三角形,60NAF ∴∠=,故③正确; BN 与DE 是异面直线,故④错误.故选:A .【点睛】本题考查空间两直线的位置关系,属于基础题.14.C解析:C【分析】求出两个平行截面圆的半径,由勾股定理求出球心到两个截面的距离.分两个平行截面在球心的同侧和两侧讨论,即得两平行截面间的距离.【详解】设两平行截面圆的半径分别为12,r r ,则121226,28,3,4r r r r ππππ==∴==.∴球心到两个截面的距离分别为222212534,543d d =-==-=.当两个平行截面在球心的同侧时,两平行截面间的距离为12431d d -=-=;当两个平行截面在球心的两侧时,两平行截面间的距离为12437d d +=+=.故选:C .【点睛】本题考查球的截面间的距离,属于基础题.二、解答题15.(1)详见解析;(2【分析】(1)要证明线线垂直,需证明线面垂直,根据题中所给的垂直关系,证明AF ⊥平面DEB ;(2)首先确定点E 的位置,再根据等体积转化求点到平面的距离.【详解】(1)由圆柱性质可知,DA ⊥平面ABE ,EB ⊂平面AEB ,DA EB ∴⊥, AB 是圆柱底面的直径,点E 在圆周上,AE EB ∴⊥,又AE DA A ⋂=,BE ∴⊥平面DAE ,AF ⊂平面DAE ,EB AF ∴⊥,又AF DE ⊥,且EB DE E =,AF ∴⊥平面DEB ,DB ⊂平面DEB ,AF DB ∴⊥;(2)13D AEB AEB V S DA -=⨯⨯,3DA =, 当D AEB V -最大时,即AEB S 最大,即AEB △是等腰直角三角形时,2DA AB ==∵,BE ∴=DE ==,并且点E 到平面ABCD 的距离就是点E 到直线AB 的距离112AB =, 设点C 到平面EBD 的距离为h ,则11112213232C DBE E CBD V V h --==⨯=⨯⨯⨯⨯,解得:h =【点睛】方法点睛:本题重点考查垂直关系,不管证明面面垂直还是证明线面垂直,关键都需转化为证明线线垂直,一般证明线线垂直的方法包含1.矩形,直角三角形等,2.等腰三角形,底边中线,高重合,3.菱形对角线互相垂直,4.线面垂直,线线垂直.16.(Ⅰ)证明见解析;(Ⅱ;(Ⅲ【分析】(Ⅰ)根据PA ⊥底面ABCD ,PA ⊥CD ,再由底面ABCD 为正方形,利用线面垂直的判定定理证得CD PAD ⊥面即可.(Ⅱ)以点A 为原点建立空间直角坐标系,不妨设2AB AP ==,求得向量AE 的坐标,和平面PBD 的一个法向量(,,)n x y z =, 由cos ,AEn AE n AE n ⋅=⋅求解.(Ⅲ)利用空间向量法,由AE n d n ⋅=求解.【详解】 (Ⅰ)证明:因为PA ⊥底面ABCD ,所以PA ⊥CD ,因为AD CD ⊥,PA AD A ⋂=所以CD PAD ⊥面.因为AE PAD ⊂面,所以CD AE ⊥.(Ⅱ)依题意,以点A 为原点建立空间直角坐标系(如图),不妨设2AB AP ==,可得()()()()2,0,0,2,2,0,0,2,0,0,0,2B C D P ,由E 为棱PD 的中点,得(0,1,1)E . (0,1,1)AE =,向量(2,2,0)BD =-,(2,0,2)PB =-.设平面PBD 的一个法向量(,,)n x y z =,则00n BD n PB ⎧⋅=⎨⋅=⎩,即220220x y x z -+=⎧⎨-=⎩, 令y=1,可得n =(1,1,1),所以 6cos ,3AE nAE n AE n ⋅==⋅. 所以直线AE 与平面PBD 所成角的正弦值为3. (Ⅲ)由(Ⅱ)知:(0,1,1)AE =,平面PBD 的一个法向量n =(1,1,1), 所以点A 到平面PBD 的距离 33AE n d n ⋅===. 【点睛】方法点睛:利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.17.(1)证明见解析;(2. 【分析】(1)由已知条件可得2221111A B AB AA +=,2221111AB B C AC +=,则111AB A B ⊥,111AB B C ⊥,再利用线面垂直的判定定理可证得结论;(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD ,可证得1C D ⊥平面1ABB ,从而1C AD ∠是1AC 与平面1ABB 所成的角,然后在1Rt C AD 求解即可【详解】(1)证明: 由2AB =,14AA =,12BB =,1AA AB ⊥,1BB AB ⊥得111AB A B ==,所以2221111A B AB AA +=,由111AB A B ⊥.由2BC =,12BB =,11CC =,1BB BC ⊥,1CC BC ⊥得11B C =, 由2AB BC ==,120ABC ∠=︒得AC =由1CC AC ⊥,得1AC =,所以2221111AB B C AC +=,故111AB B C ⊥,又11111A B B C B =,因此1AB ⊥平面111A B C .(2)解 如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD .由1AB ⊥平面111A B C ,1AB ⊂平面1ABB ,得平面111A B C ⊥平面1ABB ,由111C D A B ⊥,得1C D ⊥平面1ABB ,所以1C AD ∠是1AC 与平面1ABB 所成的角. 由115B C =,1122AB =,1121AC =得1116cos 7C A B ∠=,111sin 7C A B ∠=, 所以13CD =,故11139sin C D C AC AD ∠==. 因此,直线1AC 与平面1ABB 所成的角的正弦值是3913.【点睛】关键点点睛:此题考查线面垂直的判定和线面角的求法,解题的关键是通过过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD ,然后结合条件可证得1C AD ∠是1AC 与平面1ABB 所成的角,从而在三角形中求解即可,考查推理能力和计算能力,属于中档题 18.(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点.连结PO ,又因为P 是1DD 的中点,所以1//PO BD .又因为PO ⊂平面PAC ,1BD ⊄平面PAC所以直线1//BD 平面PAC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==212AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒ 故异面直线1BD 与AP 所成角的大小为30. 【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m n m nα=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.19.(1)证明见解析;(2)证明见解析;(3)33【分析】(1)通过证明//GH PD 来证得//GH 平面PAD .(2)取PC 的中点M ,连接DM ,根据面面垂直的性质定理证得DM ⊥平面PAC ,由此证得DM PA ⊥,结合PA CD ⊥证得PA ⊥平面PCD . (3)利用D PAC A PCD V V --=求得三棱锥-D PAC 的体积. 【详解】(1)连BD ,则H 为BD 中点,因为G 为BP 中点,故GH //PD , 由于GH ⊂/平面PAD ,PD ⊂平面PAD ,所以GH //平面PAD .(2)取PC 中点M ,连DM ,则DM PC ⊥,因为PCD ⊥平面PAD ,则DM ⊥平面PAC ,所以DM PA ⊥, 又PA CD ⊥,DMCD D =,所以PA ⊥平面PCD .(3)因为PA ⊥平面PCD ,所以PA PD ⊥,所以224PA AD PD =-=,21343333D PAC A PCD V V --==⨯⨯⨯=.【点睛】要证明线面平行,则先证线线平行.要证明线面垂直,可通过面面、线线垂直相互转化来证明.20.(1)证明见解析;(2)217. 【分析】(1)由题意可得11//OE B C ,1//OF C C ,利用面面平行的判定定理可得平面//OEF 平面11BB C C ,由面面平行的性质定理即可证明.(2)利用等体法111112A A B C C AA B V V --=,求出点1C 到平面11AA B 的距离2217d =,由11sin dA C θ=即可求解. 【详解】证明:(1)∵O ,E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F , ∴11//OE B C ,1//OF C C ,1111B C C C C ⋂=,//OE ∴平面11B C C ,//OF ∴平面11B C C ,又OE OF O ⋂=,∴平面//OEF 平面11BB C C ,∵EF ⊂平面OEF ,∴//EF 平面11BB C C . (2)解:设点1C 到平面11AA B 的距离为d , ∵111112A A B C C AA B V V --=, ∴111111111323AA B AC B C AO S d ⨯⨯⨯⨯=⨯⨯,22113AO AA AO =-=2211115OB B C OC =-= 221122AB AO OB =+=,∵11AA B 中,11122A B AB ==,12AA =,∴117AA B S =∴1112237323d ⨯⨯⨯=, 解得217d =, 设11A C 与平面11AA B 所成角为θ,∴11A C 与平面11AA B 所成角的正弦值为:1121sin 7d AC θ==. 【点睛】方法点睛:证明线面平行的常用方法: (1)利用线面平行的定义(无公共点). (2)利用线面平行的判定定理. (3)利用面面平行的性质. 21.(1)证明见解析;(2)30. 【分析】(1)由AB ⊥侧面BB 1C 1C 可得1AB B E ⊥,由勾股定理可得1BE B E ⊥,即可证明;(2)由11//A B AB 可得111C A B ∠即为异面直线AB 和A 1C 1所成角,由等体积法可求得AB 长度,即可求出角的大小. 【详解】 (1)AB ⊥侧面BB 1C 1C ,1B E ⊂侧面BB 1C 1C ,1AB B E ∴⊥,BC =1,BB 1=2,E 是CC 1上的中点,1BE B E ∴=22211BE B E BB +=,1BE B E ∴⊥,AB BE B ⋂=,∴B 1E ⊥平面ABE ;(2)11//A B AB ,111C A B ∴∠即为异面直线AB 和A 1C 1所成角,且1A 到平面ABE 的距离等于1B 到平面ABE 的距离,由(1)B 1E ⊥平面ABE ,故B 1E 的长度即为1B 到平面ABE 的距离, 由AB ⊥侧面BB 1C 1C 可得AB ⊥BE ,则111111332A BEA A ABE ABE V V S B E AB --==⋅=⨯⨯=,解得AB =则11A B AB == 在111Rt A B C △中,1111111tan 3B C C A B A B ∠===,11130A C B ∴∠=, 即异面直线AB 和A 1C 1所成角为30. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角. 22.(1)证明见解析;(2)4. 【分析】(1)根据线面垂直的判定定理可证得BD ⊥平面PAC ,再由面面垂直的判定定理可得证.(2)由(1)知BD ⊥平面PAC ,根据三角形的面积公式求得()min 32OE =,作//EH PA 交AC 于H ,可得EH ⊥平面ABCD ,从而求得点E 到底面ABCD 的距离.【详解】(1)证明:∵四边形ABCD 是菱形,∴AC BD ⊥.PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA BD ⊥.又PA AC A =,∴BD ⊥平面PAC ,又BD ⊂平面BDE ,∴平面BDE ⊥平面PAC .(2)解:如图(1),连接OE ,由(1)知BD ⊥平面PAC ,OE ⊂平面PAC .BD OE ∴⊥.∵8BD =,由()min 162BDE S BD OE =⋅⋅=△,得()min 32OE =,∵当OE PC ⊥时,OE 取到最小值32,此时2222333322CE OC OE ⎛⎫=-=-= ⎪⎝⎭. 作//EH PA 交AC 于H ,∵PA ⊥平面ABCD ,∴EH ⊥平面ABCD , 如图(2),由33OE CE EH OC ⋅==,得点E 到底面ABCD 的距离33.【点睛】本题考查线面垂直的判定和面面垂直的判定定理,以及求点到面的距离,关键在于逐一满足判定定理所需的条件,在求点到面的距离时,可以采用几何法,由题目的条件直接过已知点作出面的垂线,运用求解三角形的知识,求点到面的距离,属于中档题. 23.(133a ;(2)证明见解析;(3)证明见解析. 【分析】(1)根据三棱锥的体积公式计算;(2)证明AC 与EF 和DF 垂直,然后可得线面垂直;(3)连接CM 交DE 于点H ,证明//MN FH 即可得线面平行. 【详解】(1)由题意234BCD S a =△,231133·33D ABC A DBC DBCV V SAB a --===⨯=; (2)由AB ⊥平面BCD ,得,AB BC AB BD ⊥⊥,AB BC a ==,则2AC AD a ==,如图,在ADC 中,取CD 中点G ,连接AG ,则AG DC ⊥,∵3AF FC =,∴24CF a=,又12CG a =, ∴CF CDCG CA =,C ∠公用,∴CDF ∽CAG ,∴90CFD CGA ∠=∠=︒,即AC DF ⊥,取AC 中点K ,连接BK ,则BK AC ⊥, 又由3AF FC =得12CF CK =,而12CE CB =,∴//EF BK ,∴EF AC ⊥,EF DF F =,∴AC ⊥平面DEF ;(3)连接CM 交DE 于点H ,∵,M E 分别是,BD BC 中点,∴H 是DBC △的重心,23CH CM =, 又38CN AC =,14CF AC =,∴23CF CN =,即CF CH CN CM =, ∴//HF MN ,HF ⊂平面DEF ,MN ⊄平面DEF ,∴//MN 平面DEF .【点睛】关键点点睛:本题考查求棱锥的体积,考查证明线在垂直与线面平行,掌握线面平行与垂直的判定定理是解题关键.证明时定理的条件缺一不可,一般都需一一证明列举出来,才能得出相应的结论. 24.(1)答案见解析;(2)3311. 【分析】(1)选择①,结合直二面角的定义,证明BD ⊥平面EOA 内的两条相交直线,EO AO ; (2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则43AC =CO x =,可得EB 关于x 的函数,求出EB 取得最小值时x 的值,连结EM ,作QF EM ⊥于F ,连结BF ,求出sin QBF ∠的值,即可得答案; 【详解】解:(1)命题P :若AB AD =,则BD ⊥平面EOA . ∵AC GH ⊥,∴AO GH ⊥,EO GH ⊥, 又二面角E GH B --的大小为90°, ∴90AOE ∠=︒,即EO AO ⊥, ∴EO ⊥平面ABCD , ∴EO BD ⊥,又AB BC =,∴AO BD ⊥,AO EO O =,∴BD ⊥平面EOA .(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则43AC =, 设CO x =,23OM x =-,22224316OB OM MB x x =+=-+,222224316EB EO OB x x =+=-+,当3x =,min 10EB =,连结EM ,作QF EM ⊥于F ,连结BF , 由(1)知BD ⊥平面EOA , ∴BD QF ⊥,∴QF ⊥平面EBD , ∴QBF ∠即为QB 与平面EBD 所成角, 在Rt EMB 中,10EB =,2BM =,6EM =,30AE =,由()222222(2)22QB AE AB BE QB +=+⇒=, 6QF =, ∴33sin 11QF QBF QB ∠==,即QB 与平面EBD 所成角得正弦值为3311.【点睛】求线面角首先要根据一作、二证、三求找出线面角,然后利用三角函数的知识,求出角的三角函数值即可.25.(1)证明见解析;(22. 【分析】(Ⅰ)利用面面平行的判定定理证明平面//AMD 平面BPC ,再利用面面平行的性质定理即可证明//DM 平面PBC ;(2)先证明AD ⊥平面ABPM ,设点C 到平面APD 的距离为d ,利用等体积法得13P ACD C APD APD V V d S --==⋅△,通过计算即可得d .【详解】(Ⅰ)因为四边形ABCD 是正方形,所以//BC AD , 又BC ⊂平面PBC ,AD ⊄平面PBC ,//AD 平面PBC , 因为//MA PB ,同理可证//MA 平面PBC ,,,AD MA A AD MA ⋂=⊂平面AMD ,所以平面//AMD 平面PBC ,又因为DM ⊂平面AMD ,所以//DM 平面PBC ; (2)因为AM ⊥平面ABCD ,∴AM ⊥AD ,PB ⊥平面ABCD ,又∵AD ⊥AB ,AM AB A =,∴AD ⊥平面ABPM , ∴AD ⊥AP又AP =设点C 到平面APD 的距离为d∵11142223323P ACD ACD V PB S -=⋅=⨯⨯⨯⨯=△ 又∵13P ACD C APD APD V V d S --==⋅△122APD S =⨯⨯=△∴1433⨯=; ∴d =即点C 到平面APD 【点睛】方法点睛:证明直线与平面平行可通过证明直线与直线平行或平面与平面平行来证明. 26.(1)证明见解析;(2)证明见解析. 【分析】(1)连结AC 、BD ,交于点O ,连结OE ,通过//OE PA 即可证明;(2)通过PD BC ⊥, CD BC ⊥可证BC ⊥平面PDC ,即得DE BC ⊥,进而通过DE ⊥平面PBC 得DE PB ⊥,结合EF PB ⊥即证.【详解】证明:(1)连结AC 、BD ,交于点O ,连结OE ,底面ABCD 是正方形,∴O 是AC 中点, 点E 是PC 的中点,//OE PA ∴.OE ⊂平面EDB , PA ⊄平面EDB ,∴//PA 平面EDB . (2)PD DC =,点E 是PC 的中点,DE PC ∴⊥.底面ABCD 是正方形,侧棱PD ⊥底面ABCD , ∴PD BC ⊥, CD BC ⊥,且 PD DC D ⋂=, ∴BC ⊥平面PDC ,∴DE BC ⊥, 又PC BC C ⋂=,∴DE ⊥平面PBC , ∴DE PB ⊥,EF PB ⊥,EF DE E ⋂=, PB ∴⊥平面EFD . 【点睛】本题考查线面平行和线面垂直的证明,属于基础题.。
高一数学(必修二)立体几何初步单元测试卷及答案
高一数学(必修二)立体几何初步单元测试卷及答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,己知正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则其原图形的周长为( )A.8B.22C.4D.223+2.下列说法正确的是( ) A.三点确定一个平面B.圆心和圆上两个点确定一个平面C.如果两个平面相交有一个交点,则必有无数个公共点D.如果两条直线没有交点,则这两条直线平行3.正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,那么正方体中过P ,Q ,R 的截面图形是( ) A.三角形B.四边形C.五边形D.六边形4.某圆柱的高为2,其正视图如图所示,圆柱上下底面圆周及侧面上的点A ,B ,D ,F ,C 在正视图中分别对应点A ,B ,E ,F ,C ,且3AE EF =,2BF BC =,异面直线AB ,CD 所成角的正弦值为45,则该圆柱的外接球的表面积为( )A.20πB.16πC.12πD.10π5.在《九章算术·商功》中将正四面形棱台体(棱台的上、下底面均为正方形)称为方亭.在方亭1111ABCD A B C D -中,1124AB A B ==,四个侧面均为全等的等腰梯形且面积之和为122( ) 282B.283142D.1436.异面直线是指( ) A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线7.如图,在正方体1111ABCD A B C D -中,E ,F 分别是11A D ,11B C 的中点,则与直线CF 互为异面直线的是( )A.1CCB.11B CC.DED.AE8.下列说法中正确的是( ) A.三点确定一个平面 B.四边形一定是平面图形 C.梯形一定是平面图形D.两个不同平面α和β有不在同一条直线上的三个公共点二、多选题(本题共4小题,每小题5分,共20分。
高中数学必修2立体几何模块测试卷(含参考答案)
高中数学立体几何测试题(理科)一、选择题:1.下列说法不正确的是A 圆柱的侧面展开图是一个矩形B 圆锥中过轴的截面是一个等腰三角形C 直角三角形绕它的一边旋转一周形成的曲面围成的几何体是圆锥D 圆台平行于底面的截面是圆面2、下面表述正确的是A、空间任意三点确定一个平面B、分别在不同的三条直线上的三点确定一个平面C、直线上的两点和直线外的一点确定一个平面D、不共线的四点确定一个平面3、“a、b是异面直线”是指①a∩b=∅,且a和b不平行;②a⊂平面α,b⊂平面β,且α∩β=∅;③a⊂平面α,b⊂平面β,且a∩b=∅;④a⊂平面α,b ⊄平面α;⑤不存在平面α,使得a⊂平面α,且b⊂平面α都成立。
上述说法正确的是A ①④⑤B ①③④C ②④D ①⑤4、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是A、垂直B、平行C、相交不垂直D、不确定5、下列命题中正确命题的个数是①一条直线和另一条直线平行,那么它和经过另一条直线的任何平面平行;②一条直线平行于一个平面,则这条直线与这个平面内所有直线都没有公共点,因此这条直线与这个平面内的所有直线都平行;③若直线与平面不平行,则直线与平面内任一直线都不平行;④与一平面内无数条直线都平行的直线必与此平面平行。
A 、0B 、1C 、2D 、36、一条直线若同时平行于两个相交平面,则这条直线与这两个平面交线的位置关系是A 、异面B 、相交C 、平行D 、不确定 7、直线a 与b 垂直,b 又垂直于平面α,则a 与α的位置关系是A 、a α⊥B 、//a αC 、a α⊆D 、a α⊆或//a α 8、如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系一定是A 、平行B 、相交C 、平行或相交D 、无法确定 9.已知二面角α-AB -β为︒30,P 是平面α内的一点,P 到β的距离为1.则P 在β内的射影到AB 的距离为( ). A .23B .3C .43 D .2110、若,m n 表示直线,α表示平面,则下列命题中,正确命题的个数为 ①//m n n m αα⎫⇒⊥⎬⊥⎭;②//m m n n αα⊥⎫⇒⎬⊥⎭;③//m m n n αα⊥⎫⇒⊥⎬⎭;④//m n m n αα⎫⇒⊥⎬⊥⎭A 、1个B 、2个C 、3个D 、4个 二、填空题:11、三条两两相交的直线可确定12.水平放置的△ABC 的斜二测直观图如图所示,已知A′C′=3,B′C′=2。
(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A 5B .2C 3D 22.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .903.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //4.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( ) A .2217B .22121C .77D .7215.如图,在正四棱锥P ABCD -中,设直线PB 与直线DC 、平面ABCD 所成的角分别为α、β,二面角P CD B --的大小为γ,则( )A .,αβγβ>>B .,αβγβ><C .,αβγβ<>D .,αβγβ<<6.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π7.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π8.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .679.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 10.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .211.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .412.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.在正三棱锥O ABC -中,已知45AOB ∠=︒,记α为二面角--A OB C 的大小,cos =m n αm ,n 为整数,则以||n ,||m ,||m n +分别为长、宽、高的长方体的外接球直径为__________.14.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;15.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.16.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =1cos 3BAC ∠=,若三棱锥D ABC -27,则此三棱锥的外接球的表面积为______18.已知ABC 是等腰直角三角形,斜边2AB =,P 是平面ABC 外的一点,且满足PA PB PC ==,120APB ∠=︒,则三棱锥P ABC -外接球的表面积为________.19.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.20.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题21.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值. 22.在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心.(1)求证:1B O//平面11DA C ; (2)求点O 到平面11DA C 的距离.23.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.24.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.25.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =,F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===,1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===,45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-,则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则133xOE CE ==, 则2532x x-=,解得3x =, 则1AO =,底面边长为23, 则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.C【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D ===, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.4.A解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离. 【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得11==A B AC 1A BC 为等腰三角形,所以1A BC ,由对称性可知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为1122=⨯=A BC S △122ABCS =⨯=111233⨯⨯=⨯⨯A BC ABC S h S △△,即7h == 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.5.A解析:A【分析】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,根据正棱锥的性质可知,PCE α∠=,PCO β∠=,PEO γ∠=,再比较三个角的正弦值可得结果.【详解】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,如图:因为//AB CD ,所以PBA α∠=,又因为四棱锥P ABCD -为正四棱锥,所以PCE α∠=,由正四棱锥的性质可知,PO ⊥平面ABCD ,所以PCO β∠=,易得OE CD ⊥,PE CD ⊥,所以PEO γ∠=, 因为sin PE PC α=,sin PO PCβ=,且PE PO >,所以sin sin αβ>,又,αβ都是锐角,所以αβ>,因为sin PO PE γ=,sin PO PCβ=,且PC PE >,所以sin sin γβ>,因为,βγ都是锐角,所以γβ>. 故选:A【点睛】关键点点睛:根据正棱锥的性质,利用异面直线所成角、直线与平面所成角、二面角的平面角的定义得到这三个角是解题关键,属于中档题.6.B解析:B【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可.【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R =所以外接球的表面积为2412S R ππ==故选:B【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.7.B解析:B【分析】根据圆锥侧面展开图是一个扇形,且线段25MB =.【详解】设底面圆半径为r ,由母线长4l ,可知侧面展开图扇形的圆心角为22r r l ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===,所以222AM AB MB +=,所以2MAB π∠=, 故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=,故选:B【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2r lπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.8.D解析:D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7.所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解. 9.D解析:D【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解.【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形,所以,2FG AE ==,1AG =,2BG =,由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D.【点睛】 思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.11.A解析:A【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可.【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC-,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A.【点睛】 方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 12.D解析:D【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C 选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项.【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交;对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D.【点睛】方法点睛:证明或判断两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.二、填空题13.【分析】过作垂足为连接则为二面角的平面角即在中利用余弦定理结合为整数求出的值进而可得外接球直径【详解】如图过作垂足为连接则为二面角的平面角即不妨设因为所以所以所以在中因为为整数所以则设以为长宽高的长 解析:6【分析】过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α,在AHC 中,利用余弦定理结合m ,n 为整数,求出m ,n 的值,进而可得外接球直径.【详解】如图,过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α.不妨设2OC a =,因为45AOB ∠=︒,所以===CH a AH OH , 所以21)=HB a ,所以22222(422)=+=-=BC HB HC a AC .在AHC 中,222cos 2+-==⋅⋅HA HC AC HA HC α2222(422)212+--==a a a m n a因为m ,n 为整数,所以1m =-,2n =,则||1m =,||2n =,||1m n +=. 设以||m ,||n ,||m n +为长、宽、高的长方体的外接球半径为R ,则2222(2)||||||6=+++=R m n m n 6.6【点睛】关键点点睛:本题考查二面角的应用,考查几何体的外接球,考查解三角形,解决本题的关键点是利用定义法找出二面角的平面角,在AHC 中,利用余弦定理结合已知条件求出m ,n 的值,考查学生空间想象能力,考查计算能力,属于中档题.14.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认 解析:22【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==,所以DE AB ⊥,DE A E ⊥',3DE =, 30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED '平面EDCB DE =, 所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力.. 15.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A --的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥; 又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛:求解本题的关键在于确定二面角MBC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角M BC A --的4倍,进而可求得结果.16.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 解析:823π【分析】取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积. 【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A , 所以四边形1ADCO 为平行四边形, 所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==, 所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心, 在Rt SAB 中,2AB SA ==, 所以122OA SB == 所以34822)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin BC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为11333D ABC ABC V S AD AD -=⋅⋅=⨯=△,所以4AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积224π4π20πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】在平面的投影为的外心即中点设球半径为则解得答案【详解】故在平面的投影为的外心即中点故球心在直线上设球半径为则解得故故答案为:【点睛】本题考查了三棱锥的外接球问题意在考查学生的计算能力和空间想 解析:163π【分析】P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,设球半径为R ,则()22211R CO R PO =+-,解得答案.【详解】PA PB PC ==,故P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,故球心O 在直线1PO 上,1112CO AB ==,1133PO ==, 设球半径为R ,则()22211R CO R PO =+-,解得23R =21643S R ππ==. 故答案为:163π.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.19.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=.故答案为:163π. 【点睛】本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.20.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =,2AB =,PA PD =,则//OE AB ,112OE AB ==, 132PE AD ==, 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题21.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案. 【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBAEAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =, 在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅, 所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 522DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为105.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算. 22.(1)证明见解析;(2)23. 【分析】(1)连接11B D ,设11111B D AC O ⋂=,连接1DO ,证明11B O DO 是平行四边形,再利用线面平行的判定定理即可证明.(2)由题意可得平面11DA C ⊥平面11B D DB ,过点O 作1OH DO ⊥于H ,在矩形11B D DB 中,连接1OO ,可得1O OD OHD ∽△△,由三角形相似,对应边成比例即可求解. 【详解】(1)证明:连接11B D ,设11111B D AC O ⋂=,连接1DO .11//O B DO 且11O B DO =, 11B O DO ∴是平行四边形.11//B O DO ∴.又1DO ⊂平面11DA C ,1B O ⊂/平面11DA C ,1//B O ∴平面11DA C .(2)1111A C B D ⊥,111AC BB ⊥,且1111BB B D B ⋂=,11A C ∴⊥平面11B D DB .∴平面11DA C ⊥平面11B D DB ,且交线为1DO .在平面11B D DB 内,过点O 作1OH DO ⊥于H ,则OH ⊥平面11DA C , 即OH 的长就是点O 到平面11DA C 的距离.在矩形11B D DB 中,连接1OO ,1O OD OHD ∽△△,则11O D ODO O OH=, 22236OH ⨯∴==即点O 到平面11DA C 的距离为233. 【点睛】关键点点睛:本题考查了线面平行的判定定理,点到面的距离,解题的关键是过点O 作1OH DO ⊥于H ,得出OH 的长就是点O 到平面11DA C 的距离,考查了计算能力.23.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM , 所以//PB 平面ACM ; (2)由已知12222ACDS=⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△,又M 是PD 中点,所以1223M ACD P ACD V V --==, 所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论. 24.(1)证明见解析;(2)22. 【分析】(1)利用面面垂直的性质先证明出BC ⊥面PAB ,得到PA BC ⊥,再由PA PB ⊥,结合线面垂直的判定定理可知PA ⊥面PBC ,又PA ⊂面PAC ,然后证得平面PBC ⊥平面PAC ;(2)先计算三棱锥P BCE -的体积,然后再计算PBC 的面积,利用等体积法P BCE E PBC V V --=求解.【详解】解:(1)证明:∵面PAB ⊥面ABCD ,且平面PAB ⋂平面ABCD AB =,BC AB ⊥,BC ⊂面ABCD BC ∴⊥面PAB , 又PA ⊂面PAB PA BC ∴⊥又因为由已知PA PB ⊥且PB BC B ⋂=,所以PA ⊥面PBC ,又PA ⊂面PAC ∴面PAC ⊥面PBC .(2)PAB △中,PA PB =,取AB 的中点O ,连PO ,则PO AB ⊥ ∵面PAB ⊥面ABCD 且它们交于,AB PO ⊂面PABPO ∴⊥面ABCD由1133BCEEPBC P BCE PBC BCE PBCSPOV V S h S PO h S--=⇒=⇒=,由已知可求得1PO =,1BCES=,2PBCS=,所以22h =. 所以点E 到平面PBC 的距离为22.【点睛】(1)证明面面垂直的核心为证明线面垂直,要证明线面垂直只需郑敏面外的一条弦和面内的两条相交线垂直即可;(2)点到面的距离求解一般采用等体积法求解,也可采用空间向量法求解. 25.(1)证明见解析;(223【分析】(1)先由面面垂直的性质,得到CB ⊥平面ABE ,推出CB AE ⊥,根据题中条件,得到AE BE ⊥,利用线面垂直的判定定理,得到AE ⊥平面BCE ;得出AE BF ⊥,再次利用线面垂直的判定定理,即可证明结论成立;。
人教版高中数学必修第二册第三单元《立体几何初步》测试题(包含答案解析)
一、选择题1.设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .//m α,//n β且//αβ,则//m nB .m α⊂,n α⊂,//m β,//n β,则//αβ C .m α⊥,n β⊂,m n ⊥,则αβ⊥D .m α⊥,n β⊥且αβ⊥,则m n ⊥2.某几何体的三视图如图所示(单位:cm ),则该几何体的侧面积(单位:2cm )是( )A .10B .1025+C .1625+D .1325+ 3.如图所示,在正方体1111ABCD A B C D -中,O 是11B D 的中点,直线1A C 交平面11AB D 于点M ,则下列结论正确的是( )A .,,A M O 三点共线B .1,,,A M O A 不共面C .,,,A M C O 不共面D .1,,,B B O M 共面4.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .455.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为23π的扇形,则该圆锥的轴截面的面积为( )A .183B .182C .123D .243 6.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥底面111A B C ,底面三角形111A B C 是正三角形,E 是BC 中点,则下列叙述正确的是( )A .1CC 与1B E 是异面直线B .AC ⊥平面11ABB A C .AE ,11B C 为异面直线,且11AE B C ⊥D .11//A C 平面1AB E7.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )A .3417B .23417C .51717D .317178.如图为水平放置的ΔOAB 的直观图,则原三角形的面积为( )A .3B .32C .6D .129.在三棱锥P ABC -中,AB BC ⊥,P 在底面ABC 上的投影为AC 的中点D ,1DP DC ==.有下列结论:①三棱锥P ABC -的三条侧棱长均相等;②PAB ∠的取值范围是,42ππ⎛⎫ ⎪⎝⎭; ③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为23π; ④若AB BC =,E 是线段PC 上一动点,则DE BE +的最小值为62+. 其中正确结论的个数是( )A .1B .2C .3D .410.如图,正方体1111ABCD A B C D -的棱长为2,点O 为底面ABCD 的中心,点P 在侧面11BB C C 的边界及其内部运动.若1D O OP ⊥,则11D C P △面积的最大值为( )A 25B 45C 5D .2511.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .61cmC 61cmD .234cm12.αβ、是两个不同的平面,mn 、是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥;②αβ⊥;③n β⊥;④.m α⊥以其中三个论断作为条件,余下一个作为结论,其中正确命题的个数是( ) A .1个 B .2个 C .3个 D .4个13.在正方体1111ABCD A B C D -中,E ,F 分别为1CC ,1DD 的中点,则异面直线AF ,DE 所成角的余弦值为( )A .14B .154C .65D .1514.已知,m n 是两条不同的直线,,αβ为两个不同的平面,有下列四个命题: ①若m α⊥,n β⊥,m n ⊥,则a β⊥;②若//m α,//n β,m n ⊥,则//a β;③若m α⊥,//n β,m n ⊥,则//αβ;④若m α⊥,//n β,//αβ,则m n ⊥.其中所有正确的命题是( )A .①④B .②④C .①D .④二、解答题15.如图,在正四棱柱1111ABCD A B C D -中(底面是正方形的直四棱柱),底面正方形ABCD 的边长为1,侧棱1AA 的长为2,E 、M 、N 分别为11A B 、11B C 、1BB 的中点.AD平面EMN;(1)求证:1//AD与BE所成角的余弦值.(2)求异面直线1⊥,D是棱AB的中点,且16.如图,在三棱锥V-ABC中,VC⊥底面ABC,AC BC==.AC BC VC(1)证明:平面VAB⊥平面VCD;(2)若22AC=,且棱AB上有一点E,使得线VD与平面VCE所成角的正弦值为15,试确定点E的位置,并求三棱锥C-VDE的体积.15-中,底面ABCD是边长为2的正方形,17.在四棱锥P ABCD∠==∠=,E为PD的中点.ADP PD AD PDC90,,60(1)证明:CE⊥平面PAD.-外接球的体积.(2)求三棱锥E ABC18.如图甲,平面四边形ABCD中,已知45∠=,90︒A︒∠=,ADC︒∠=C,1052AB BD ==,现将四边形ABCD 沿BD 折起,使得平面ABD ⊥平面BDC (如图乙),设点E ,F 分别是棱AC ,AD 的中点.(1)求证:DC ⊥平面ABC ;(2)求三棱锥A BEF -的体积.19.在四棱锥P ABCD -中,//AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,3=CD CE ,⊥AP ED .(1)求证:DE ⊥面PEA ;(2)已知点F 为AB 中点,点P 在底面ABCD 上的射影为点Q ,直线AP 与平面ABCD 所成角的余弦值为3,当三棱锥-P QDE 的体积最大时,求异面直线PB 与QF 所成角的余弦值.20.如图,已知AF ⊥平面ABCD ,四边形ABEF 为矩形,四边形ABCD 为直角梯形,90DAB ∠=︒,//AB CD ,2AD AF CD ===,4AB =.(1)求证:AC ⊥平面BCE ;(2)求三棱锥E BCF -的体积.21.如图,在长方形ABCD 中,4AB =,2AD =,点E 是DC 的中点.将ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,连结DB 、DC 、EB(1)求证:AD ⊥平面BDE ;(2)求平面ADE 与平面BDC 所成锐二面角的余弦值.22.如图,在直三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 是CC 1上的中点,且BC =1,BB 1=2.(1)证明:B 1E ⊥平面ABE ;(2)若三棱锥A -BEA 1的体积是33,求异面直线AB 和A 1C 1所成角的大小. 23.如图,棱长为2的正方体ABCD —A 1B 1C 1D 1,E 、F 分别为棱B 1C 1、BB 1中点,G 在A 1D 上且DG =3GA 1,过E 、F 、G 三点的平面α截正方体.(1)作出截面图形并求出截面图形面积(保留作图痕迹);(2)求A 1C 1与平面α所成角的正弦值. (注意:本题用向量法求解不得分)24.如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD //BC //FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(I )证明:平面AMD ⊥平面CDE ;(II )求二面角A ﹣CD ﹣E 的余弦值.25.已知四棱锥P ABCD -的底面ABCD 是菱形,PD ⊥平面ABCD ,2AD PD ==,60DAB ∠=,F ,G 分别为PD ,BC 中点,AC BD O =.(Ⅰ)求证:FG ∥平面PAB ;(Ⅱ)求三棱锥A PFB -的体积;26.在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点.(1)求证:平面EFG ⊥平面PDC ;(2)求证:平面//EFG 平面PM A .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】对每一个命题逐一判断得解.【详解】对于A ,若m ∥α,n ∥β且α∥β,说明m 、n 是分别在平行平面内的直线,它们的位置关 系应该是平行或异面或相交,故A 不正确;对于B ,若“m ⊂α,n ⊂α,m ∥β,n ∥β”,则“α∥β”也可能α∩β=l ,所以B 不成立. 对于C ,根据面面垂直的性质,可知m ⊥α,n ⊂β,m ⊥n ,∴n ∥α,∴α∥β也可能α∩β=l ,也可能α⊥β,故C 不正确;对于D ,由m ⊥α,n ⊥β且α⊥β,则m 与n 一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m 与n 相交,且设m 与n 确定的平面为γ,则γ与α和β的交线所成的角即 为α与β所成的角,因为α⊥β,所以m 与n 所成的角为90°,故命题D 正确. 故答案为D【点睛】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力和空间想象能力.2.B解析:B【分析】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,由矩形的面积公式得出该几何体的侧面积.【详解】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,如下图所示2211125AD A D ==+=∴该几何体的侧面积为122222521025⨯+⨯+⨯+⨯=+故选:B【点睛】本题主要考查了由三视图计算几何体的侧面积,属于中档题.3.A解析:A【分析】连接11,A C AC ,利用两个平面的公共点在一条直线上可判断点共线.【详解】连接11,A C AC ,则11//A C AC ,11,,,A C C A ∴四点共面,1A C ∴⊂平面11ACC A ,1M AC ∈,M ∴∈平面11ACC A ,M ∈平面11AB D ,∴点M 在平面11ACC A 与平面11AB D 的交线上,同理点O 在平面11ACC A 与平面11AB D 的交线上,,,A M O ∴三点共线,故A 正确;,,A M O 三点共线,且直线与直线外一点可确定一个平面,1,,,A M O A ∴四点共面,,,,A M C O 四点共面,故B ,C 错误;1BB 平面11AB D ,OM ⊂平面11AB D ,1B ∈平面11AB D 且1B OM ,1BB ∴和OM 是异面直线,1,,,B B O M ∴四点不共面,故D 错误.故选:A.【点睛】本题主要考查空间中点的共线问题,此类题一般证明这些点同在两个不同的平面内,根据两平面的公共点在一条直线上即可判断.4.D解析:D【分析】本题先通过平移确定异面直线1A B 与1AD 所成角11A BC ∠,再在11A BC 中通过余弦定理求该角的余弦值即可.【详解】解:连接11A C 、1BC (如图),设12=2AA AB k =(0k >),则11=5A BC B k=,112AC k=, 在直四棱柱1111ABCD A B C D -中,∵11//BC AD ,∴ 异面直线1A B 与1AD 所成角可以表示为11A BC ∠,在11A BC 中,222222*********cos 25255A B BC AC A BC A B BC k k+-∠===⋅⋅⨯⨯, 故选:D.【点睛】本题考查了异面直线所成的角,余弦定理,是中档题.5.B解析:B【分析】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .可得πr 2+πrl =36π,2πr =l •23π,联立解得:r ,l ,h 22l r =-即可得出该圆锥的轴截面的面积S 12=•2r •h =rh . 【详解】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .则πr 2+πrl =36π,化为:r 2+rl =36,2πr =l •23π,可得l =3r . 解得:r =3,l =9,h 22l r =-=2.该圆锥的轴截面的面积S 12=•2r •h =rh =2=2. 故选:B.【点睛】本题考查了圆锥的表面积、弧长的计算公式,考查了推理能力与计算能力,属于中档题. 6.C解析:C【分析】根据异面直线定义可判断A ;由线面垂直的性质即可判断B ;由异面直线的位置关系并得11AE B C ⊥可判断C ;根据线面平行的判定定理可判断D.【详解】对于A 项,1CC 与1B E 在同一个侧面中,故不是异面直线,所以A 错;对于B 项,由题意知,上底面是一个正三角形,故AC ⊥平面11ABB A 不可能,所以B 错;对于C 项,因为AE ,11B C 为在两个平行平面中且不平行的两条直线,故它们是异面直线,由底面111A B C 是正三角形,E 是BC 中点,根据等腰三角形三线合一可知AE BC ⊥,结合棱柱性质可知11//B C BC ,则11AE B C ⊥,所以C 正确;对于D 项,因为11A C 所在的平面与平面1AB E 相交,且11A C 与交线有公共点,故11//A C 平面1AB E 不正确,所以D 项不正确.故选C.【点睛】该题考查的是有关立体几何中空间关系的问题,在解题的过程中,需要对其相关的判定定理和性质定理的条件和结论熟练掌握,注意理清其关系,属于中档题7.D解析:D【分析】首先通过作平行的辅助线确定异面直线PB 与CE 所成角的平面角,在PCD ∆中利用余弦定理求出cos DPC ∠进而求出CE ,再在GFH ∆中利用余弦定理即可得解.【详解】如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,则//EF CH ,EF CH =,从而四边形EFHC 是平行四边形,则//EC FH , 且EC FH =.因为F 是PA 的中点,G 是AB 的中点,所以FG 为ABP ∆的中位线,所以//FG PB ,则GFH ∠是异面直线PB 与CE 所成的角.由题意可得3FG =,1222HG AC ==. 在PCD ∆中,由余弦定理可得2223636167cos 22669PD PC CD DPC PD PC +-+-∠===⋅⨯⨯, 则2222cos 17CE PC PE PC PE DPC =+-⋅∠=,即17CE =在GFH ∆中,由余弦定理可得222cos 2FG FH GH GFH FG FH +-∠=⋅317172317==⨯⨯. 故选:D【点睛】本题考查异面直线所成的角,余弦定理解三角形,属于中档题.8.C解析:C【分析】根据直观图的画法,可以得到直角坐标系下3014A B (,),(,),还原三角形的图象,求得面积.【详解】根据直观图的画法,可以得到直角坐标系下3014A B (,),(,),如图所示:故原三角形面积为:13462S =⨯⨯= 故选:C【点睛】 本题考查了还原直观图为直角坐标系的图像问题,考查了学生概念理解,直观想象,数学运算的能力,属于基础题.9.C解析:C【分析】作出三棱锥P ABC -的图象,逐一判断各命题,即可求解.【详解】作出三棱锥P ABC -的图象,如图所示:.对于①,根据题意可知,PD ⊥平面ABC ,且1DP DC ==,所以2PA PB PC ===①正确;对于②,在PAB △中,2PA PB ==02AB <<,所以2cos 222AB PAB PA ⎛∠== ⎝⎭, 即PAB ∠的取值范围是,42ππ⎛⎫⎪⎝⎭,②正确; 对于③,因为DP DA DB DC ===,所以三棱锥P ABC -外接球的球心为D ,半径为1,其体积为43π,③不正确; 对于④,当AB BC =时,BD AC ⊥,所以2BC =将平面PBC 沿翻折到平面PAC 上,则DE BE +的最小值为线段BD 的长,在展开后的DCB 中,6045105DCB ∠=+=, 根据余弦定理可得6221221cos1052BD +=+-⨯⨯⨯=, ④正确.故选:C . 【点睛】本题主要考查棱锥的结构特征,三棱锥外接球的体积求法,以及通过展开图求线段和的最小值,意在考查学生的直观想象能力和数学运算能力,属于中档题. 10.C解析:C【分析】 取1BB 的中点F ,由题意结合正方体的几何特征及平面几何的知识可得1OD OC ⊥,1OD OF ⊥,由线面垂直的判定与性质可得1OD CF ⊥,进而可得点P 的轨迹为线段CF ,找到1C P 的最大值即可得解.【详解】取1BB 的中点F ,连接OF 、1D F 、CF 、1C F ,连接DO 、BO 、OC 、11D B 、1D C ,如图:因为正方体1111ABCD A B C D -的棱长为2,所以11B F BF ==,2DO BO OC ===11122D B DC ==1BB ⊥平面ABCD ,1BB ⊥平面1111D C B A ,11C D ⊥平面11BB C C ,所以22116OD OD DD =+=223OF OB BF =+=2211113D F D B B F =+=,所以22211OD OF D F +=,22211OD OC D C +=,所以1OD OC ⊥,1OD OF ⊥,由OC OF O =可得1OD ⊥平面OCF ,所以1OD CF ⊥,所以点P 的轨迹为线段CF , 又221111152C F B C B F C C =+=>=,所以11D C P △面积的最大值1111125522S C F D C =⋅=⨯⨯=. 故选:C.【点睛】本题考查了正方体几何特征的应用,考查了线面垂直的判定与性质,关键是找到点P 的轨迹,属于中档题.11.A解析:A【分析】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,计算得到答案.【详解】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,易知5BC =,'12A C =,故'13A B =.故选:A .【点睛】本题考查了立体几何中的最短距离问题,意在考查学生的计算能力和空间想象能力. 12.B解析:B【分析】分别以①②③④作为结论,另外三个作条件,根据线面垂直和面面垂直的判定定理依次判断真假.【详解】若m n ⊥,αβ⊥,n β⊥,则m 与α可能平行可能相交,即①②③不能推出④; 同理①②④不能推出③;若m n ⊥,n β⊥,m α⊥,两个平面的垂线互相垂直则这两个平面垂直,则αβ⊥,即①③④能够推出②;若αβ⊥,n β⊥,m α⊥,两个平面互相垂直,则这两个平面的垂线互相垂直,即m n ⊥,所以②③④能够推出①.所以一共两个命题正确.故选:B【点睛】此题考查空间直线与平面位置关系的辨析,根据选择的条件推出结论,关键在于熟练掌握空间垂直关系的判定和证明.13.D解析:D【分析】连接BE ,BD ,因为//BE AF ,所以BED ∠为异面直线AF 与DE 所成的角(或补角),不妨设正方体的棱长为2,取BD 的中点为G ,连接EG ,在等腰BED ∆中,求出cosEG BEG BE ∠==cos BED ∠,即可得出答案. 【详解】 连接BE ,BD ,因为//BE AF ,所以BED ∠为异面直线AF 与DE 所成的角(或补角),不妨设正方体的棱长为2,则BE DE ==BD =,在等腰BED ∆中,取BD 的中点为G ,连接EG ,则EG ==cos EG BEG BE ∠== 所以2cos cos 22cos 1BED BEG BEG ∠=∠=∠-, 即:31cos 2155BED ∠=⨯-=, 所以异面直线AF ,DE 所成角的余弦值为15. 故选:D.【点睛】本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力.14.A解析:A【分析】①若m α⊥,m n ⊥,∴n ⊂α或//n α再由面面垂直的判定定理得到结论.②根据面面平行的判定定理判断.③若m α⊥,m n ⊥,则n ⊂α或//n α,再由面面平行的判定定理判断.④若m α⊥,//αβ,由面面平行的性质定理可得m β⊥,再由//n β得到结论.【详解】①若m α⊥,m n ⊥,∴n ⊂α或//n α,又∵n β⊥,∴a β⊥,故正确. ②若//m α,//n β,由面面平行的判定定理可知,若m 与n 相交才平行,故不正确. ③若m α⊥,m n ⊥,则n ⊂α或//n α,又//n β,两平面不一定平行,故不正确. ④若m α⊥,//αβ,则m β⊥,又∵//n β,则m n ⊥.故正确.故选:A【点睛】本题主要考查线与线,线与面,面与面的位置关系及垂直与平行的判定定理和性质定理,综合性强,方法灵活,属中档题.二、解答题15.(1)证明见解析(2)8585【分析】(1)通过证明1//AD MN 可证1//AD 平面EMN ;(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,根据余弦定理计算可得结果.【详解】(1)连1BC ,1EC ,如图:因为//AB CD ,AB CD =,且11//CD C D ,11CD C D =,所以11//AB C D ,11AB C D =,所以四边形11ABC D 为平行四边形,所以11//AD BC ,因为M 、N 分别为11B C 、1BB 的中点,所以1//MN BC ,所以1//AD MN , 因为1AD ⊄平面EMN ,MN ⊄平面EMN ,所以1//AD 平面EMN .(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,依题意知12BB =,112EB =,111B C =, 所以22211117444BE BB EB =+=+=,2221111415BC BB B C =+=+=,222111115144EC EB B C =+=+=, 所以2221111cos 2BE BC EC EBC BE BC +-∠==⋅175********+-⨯⨯88585=. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.16.(1)证明见解析;(2)点E 位于线段AD 的中点或线段BD 的中点;223.【分析】(1)易得CD AB ⊥,再根据VC ⊥底面ABC ,得到 VC AB ⊥,进而AB ⊥平面VCD ,再利用面面垂直的判定定理证明.(2)过点D 在平面ABC 内作DF CE ⊥于F ,DF ⊥平面VCE ,则DVF ∠就是直线VD 与平面VCE 所成的角,在Rt VFD 中,由15sin DF DVF VD ∠==,求得DF ,然后在Rt DCE 中,求出1DE =,然后由三棱锥C-VDE 的体积为13CDE V S VC =⋅⋅求解. 【详解】(1)因为AC BC =,D 是AB 的中点,所以CD AB ⊥.又VC ⊥底面ABC ,AB平面ABC , 所以VC AB ⊥,而VC CD C ⋂=,所以AB ⊥平面VCD .又AB 平面VAB ,所以平面VAB ⊥平面VCD .(2)过点D 在平面ABC 内作DF CE ⊥于F ,则由题意知DF ⊥平面VCE .,连接VF ,于是DVF ∠就是直线VD 与平面VCE 所成的角.在Rt VFD 中,1515DF VD =. 又因为3VD =55DF =. 在Rt DCE 中,1DE =.故知点E 位于线段AD 的中点或线段BD 的中点,三棱锥C-VDE 的体积为1112221223323CDE S VC ⋅⋅=⨯⨯⨯⨯=. 【点睛】方法点睛:(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.17.(1)证明见解析;(2)82π. 【分析】 (1)由已知条件知AD ⊥面DPC ,即有AD CE ⊥,由PDC △为等边三角形有CE DP ⊥,结合线面垂直的判定有CE ⊥平面PAD .(2)由勾股定理可证AEC 为直角三角形,且ABC 为等腰直角三角形,即可知AC 的中点O 为外接球的球心,进而得到半径求球的体积.【详解】 (1)由90ADP ∠=知:AD DP ⊥,底面ABCD 是正方形有AD DC ⊥,又DP DC D =,∴AD ⊥面DPC ,而CE ⊂面DPC ,即AD CE ⊥,∵PD AD DC ==,60PDC ∠=,∴PDC △为等边三角形,E 为PD 的中点,故CE DP ⊥,∵DP AD D ⋂=,∴CE ⊥平面PAD .(2)由(1)知:ABC 为等腰直角三角形且2AB BC == ,有22AC =, 在AEC 中3,5CE AE ==,即222AC CE AE =+,故AE CE ⊥,∴由上知:ABC 、AEC 都是以AC 为斜边的直角三角形,由直角三角形斜边中点O 到三顶点距离相等知:OE OC OA OB ===,即O 为三棱锥E ABC -外接球的球心, ∴外接球的半径为22AC =, 所以三棱锥E ABC -外接球的体积为3482(2)33V ππ=⨯=. 【点睛】关键点点睛:(1)由90°及正方形有线面垂直:AD ⊥面DPC ,再由等边三角形的性质和线面垂直的判定证明CE ⊥平面PAD ;(2)由勾股定理说明AEC 是以AC 为斜边的直角三角形,同样ABC 也是AC 为斜边的直角三角形,即可确定三棱锥E ABC -外接球的球心,进而求体积.18.(1)证明见解析;(2. 【分析】 (1)在图甲中先证AB BD ⊥,在图乙中由面面垂直的性质定理先证AB CD ⊥,由条件可得DC BC ⊥,进而可判定DC ⊥平面AB C ;(2)利用等体积法进行转化计算即可.【详解】(1)图甲中,∵AB BD =且45A ︒∠=,45ADB ︒∴∠=,()()180180454590ABD ADB A ︒︒︒︒︒∴∠=-∠+∠=-+=,即AB BD ⊥, 图乙中,∵平面ABD ⊥平面BDC ,且平面ABD 平面BDC BD =,∴AB ⊥平面BDC ,又CD ⊂平面BDC ,∴AB CD ⊥,又90DCB ︒∠=,∴DC BC ⊥,且AB BC B ⋂=,又AB ,BC ⊂平面AB C ,∴DC ⊥平面AB C ;(2)因为点E ,F 分别是棱AC ,AD 的中点,所以//EF DC ,且12EF DC =,所以EF ⊥平面ABC , 由(1)知,AB ⊥平面BDC ,又BC ⊂平面BDC ,所以AB BC ⊥,105ADC ︒∠=,45ADB ︒∠=,1054560CDB ADC ADB ︒︒︒∴∠=∠-∠=-=, 90906030CBD CDB ︒︒︒︒∴∠=-∠=-=,cos3022BC BD ︒∴=⋅=⨯=1sin 30212DC BD ︒=⋅=⨯=,所以12ABC S AB BC =⨯⨯△12ABE ABC S S ==△△1122EF DC ==,所以111332A BEF F ABE ABE V V EF S --==⋅⋅=⋅=△ 【点睛】方法点睛:计算三棱锥体积时,常用等体积法进行转化,具体的方法为:①换顶点,换底面;②换顶点,不换底面;③不换顶点,换底面.19.(1)证明见解析;(2)14. 【分析】(1)在直角梯形ABCD 中先求出,,CD CE BE ,然后可求得,DE AE ,从而可证明DE AE ⊥,由线面垂直判定定理证明线面垂直;(2)由(1)得面面垂直,知Q 在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos 3AQ PAQ AP ∠==,设AQ x =(0x <≤-P QDE 的体积,由二次函数知识求得最大值,及此时x 的值,得Q 为AE 中点,从而有//FQ BE ,PBE ∠为异面直线PB 与QF 所成角(或补角),由余弦定理可得.【详解】(1)证明://AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,∴CD ===CD ,∴1CE =,CD =2BE =, 由余弦定理得AE ===又2DE ===,∴222DE AE AD ,∴AD DE ⊥,∵AP DE ⊥,又AP AE A =,AP AE ⊂、平面APE ,∴DE ⊥平面APE .(2)由(1)DE ⊥平面APE .DE ⊂平面ABCD ,∴平面ABCD ⊥平面PAE ,∴Q 点在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos 3AQ PAQ AP ∠==,设AQ x =(0x <≤PQ =,QE x =, 12)2QDE S x x =⨯⨯=△,21)33P QDE QDE V PQ S x -=⋅=--△2(3x =--+≤x =则当P QDE V -最大时,AQ =∴Q 为AE 中点,∵F 为AB 中点,∴//FQ BC ,∴PBE ∠为异面直线PB 与QF 所成角(或补角),1,QB QE ==PQ ⊥平面ABCD 得3,PE PB ==2BE =,则222cos 2PB BE PE PBE PB BE +-∠==⋅,∴异面直线PB 与QF 所成角的余弦值为14.【点睛】本题考查线面垂直的判定定理,考查直线与平面所成的角,异面直线所成的角,三棱锥的体积等,旨在考查学生的空间想象能力,运算求解能力,逻辑推理能力.属于中档题. 20.(1)证明见解析;(2)83. 【分析】(1)先证明AC ⊥BE ,再取AB 的中点M ,连接CM ,经计算,利用勾股定理逆定理得到AC ⊥BC ,然后利用线面垂直的判定定理证得结论;(2)利用线面垂直的判定定理证得CM ⊥平面BEF ,即为所求三棱锥的高,进而计算得到其体积.【详解】解:(1)证明:∵四边形ABEF 为矩形∴//AF BE∵AF ⊥平面ABCD ∴BE ⊥平面ABCD∵AC ⊂平面ABCD ∴AC BE ⊥.如图,取AB 的中点M ,连接CM ,∴122AM AB DC === ∵//AM DC ,90MAD ∠=︒,2AM DC AD ===∴四边形ADCM 是正方形.∴90ADC ∠=︒∴222448C AD DC =+=+=,222448BC CM BM =+=+= ∵4AB =∴222AC BC AB +=∴ABC 是直角三角形∴AC BC ⊥. ∵BCBE B =,BC 、BE ⊂平面BCE∴AC ⊥平面BCE(2)由(1)知:CM AB ⊥∵AF ⊥平面ABCD ,CM ⊂平面ABCD ∴AF CM ⊥∵AF AB A ⋂=,AF 、AB 平面ABEF∴CM ⊥平面ABEF ,∴CM ⊥平面BEF即:CM 是三棱锥C BEF -的高 ∴11182243323E BCF C BEF BEF V V CM S --==⋅=⨯⨯⨯⨯=△ 【点睛】本题考查线面垂直的证明,棱锥的体积的计算,属基础题.在利用线面垂直的判定定理证明线面垂直时一定要将条件表述全面,“两个垂直,一个相交”不可缺少.21.(1)证明见解析;(2)1111. 【分析】(1)计算出AE BE =得证AE BE ⊥,从而由面面垂直性质定理得线面垂直中,又得线线垂直AD BE ⊥,再由已知线线垂直AD AE ⊥可证得结论线面垂直;(2)取AE 的中点O ,连结DO , 可证DO ⊥平面ABCE ,过E 作直线//EF DO ,以EA 、EB 、EF 分别为x 轴,y 轴,z 轴建立空间直角坐标系,用空间向量法求二面角的余弦.【详解】 (1)证明:∵2AD DE ==,90ADE ∠=︒ ∴22AE BE ==,4AB =,∴222AE BE AB +=,∴AE BE ⊥ 又平面ADE ⊥平面ABCE ,平面ADE 平面ABCE AE =, ∴BE ⊥平面ADE ,又AD ⊂平面ADE ,所以AD BE ⊥, 又AD DE ⊥,DE BE E ⋂=,所以AD ⊥平面BDE.(2)取AE 的中点O ,连结DO ,∵DA DE =,∴DO AE ⊥,又平面ADE ⊥平面ABCE ,∴DO ⊥平面ABCE ,过E 作直线//EF DO ,以EA 、EB 、EF 分别为为x 轴,y 轴,z 轴建立空间直角坐标系:则(0,0,0),(22,0,0),(0,22,0),(2,0,2)E A B D ,(2,2,0)C -平面ADE 的法向量1//n EB ,∴1(0,1,0)n =又(2,2,0)CB =,(2,22,2)DB =-,设平面BDC 的法向量为()2,,n x y z =,2200n CB n DB ⎧⋅=⎪∴⎨⋅=⎪⎩,0220x +=∴-+=⎪⎩,即020x y x y z +=⎧⎨-+-=⎩ ∴平面BDC 的法向量2(1,1,3)n =--121212cos ,1111n n n n n n ⋅∴===⋅⨯ ∴平面ADE 与平面BDC 【点睛】方法点睛:本题考查证明线面垂直,考查求二面角.证明线面垂直的方法是:根据线面垂直的判定定理先证线线垂直,当然证明线线垂直又根据面面垂直的性质定理得线面垂直,从而得线线垂直.三个垂直相互转化可证结论; 求二面角(空间角)常用方法是建立空间直角坐标系,用空间向量法求空间角,用计算代替证明.22.(1)证明见解析;(2)30.【分析】(1)由AB ⊥侧面BB 1C 1C 可得1AB B E ⊥,由勾股定理可得1BE B E ⊥,即可证明; (2)由11//A B AB 可得111C A B ∠即为异面直线AB 和A 1C 1所成角,由等体积法可求得AB 长度,即可求出角的大小.【详解】(1)AB ⊥侧面BB 1C 1C ,1B E ⊂侧面BB 1C 1C ,1AB B E ∴⊥,BC =1,BB 1=2,E 是CC 1上的中点,1BE B E ∴=22211BE B E BB +=,1BE B E ∴⊥,AB BE B ⋂=, ∴B 1E ⊥平面ABE ; (2)11//A B AB ,111C A B ∴∠即为异面直线AB 和A 1C 1所成角,且1A 到平面ABE 的距离等于1B 到平面ABE 的距离,由(1)B 1E ⊥平面ABE ,故B 1E 的长度即为1B 到平面ABE 的距离,由AB ⊥侧面BB 1C 1C 可得AB ⊥BE ,则1111113323A BEA A ABE ABE V V SB EAB --==⋅=⨯⨯=,解得AB = 则11A B AB == 在111Rt A B C △中,1111111tan 3B C C A B A B ∠===,11130A C B ∴∠=,即异面直线AB 和A 1C 1所成角为30.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.23.(1)截面见解析,面积为22;(2)12. 【分析】(1)先根据线面平行的性质定理确定出,EF MN 的位置关系,再根据,EF MN 的长度关系确定出,M N 的位置,从而截面的形状可确定以及截面面积可求;(2)记11ME AC H =,通过线面垂直证明1A HG ∠即为所求的线面角,从而计算出11A C 与平面α所成角的正弦值.【详解】(1)如图截面为矩形EFNM :因为//EF 平面11ADD A ,且平面EFNM平面11ADD A MN =,所以//EF MN , 又因为111111////,==22EF BC AD EF BC AD ,且3DG GA =,所以可知111//,2MN AD MN AD =, 所以//,MN EF MN EF =,所以可知,M N 为棱111,AA A D 的中点, 所以四边形EFNM 为矩形,且112,2EF ME =+==,所以截面EFNM 的面积为2;(2)记11ME AC H =,连接GH ,如图所示:因为//NF AB ,AB ⊥平面11AA D D ,所以NF ⊥平面11AA D D ,又1AG ⊂平面11AA D D ,所以1NF A G ⊥, 由(1)知1//MN AD 且11A D AD ⊥,所以1MN A D ⊥,所以1MN AG ⊥,且MN NF N =,1A G ⊥平面EFNM ,所以11A C 与平面α所成角为1A HG ∠, 因为111222442AG A D ===,111122A H AC ==1111sin 2A G A HG A H ∠==, 所以11A C 与平面α所成角的正弦值为12. 【点睛】方法点睛:求解线面角的正弦值的两种方法:(1)几何法:通过线面垂直的证明,找到线面角,通过长度的比值即可计算线面角的正弦值;(2)向量法:求解出直线的方向向量和平面的法向量,根据直线的方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值求解出结果.24.(I)证明见解析;(II)33 . 【分析】(I )取AD 的中点P ,连结EP PC ,,MP ,利用平行四边形及线面垂直的性质定理证明,,PE PC AD 相互垂直,从而可证明EC 与,MP MD 垂直,然后可得线面垂直,面面垂直;(II )取Q CD 为的中点,连结,PQ EQ ,可得EQP ∠为二面角A CD E --的平面角,在Rt EPQ △中求得其余弦值.【详解】(Ⅰ)证明:取AD 的中点P ,连结EP PC ,.则EFAP =,∵//FE AP =,∴四边形FAPE 是平行四边形,∴//FA EP =,同理,//AB PC =.又∵FA ⊥平面ABCD ,∴EP ⊥平面ABCD ,而PC AD ,都在平面ABCD 内,∴.EP PC EP AD ⊥⊥,由AB AD ⊥,可得PC AD ⊥,设FA a =,则2.EP PC PD a CD DE EC a ======,所以△ECD 为正三角形.∵DC DE =且M 为CE 的中点,∴DM CE ⊥.连结MP ,则.MP CE ⊥PM ∩MD =M ,而PM ,MD 在平面AMD 内 ,∴CE ⊥平面AMD而CE ⊂平面CDE ,所以平面AMD ⊥CDE .(Ⅱ)解:取Q CD 为的中点,连结,PQ EQ ,∵CE DE =,∴.EQ CD ⊥∵PC PD =,∴PQ CD ⊥∴EQP ∠为二面角A CD E --的平面角.由(Ⅰ)可得, 6222EP PQ EQ a PQ a ==⊥,,. 于是在Rt EPQ △中,3cos PQ EQP EQ ∠==. ∴二面角A CD E --的余弦值为33. 【点睛】 方法点睛:本题考查证明面面垂直,考查求二面角.求二面角的几何方法:一作二证三计算,一作:作出二面角的平面角;二证:证明所作的角是二面角的平面角;三计算:在三角形中求出这个角(这个角的余弦值).25.(Ⅰ)证明见解析;(Ⅱ3 【分析】(Ⅰ)通过证明平面//OFG 平面PAB ,进一步得出结论;(Ⅱ)利用等体积法即1124A PFB A PDB P ABCD V V V ---==,进一步求出答案. 【详解】(Ⅰ)如图,连接OF ,OG ∵O 是BD 中点,F 是PD 中点,∴//OF PB ,而OF ⊂/平面PAB ,PB ⊂平面PAB ,∴//OF 平面PAB ,又∵O 是AC 中点,G 是BC 中点,∴//OG AB ,而OG ⊂/平面PAB ,AB平面PAB ,∴//OG 平面PAB ,又OG OF O =∴平面//OFG 平面PAB ,即//FG 平面PAB . (Ⅱ)∵PD ⊥底面ABCD ,∴PD AO ⊥,又四边形ABCD 为菱形,∴BD AO ⊥,又ADDB D =,∴AO ⊥平面PDB ,而F 为PD 的中点, ∴1111322sin 60224433A PFB A PDB P ABCD V V V ︒---===⨯⨯⨯⨯⨯=. 【点睛】本题主要考查立体几何的知识点,属于中档题. 立体几何常用的三种解题方法为: (1)分割法;(2)补形法;(3)等体积法.26.(1)证明见解析;(2)证明见解析.【分析】(1)先证明BC ⊥平面PDC ,再利用线线平行证明GF ⊥平面PDC ,即证面面垂直; (2)先利用中位线证明//EG PM ,////GF BC AD ,再由此证明面面平行即可.【详解】(1)证明:由已知MA ⊥平面ABCD ,//PD MA ,∴PD ⊥平面ABCD .又BC ⊂平面ABCD ,∴PD BC ⊥.∵四边形ABCD 为正方形,∴BC DC ⊥, 又PD DC D ⋂=,∴BC ⊥平面PDC ,在PBC 中,∵G 、F 分别为PB 、PC 的中点,∴//GF BC ,∴GF ⊥平面PDC .又GF ⊂平面EFG ,∴平面EFG ⊥平面PDC .(2)∵E 、G 、F 分别为MB 、PB 、PC 的中点,∴//EG PM ,//GF BC ,又∵四边形ABCD 是正方形,∴//BC AD ,∴//GF AD ,∵EG 、GF 在平面PM A 外,PM 、AD 在平面PM A 内, ∴//EG 平面PM A ,//GF 平面PM A ,又∵EG 、GF 都在平面EFG 内且相交,∴平面//EFG 平面PM A .【点睛】本题考查了线线、线面、面面之间平行与垂直关系的转化,属于中档题.。
高一数学(必修二)立体几何练习题(含答案)
一.选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1、下列命题为真命题的是( )A. 平行于同一平面的两条直线平行;B.与某一平面成等角的两条直线平行;C. 垂直于同一平面的两条直线平行;D.垂直于同一直线的两条直线平行。
2、下列命题中错误的是:( )A. 如果α⊥β,那么α内一定存在直线平行于平面β;B. 如果α⊥β,那么α内所有直线都垂直于平面β;C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β;D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ.3、右图的正方体ABCD-A ’B ’C ’D ’中,异面直线AA ’与BC 所成的角是( ) A. 300 B.450 C. 600 D. 900 4、右图的正方体ABCD- A ’B ’C ’D ’中,二面角D ’-AB-D 的大小是( )A. 300B.450C. 600D. 900 5.在空间中,下列命题正确的是A.若三条直线两两相交,则这三条直线确定一个平面B.若直线m 与平面α内的一条直线平行,则α//mC.若平面βα⊥,且l =βα ,则过α内一点P 与l 垂直的直线垂直于平面βD.若直线a 与直线b 平行,且直线a l ⊥,则b l ⊥6.设平面α∥平面β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于点S ,且点S 位于平面α,β之间,AS =8,BS =6,CS =12,则SD =( )A .3B .9C .18D .10 7.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12πA B DA ’B ’D ’ C C ’ABD CE F8. 正方体的内切球和外接球的半径之比为( )A. 3:1B. 3:2C. 3:3D. 2:39.已知△ABC 是边长为a 2的正三角形,那么它的斜二侧所画直观图A B C 的面积为( )A.32a 2 B.34a 2 C.64a 2 D.6a 210.若正方体的棱长为2,则以该正方体各个面的中心为顶点的多面体的体积为( )A.26B.23C.33D.2311. 在空间四边形ABCD 中,AD=BC=2,E 、F 分别是AB 、CD 的中点,EF=2,求AD 与BC 所成角的大小.( )A. 30B. 45C.60οD. 90 12.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ) A92B 5C 6D 152二、填空题(共4小题,每小题5分,共20分,把答案填在题中的横线上)13. Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为.14.一个圆台的母线长为5 cm ,两底面面积分别为4πcm 2 和25π cm 2.则圆台的体积 ________. 15. 三棱锥S-ABC 中SA平面ABC ,AB 丄BC,SA= 2,AB =B C=1,则三棱锥S-ABC 的外接球的表面积等于______.16.如图,在直角梯形ABCD 中,,,BC DC AE DC ⊥⊥M 、N 分别是AD 、BE 的中点,将三角形ADE 沿AE 折起。
人教版高中数学必修第二册第三单元《立体几何初步》检测题(答案解析)
一、选择题1.在四面体S ABC -中,SA ⊥平面ABC ,9021ABC SA AC AB ︒∠====,,,则该四面体的外接球的表面积为( )A .23πB .43πC .4πD .5π2.已知直三棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,则异面直线1AB 和1BC 所成的角的大小是( ).A .π6B .π4C .π3D .π23.如图,梯形ABCD 中,AD ∥BC ,1AD AB ==,AD AB ⊥,45BCD ∠= ,将ABD ∆沿对角线BD 折起.设折起后点A 的位置为A ',并且平面A BD '⊥平面BCD . 给出下面四个命题: ①A D BC '⊥;②三棱锥A BCD '-的体积为22; ③CD ⊥平面A BD ';④平面A BC '⊥平面A DC '.其中正确命题的序号是( )A .①②B .③④C .①③D .②④ 4.已知m ,n 是不同的直线,α,β是不同的平面,则下列条件能使n α⊥成立的是( ) A .αβ⊥,m β⊂ B .//αβ,n β⊥ C .αβ⊥,//n β D .//m α,n m ⊥ 5.在正四面体ABCD 中,异面直线AB 与CD 所成的角为α,直线AB 与平面BCD 所成的角为β,二面角C AB D --的平面角为γ,则α,β,γ的大小关系为( ) A .βαγ<< B .αβγ<< C .γβα<< D .βγα<< 6.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC .2aD .22a 7.已知平面α,β,γ和直线l ,下列命题中错误的是( )A .若αβ⊥,//βγ,则αγ⊥B .若αβ⊥,则存在l α⊂,使得//l βC .若a γ⊥,βγ⊥,l αβ=,则l γ⊥D .若αβ⊥,//l α,则l β⊥8.下列说法正确的是( )A .直线l 平行于平面α内的无数条直线,则l ∥αB .若直线a 在平面α外,则a ∥αC .若直线a b φ⋂=,直线b α⊂,则a ∥αD .若直线a ∥b ,b α⊂,那么直线a 就平行于平面α内的无数条直线9.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm ),则此构件的表面积为( )A .27600mmB .28400mmC .29200mmD .210000mm 10.已知三棱锥A BCD -的所有棱长都为2,且球O 为三棱锥A BCD -的外接球,点M 是线段BD 上靠近D 的四等分点,过点M 作平面α截球O 得到的截面面积为Ω,则Ω的取值范围为( )A .π3π,42⎡⎤⎢⎥⎣⎦B .3π3π,42⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .,42ππ⎡⎤⎢⎥⎣⎦ 11.如图,梯形ABCD 中,AD ∥BC ,AD =AB =1,AD ⊥AB ,∠BCD =45°,将△ABD 沿对角线BD 折起,设折起后点A 的位置为A ′,使二面角A ′—BD —C 为直二面角,给出下面四个命题:①A ′D ⊥BC ;②三棱锥A ′—BCD 的体积为2;③CD ⊥平面A ′BD ;④平面A ′BC ⊥平面A ′D C .其中正确命题的个数是( )A .1B .2C .3D .412.如图,在直三棱柱111ABC A B C -中,4AC BC ==,AC BC ⊥,15CC =,D 、E 分别是AB 、11B C 的中点,则异面直线BE 与CD 所成的角的余弦值为( )A .33B .13C .5829D .38729 13.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊂,则下列命题中真命题是( )A .若l β⊥,则αβ⊥B .若l m ⊥,则αβ⊥C .若αβ⊥,则l m ⊥D .若//αβ,则//l m14.长方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E 为AB 的中点,3CE =,53cos 9ACE ∠=,且四边形11ABB A 为正方形,则球O 的直径为( ) A .4 B 51C .451D .4或5 二、解答题15.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,90,,60ADP PD AD PDC ∠==∠=,E 为PD 的中点.(1)证明:CE ⊥平面PAD .(2)求三棱锥E ABC -外接球的体积.16.如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 平面1ABB 所成的角的正弦值.17.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.18.如图,在斜三棱柱111ABC A B C -中,点O .E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,AO ⊥平111A B C .已知90BCA ∠=︒,12AA AC BC ===.(1)求证://EF 平面11BB C C ;(2)求11A C 与平面11AA B 所成角的正弦值.19.如图,棱长为2的正方体ABCD —A 1B 1C 1D 1,E 、F 分别为棱B 1C 1、BB 1中点,G 在A 1D 上且DG =3GA 1,过E 、F 、G 三点的平面α截正方体.(1)作出截面图形并求出截面图形面积(保留作图痕迹);(2)求A 1C 1与平面α所成角的正弦值. (注意:本题用向量法求解不得分)20.如图所示,正方形ABCD 与直角梯形ADEF 所在平面互相垂直,90//22ADE AF DE DE DA AF ∠====,,.(1)求证:AC ⊥平面BDE ;(2)求证://AC 平面BEF ;(3)若AC 与BD 相交于点O ,求四面体BOEF 的体积.21.如图1,矩形ABCD ,1,2,AB BC ==点E 为AD 的中点,将ABE △沿直线BE 折起至平面PBE ⊥平面BCDE (如图2),点M 在线段PD 上,//PB 平面CEM .(1)求证:2MP DM =;(2)求二面角B PE C --的大小;(3)若在棱,PB PE 分别取中点,F G ,试判断点M 与平面CFG 的关系,并说明理由. 22.在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点.(1)求证:平面EFG ⊥平面PDC ;(2)求证:平面//EFG 平面PM A .23.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,2AB =,1AD =,60DAB ∠=︒,PD BD =,且PD ⊥平面ABCD .(1)证明:平面PBC ⊥平面PBD ;(2)若Q 为PC 的中点,求三棱锥D PBQ -的体积.24.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,E 为PD 上的动点.(1)确定E 的位置,使//PB 平面AEC ;(2)设1==PA AB ,3PC =,根据(1)的结论,求点E 到平面PAC 的距离. 25.如图,在棱长为1的正方体1111ABCD A B C D -中,点O 是BD 中点.(1)求证:平面11BDD B ⊥平面1C OC ;(2)求二面角1C BD C --的正切值.26.如图,在四棱锥P ABCD -中,//AB CD ,2CD AB =,CD ⊥AD ,平面PAD ⊥平面ABCD ,,E F 分别是CD 和PC 的中点.求证:(1)BF //平面PAD(2)平面BEF ⊥平面PCD参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题目条件先确定出外接球的球心,得出外接球半径,然后计算表面积.【详解】因为SA ⊥平面ABC ,BC ⊂平面ABC ,所以SA ⊥BC ,又90ABC ∠=,SA AB A ⋂=,且AB平面SAB ,SA ⊂平面SAB , 所以BC ⊥平面ABC ,所以BC SB ⊥. 因为21SA AC AB ===,,所以2SC =,3SB =1BC =,根据该几何体的特点可知,该四面体的外接球球心位于SC 的中点, 则外接球半径112R SC ==, 故该四面体的外接球的表面积为244R ππ=.故选:C.,【点睛】本题考查棱锥的外接球问题,难度一般,根据几何条件确定出球心是关键.2.D解析:D【分析】连结1A B ,可证1A B ⊥平面11A BC ,从而可到异面直线1AB 和1BC 所成的角为直角,故可得正确的选项.【详解】连结1A B ,1AA ⊥面,ABC 平面111//A B C 面ABC ,1AA ∴⊥平面111A B C11A C ⊂平面111111,A B C AA AC ∴⊥ ABC 与111A B C △是全等三角形,AB AC ⊥1111A B A C ∴⊥111111,A B AA A AC ⋂=∴⊥平面11AA B B又1AB ⊂平面11AA B B ,111AC AB ∴⊥矩形11AA B B 中,1AA AB =∴四边形11AA B B 为正方形,可得11A B AB ⊥11111A B AC A AB ⋂=∴⊥,平面11A BC 结合1BC ⊂平面11A BC ,可得11AB BC ⊥,即异面直线1AB 与1BC 所成角为2π故选:D【点睛】在求异面直线所成角时可以将异面直线通过平行线转化到共面直线,然后构造三角形,求得直线夹角.本题通过补全图形,判定线面的垂直关系,得证线线垂直关系,求得异面直线夹角为2π. 3.B解析:B【分析】利用折叠前四边形ABCD 中的性质与数量关系,可证出BD DC ⊥,然后结合平面A BD ' ⊥平面BCD ,可得CD ⊥平面A BD ',从而可判断①③;三棱锥'A BCD -的体积为1132⋅=,可判断②;因为CD ⊥平面A BD ',从而证明CD A B '⊥,再证明'A B ⊥平面A DC ',然后利用线面垂直证明面面垂直.【详解】①90,BAD AD AB ︒∠==,45ADB ABD ︒∴∠=∠=,//,45AD BC BCD ︒∠=,BD DC ∴⊥,平面A BD ' ⊥平面BCD ,且平面A BD '平面BCD BD =, CD 平面A BD ',A D '⊂平面A BD ',CD A D '∴⊥,若A D BC '⊥则A D '⊥面BCD ,则A D '⊥BD ,显然不成立, 故A D BC '⊥不成立,故①错误;②棱锥'A BCD -的体积为113226⋅=,故②错误; ③由①知CD ⊥平面A BD ',故③正确;④由①知CD ⊥平面A BD ',又A B '⊂平面A BD ',CD A B '∴⊥, 又A B A D ''⊥,且'A D 、CD ⊂平面A DC ',A D CD D '=,A B '∴⊥平面A DC ',又A B '⊂平面'A BC ,∴平面'A BC ⊥平面A DC ',故④正确.故选:B .【点睛】本题通过折叠性问题,考查了面面垂直的性质,面面垂直的判定,考查了体积的计算,关键是利用好直线与平面、平面与平面垂直关系的转化,也要注意利用折叠前后四边形ABCD 中的性质与数量关系.4.B解析:B【分析】n α⊥必有n 平行α的垂线,或者n 垂直α的平行平面,依次判定选项即可.【详解】解:αβ⊥,m β⊂,不能说明n 与α的关系,A 错误;//αβ,n β⊥能够推出n α⊥,正确;αβ⊥,//n β可以得到n 与平面α平行、相交,所以不正确.//m α,n m ⊥则n 与平面α可能平行,所以不正确.故选:B .【点睛】本题考查直线与平面垂直的判定,考查空间想象能力,是基础题.5.D解析:D【分析】在正四面体ABCD 中易证AB CD ⊥,即90α=,然后作出直线AB 与平面BCD 所成的角,二面角C AB D --的平面角,在将之放到三角形中求解比较其大小.【详解】在正四面体ABCD 中,设棱长为2,设O 为底面三角形BCD 是中心,则AO ⊥平面BCD .取CD 边的中点E ,连结,AE BE , 如图.则易证,AE CD BE CD ⊥⊥,又AEBE E =. 所以CD ⊥平面ABE ,又AB ⊆平面ABE ,所以AB CD ⊥. 所以异面直线AB 与CD 所成的角为90α=.又AO ⊥平面BCD .所以直线AB 与平面BCD 所成的角为β=ABO ∠在ABO 中,233BO BE ==,2AB =所以cos 3BO ABO AB ∠==. 取边AB 的中点F ,连结,CF FD ,则有,CF AB FD AB ⊥⊥,所以二面角C AB D --的平面角为CFD γ=∠,在CFD △中,2CF FD CD === 由余弦定理有:2221cos 23CF FD CD CFD CF FD +-∠==⨯⨯,即1=90cos cos =3αβγ=>,, 所以βγα<<,故选:D.【点睛】本题考查异面直线成角,线面角,二面角的求法,关键是在立体图中作出相应的角,也可以用向量法,属于中档题. 6.D解析:D【分析】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,证明平面1//A BGE 平面1B HI ,得到1//B F 面1A BE ,则F 落在线段HI 上,求出112HI CD == 【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点, 1//A B EG ,则1A BEG 四点共面,11//,//EG HI B H A E , 平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上,正方体1111ABCD A B C D -中的棱长为a ,112HI CD ∴==,即F 在侧面11CDD C 上的轨迹的长度是2a . 故选:D .【点睛】本题考查利用线面平行求线段长度,找到动点的运动轨迹是解题的关键,属于基础题. 7.D解析:D【分析】根据面面垂直的判定定理即可判断A 正确;根据线面平行的判定定理可知B 正确; 根据面面垂直的性质定理可知C 正确;根据线面垂直的判定定理可知D 错误.【详解】对于A ,因为αβ⊥,所以存在直线a ⊂α,使a ⊥β,又β∥γ,所以a ⊥γ,有α⊥γ,正确;对于B ,α⊥β,设α∩β=m ,则在平面α内存在不同于直线m 的直线l ,满足l ∥m , 根据线面平行的判定定理可知,l ∥β,正确;对于C ,过直线l 上任意一点作直线m ⊥γ,根据面面垂直的性质定理可知,m 既在平面α又在平面β内,所以直线l 与直线m 重合,即有l ⊥γ,正确;对于D ,若α⊥β,l ∥α,则l ⊥β不一定成立,D 错误.故选:D .【点睛】本题主要考查线面位置关系的判断,考查学生的逻辑推理能力,属于中档题. 8.D解析:D【分析】根据直线与平面平行的判定及相关性质,一一验证各选项即可得出答案.【详解】解:A 项,若直线l 平行于平面α内的无数条直线,则l 可能平行于平面α,也可能位于平面α内,故A 项错误;B 项,直线a 在平面α外,则直线a 与平面α可能平行,也可能相交,故B 错误;C 项,直线,a b b φα⋂=⊂,所以a 可能与平面α相交或与平面α平行,故C 项错误;D 项,直线a ∥b ,b α⊂,当a ∥α时,直线a 与平面α内所有与直线b 平行的直线平行;当a α⊂时,除了直线a 本身,直线a 与平面α内所有与直线b 平行的直线平行,因此直线a 平行于平面α内的无数条直线,故D 项正确.故选:D.【点睛】本题主要考查直线与平面平行的判定及相关性质,属于基础题型.9.B解析:B【分析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:()210020220202100204010210202840m 0m S =⨯⨯+⨯⨯+⨯-⨯⨯+⨯⨯=.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.10.B解析:B【分析】求出三棱锥A BCD -的外接球半径R ,可知截面面积的最大值为2πR ,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,截面圆的半径的最小值22R OM -,进而可求出截面面积的最小值.【详解】三棱锥A BCD -是正四面体,棱长为2,将三棱锥A BCD -放置于正方体中, 可得正方体的外接球就是三棱锥A BCD -的外接球.因为三棱锥A BCD -的棱长为22, 可得外接球直径22226R =++=62R =,故截面面积的最大值为2263πππ2R ⎛⎫= ⎪ =⎪⎝⎭. 因为M 是BD 上的点,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,△OBD 为等腰三角形,过点O 作BD 的垂线,垂足为H , 222662,1222OD OH OD HD ⎛⎫==-=-= ⎪ ⎪⎝⎭, 得222113244OM OH HM =+=+=, 则所得截面半径的最小值为22633444R OM -=-=, 所以截面面积的最小值为233ππ()44=. 故Ω的取值范围为3π3π,42⎡⎤⎢⎥⎣⎦.故选:B.【点睛】外接球问题与截面问题是近年来的热点问题,平常学习中要多积累,本题考查学生的空间想象能力、推理能力及计算求解能力,属于中档题.11.C解析:C【分析】根据//AD BC ,1AD AB ==,AD AB ⊥,45BCD ︒∠=, 易得 CD BD ⊥,再根据,平面A BD '⊥平面BCD ,得CD ⊥平面A BD ',可判断③的正误;由二面角A BD C '--为直二面角,可得A H '⊥平面BCD ,则可求出A BDC V '-,进而可判断②的正误;根据CD ⊥平面A BD ',有CD A B '⊥,,A B A D ''⊥ 得A B '⊥平面CDA ',④利用面面垂直的判定定理判断④的正误;根据CD ⊥平面A BD ',有CD A D '⊥,若A D BC '⊥,则可证A D '⊥平面BCD ,则得到A D BD '⊥,与已知矛盾,进而可判断①的正误.【详解】由题意,取BD 中点H ,连接A H ',则折叠后的图形如图所示:由二面角A BD C '--为直二面角,可得A H '⊥平面BCD ,则A H CD '⊥,∴A BDC V '-=1221326⨯⨯=,②正确, ∵CD BD ⊥,A H CD '⊥,且A H BD H '=,∴CD ⊥平面A BD ',故③正确,∵1A B '=,由几何关系可得3A C '=,2BC =,∴2222132A B A C BC ''+=+==,∴A B A C ''⊥,由CD ⊥平面A BD ',得CD A B '⊥,又A CCD C '=∴A B '⊥平面A DC ',∵A B '⊂平面A BC ',∴ 平面A BC '⊥平面A DC ',④正确, CD ⊥平面A BD ',CD A D '∴⊥,若A D BC '⊥,则可证A D '⊥平面BCD ,则得到A D BD '⊥,与已知矛盾,所以①错误.故选C .【点睛】本题通过折叠性问题,考查了面面垂直的性质,面面垂直的判定,考查了体积的计算,解题关键是利用好直线与平面,平面与平面垂直关系的转化关系,属于中档题.12.C解析:C【分析】取11A C 的中点F ,连接DF 、EF 、CF ,推导出四边形BDFE 为平行四边形,可得出//BE DF ,可得出异面直线BE 与CD 所成的角为CDF ∠,通过解CDF ,利用余弦定理可求得异面直线BE 与CD 所成的角的余弦值.【详解】取11A C 的中点F ,连接DF 、EF 、CF .易知EF 是111A B C △的中位线,所以11//EF A B 且1112EF A B =. 又11//AB A B 且11AB A B =,D 为AB 的中点,所以11//BD A B 且1112BD A B =,所以//EF BD 且EF BD =.所以四边形BDFE 是平行四边形,所以//DF BE ,所以CDF ∠就是异面直线BE 与CD 所成的角.因为4AC BC ==,AC BC ⊥,15CC =,D 、E 、F 分别是AB 、11B C 、11A C 的中点, 所以111122C F AC ==,111122B E BC ==且CD AB ⊥. 由勾股定理得22442AB =+=2242AC BC CD AB ⋅=== 由勾股定理得2222115229CF CC C F =+=+=2222115229DF BE BB B E ==+=+=.在CDF 中,由余弦定理得((22229222958cos 2922922CDF +-∠==⨯⨯. 故选:C.【点睛】本题考查异面直线所成角的余弦值的计算,一般利用平移直线法找出异面直线所成的角,考查计算能力,属于中等题. 13.A解析:A【分析】利用平面与平面垂直的判定定理,平面与平面垂直、平行的性质定理判断选项的正误即可.【详解】由α,β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊂,知: 在A 中,l β⊥,则αβ⊥,满足平面与平面垂直的判定定理,所以A 正确; 在B 中,若l m ⊥,不能得到l β⊥,也不能得到m α⊥,所以得不到αβ⊥,故B 错误;在C 中,若αβ⊥,则l 与m 可能相交、平行或异面,故C 不正确;在D 中,若//αβ,则由面面平行的性质定理得l β//,不一定有//l m ,也可能异面,故D 错误.故选:A .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.14.C解析:C【分析】设2AB x =,则AE x =,29BC x =-,由余弦定理可得2225393923939x x x =++-⨯⨯+⨯,求出x ,即可求出球O 的直径. 【详解】 根据题意,长方体内接于球O 内,则球的直径为长方体的体对角线,如图作出长方体1111ABCD A B C D -:设2AB x =,则AE x =,29BC x =-,由余弦定理可得:2225393923939x x x =++-⨯+,∴1x =6, ∴2AB =,22BC =O 4484++=;或26AB =3BC =,球O 2424351++=故选:C .【点睛】本题考查球的直径的计算方法,考查余弦定理,考查计算能力和分析能力,属于常考题.二、解答题15.(1)证明见解析;(2)823π. 【分析】 (1)由已知条件知AD ⊥面DPC ,即有AD CE ⊥,由PDC △为等边三角形有CE DP ⊥,结合线面垂直的判定有CE ⊥平面PAD .(2)由勾股定理可证AEC 为直角三角形,且ABC 为等腰直角三角形,即可知AC 的中点O 为外接球的球心,进而得到半径求球的体积.【详解】 (1)由90ADP ∠=知:AD DP ⊥,底面ABCD 是正方形有AD DC ⊥,又DP DC D =,∴AD ⊥面DPC ,而CE ⊂面DPC ,即AD CE ⊥,∵PD AD DC ==,60PDC ∠=,∴PDC △为等边三角形,E 为PD 的中点,故CE DP ⊥,∵DP AD D ⋂=,∴CE ⊥平面PAD .(2)由(1)知:ABC 为等腰直角三角形且2AB BC == ,有22AC =, 在AEC 中3,5CE AE ==,即222AC CE AE =+,故AE CE ⊥,∴由上知:ABC 、AEC 都是以AC 为斜边的直角三角形,由直角三角形斜边中点O 到三顶点距离相等知:OE OC OA OB ===,即O 为三棱锥E ABC -外接球的球心, ∴外接球的半径为22AC =, 所以三棱锥E ABC -外接球的体积为3482(2)3V ππ=⨯=. 【点睛】关键点点睛:(1)由90°及正方形有线面垂直:AD ⊥面DPC ,再由等边三角形的性质和线面垂直的判定证明CE ⊥平面PAD ;(2)由勾股定理说明AEC 是以AC 为斜边的直角三角形,同样ABC 也是AC 为斜边的直角三角形,即可确定三棱锥E ABC -外接球的球心,进而求体积. 16.(1)证明见解析;(2【分析】(1)由已知条件可得2221111A B AB AA +=,2221111AB B C AC +=,则111AB A B ⊥,111AB B C ⊥,再利用线面垂直的判定定理可证得结论;(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD ,可证得1C D ⊥平面1ABB ,从而1C AD ∠是1AC 与平面1ABB 所成的角,然后在1Rt C AD 求解即可【详解】(1)证明: 由2AB =,14AA =,12BB =,1AA AB ⊥,1BB AB ⊥得111AB A B ==,所以2221111A B AB AA +=,由111AB A B ⊥.由2BC =,12BB =,11CC =,1BB BC ⊥,1CC BC ⊥得11B C =, 由2AB BC ==,120ABC ∠=︒得AC =由1CC AC ⊥,得1AC =,所以2221111AB B C AC +=,故111AB B C ⊥,又11111A B B C B =,因此1AB ⊥平面111A B C . (2)解 如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD . 由1AB ⊥平面111A B C ,1AB ⊂平面1ABB ,得平面111A B C ⊥平面1ABB ,由111C D A B ⊥,得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由11B C =11AB =,11AC =得111cos C A B ∠=,111sin C A B ∠=,所以1C D,故111sin 13C D C AC AD ∠==. 因此,直线1AC 与平面1ABB所成的角的正弦值是13.【点睛】关键点点睛:此题考查线面垂直的判定和线面角的求法,解题的关键是通过过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD ,然后结合条件可证得1C AD ∠是1AC 与平面1ABB 所成的角,从而在三角形中求解即可,考查推理能力和计算能力,属于中档题 17.(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点.连结PO ,又因为P 是1DD 的中点,所以1//PO BD .又因为PO ⊂平面PAC ,1BD ⊄平面PAC所以直线1//BD 平面PAC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==212AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30.【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m nm n α=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.18.(1)证明见解析;(221. 【分析】(1)由题意可得11//OE B C ,1//OF C C ,利用面面平行的判定定理可得平面//OEF 平面11BB C C ,由面面平行的性质定理即可证明. (2)利用等体法111112A A B C C AA B V V --=,求出点1C 到平面11AA B 的距离2217d =,由11sin d A C θ=即可求解. 【详解】证明:(1)∵O ,E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,∴11//OE B C ,1//OF C C ,1111B C C C C ⋂=,//OE ∴平面11B C C ,//OF ∴平面11B C C ,又OE OF O ⋂=,∴平面//OEF 平面11BB C C ,∵EF ⊂平面OEF ,∴//EF 平面11BB C C .(2)解:设点1C 到平面11AA B 的距离为d ,∵111112A A B C C AA B V V --=, ∴111111111323AA B AC B C AO S d ⨯⨯⨯⨯=⨯⨯,22113AO AA AO =-=2211115OB B C OC =-= 221122AB AO OB =+=,∵11AA B 中,11122A B AB ==,12AA =, ∴117AA B S = ∴1112237323d ⨯⨯⨯=, 解得217d =, 设11A C 与平面11AA B 所成角为θ,∴11A C 与平面11AA B 所成角的正弦值为:1121sin 7d AC θ==. 【点睛】方法点睛:证明线面平行的常用方法:(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理.(3)利用面面平行的性质.19.(1)截面见解析,面积为2;(2)12.【分析】(1)先根据线面平行的性质定理确定出,EF MN 的位置关系,再根据,EF MN 的长度关系确定出,M N 的位置,从而截面的形状可确定以及截面面积可求;(2)记11ME AC H =,通过线面垂直证明1A HG ∠即为所求的线面角,从而计算出11A C 与平面α所成角的正弦值.【详解】(1)如图截面为矩形EFNM :因为//EF 平面11ADD A ,且平面EFNM平面11ADD A MN =,所以//EF MN , 又因为111111////,==22EF BC AD EF BC AD ,且3DG GA =,所以可知111//,2MN AD MN AD =, 所以//,MN EF MN EF =,所以可知,M N 为棱111,AA A D 的中点, 所以四边形EFNM 为矩形,且112,2EF ME =+==,所以截面EFNM 的面积为22;(2)记11ME AC H =,连接GH ,如图所示:因为//NF AB ,AB ⊥平面11AA D D ,所以NF ⊥平面11AA D D ,又1AG ⊂平面11AA D D ,所以1NF A G ⊥, 由(1)知1//MN AD 且11A D AD ⊥,所以1MN A D ⊥,所以1MN AG ⊥,且MN NF N =,1A G ⊥平面EFNM ,所以11A C 与平面α所成角为1A HG ∠, 因为111222442AG A D ===,111122A H AC ==,所以1111sin 2A G A HG A H ∠==, 所以11A C 与平面α所成角的正弦值为12. 【点睛】方法点睛:求解线面角的正弦值的两种方法:(1)几何法:通过线面垂直的证明,找到线面角,通过长度的比值即可计算线面角的正弦值;(2)向量法:求解出直线的方向向量和平面的法向量,根据直线的方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值求解出结果.20.(1)证明见解析;(2)证明见解析;(3)23. 【分析】(1)证明DE AC ⊥,AC BD ⊥,AC ⊥平面BDE 即得证;(2)设AC BD O =,取BE 中点G ,连接FG ,OG ,证明//AO 平面BEF ,即证//AC 平面BEF ;(3)先求出四面体BDEF 的体积43V =,再根据12BOEF BDEF V V =求解. 【详解】(1)证明:平面ABCD ⊥平面ADEF ,90ADE ∠=︒, DE ∴⊥平面ABCD ,DE AC ∴⊥.ABCD 是正方形,AC BD ∴⊥,因为,BD DE ⊂平面BDE ,BD DE D ⋂=,AC ∴⊥平面BDE .(2)证明:设AC BD O =,取BE 中点G ,连接FG ,OG ,OG 为BDE 的中位线1//2OG DE ∴//AF DE ,2DE AF =,//AF OG ∴, ∴四边形AFGO 是平行四边形, //FG AO ∴.FG ⊂平面BEF ,AO ⊂/平面BEF ,//AO ∴平面BEF ,即//AC 平面BEF .3()平面ABCD ⊥平面ADEF ,AB AD ⊥,AB ∴⊥平面.ADEF 因为//9022AF DE ADE DE DA AF ∠=︒===,,,DEF ∴的面积为122DEF S ED AD =⨯⨯=, ∴四面体BDEF 的体积1433DEF V S AB =⋅⨯= 又因为O 是BD 中点,所以1223BOEF BDEF V V == 2.3BOEF V ∴= 【点睛】方法点睛:求几何体的体积的方法:方法一:对于规则的几何体一般用公式法.方法二:对于非规则的几何体一般用割补法.方法三:对于某些三棱锥有时可以利用转换的方法. 21.(1)证明见解析;(2)90;(3)M ∈平面CFG ,理由见解析.【分析】(1)设BD EC O ⋂=,连接MO ,由线面平行的性质可得//PB MO ,可得MD OD MP OB =,由//ED BC 可得12OD ED OB BC ==,即可证明; (2)取BE 中点Q ,连接PQ ,通过面面垂直的性质可得PQ ⊥平面BCDE ,进而可得PQ EC ⊥,再由EC BE ⊥可得EC ⊥平面PBE ,即平面PBE ⊥平面PEC ,即得出结果;(3)延长ED 到N ,使ED DN =,连接,,CN PN GN ,证明//FG CN ,可得,,,F C N G 确定平面FCNG ,判断M 是PEN △的重心,可得M ∈平面CFG .【详解】(1)设BD EC O ⋂=,连接MO ,//PB 平面CEM ,PB ⊂平面PBD ,平面PBD 平面CEM MO =,//PB MO ∴,MD OD MP OB ∴=, //ED BC ,12OD ED OB BC ∴==, 12MD MP ∴=,即2MP DM =; (2)取BE 中点Q ,连接PQ ,PB PE =,PQ BE ∴⊥,又平面PBE ⊥平面BCDE ,PQ ∴⊥平面BCDE , EC ⊂平面BCDE ,PQ EC ∴⊥,2BE EC ==,2BC =,满足222BE EC BC +=,EC BE ∴⊥,PQ BE Q ⋂=,EC ∴⊥平面PBE ,EC ⊂平面PEC ,∴平面PBE ⊥平面PEC ,∴二面角B PE C --的大小为90;(3)延长ED 到N ,使ED DN =,连接,,CN PN GN ,,F G 分别是,PB PE 的中点,//FG BE ∴,2BC ED =,BC EN ∴=,//BC EN ,∴四边形BCNE 是平行四边形,//BE CN ∴,//FG CN ∴,则,,,F C N G 确定平面FCNG ,PEN 中,PD 是EN 边中线,且:2:1PM MD =,M ∴是PEN △的重心,又GN 为PE 边的中线,则M 在GN 上,∴M ∈平面CFG .【点睛】关键点睛:(1)本问考查线段比例关系的证明,解题的关键是由平行得出比例关系,利用等量替换求解;(2)本问考查二面角的求解,解题的关键是证明平面PBE ⊥平面PEC ,从而得出二面角为90;(3)本问考查平面的性质,解题的关键是作出恰当的辅助线,延长ED 到N ,使ED DN =,通过//FG CN 得出,,,F C N G 确定平面FCNG ,再通过M 是PEN △的重心得出M 在GN 上.22.(1)证明见解析;(2)证明见解析.【分析】(1)先证明BC ⊥平面PDC ,再利用线线平行证明GF ⊥平面PDC ,即证面面垂直; (2)先利用中位线证明//EG PM ,////GF BC AD ,再由此证明面面平行即可.【详解】(1)证明:由已知MA ⊥平面ABCD ,//PD MA ,∴PD ⊥平面ABCD .又BC ⊂平面ABCD ,∴PD BC ⊥.∵四边形ABCD 为正方形,∴BC DC ⊥, 又PD DC D ⋂=,∴BC ⊥平面PDC ,在PBC 中,∵G 、F 分别为PB 、PC 的中点,∴//GF BC ,∴GF ⊥平面PDC .又GF ⊂平面EFG ,∴平面EFG ⊥平面PDC .(2)∵E 、G 、F 分别为MB 、PB 、PC 的中点,∴//EG PM ,//GF BC ,又∵四边形ABCD 是正方形,∴//BC AD ,∴//GF AD ,∵EG 、GF 在平面PM A 外,PM 、AD 在平面PM A 内,∴//EG 平面PM A ,//GF 平面PM A ,又∵EG 、GF 都在平面EFG 内且相交,∴平面//EFG 平面PM A .【点睛】本题考查了线线、线面、面面之间平行与垂直关系的转化,属于中档题.23.(1)证明见解析;(2)14 【分析】(1)由余弦定理可得23BD =,证得AD BD ⊥,则BC BD ⊥由PD ⊥底面ABCD ,BC ⊂平面ABCD ,证得PD BC ⊥,得证.(2)Q 为PC 的中点,利用等积法12D PBQ D BCQ Q BCD P BCD V V V V ----===,即可求出结果. 【详解】(1) 在ABD △中,由余弦定理得2222cos 3BD BA AD BA AD DAB =+-⋅∠=, ∵222AD BD AB +=,∴AD BD ⊥,∵//AD BC ,∴BC BD ⊥.又∵PD ⊥底面ABCD ,BC ⊂平面ABCD∴PD BC ⊥.∵PD BD D ⋂=,∴BC ⊥平面PBD .(2)因为Q 为PC 的中点,所以三棱锥D PBQ -的体积A PBQ V -,与三棱锥D QBC -的体积相等, 即1111313232412D PBQ D BCQ Q BCD P BCD V V V V ----=⨯⨯⨯⨯⨯====. 所以三棱锥A PBQ -的体积14D PBQ V -=. 【点睛】 本题主要考查了线面垂直的证明,在含有长度时需要解三角形来证垂直,并且不要忘记线面垂直的性质运用,在求三棱锥的体积时注意等体积法的使用24.(1)E 为PD 的中点;(2)2. 【分析】(1)E 为PD 的中点,连接BD 交AC 于点O ,连接OE ,则//OE PB ,故而//PB 平面AEC ; (2)点E 到平面PAC 距离等于点D 到平面PAC 距离的12倍,由1122E PAC D PAC P ACD V V V ---==可得答案. 【详解】(1)E 为PD 的中点.证明:连接BD ,使AC 交BD 于点O ,取PD 的中点为E ,连接EO ,∵O ,E 分别为BD ,PD 的中点,∴//OE PB .又OE ⊂平面AEC ,PB ⊄平面AEC ,∴//PB 平面AEC .(2)222AC PC PA =-=∴222AB BC AC +=,∴AB BC ⊥,即菱形ABCD 为正方形.又点E 到平面PAC 距离等于点D 到平面PAC 距离的12倍, 设点E 到平面PAC 的距离为h , ∴1122E PAC D PAC P ACD V V V ---==, 11111111132322h ⎛⎛⎫⨯⨯⨯⋅=⨯⨯⨯⨯⨯ ⎪⎝⎝⎭解得4h =. 【点睛】本题考查了线面平行的判定,等体积法求棱锥的高,属于基础题.25.(1)证明见解析;(2.【分析】(1)在正方体1111ABCD A B C D -中,易证1,C O BD CO BD ⊥⊥,由线面垂直的判定定理得到BD ⊥平面1C OC ,然后再利用面面垂直的判定定理证明. (2)由(1)知BD ⊥平面1C OC ,且平面1C BD ⋂平面CBD BD =,得到1C OC ∠是二面角1C BD C --的平面角 ,然后在1Rt C OC ∆中求解.【详解】(1)∵在正方体1111ABCD A B C D -中, 点O 是BD 中点 , 又11BC DC = , BC DC = ,∴ 1,C O BD CO BD ⊥⊥ 11,C O CO O C O =⊂平面1,C OC CO ⊂平面1C OC , BD ∴⊥平面1C OC ,又∵BD ⊂平面11BDD B ,∴平面11BDD B ⊥平面1C OC .…(2)由(1)知:平面1C BD ⋂平面CBD BD =,11,C O BD C O ⊥⊂半平面1;,C BD CO BD CO ⊥⊂ 半平面;CBD 所以1C OC ∠是二面角1C BD C --的平面角则在正方体1111ABCD A B C D -中11,2C C OC ==∴在1Rt C OC ∆中,11tan C C C OC OC∠==故二面角1C BD C -- .【点睛】本题主要考查线面垂直,面面垂直的判定定理以及二面角的求法,还考查了逻辑推理和运算求解的能力,属于中档题.26.(1)证明见解析;(2)证明见解析.【分析】(1)若要证BF //平面PAD ,只要BF 所在面和平面PAD 平行即可;(2)若要证平面BEF ⊥平面PCD ,只要证平面PCD 内的一条直线和平面BEF 垂直即可.【详解】(1)∵AB CD ∥,2CD AB =,E 是CD 的中点, ∴AB DE ,即ABED 是平行四边形.∴BE AD .∵BE ⊄平面,PAD AD ⊄平面PAD , ∴BE 平面PAD ,又EF PD ,EF ⊄平面PAD ,PD ⊂平面PAD , ∴EF 平面PAD ,EF ,BE ⊂平面BEF ,且EFBE E =,∴平面BEF 平面PAD . ∵BF ⊂平面BEF ,∴BF ∥平面PAD .(2)由题意,平面PAD ⊥平面ABCD ,且两平面交线为AD ,CD ⊂平面ABCD ,CD AD ⊥,∴CD ⊥平面PAD .∴CD PD ⊥.∴CD EF ⊥.又CD BE ⊥,BE ,EF ⊂平面BEF ,且EE EF E ⋂=,∴CD ⊥平面BEF .∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .【点睛】本题考查了线面平行和面面垂直的证明,解决此类问题的关键是能利用线面关系的定理和性质进行逻辑推理,往往使用逆推法进行证明,需要较强的空间感和空间预判,属于较难题.。
(完整版)高中数学必修2立体几何考题(附答案)
高中数学必修2立体几何考题13.如图所示,正方体ABCD-A1B1C1D1中,M、N分别是A1B1,B1C1的中点.问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由.解析:(1)由于M、N分别是A1B1和B1C1的中点,可证明MN∥AC,因此AM与CN不是异面直线.(2)由空间图形可感知D1B和CC1为异面直线的可能性较大,判断的方法可用反证法.探究拓展:解决这类开放型问题常用的方法有直接法(即由条件入手,经过推理、演算、变形等),如第(1)问,还有假设法,特例法,有时证明两直线异面用直线法较难说明问题,这时可用反证法,即假设两直线共面,由这个假设出发,来推证错误,从而否定假设,则两直线是异面的.解:(1)不是异面直线.理由如下:∵M、N分别是A1B1、B1C1的中点,∴MN∥A1C1.又∵A1A∥D1D,而D1D綊C1C,∴A1A綊C1C,∴四边形A1ACC1为平行四边形.∴A1A∥AC,得到MN∥AC,∴A、M、N、C在同一个平面内,故AM和CN不是异面直线.(2)是异面直线.理由如下:假设D1B与CC1在同一个平面CC1D1内,则B∈平面CC1D1,C∈平面CC1D1.∴BC⊂平面CC1D1,这与在正方体中BC⊥平面CC1D1相矛盾,∴假设不成立,故D1B与CC1是异面直线.14.如下图所示,在棱长为1的正方体ABCD-A1B1C1D1中,M为AB的中点,N为BB1的中点,O为面BCC1B1的中心.(1)过O作一直线与AN交于P,与CM交于Q(只写作法,不必证明);(2)求PQ的长(不必证明).解析:(1)由ON∥AD知,AD与ON确定一个平面α.又O、C、M三点确定一个平面β(如下图所示).∵三个平面α,β和ABCD两两相交,有三条交线OP、CM、DA,其中交线DA与交线CM不平行且共面.∴DA与CM必相交,记交点为Q.∴OQ是α与β的交线.连结OQ与AN交于P,与CM交于Q,故OPQ即为所作的直线.(2)解三角形APQ可得PQ=14 3.15.如图,在直三棱柱ABC-A1B1C1中,AB=BC=B1B=a,∠ABC=90°,D、E分别为BB1、AC1的中点.(1)求异面直线BB1与AC1所成的角的正切值;(2)证明:DE为异面直线BB1与AC1的公垂线;(3)求异面直线BB1与AC1的距离.解析:(1)由于直三棱柱ABC-A 1B1C1中,AA1∥BB1,所以∠A1AC1就是异面直线BB1与AC1所成的角.又AB=BC=B1B=a,∠ABC=90°,所以A1C1=2a,tan∠A1AC1=2,即异面直线BB1与AC1所成的角的正切值为 2.(2)证明:解法一:如图,在矩形ACC1A1中,过点E作AA1的平行线MM1分别交AC、A1C1于点M、M1,连结BM,B1M1,则BB1綊MM1.又D、E分别是BB1、MM1的中点,可得DE綊BM.在直三棱柱ABC-A1B1C1中,由条件AB=BC得BM⊥AC,所以BM⊥平面ACC1A1,故DE⊥平面ACC1A1,所以DE⊥AC1,DE⊥BB1,即DE为异面直线BB1与AC1的公垂线.解法二:如图,延长C1D、CB交于点F,连结AF,由条件易证D是C1F的中点,B是CF的中点,又E是AC1的中点,所以DE∥AF.在△ACF中,由AB=BC=BF知AF⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,所以AF⊥AA1,故AF⊥平面ACC1A1,故DE⊥平面ACC1A1,所以DE⊥AC1,DE⊥BB1,即DE为异面直线BB1与AC1的公垂线.(3)由(2)知线段DE的长就是异面直线BB1与AC1的距离,由于AB=BC=a,∠ABC=90°,所以DE=2 2a.反思归纳:两条异面直线的公垂线是指与两条异面直线既垂直又相交的直线,两条异面直线的公垂线是惟一的,两条异面直线的公垂线夹在两条异面直线之间的线段的长度就是两条异面直线的距离.证明一直线是某两条异面直线的公垂线,可以分别证明这条直线与两条异面直线垂直.本题的思路是证明这条直线与一个平面垂直,而这一平面与两条异面直线的位置关系是一条直线在平面内,另一条直线与这个平面平行.16.如图所示,在正方体ABCD-A1B1C1D1中,O,M分别是BD1,AA1的中点.(1)求证:MO是异面直线AA1和BD1的公垂线;(2)求异面直线AA1与BD1所成的角的余弦值;(3)若正方体的棱长为a,求异面直线AA1与BD1的距离.解析:(1)证明:∵O是BD1的中点,∴O是正方体的中心,∴OA=OA 1,又M为AA1的中点,即OM是线段AA1的垂直平分线,故OM⊥AA1.连结MD1、BM,则可得MB=MD1.同理由点O为BD1的中点知MO⊥BD1,即MO 是异面直线AA 1和BD 1的公垂线. (2)由于AA 1∥BB 1,所以∠B 1BD 1就是异面直线AA 1和BD 1所成的角. 在Rt △BB 1D 1中,设BB 1=1,则BD 1=3,所以cos ∠B 1BD 1=33,故异面直线AA 1与BD 1所成的角的余弦值等于33.(3)由(1)知,所求距离即为线段MO 的长,由于OA =12AC 1=32a ,AM =a 2,且OM ⊥AM ,所以OM =22a .13.如图所示,正方体ABCD -A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E 、F ,且B 1E =C 1F ,求证:EF ∥ABCD .证明:解法一:分别过E 、F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连结MN .∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN .又B 1E =C 1F ,∴EM =FN ,故四边形MNFE 是平行四边形, ∴EF ∥MN ,又MN 在平面ABCD 中, 所以EF ∥平面ABCD .解法二:过E 作EG ∥AB 交BB 1于G ,连结GF ,则B 1E B 1A =B 1GB 1B,∵B 1E =C 1F ,B 1A =C 1B , ∴C 1F C 1B =B 1G B 1B,∴FG ∥B 1C 1∥BC . 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD , 而EF ⊂平面EFG , ∴EF ∥平面ABCD .14.如下图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC .过BD 作与P A 平行的平面,交侧棱PC 于点E ,又作DF ⊥PB ,交PB 于点F .(1)求证:点E 是PC 的中点; (2)求证:PB ⊥平面EFD .证明:(1)连结AC ,交BD 于O ,则O 为AC 的中点,连结EO . ∵P A ∥平面BDE ,平面P AC ∩平面BDE =OE ,∴P A ∥OE . ∴点E 是PC 的中点;(2)∵PD ⊥底面ABCD 且DC ⊂底面ABCD ,∴PD ⊥DC ,△PDC 是等腰直角三角形,而DE 是斜边PC 的中线, ∴DE ⊥PC ,①又由PD ⊥平面ABCD ,得PD ⊥BC .∵底面ABCD 是正方形,CD ⊥BC ,∴BC ⊥平面PDC .而DE ⊂平面PDC .∴BC ⊥DE .②由①和②推得DE ⊥平面PBC .而PB ⊂平面PBC , ∴DE ⊥PB ,又DF ⊥PB 且DE ∩DF =D , 所以PB ⊥平面EFD .15.如图,l 1、l 2是互相垂直的异面直线,MN 是它们的公垂线段.点A 、B 在l 1上,C 在l 2上,AM =MB =MN .(1)求证AC ⊥NB ; (2)若∠ACB =60°,求NB 与平面ABC 所成角的余弦值.证明:(1)如图由已知l 2⊥MN ,l 2⊥l 1,MN ∩l 1=M ,可得l 2⊥平面ABN .由已知MN ⊥l 1,AM =MB =MN ,可知AN =NB 且AN ⊥NB . 又AN 为AC 在平面ABN 内的射影, ∴AC ⊥NB .(2)∵Rt △CNA ≌Rt △CNB ,∴AC =BC ,又已知∠ACB =60°,因此△ABC 为正三角形. ∵Rt △ANB ≌Rt △CNB ,∴NC =NA =NB ,因此N 在平面ABC 内的射影H 是正三角形ABC 的中心.连结BH ,∠NBH 为NB 与平面ABC 所成的角.在Rt △NHB 中,cos ∠NBH =HB NB =33AB22AB =63.16.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点.求证:(1)直线EF ∥平面ACD ; (2)平面EFC ⊥平面BCD .命题意图:本小题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力、推理论证能力.证明:(1)在△ABD 中,∵E 、F 分别是AB 、BD 的中点,所以EF ∥AD . 又AD ⊂平面ACD ,EF ⊄平面ACD ,∴直线EF ∥平面ACD . (2)在△ABD 中,∵AD ⊥BD ,EF ∥AD ,∴EF ⊥BD .在△BCD 中,∵CD =CB ,F 为BD 的中点,∴CF ⊥BD .∵EF ⊂平面EFC ,CF ⊂平面EFC ,EF 与CF 交于点F ,∴BD ⊥平面EFC . 又∵BD ⊂平面BCD ,∴平面EFC ⊥平面BCD .13.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,P A ⊥平面ABCD ,且P A =2AB .(1)求证:平面P AC ⊥平面PBD ; (2)求二面角B -PC -D 的余弦值. 解析:(1)证明:∵P A ⊥平面ABCD , ∴P A ⊥BD .∵ABCD 为正方形,∴AC ⊥BD .∴BD ⊥平面P AC ,又BD 在平面BPD 内,∴平面P AC ⊥平面BPD . (2)在平面BCP 内作BN ⊥PC ,垂足为N ,连结DN , ∵Rt △PBC ≌Rt △PDC , 由BN ⊥PC 得DN ⊥PC ;∴∠BND 为二面角B -PC -D 的平面角,在△BND 中,BN =DN =56a ,BD =2a ,∴cos ∠BND =56a 2+56a 2-2a 253a 2=-15.14.如图,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,G 在BB 1上,且AE =FC 1=B 1G =1,H 是B 1C 1的中点.(1)求证:E 、B 、F 、D 1四点共面; (2)求证:平面A 1GH ∥平面BED 1F . 证明:(1)连结FG .∵AE =B 1G =1,∴BG =A 1E =2, ∴BG 綊A 1E ,∴A 1G 綊BE . ∵C 1F 綊B 1G ,∴四边形C 1FGB 1是平行四边形. ∴FG 綊C 1B 1綊D 1A 1,∴四边形A 1GFD 1是平行四边形. ∴A 1G 綊D 1F ,∴D 1F 綊EB , 故E 、B 、F 、D 1四点共面.(2)∵H 是B 1C 1的中点,∴B 1H =32.又B 1G =1,∴B 1G B 1H =32.又FC BC =23,且∠FCB =∠GB 1H =90°, ∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG , ∴HG ∥FB .又由(1)知A 1G ∥BE ,且HG ∩A 1G =G , FB ∩BE =B ,∴平面A 1GH ∥平面BED 1F .15.在三棱锥P -ABC 中,P A ⊥面ABC ,△ABC 为正三角形,D 、E 分别为BC 、AC 的中点,设AB =P A =2.(1)求证:平面PBE ⊥平面P AC ;(2)如何在BC 上找一点F ,使AD ∥平面PEF ,请说明理由; (3)对于(2)中的点F ,求三棱锥B -PEF 的体积. 解析:(1)证明:∵P A ⊥面ABC ,BE ⊂面ABC , ∴P A ⊥BE .∵△ABC 是正三角形,E 为AC 的中点, ∴BE ⊥AC ,又P A 与AC 相交, ∴BE ⊥平面P AC ,∴平面PBE ⊥平面P AC .(2)解:取DC 的中点F ,则点F 即为所求. ∵E ,F 分别是AC ,DC 的中点, ∴EF ∥AD ,又AD ⊄平面PEF ,EF ⊂平面PEF , ∴AD ∥平面PEF .(3)解:V B -PEF =V P -BEF =13S △BEF ·P A =13×12×32×32×2=34.16.(2009·天津,19)如图所示,在五面体ABCDEF 中,F A ⊥平面ABCD ,AD ∥BC ∥FE ,AB ⊥AD ,M 为CE 的中点,AF =AB =BC =FE =12AD .(1)求异面直线BF 与DE 所成的角的大小; (2)求证:平面AMD ⊥平面CDE ; (3)求二面角A -CD -E 的余弦值.解答:(1)解:由题设知,BF ∥CE ,所以∠CED (或其补角)为异面直线BF 与DE 所成的角.设P 为AD 的中点,连结EP ,PC .因为FE 綊AP ,所以F A 綊EP .同理,AB 綊PC .又F A ⊥平面ABCD ,所以EP ⊥平面ABCD .而PC ,AD 都在平面ABCD 内,故EP ⊥PC ,EP ⊥AD .由AB ⊥AD ,可得PC ⊥AD .设F A =a ,则EP =PC =PD =a ,CD =DE =EC =2a .故∠CED =60°.所以异面直线BF 与DE 所成的角的大小为60°.(2)证明:因为DC =DE 且M 为CE 的中点,所以DM ⊥CE .连结MP ,则MP ⊥CE .又MP ∩DM =M ,故CE ⊥平面AMD .而CE ⊂平面CDE ,所以平面AMD ⊥平面CDE .(3)设Q 为CD 的中点,连结PQ ,EQ .因为CE =DE ,所以EQ ⊥CD .因为PC =PD ,所以PQ ⊥CD ,故∠EQP 为二面角A -CD -E 的平面角.由(1)可得,EP ⊥PQ ,EQ =62a ,PQ =22a .于是在Rt △EPQ 中,cos ∠EQP =PQ EQ =33.所以二面角A -CD -E 的余弦值为33.13.(2009·重庆)如图所示,四棱锥P -ABCD 中,AB ⊥AD ,AD ⊥DC ,P A ⊥底面ABCD ,P A =AD =DC =12AB =1,M 为PC 的中点,N 点在AB 上且AN =13NB .(1)求证:MN ∥平面P AD ;(2)求直线MN 与平面PCB 所成的角.解析:(1)证明:过点M 作ME ∥CD 交PD 于E 点,连结AE .∵AN =13NB ,∴AN =14AB =12DC =EM .又EM ∥DC ∥AB ,∴EM 綊AN , ∴AEMN 为平行四边形,∴MN ∥AE ,∴MN ∥平面P AD .(2)解:过N 点作NQ ∥AP 交BP 于点Q ,NF ⊥CB 于点F . 连结QF ,过N 点作NH ⊥QF 于H ,连结MH , 易知QN ⊥面ABCD ,∴QN ⊥BC ,而NF ⊥BC , ∴BC ⊥面QNF ,∵BC ⊥NH ,而NH ⊥QF ,∴NH ⊥平面PBC ,∴∠NMH 为直线MN 与平面PCB 所成的角.通过计算可得MN =AE =22,QN =34,NF =342,∴NH =QN ·NF QF =ON ·NF QN 2+NF 2=64,∴sin ∠NMH =NH MN =32,∴∠NMH =60°,∴直线MN 与平面PCB 所成的角为60°. 14.(2009·广西柳州三模)如图所示,已知直平行六面体ABCD -A 1B 1C 1D 1中,AD ⊥BD ,AD =BD =a ,E 是CC 1的中点,A 1D ⊥BE .(1)求证:A 1D ⊥平面BDE ;(2)求二面角B -DE -C 的大小.解析:(1)证明:在直平行六面体ABCD -A 1B 1C 1D 1中, ∵AA 1⊥平面ABCD ,∴AA 1⊥BD . 又∵BD ⊥AD ,∴BD ⊥平面ADD 1A 1,即BD ⊥A 1D . 又∵A 1D ⊥BE 且BE ∩BD =B , ∴A 1D ⊥平面BDE .(2)解:如图,连B 1C ,则B 1C ⊥BE , 易证Rt △BCE ∽Rt △B 1BC ,∴CE BC =BC B 1B,又∵E 为CC 1中点, ∴BC 2=12BB 21.BB 1=2BC =2a .取CD 中点M ,连结BM ,则BM ⊥平面CC 1D 1C , 作MN ⊥DE 于N ,连NB ,由三垂线定理知:BN ⊥DE ,则∠BNM 是二面角B -DE -C 的平面角.在Rt △BDC 中,BM =BD ·BC DC =22a ,Rt △CED 中,易求得MN =1010a ,Rt △BMN 中,tan ∠BNM =BMMN=5,则二面角B -DE -C 的大小为arctan 5.15.如图,已知正方体ABCD -A 1B 1C 1D 1中,E 为AB 的中点.(1)求直线B 1C 与DE 所成的角的余弦值; (2)求证:平面EB 1D ⊥平面B 1CD ; (3)求二面角E -B 1C -D 的余弦值.解析:(1)连结A 1D ,则由A 1D ∥B 1C 知,B 1C 与DE 所成的角即为A 1D 与DE 所成的角.连结A 1E ,由正方体ABCD -A 1B 1C 1D 1,可设其棱长为a ,则A 1D =2a ,A 1E =DE =52a ,∴cos ∠A 1DE=A 1D 2+DE 2-A 1E 22·A 1D ·DE =105.∴直线B 1C 与DE 所成角的余弦值是105. (2)证明取B 1C 的中点F ,B 1D 的中点G ,连结BF ,EG ,GF . ∵CD ⊥平面BCC 1B 1,且BF ⊂平面BCC 1B 1,∴DC ⊥BF . 又∵BF ⊥B 1C ,CD ∩B 1C =C , ∴BF ⊥平面B 1CD .又∵GF 綊12CD ,BE 綊12CD ,∴GF 綊BE ,∴四边形BFGE 是平行四边形, ∴BF ∥GE ,∴GE ⊥平面B 1CD . ∵GE ⊂平面EB 1D ,∴平面EB 1D ⊥平面B 1CD . (3)连结EF .∵CD ⊥B 1C ,GF ∥CD ,∴GF ⊥B 1C . 又∵GE ⊥平面B 1CD ,∴EF ⊥B 1C ,∴∠EFG 是二面角E -B 1C -D 的平面角. 设正方体的棱长为a ,则在△EFG 中,GF =12a ,EF =32a ,∴cos ∠EFG =FG EF =33,∴二面角E -B 1C -D 的余弦值为33.16.(2009·全国Ⅱ,18)如图所示,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1.(1)求证:AB =AC ;(2)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小. 解析:(1)证明:取BC 中点F ,连结EF ,则EF 綊12B 1B ,从而EF 綊DA .连结AF ,则ADEF 为平行四边形,从而AF ∥DE .又DE ⊥平面BCC 1,故AF ⊥平面BCC 1,从而AF ⊥BC ,即AF 为BC 的垂直平分线,所以AB =AC .(2)解:作AG ⊥BD ,垂足为G ,连结CG .由三垂线定理知CG ⊥BD ,故∠AGC 为二面角A -BD -C 的平面角.由题设知,∠AGC =60°.设AC =2,则AG =23.又AB =2,BC =22,故AF = 2.由AB ·AD =AG ·BD 得2AD =23·AD 2+22,解得AD =2,故AD =AF .又AD ⊥AF ,所以四边形ADEF 为正方形.因为BC ⊥AF ,BC ⊥AD ,AF ∩AD =A ,故BC ⊥平面DEF ,因此平面BCD ⊥平面DEF . 连结AE 、DF ,设AE ∩DF =H ,则EH ⊥DF ,EH ⊥平面BCD .连结CH ,则∠ECH 为B 1C 与平面BCD 所成的角.因ADEF 为正方形,AD =2,故EH =1,又EC =12B 1C =2,所以∠ECH =30°,即B 1C 与平面BCD 所成的角为30°.13.在正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E 、F 分别为棱AB 、BC 的中点.(1)求证:平面B 1EF ⊥平面BDD 1B 1; (2)求点D 1到平面B 1EF 的距离d .分析:(1)可先证EF ⊥平面BDD 1B 1.(2)用几何法或等积法求距离时,可由B 1D 1∥BD ,将点进行转移:D 1点到平面B 1EF 的距离是B 点到它的距离的4倍,先求B 点到平面B 1EF 的距离即可.解答:(1)证明:⎭⎪⎬⎪⎫EF ⊥BD EF ⊥B 1B ⇒EF ⊥平面BDD 1B 1⇒平面B 1EF ⊥平面BDD 1B 1.(2)解:解法一:连结EF 交BD 于G 点. ∵B 1D 1=4BG ,且B 1D 1∥BG ,∴D 1点到平面B 1EF 的距离是B 点到它的距离的4倍. 利用等积法可求.由题意可知,EF =12AC =2,B 1G =17.S △B 1EF =12EF ·B 1G =12×2×17=17,S △BEF =12BE ·BF =12×2×2=1.∵VB -B 1EF =VB 1-BEF ,设B 到面B 1EF 的距离为h 1,则13×17×h 1=13×1×4,∴h 1=41717.∴点D 1到平面B 1EF 的距离为h =4h 1=161717.解法二:如图,在正方形BDD 1B 1的边BD 上取一点G ,使BG =14BD ,连结B 1G ,过点D 1作D 1H ⊥B 1G 于H ,则D 1H 即为所求距离.可求得D 1H =161717(直接法).14.如图直三棱柱ABC -A 1B 1C 1中,侧棱CC 1=2,∠BAC =90°,AB =AC =2,M 是棱BC 的中点,N 是CC 1中点.求:(1)二面角B 1-AN -M 的大小; (2)C 1到平面AMN 的距离. 解析:(1)∵∠BAC =90°,AB =AC =2,M 是棱BC 的中点, ∴AM ⊥BC ,BC =2,AM =1. ∴AM ⊥平面BCC 1B 1.∴平面AMN ⊥平面BCC 1B 1.作B 1H ⊥MN 于H ,HR ⊥AN 于R ,连结B 1R , ∴B 1H ⊥平面AMN .又由三垂线定理知,B 1R ⊥AN .∴∠B 1RH 是二面角B 1-AN -M 的平面角. 由已知得AN =3,MN =2,B 1M =5=B 1N ,则B 1H =322,又Rt △AMN ∽Rt △HRN ,RH AM =HN AN ,∴RH =66.∴B 1R =143,∴cos ∠B 1RH =RH B 1R =714.∴二面角B 1-AN -M 的大小为arccos 714.(2)∵N 是CC 1中点,∴C 1到平面AMN 的距离等于C 到平面AMN 的距离. 设C 到平面AMN 的距离为h , 由V C -AMN =V N -AMC 得13×12·MN ·h =13×12AM ·MC . ∴h =22.15.(2009·北京海淀一模)如图所示,四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 为直角梯形,且AB ∥CD ,∠BAD =90°,P A =AD =DC =2,AB =4.(1)求证:BC ⊥PC ;(2)求PB 与平面P AC 所成的角的正弦值; (3)求点A 到平面PBC 的距离.解析:(1)证明:如图,在直角梯形ABCD 中, ∵AB ∥CD ,∠BAD =90°,AD =DC =2, ∴∠ADC =90°,且AC =2 2. 取AB 的中点E ,连结CE ,由题意可知,四边形ABCD 为正方形, ∴AE =CE =2.又∵BE =12AB =2.∴CE =12AB ,∴△ABC 为等腰直角三角形, ∴AC ⊥BC .又∵P A ⊥平面ABCD ,且AC 为PC 在平面ABCD 内的射影, BC ⊂平面ABCD ,由三垂线定理得, BC ⊥PC .(2)由(1)可知,BC ⊥PC ,BC ⊥AC ,PC ∩AC =C , ∴BC ⊥平面P AC .PC 是PB 在平面P AC 内的射影,∴∠CPB 是PB 与平面P AC 所成的角.又CB =22, PB 2=P A 2+AB 2=20,PB =25,∴sin ∠CPB =BC PB =105,即PB 与平面P AC 所成角的正弦值为105.(3)由(2)可知,BC ⊥平面P AC ,BC ⊂平面PBC , ∴平面PBC ⊥平面P AC .过A 点在平面P AC 内作AF ⊥PC 于F , ∴AF ⊥平面PBC ,∴AF 的长即为点A 到平面PBC 的距离.在直角三角形P AC 中, P A =2,AC =22,PC =23,∴AF =263.即点A 到平面PBC 的距离为263.16.(2009·吉林长春一模)如图所示,四棱锥P -ABCD 的底面是正方形,P A ⊥底面ABCD ,P A =2,∠PDA =45°,点E 、F 分别为棱AB 、PD 的中点.(1)求证:AF ∥平面PCE ;(2)求二面角E -PD -C 的大小; (3)求点A 到平面PCE 的距离.解析:(1)证明:如图取PC 的中点G ,连结FG 、EG , ∴FG 为△PCD 的中位线,∴FG =12CD 且FG ∥CD .又∵底面四边形ABCD 是正方形,E 为棱AB 的中点,∴AE =12CD 且AE ∥CD ,∴AE =FG 且AE ∥FG .∴四边形AEGF 是平行四边形, ∴AF ∥EG .又EG ⊂平面PCE ,AF ⊄平面PCE , ∴AF ∥平面PCE .(2)解:∵P A ⊥底面ABCD , ∴P A ⊥AD ,P A ⊥CD . 又AD ⊥CD , P A ∩AD =A , ∴CD ⊥平面P AD . 又∵AF ⊂平面P AD , ∴CD ⊥AF .又P A =2,∠PDA =45°, ∴P A =AD =2.∵F 是PD 的中点,∴AF ⊥PD . 又∵CD ∩PD =D , ∴AF ⊥平面PCD .∵AF ∥EG ,∴EG ⊥平面PCD . 又GF ⊥PD ,连结EF ,则∠GFE 是二面角E -PD -C 的平面角. 在Rt △EGF 中,EG =AF =2,GF =1,∴tan ∠GFE =GEGF= 2.∴二面角E -PD -C 的大小为arctan 2. (3)设A 到平面PCE 的距离为h ,由V A -PCE =V P -ACE ,即13×12PC ·EG ·h =13P A ·12AE ·CB ,得h =63,∴点A 到平面PCE 的距离为63.13.(2009·陕西,18)如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =AA 1=3,∠ABC =60°.(1)求证:AB ⊥A 1C ;(2)求二面角A -A 1C -B 的大小.解析:(1)证明:∵三棱柱ABC -A 1B 1C 1为直三棱柱, ∴AB ⊥AA 1,在△ABC 中,AB =1,AC =3,∠ABC =60°,由正弦定理得∠ACB =30°, ∴∠BAC =90°,即AB ⊥AC .∴AB ⊥平面ACC 1A 1,又A 1C ⊂平面ACC 1A 1,∴AB ⊥A 1C .(2)解:如图,作AD ⊥A 1C 交A 1C 于D 点,连结BD ,由三垂线定理知BD ⊥A 1C ,∴∠ADB 为二面角A -A 1C -B 的平面角.在Rt △AA 1C 中,AD =AA 1·AC A 1C =3×36=62,在Rt △BAD 中,tan ∠ADB =AB AD =63, ∴∠ADB =arctan63,即二面角A -A 1C -B 的大小为arctan 63. 14.如图,三棱柱ABC -A 1B 1C 1的底面是边长为a 的正三角形,侧面ABB 1A 1是菱形且垂直于底面,∠A 1AB =60°,M 是A 1B 1的中点.(1)求证:BM ⊥AC ;(2)求二面角B -B 1C 1-A 1的正切值; (3)求三棱锥M -A 1CB 的体积.解析:(1)证明:∵ABB 1A 1是菱形,∠A 1AB =60°⇒△A 1B 1B 是正三角形, ⎭⎪⎬⎪⎫∵M 是A 1B 1的中点,∴BM ⊥A 1B 又∵平面AA 1B 1B ⊥平面A 1B 1C 1 ⇒BM ⊥平面A 1B 1C 1. ⎭⎪⎬⎪⎫∴BM ⊥A 1C 1又∵AC ∥A 1C 1⇒BM ⊥AC .⎭⎪⎬⎪⎫(2)过M 作ME ⊥B 1C 1且交于点E ,∵BM ⊥平面A 1B 1C 1,⇒BE ⊥B 1C 1,∴∠BEM 为所求二面角的平面角, △A 1B 1C 1中,ME =MB 1·sin60°=34a ,Rt △BMB 1中,MB =MB 1·tan60°=32a , ∴tan ∠BEM =MBME=2,∴所求二面角的正切值是2.(3)VM -A 1CB =12VB 1-A 1CB =12VA -A 1CB =12VA 1-ABC =12×13×34a 2·32a =116a 3.15.(2009·广东汕头一模)如图所示,已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且AE AC =AFAD=λ(0<λ<1).(1)求证:不论λ为何值,总有EF ⊥平面ABC ;(2)若λ=12,求三棱锥A -BEF 的体积.解析:(1)证明:∵AB ⊥平面BCD , ∴AB ⊥CD .又∵在△BCD 中,∠BCD =90°, ∴BC ⊥CD .∵又AB ∩BC =B ,∴CD ⊥平面ABC .又∵在△ACD 中,E 、F 分别是AC 、AD 上的动点,且AE AC =AFAD=λ(0<λ<1),∴不论λ为何值,都有EF ∥CD , ∴EF ⊥平面ABC .(2)在△BCD 中,∠BCD =90°,BC =CD =1, ∴BD = 2.又∵AB ⊥平面BCD , ∴AB ⊥BC ,AB ⊥BD .又∵在Rt △ABD 中,∠ADB =60°, ∴AB =BD ·tan60°=6, 由(1)知EF ⊥平面ABC , ∴V A -BEF =V F -ABE =13S △ABE ·EF =13×12S △ABC ·EF =16×12×1×6×12=624. 故三棱锥A -BEF 的体积是624.16.在四棱锥P -ABCD 中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD 是面积为23的菱形,∠ADC 为菱形的锐角.(1)求证:P A ⊥CD ;(2)求二面角P -AB -D 的大小; (3)求棱锥P -ABCD 的侧面积;解析:(1)证明:如图所示,取CD 的中点E ,由PE ⊥CD ,得PE ⊥平面ABCD ,连结AC 、AE .∵AD ·CD ·sin ∠ADC =23, AD =CD =2,∴sin ∠ADC =32,即∠ADC =60°,∴△ADC 为正三角形,∴CD ⊥AE . ∴CD ⊥P A (三垂线定理).(2)解:∵AB ∥CD ,∴AB ⊥P A ,AB ⊥AE , ∴∠P AE 为二面角P -AB -D 的平面角. 在Rt △PEA 中,PE =AE ,∴∠P AE =45°. 即二面角P -AB -D 的大小为45°. (3)分别计算各侧面的面积: ∵PD =DA =2,P A =6,∴cos ∠PDA =14,sin ∠PDA =154.S △PCD =3,S △P AB =12AB ·P A =12·2·2·3=6,S △P AD =S △PBC =12PD ·DA ·sin ∠PDA =152.∴S P -ABCD 侧=3+6+15.13.把地球当作半径为R 的球,地球上A 、B 两地都在北纬45°,A 、B 两点的球面距离是π3R ,A 点在东经20°,求B 点的位置. 解析:如图,求B 点的位置即求B 点的经度,设B 点在东经α,∵A 、B 两点的球面距离是π3R .∴∠AOB =π3,因此三角形AOB 是等边三角形,∴AB =R ,又∵∠AO 1B =α-20°(经度差)问题转化为在△AO 1B 中借助AO 1=BO 1=AO cos45°=22R ,求出∠AO 1B =90°,则α=110°,同理:B 点也可在西经70°,即B 点在北纬45°东经110°或西经70°.14.在球心同侧有相距9cm 的两个平行截面,它们的面积分别为49πcm 2和400πcm 2,求球的表面积和体积.解析:如图,两平行截面被球大圆所在平面截得的交线分别为AO 1、BO 2,则AO 1∥BO 2. 若O 1、O 2分别为两截面圆的圆心,则由等腰三角形性质易知OO 1⊥AO 1,OO 2⊥BO 2, 设球半径为R ,∵πO 2B 2=49π, ∴O 2B =7cm ,同理O 1A =20cm. 设OO 1=x cm ,则OO 2=(x +9)cm. 在Rt △OO 1A 中,R 2=x 2+202, 在Rt △OO 2B 中,R 2=(x +9)2+72, ∴x 2+202=72+(x +9)2,解得x =15cm. ∴R =25cm ,∴S 球=2500πcm 2,V 球=43πR 3=625003πcm 3.15.设A 、B 、C 是半径为1的球面上的三点,B 、C 两点间的球面距离为π3,点A 与B 、C 两点间的球面距离均为π2,O 为球心,求:(1)∠AOB 、∠BOC 的大小; (2)球心O 到截面ABC 的距离.解析:(1)如图,因为球O 的半径为1,B 、C 两点间的球面距离为π3,点A 与B 、C 两点间的球面距离均为π2,所以∠BOC =π3,∠AOB =∠AOC =π2, (2)因为BC =1,AC =AB =2,所以由余弦定理得cos ∠BAC =34,sin ∠BAC =74,设截面圆的圆心为O 1,连结AO 1,则截面圆的半径r =AO 1,由正弦定理得r =BC 2sin ∠BAC=277,所以OO 1=OA 2-r 2=217.16.如图四棱锥A -BCDE 中,AD ⊥底面BCDE ,AC ⊥BC ,AE ⊥BE . (1)求证:A 、B 、C 、D 、E 五点共球; (2)若∠CBE =90°,CE =3,AD =1,求B 、D 两点的球面距离. 解析:(1)证明:取AB 的中点P ,连结PE ,PC ,PD ,由题设条件知△AEB 、△ADB 、△ABC 都是直角三角形.故PE =PD =PC =12AB =P A =PB .所以A 、B 、C 、D 、E 五点在同一球面上. (2)解:由题意知四边形BCDE 为矩形, 所以BD =CE =3,在Rt △ADB 中,AB =2,AD =1,∴∠DPB =120°,D 、B 的球面距离为23π.17.(本小题满分10分)如图,四棱锥S —ABCD 的底面是正方形,SA ⊥底面ABCD ,E 是SC 上一点.(1)求证:平面EBD ⊥平面SAC ;(2)假设SA =4,AB =2,求点A 到平面SBD 的距离;解析:(1)∵正方形ABCD ,∴BD ⊥AC ,又∵SA ⊥平面ABCD ,∴SA ⊥BD ,则BD ⊥平面SAC ,又BD ⊂平面BED ,∴平面BED ⊥平面SAC .(2)设AC ∩BD =O ,由三垂线定理得BD ⊥SO .AO =12AC =122AB =12·2·2=2,SA =4,则SO =SA 2+AO 2=16+2=32,S △BSD =12BD ·SO =12·22·32=6.设A 到面BSD 的距离为h ,则V S -ABD =V A -BSD ,即13S △ABD ·SA =13S △BSD ·h ,解得h =43,即点A 到平面SBD 的距离为43. 18.(本小题满分12分)如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在C 1C 上且C 1E =3EC .(1)证明A 1C ⊥平面BED ;(2)求二面角A 1-DE -B 的大小. 解析:依题设知AB =2,CE =1,(1)证明:连结AC 交BD 于点F ,则BD ⊥AC . 由三垂线定理知,BD ⊥A 1C .在平面A 1CA 内,连结EF 交A 1C 于点G ,由于AA 1FC =AC CE=22,故Rt △A 1AC ∽Rt △FCE ,∠AA 1C =∠CFE ,∠CFE 与∠FCA 1互余. 于是A 1C ⊥EF .A 1C 与平面BED 内两条相交直线BD 、EF 都垂直. 所以A 1C ⊥平面BED .(2)作GH ⊥DE ,垂足为H ,连结A 1H . 由三垂线定理知A 1H ⊥DE ,故∠A 1HG 是二面角A 1-DE -B 的平面角. EF =CF 2+CE 2=3,CG =CE ×CF EF =23.EG =CE 2-CG 2=33.EG EF =13,GH =13×EF ×FD DE =215. 又A 1C =AA 21+AC 2=26,A 1G =A 1C -CG =563, tan ∠A 1HG =A 1GHG=5 5.所以二面角A 1-DE -B 的大小为arctan5 5.19.(本小题满分12分)如图,四棱锥S -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =SB =SC =2CD =2,侧面SBC ⊥底面ABCD .(1)由SA 的中点E 作底面的垂线EH ,试确定垂足H 的位置; (2)求二面角E -BC -A 的大小.解析:(1)作SO ⊥BC 于O ,则SO ⊂平面SBC , 又面SBC ⊥底面ABCD , 面SBC ∩面ABCD =BC , ∴SO ⊥底面ABCD ①又SO ⊂平面SAO ,∴面SAO ⊥底面ABCD , 作EH ⊥AO ,∴EH ⊥底面ABCD ② 即H 为垂足,由①②知,EH ∥SO , 又E 为SA 的中点,∴H 是AO 的中点. (2)过H 作HF ⊥BC 于F ,连结EF , 由(1)知EH ⊥平面ABCD ,∴EH ⊥BC ,又EH ∩HF =H ,∴BC ⊥平面EFH ,∴BC ⊥EF ,∴∠HFE 为面EBC 和底面ABCD 所成二面角的平面角. 在等边三角形SBC 中,∵SO ⊥BC , ∴O 为BC 中点,又BC =2.∴SO =22-12=3,EH =12SO =32,又HF =12AB =1,∴在Rt △EHF 中,tan ∠HFE =EH HF =321=32,∴∠HFE =arctan 32.即二面角E -BC -A 的大小为arctan 32.20.(本小题满分12分)(2010·唐山市高三摸底考试)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =1,AA 1=2,N 是A 1D 的中点,M ∈BB 1,异面直线MN 与A 1A 所成的角为90°.(1)求证:点M 是BB 1的中点;(2)求直线MN 与平面ADD 1A 1所成角的大小;(3)求二面角A -MN -A 1的大小.解析:(1)取AA 1的中点P ,连结PM ,PN .∵N 是A 1D 的中点,∴AA 1⊥PN ,又∵AA 1⊥MN ,MN ∩PN =N , ∴AA 1⊥面PMN .∵PM ⊂面PMN ,∴AA 1⊥PM ,∴PM ∥AB , ∴点M 是BB 1的中点.(2)由(1)知∠PNM 即为MN 与平面ADD 1A 1所成的角.在Rt △PMN 中,易知PM =1,PN =12,∴tan ∠PNM =PMPN=2,∠PNM =arctan2.故MN 与平面ADD 1A 1所成的角为arctan2.(3)∵N 是A 1D 的中点,M 是BB 1的中点,∴A 1N =AN ,A 1M =AM , 又MN 为公共边,∴△A 1MN ≌△AMN .在△AMN 中,作AG ⊥MN 交MN 于G ,连结A 1G ,则∠A 1GA 即为二面角A -MN -A 1的平面角.在△A 1GA 中,AA 1=2,A 1G =GA =305,∴cos ∠A 1GA =A 1G 2+GA 2-AA 212A 1G ·GA =-23,∴∠A 1GA =arccos(-23),故二面角A -MN -A 1的大小为arccos(-23).21.(2009·安徽,18)(本小题满分12分)如图所示,四棱锥F -ABCD 的底面ABCD 是菱形,其对角线AC =2,BD = 2.AE 、CF 都与平面ABCD 垂直,AE =1,CF =2.(1)求二面角B -AF -D 的大小;(2)求四棱锥E -ABCD 与四棱锥F -ABCD 公共部分的体积. 命题意图:本题考查空间位置关系,二面角平面角的作法以及空间几何体的体积计算等知识.考查利用综合法或向量法解决立体几何问题的能力.解答:(1)解:连接AC 、BD 交于菱形的中心O ,过O 作OG ⊥AF ,G 为垂足,连接BG 、DG .由BD ⊥AC ,BD ⊥CF 得BD ⊥平面ACF ,故BD ⊥AF .于是AF ⊥平面BGD ,所以BG ⊥AF ,DG ⊥AF ,∠BGD 为二面角B -AF -D 的平面角.由FC ⊥AC ,FC =AC =2,得∠F AC =π4,OG =22.由OB ⊥OG ,OB =OD =22,得∠BGD =2∠BGO =π2.(2)解:连接EB 、EC 、ED ,设直线AF 与直线CE 相交于点H ,则四棱锥E -ABCD 与四棱锥F -ABCD 的公共部分为四棱锥H -ABCD .过H 作HP ⊥平面ABCD ,P 为垂足. 因为EA ⊥平面ABCD ,FC ⊥平面ABCD ,所以平面ACEF ⊥平面ABCD ,从而P ∈AC ,HP ⊥AC . 由HP CF +HP AE =AP AC +PC AC =1,得HP =23. 又因为S 菱形ABCD =12AC ·BD =2,故四棱锥H -ABCD 的体积V =13S 菱形ABCD ·HP =229.22.(2009·深圳调考一)(本小题满分12分)如图所示,AB 为圆O 的直径,点E 、F 在圆O 上,AB ∥EF ,矩形ABCD 所在平面和圆O 所在的平面互相垂直.已知AB =2,EF =1.(1)求证:平面DAF ⊥平面CBF ;(2)求直线AB 与平面CBF 所成角的大小;(3)当AD 的长为何值时,二面角D -FE -B 的大小为60°? 解析:(1)证明:∵平面ABCD ⊥平面ABEF ,CB ⊥AB , 平面ABCD ∩平面ABEF =AB , ∴CB ⊥平面ABEF .∵AF ⊂平面ABEF ,∴AF ⊥CB , 又∵AB 为圆O 的直径,∴AF ⊥BF , ∴AF ⊥平面CBF .∵AF ⊂平面DAF ,∴平面DAF ⊥平面CBF . (2)解:根据(1)的证明,有AF ⊥平面CBF , ∴FB 为AB 在平面CBF 上的射影,因此,∠ABF 为直线AB 与平面CBF 所成的角. ∵AB ∥EF ,∴四边形ABEF 为等腰梯形, 过点F 作FH ⊥AB ,交AB 于H .AB =2,EF =1,则AH =AB -EF 2=12.在Rt △AFB 中,根据射影定理AF 2=AH ·AB ,得AF =1,sin ∠ABF =AF AB =12,∴∠ABF =30°,∴直线AB 与平面CBF 所成角的大小为30°.(3)解:过点A 作AM ⊥EF ,交EF 的延长线于点M ,连结DM . 根据(1)的证明,DA ⊥平面ABEF ,则DM ⊥EF , ∴∠DMA 为二面角D -FE -B 的平面角, ∠DMA =60°.在Rt △AFH 中,∵AH =12,AF =1,∴FH =32. 又∵四边形AMFH 为矩形,∴MA =FH =32. ∵AD =MA ·tan ∠DMA =32·3=32. 因此,当AD 的长为32时,二面角D -FE -B 的大小为60°.。
(压轴题)高中数学必修二第一章《立体几何初步》检测题(答案解析)(1)
一、选择题1.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( )A .30B .45C .60D .902.在正方体1111ABCD A B C D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( )A .5B .25C .515D .25153.在长方体1111ABCD A B C D -中,12,3AB BC AA ===,E 是BC 的中点,则直线1ED 与直线BD 所成角的余弦值是( )A .728B .728-C .37D .37- 4.已知正三棱柱111ABC A B C -,的体积为163,底面积为43,则三棱柱111ABC A B C -的外接球表面积为( )A .1123πB .563πC .2243πD .28π 5.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π6.已知一个正三棱锥的四个顶点都在一个球的球面上,且这个正三棱锥的所有棱长都为2,求这个球的表面积( )A .4πB .8πC .12πD .24π 7.正三棱柱111ABC A B C -各棱长均为1,M 为1CC 的中点,则点1B 到面1A BM 的距离为( )A 2B .22C .12D .328.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A .263+B .463+C .4263-D .2263- 9.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PF FC=( ) A .1 B .32C .2D .3 10.已知直线a 、b 都不在平面α内,则下列命题错误的是( ) A .若//a b ,//a α,则//b αB .若//a b ,a α⊥,则b α⊥C .若a b ⊥,//a α,则b α⊥D .若a b ⊥,a α⊥,则//b α 11.已知在底面为菱形的直四棱柱1111ABCD A B C D -中,14,42AB BD ==,若60BAD ︒∠=,则异面直线1B C 与1AD 所成的角为( )A .90︒B .60︒C .45︒D .30︒12.已知二面角l αβ--为60,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,45ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14B .24C 3D .12二、填空题13.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.14.如图,在三棱台111ABC A B C -中,11190,4,22ACB AC BC A B CC ∠=︒====,平面11AA B B ⊥平面ABC ,则该三棱台外接球的表面积为___________.15.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为24,则这个球的体积为____________.16.已知等腰直角三角形ABC 中,2C π∠=,22CA =,D 为AB 的中点,将它沿CD 翻折,使点A 与点B 间的距离为22,此时三棱锥C ABD -的外接球的表面积为____.17.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且2EF =,现有如下四个结论:①AC BE ⊥;②//EF 平面ABCD ;③三棱锥A BEF -的体积为定值;④直线AE 与平面BEF 所成的角为定值,其中正确结论的序号是______.18.一件刚出土的珍贵文物要在博物馆大厅中央展出,需要设计一个各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形(如图所示),高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体费用最少为_________元.19.在正三棱锥S ABC -中,23AB =,4SA =,E 、F 分别为AC 、SB 的中点,过点A 的平面α//平面SBC ,α平面=ABC l ,则异面直线l 和EF 所成角的余弦值为_________.20.水平放置的ABC ∆的斜二测直观图如图所示,已知''4,''3B C A C ==,则ABC ∆中AB 边上的中线的长度为_______ .三、解答题21.如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BCD ∠=,已知2PB PD ==,6PA =,E 为PA 的中点.(1)求证:PC BD ⊥;(2)求二面角B PC E --的余弦值;(3)求三棱锥P BCE -的体积.22.在三棱柱111ABC A B C -中,侧面11BCC B 为矩形,AC ⊥平面11BCC B ,D ,E 分别是棱1AA ,1BB 的中点.(1)求证://AE 平面11B C D ;(2)求证:1CC ⊥平面ABC ;(3)若12AC BC AA ===,求直线AB 与平面11B C D 所成角的正弦值.23.如图,在五面体ABCDEF 中,四边形ABCD 是平行四边形.(1)求证://AB EF ;(2)若CF AE ⊥,AB AE ⊥,求证:平面ABFE ⊥平面CDEF .24.在四棱台1111ABCD A B C D -中,1AA ⊥平面ABCD ,//AB CD ,90ACD ∠=︒,26BC AC ==,1CD =,1AM CC ⊥,垂足为M .(1)证明:平面ABM ⊥平面11CDD C ;(2)若二面角B AM D --正弦值为217,求直线AC 与平面11CDD C 所成角的余弦. 25.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,∠ADP =90°,PD =AD ,∠PDC =60°,E 为PD 中点.(1)求证:PB //平面ACE :(2)求四棱锥E ABCD -的体积.26.如图,在矩形ABCD 中,2AB AD =,M 为DC 的中点,将ADM △沿AM 折起使平面ADM ⊥平面ABCM .(1)求证:BM AD ⊥;(2)求直线DC 与平面DAB 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果.【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D ===所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =,所以,四边形11BB D D 为平行四边形,则11//BD B D ,所以,异面直线EF 和BD 所成的角为1160AB D ∠=.故选:C.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角. 2.D解析:D【分析】延长DA 至G ,使AG CE =,可证11//A G C E ,得1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).在1AGF △中,由余弦定理可得结论. 【详解】延长DA 至G ,使AG CE =,连接1,GE GA ,GF ,11,AC A C ,又//AG CE 所以AGEC 是平行四边形,//,GE AC GE AC =,又正方体中1111//,AC AC AC AC =,所以1111//,AC DE AC DE =,所以11AC EG 是平行四边形,则11//A G C E ,所以1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).设正方体棱长为2,在正方体中易得15AG =,10GF =,22222112(21)3A F AA AF =+=++=,1AGF △中,2221111125cos 215253AG A F GF GA F AG A F +-∠===⋅⨯⨯. 故选:D .【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角. 3.C解析:C【分析】连接11D B 、1D E 、DE ,先证明四边形11BB D D 为平行四边形,得到11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角,由余弦定理可得答案.【详解】连接11D B 、1D E 、DE ,因为棱11//BB DD ,11BB DD =,所以四边形11BB D D 为平行四边形,所以11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角11B D E ∠,因为12,3AB AD AA ===,1BE CE ==, 所以2211111122B D D C B C =+=213110B E =+=222415ED CE DC +=+==,所以222115914D E ED D D ==+=+,由余弦定理得, 从而22211111111137cos 24214B D D E B E B D E B D D E +-∠===⨯⨯. 故选:C【点睛】本题考查异面直线所成角的余弦值的求法,关键点是找到异面直线所成的角,考查空间中线线的位置关系等基础知识,考查运算求解能力,是中档题.4.A解析:A【分析】由面积和体积可得三棱柱的底面边长和高,根据特征可知外接球的球心为上下底面中心连线的中点,再由勾股定理可得半径及球的表面积.【详解】 依题意,1163443AA ==,而213sin 432ABC S AB AC A AB =⨯⨯== 解得4AB =,记ABC 的中心为О,111A B C △的中心为О1,则114O A O A ==, 取1OO 的中点D ,因为AO CO =,90AOD COD ∠=∠=,由勾股定理得AD CD =,同理可得111AD BD A D B D C D ====,所以正三棱柱的外接球的球心为即D ,AD 为外接球的半径, 由正弦定理得432sin 603AB AO ==, 故2221628433A O D D O A =+=+=, 故三棱柱111ABC ABC -的外接球表面积2281124433S R πππ==⨯=, 故选:A .【点睛】本题考查了正三棱柱外接球的表面积的求法,关键点是确定球心的位置和球的半径的长度,考查了学生的空间想象力和计算能力.5.B解析:B【分析】根据圆锥侧面展开图是一个扇形,且线段25MB =计算底面圆半径即可求解.【详解】设底面圆半径为r ,由母线长4l ,可知侧面展开图扇形的圆心角为22r r l ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===,所以222AM AB MB +=, 所以2MAB π∠=,故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=, 故选:B 【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2rlπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.6.C解析:C 【分析】将正三棱锥补成一个正方体,计算出正方体的棱长,可得出正方体的体对角线长,即为外接球的直径,进而可求得这个球的表面积. 【详解】设该正三棱锥为A BCD -,将三棱锥A BCD -补成正方体AEBF GCHD -,如下图所示:则正方体AEBF GCHD -的棱长为22222⨯=,该正方体的体对角线长为23 所以,正三棱锥A BCD -的外接球直径为23R =3R =, 该球的表面积为2412S R ππ==. 故选:C. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.7.B解析:B 【分析】 连接11A N B AB =,根据已知条件先证明11B A A B ⊥、1⊥MN AB ,再通过线面垂直的判定定理证明1AB ⊥平面1A BM ,由此确定出1B N 的长度即为点1B 到面1A BM 的距离,最后完成求解. 【详解】连接1B A 交1A B 于N ,连接11,,,,MB MN MB MA MA ,如图所示:因为11A ABB 为正方形,所以11B A A B ⊥, 又因为2211111514MB MC C B =+=+=221514MA MC CA =+=+=所以1MB MA =且N 为1AB 中点,则MN 为等腰三角形1AMB 的中垂线, ∴1⊥MN AB 且1MNA B N =,∴1AB ⊥平面1A BM ,∴1B N 就是点1B 到截面1A BM 的距离, 又因为111121122B N AB ==+=,所以点1B 到截面1A BM 2, 故选:B. 【点睛】方法点睛:求解平面外一点A 到平面α的距离的方法:(1)几何方法:通过线面垂直的证明,找到A 在平面α内的投影点A ',则AA '即为A 到平面α的距离;(2)向量方法:①建立合适空间直角坐标系,在平面α内取一点B ;②求解出AB 和平面α的法向量n ;③根据ABn d n⋅=即可求解出点A 到平面α的距离.8.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为'2'2'22441626R AF AD AE =++=++6R =2241625DE DF AD AE ==++=2222EF BE BF =+= 在DFE △中,22210cos 222522DE EF DF DEF DE EF +-∠===⨯⨯⨯, 所以DEF ∠为锐角,所以2310sin 1cos DEF DEF ∠=-∠=, DEF 的外接圆的半径为5522sin 3310DF r DEF ===∠,则球心到DEF 2223R r -=,以FDE 为底面的三棱锥G -DEF 的高h 的最大值为1R OO +263. 故选:A. 【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.9.C【分析】首先通过延长直线,DC AB ,交于点G ,平面BAE 变为GAE ,连结PG ,EG 交于点F ,再根据三角形中线的性质,求PFFC的值. 【详解】延长,DC AB ,交于点G ,连结PG ,EG 交PC 于点F ,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键. 10.C解析:C 【分析】利用线面平行的性质和判定定理可判断A 选项的正误;由线面垂直的定义可判断B 选项的正误;根据已知条件判断b 与α的位置关系,可判断C 选项的正误;根据已知条件判断b 与α的位置关系,可判断D 选项的正误. 【详解】由于直线a 、b 都不在平面α内.在A 中,若//a α,过直线a 的平面β与α的交线m 与a 平行,因为//a b ,可得//b m ,b α⊄,m α⊂,所以,//b α,A 选项正确;在B 中,若a α⊥,则a 垂直于平面α内所有直线,//a b ,则b 垂直于平面α内所有直线,故b α⊥,B 选项正确; 在C 中,若a b ⊥,//a α,则b 与α相交或平行,C 选项错误;在D 中,若a b ⊥,a α⊥,则//b α或b α⊂,b α⊄,//b α∴,D 选项正确.【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.11.A解析:A 【分析】把1AD 平移到1BC ,把异面直线所成的角转化为相交直线的夹角. 【详解】 连接1,BD BC ,∵四边形ABCD 为菱形, 60,4BAD AB ︒∠==,4BD ∴=.又1BDD 为直角三角形,22211BD BD DD ∴=+,得14DD =,∴四边形11BCC B 为正方形.连接1BC 交1B C 于点O 11//BC AD ,BOC ∴∠(或其补角)为异面直线1B C 与1AD 所成的角,由于11BCC B 为正方形, 90BOC ︒∴∠=,故异面直线1B C 与1AD 所成的角为90°. 故选:A. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.12.B解析:B作出图形,设2CD =,AD l ⊥,2AB =,然后以CA 、CD 为邻边作平行四边形ACDE ,可知BAD ∠为二面角l αβ--的平面角,异面直线AB 与CD 所成角为BAE∠或其补角,计算出ABE △三边边长,利用余弦定理计算出cos BAE ∠,即可得解. 【详解】 如下图所示:设2CD =,AD l ⊥,2AB =CA 、CD 为邻边作平行四边形ACDE ,在平面β内,AD l ⊥,2CD =,45ACD ∠=,则sin 2AD CD ACD =∠=cos 452AC CD ==,AB l ⊥,AD l ⊥,AB α⊂,AD β⊂,所以,BAD ∠为二面角l αβ--的平面角,即60BAD ∠=,2AB AD ==,ABD ∴为等边三角形,则2BD =,四边形ACDE 为平行四边形,//DE AC ∴,即//DE l ,AD l ⊥,AB l ⊥,DE AB ⊥∴,DE AD ⊥, AB AD A =,DE ∴⊥平面ABD ,BD ⊂平面ABD ,DE BD ∴⊥,则222BE BD DE =+=,在平行四边形ACDE 中,//AE CD 且2AE CD ==, 所以,异面直线AB 与CD 所成角为BAE ∠或其补角, 在ABE △中,2AB =2AE BE ==,由余弦定理可得2222cos 24AB AE BE BAE AB AE +-∠==⋅. 因此,异面直线AB 与CD 所成角的余弦值为24. 故选:B. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:2【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.14.【分析】取与中点根据平面平面可知平面球心必在直线上设球心为D 则可求得球心恰好为点O 从而求得外接球的半径代入球的表面积公式计算【详解】在三棱台中可得都是等腰三角形四边形为等腰梯形即如图取与中点连接则可 解析:32π【分析】取AB 与11A B 中点,O O ',根据平面11AA B B ⊥平面ABC ,可知'⊥O O 平面ABC ,球心必在直线O O '上,设球心为D ,则()22221O D O O OC O D O C ''''-+=+,可求得球心恰好为点O ,从而求得外接球的半径R ,代入球的表面积公式计算. 【详解】在三棱台111ABC A B C -中,11190,4,22ACB AC BC A B CC ∠=︒====可得111,A A C C B B 都是等腰三角形,11112A C B C ==,四边形11A ABB 为等腰梯形即11AA BB =,如图,取AB 与11A B 中点,O O ',连接1,,CO OO C O '',则可得122,2CO C O '==,O O AB '⊥,又平面11AA B B ⊥平面ABC ,两面交线为AB ,所以'⊥O O 平面ABC .因为OA OB OC ==,111O A O B O C '''==,面//ABC 面111A B C , 所以球心必在直线O O '上.所以在直角梯形1C O OC '中可求得6O O '=,由题意可知,该三棱台外接球的外接球的球心必在直线O O '上,设球的半径为R ,球心为D ,则()22221O D O O OC O D O C ''''-+=+,得6O D '=,所以球心恰好为点O ,所以球的半径为22,所以该三棱台外接球的表面积为24(22)32ππ=. 故答案为:32π【点睛】方法点睛:定义法:到各个顶点距离均相等的点为外接球的球心,借助面面垂直的性质,找到线面垂直,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系求解即可.15.【分析】根据正方体的表面积可得正方体边长然后计算外接球的半径利用球的体积的公式可得结果【详解】设正方体边长正方体外接球的半径为R 由正方体的表面积为24所以则又所以所以外接球的体积为:故答案为:【点睛 解析:3π【分析】根据正方体的表面积,可得正方体边长a ,然后计算外接球的半径3R =,利用球的体积的公式,可得结果. 【详解】设正方体边长a ,正方体外接球的半径为R , 由正方体的表面积为24,所以2624a =, 则2a =,又32R a =,所以3R ,所以外接球的体积为:()334434333R πππ==.故答案为:43π. 【点睛】方法点睛:求多面体的外接球的表面积和体积问题关键是要求出外接球的半径,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.16.12【分析】根据题意可判断出两两垂直即可求出外接球半径得出表面积【详解】等腰直角三角形中为的中点满足两两垂直设外接球的半径为则即三棱锥的外接球的表面积为故答案为:【点睛】本题考查三棱锥外接球问题解题解析:12π【分析】根据题意可判断出,,DC DA DB 两两垂直,即可求出外接球半径,得出表面积. 【详解】等腰直角三角形ABC 中,2C π∠=,22CA CB ==,D 为AB 的中点,2CD AD BD ∴===,,CD AD CD BD ∴⊥⊥,22AB =,满足222AD BD AB +=,AD BD ∴⊥, ,,DC DA DB ∴两两垂直,设外接球的半径为R ,则222222223R =++=,即3R =,∴三棱锥C ABD -的外接球的表面积为2412R ππ=.故答案为:12π.【点睛】本题考查三棱锥外接球问题,解题的关键是得出,,DC DA DB 两两垂直.17.①②③【分析】由线面垂直的判定可得平面再由线面垂直的性质可判断①;由线面平行的判定可判断②;由锥体的体积公式可判断③;由线面角的概念可判断④【详解】连接交于点由可知平面而平面故①正确;由且平面平面可解析:①②③ 【分析】由线面垂直的判定可得AC ⊥平面11BB D D ,再由线面垂直的性质可判断①;由线面平行的判定可判断②;由锥体的体积公式可判断③;由线面角的概念可判断④. 【详解】连接,BD AC 交于点O ,由AC BD ⊥,1AC DD ⊥可知AC ⊥平面11BB D D , 而BE ⊂平面11BB D D ,AC BE ∴⊥,故①正确; 由//EF BD ,且EF ⊄平面ABCD ,BD ⊂平面ABCD , 可得//EF 平面ABCD ,故②正确; 由正方体的性质可得BEFS 为定值,且点A 到平面BEF 的距离为定值AO ,所以A BEF V -为定值,故③正确;点A 到平面BEF 的距离为AO ,设直线AE 与平面BEF 所成的角为α,则sin AOAEα=不是定值,所以直线AE 与平面BEF 所成的角不为定值,故④错误. 故答案为:①②③. 【点睛】关键点点睛:解决本题的关键是空间位置关系的转化及锥体体积的相关运算,在求解锥体体积相关问题时,选取一个合适底面能事半功倍.18.4000【分析】根据题意先求出正四棱柱的底面边长和高由体积公式求出正四棱柱的体积减去文物的体积可得罩内空气的体积进而求出所需的费用【详解】由题意可知文物底部是直径为09m 的圆形文物底部与玻璃罩底边至解析:4000 【分析】根据题意,先求出正四棱柱的底面边长和高,由体积公式求出正四棱柱的体积减去文物的体积可得罩内空气的体积,进而求出所需的费用. 【详解】由题意可知,文物底部是直径为0.9 m 的圆形,文物底部与玻璃罩底边至少间隔0.3 m , 所以由正方形与圆的位置关系可知:底面正方形的边长为0.9+2×0.3=1.5m , 由文物高1.8m ,文物顶部与玻璃置上底面至少间隔0.2m ,所以正四棱柱的高为1.8+0.2=2m .,则正四棱柱的体积为V =1.52×2=4.5m 3 因为文物体积为0.5m 3,所以置内空气的体积为4.5-0.5 = 4 m 3, 气体每立方米1000元,所以共需费用为4×1000=4000(元) 【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式: 求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型.19.【分析】取中点连结根据题意得故所以为异面直线和所成角再根据几何关系求得在中故进而得答案【详解】取中点连结依题意:所以所以为异面直线和所成角在正三棱锥中是中点所以又因为平面平面所以平面所以因为分别是的解析:7【分析】取AB 、BC 中点D 、G ,连结DE 、DF 、GS 、GA ,根据题意得//l BC ,//DE BC ,故//l DE ,所以DEF ∠为异面直线l 和EF 所成角,再根据几何关系求得在Rt DEF ∆中,122DF SA ==,1122DE BC AB ===EF ==cos7DE DEF EF ∠===,进而得答案. 【详解】取AB 、BC 中点D 、G ,连结DE 、DF 、GS 、GA , 依题意://l BC ,//DE BC , 所以//l DE ,所以DEF ∠为异面直线l 和EF 所成角.在正三棱锥S ABC -中,G 是BC 中点,所以SG BC ⊥,AG BC ⊥, 又因为SG AG G ⋂=,SG ⊂平面SAG ,AG ⊂平面SAG , 所以BC ⊥平面SAG ,所以BC SA ⊥. 因为F 、D 分别是SB 、AB 的中点, 所以//DF SA . 所以DE DF ⊥.Rt DEF ∆中,122DF SA ==,11322DE BC AB === 所以227EF DE DF +.所以321cos 7DE DEF EF ∠===. 故异面直线l 和EF 所成角的余弦值为:217故答案为:217【点睛】本题考查异面直线所成角的求解,考查空间思维能力与运算能力,是中档题.20.【分析】首先根据直观图可知其平面图形为直角三角形且两条直线边长为长接下来利用勾股定理即可求出AB 的长然后利用直角三角形的性质进行解答即可【详解】把直观图还原成平面图形如图所示:得为直角三角形且两条直 解析:732【分析】首先根据直观图可知其平面图形为直角三角形,且两条直线边长为长3,8AC BC ==,接下来利用勾股定理即可求出AB 的长,然后利用直角三角形的性质进行解答即可. 【详解】把直观图还原成平面图形如图所示:得ABC ∆为直角三角形,且两条直角边的长3,8AC BC ==, 由勾股定理可得73AB =故三角形AB 73, 73. 【点睛】本题是一道关于平面几何图形的直观图的题目,解答本题的关键是熟练掌握斜二测画法的相关知识.三、解答题21.(1)证明见解析;(2)155;(3)12.【分析】(1)连接AC 交BD 于点O ,连接PO ,推导出BD ⊥平面PAC ,进而可得出PC BD ⊥;(2)过点O 在平面PAC 内作OF PC ⊥,垂足为点F ,连接BF ,推导出OFB ∠为二面角B PC E --的平面角,计算出OF 、BF ,可计算出cos OFB ∠,即可得解; (3)计算出PCE 的面积,利用锥体的体积公式可得出13P BCE B PCE PCE V V S OB --==⋅△,即可得解.【详解】证明:(1)连接AC 交BD 于O 点,连接PO ,∵四边形ABCD 是菱形,AC BD ∴⊥,则O 是BD 的中点,PB PD =,PO BD ∴⊥,又AC PO O =,AC 、OP ⊂平面PAC ,BD ∴⊥平面PAC ,又PC ⊂平面PAC ,PC BD ∴⊥;(2)由(1)知BO ⊥平面PAC ,PC ⊂平面PAC ,则OB PC ⊥, 过O 在平面PAC 内作OF PC ⊥于F ,连接BF ,由OB OF O ⋂=,则PC ⊥平面OBF ,BF ⊂平面OBF ,得BF PC ⊥,故OFB ∠为二面角B PC E --的平面角,四边形ABCD 是菱形,60BAD ∠=,ABD ∴为等边三角形,2BD AB AD ∴===,112OB BD ∴==,223OC OA AB OB ==-= OB ⊥平面PAC ,OP ⊂平面PAC ,OP OB ∴⊥,223OP PB OB ∴-=3OA =3OP =6PA =222OP PA OA +∴=,即OA OP ⊥,即PO AC ⊥,3366PO OC OF PC ⋅⨯∴===,222261012BF BO OF ⎛⎫=+=+= ⎪ ⎪⎝⎭, 故615cos 510OF OFB BF ∠===,即二面角B PC E --的余弦值是155; (3)E 为PA 的中点,11333222PCE PAC POA S S S ∴====△△△, 又OB ⊥平面PAC ,113113322P BCE B PCE PCE V V S OB --∴==⋅=⨯⨯=△.【点睛】方法点睛:求二面角常用的方法:(1)几何法:二面角的大小常用它的平面角来度量,平面角的作法常见的有: ①定义法;②垂面法,注意利用等腰三角形的性质;(2)空间向量法:分别求出两个平面的法向量,然后通过两个平面法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求二面角是锐角还是钝角. 22.(1)证明见解析;(2)证明见解析;(3)1010. 【分析】(1)先证明1//AE DB ,再结合线面平行的判定定理证明//AE 平面11B C D ;(2)由AC ⊥平面11BCC B 得出1AC CC ⊥,再由1CC BC ⊥结合线面垂直的判定定理证明1CC ⊥平面ABC ;(3)建立空间直角坐标系,利用向量法求直线AB 与平面11B C D 所成角的正弦值. 【详解】解:(1)在三棱柱111ABC A B C -中,11//AA BB ,且11AA BB =. 因为点D ,E 分别是棱1AA ,1BB 的中点, 所以1//AD B E ,且1AD B E =. 所以四边形1AEB D 是平行四边形. 所以1//AE DB .又因为AE ⊄平面11B C D ,1DB ⊂平面11B C D , 所以//AE 平面11B C D .(2)因为AC ⊥平面11BCC B ,1CC ⊂平面11BCC B ,所以1AC CC ⊥. 因为侧面11BCC B 为矩形,所以1CC BC ⊥. 又因为ACBC C =,AC ⊂平面ABC ,BC ⊂平面ABC ,所以1CC ⊥平面ABC .(3)分别以CA ,CB ,1CC 所在的直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系C xyz -,由题意得()2,0,0A ,()0,2,0B ,()10,2,2B ,()10,0,2C ,()2,0,1D .所以()2,2,0AB =-,()110,2,0C B =,()12,0,1C D =-. 设平面11B C D 的法向量为(),,n x y z =则1110n C B n C D ⎧⋅=⎪⎨⋅=⎪⎩,即2020y x z =⎧⎨-=⎩. 令1x =,则0y =,2z =.于是()1,0,2n =.所以cos ,5n AB n AB n AB⋅===.所以直线AB 与平面11B C D . 【点睛】关键点睛:在解决第(3)问时,关键是建立空间直角坐标系,利用向量法求出线面角的正弦值,属于中档题.23.(1)证明见解析;(2)证明见解析. 【分析】(1)证明出//AB 平面CDEF ,再利用线面平行的性质定理可证得//AB EF ; (2)证明出AE ⊥平面CDEF ,再结合面面垂直的判定定理可得出平面ABFE ⊥平面CDEF .【详解】(1)因为四边形ABCD 是平行四边形,所以//AB CD ,因为AB ⊄平面CDEF ,CD ⊂平面CDEF ,所以//AB 平面CDEF . 又因为AB平面ABFE ,平面ABFE平面CDEF EF =,所以//AB EF ;(2)由(1)有//AB EF ,因为AB AE ⊥,所以EF AE ⊥. 又因为CF AE ⊥,EF CF F =,所以AE ⊥平面CDEF .又因为AE ⊂平面ABEF ,所以平面ABEF ⊥平面CDEF .【点睛】方法点睛:证明面面垂直常用的方法: (1)面面垂直的定义; (2)面面垂直的判定定理.在证明面面垂直时,一般假设面面垂直成立,然后利用面面垂直转化为线面垂直,即为所证的线面垂直,组织论据证明即可. 24.(1)证明见解析,(2)12【分析】(1)连接11A C ,由1AA ⊥平面ABCD ,可得1AA CD ⊥,而AC CD ⊥,可得CD ⊥平面11AAC C ,从而有AM CD ⊥,再由1AM CC ⊥可证得AM ⊥平面11CDD C ,再利用面面垂直的判定定理可证得平面ABM ⊥平面11CDD C ;。
人教版高中数学必修第二册第三单元《立体几何初步》测试(含答案解析)
一、选择题1.已知空间中不同直线m 、n 和不同平面α、β,下面四个结论:①若m 、n 互为异面直线,//m α,//n α,//m β,βn//,则//αβ;②若m n ⊥,m α⊥,βn//,则αβ⊥;③若n α⊥,//m α,则n m ⊥;④若αβ⊥,m α⊥,//n m ,则βn//.其中正确的是( )A .①②B .②③C .③④D .①③ 2.球面上有,,,A B C D 四个点,若,,AB AC AD 两两垂直,且4AB AC AD ===,则该球的表面积为( )A .803πB .32πC .42πD .48π3.如图,P 是正方体1111ABCD A B C D -中1BC 上的动点,下列命题:①1AP B C ⊥;②BP 与1CD 所成的角是60°;③1P AD C V -为定值;④1//B P 平面1D AC ;⑤二面角PAB C 的平面角为45°. 其中正确命题的个数有( ) A .2个 B .3个 C .4个 D .5个4.如图所示,AB 是⊙O 的直径,VA 垂直于⊙O 所在的平面,点C 是圆周上不同于A ,B 的任意一点,M ,N 分别为VA ,VC 的中点,则下列结论正确的是( )A .MN //ABB .MN 与BC 所成的角为45° C .OC ⊥平面VACD .平面VAC ⊥平面VBC5.如图,在长方体1111ABCD A B C D -中,13,2,4AA AB AD ===,点M 是棱AD 的中点,点N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内的一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .[3,17]B .[2,3]C .[6,22]D .[17,5] 6.已知某正三棱锥侧棱与底面所成角的余弦值为219,球1O 为该三棱锥的内切球.若球2O 与球1O 相切,且与该三棱锥的三个侧面也相切,则球2O 与球1O 的表面积之比为( )A .49B .19C .925D .1257.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC 2aD .22a 8.菱形ABCD 的边长为3,60B ∠=,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( )A .15πB .12πC .8πD .6π9.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm ),则此构件的表面积为( )A .27600mmB .28400mmC .29200mmD .210000mm 10.α,β是两个平面,m ,n 是两条直线,有下列四个命题;①如果m n ⊥,m α⊥,//n β,那么αβ⊥.②如果m α⊥,//n α,那么m n ⊥.③如果//αβ,m α⊂,那么//m β.④如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题的个数为( )A .1B .2C .3D .411.如图为水平放置的ΔOAB 的直观图,则原三角形的面积为( )A .3B .32C .6D .1212.已知,a b 是两条直线,,αβ是两个平面,则a b ⊥的一个充分条件是( ) A .a α⊥,b β//,αβ⊥B .a α⊥,b β⊥,//αβC .a α⊂,b β⊥,//αβD .a α⊂,b β//,αβ⊥13.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .61cmC 61cmD .234cm14.用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm ,则圆台的母线长是( )A .9cmB .10cmC .12cmD .15cm二、解答题15.如图三棱柱111ABC A B C -中,11,,60CA CB AB AA BAA ∠︒===,(1)证明1AB A C ⊥;(2)若16AC =,2AB CB ==,求三棱柱111ABC A B C -的体积S . 16.如图,圆柱的轴截面ABCD 是正方形,点E 是底面圆周上异于,A B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 17.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.18.如图,在斜三棱柱111ABC A B C -中,点O .E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,AO ⊥平111A B C .已知90BCA ∠=︒,12AA AC BC ===.(1)求证://EF 平面11BB C C ;(2)求11A C 与平面11AA B 所成角的正弦值.19.如图,在四棱锥P ABCD -中,四边形ABCD 为菱形,60BAD ∠=︒,PAD ∆为正三角形,平面PAD ⊥平面ABCD ,且E ,F 分别为AD ,PC 的中点.(1)求证://DF 平面PEB ;(2)求直线EF 与平面PDC 所成角的正弦值.20.如图,在空间几何体A -BCDE 中,底面BCDE 是梯形,且CD //BE ,CD =2BE =4,∠CDE =60°,△ADE 是边长为2的等边三角形.(1)若F 为AC 的中点,求证:BF //平面ADE ;(2)若AC =4,求证:平面ADE ⊥平面BCDE .21.如图,在平行四边形ABCD 中,4AB =,60DAB ∠=︒.点G ,H 分别在边CD ,CB 上,点G 与点C ,D 不重合,GH AC ⊥,GH 与AC 相交于点O ,沿GH 将CGH 翻折到EGH 的位置,使二面角E GH B --为90°,F 是AE 的中点.(1)请在下面两个条件:①AB AD =,②AB BD ⊥中选择一个填在横线处,使命题P :若________,则BD ⊥平面EOA 成立,并证明.(2)在(1)的前提下,当EB 取最小值时,求直线BF 与平面EBD 所成角的正弦值. 22.如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD //BC //FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(I )证明:平面AMD ⊥平面CDE ;(II )求二面角A ﹣CD ﹣E 的余弦值.23.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,2AB =,1AD =,60DAB ∠=︒,PD BD =,且PD ⊥平面ABCD .(1)证明:平面PBC ⊥平面PBD ;(2)若Q 为PC 的中点,求三棱锥D PBQ -的体积.24.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,PB PA ⊥,PB PA =,90DAB ABC ∠=∠=,435AB BC CD ===,,,M 是PA 的中点.(1)求证:BM //平面PCD ;(2)求三棱锥B CDM -的体积.25.如图,在棱长为1的正方体1111ABCD A B C D -中,点O 是BD 中点.(1)求证:平面11BDD B ⊥平面1C OC ;(2)求二面角1C BD C --的正切值.26.如图,四棱锥P ABCD -中,底面ABCD 是菱形,,60,PA PD BAD E =∠=是AD 的中点,点Q 在侧棱PC 上.(1)求证:AD ⊥平面PBE ;(2)若Q 是PC 的中点,求证://PA 平面BDQ ;(3)若2P BCDE Q ABCD V V --=,试求CP CQ的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由线面和面面平行和垂直的判定定理和性质定理即可得解.【详解】解:对于①,由面面平行的判定定理可得,若m 、n 互为异面直线,//m α,//n β,则//αβ或相交,又因为//m β,//n α,则//αβ,故①正确;对于②,若m n ⊥,m α⊥,//n β,则//αβ或α,β相交,故②错误, 对于③,若n α⊥,//m α,则n m ⊥;故③正确,对于④,若αβ⊥,m α⊥,//n m ,则//n β或n β⊂,故④错误,综上可得:正确的是①③,故选:D .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.2.D解析:D【分析】分析:首先求得外接球半径,然后求解其表面积即可.详解:由题意可知,该球是一个棱长为4的正方体的外接球,设球的半径为R ,由题意可得:()22222444R =++,据此可得:212R =,外接球的表面积为:2441248S R πππ==⨯=.本题选择D 选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 3.C解析:C【详解】①在正方体中,1111,,AB B C BC B C AB BC B ⊥⊥=,所以1B C ⊥平面11,ABC D AP ⊂平面11ABC D ,从而1AP B C ⊥正确;②由于11//CD A B ,并且11,BC A B 的夹角是60°,故1BP CD 与所成的角是60°正确;③虽然点P 变化,但P 到1AD 的距离始终不变,故1P AD C V -为定值正确;④若1//B P 平面1D AC ,而1//BC 平面1D AC ,1111,,B P BC P B P BC =⊂平面11BB C C ,所以平面1//D AC 平面11BB C C ,这与平面1D AC 与平面11BB C C 相交矛盾,所以不正确;⑤P 点变化,但二面角PAB C 都是面11ABC D 与面ABCD 所成的角, 故二面角PAB C 的平面角为45°正确;故选:C. 4.D解析:D【分析】由中位线性质,平移异面直线即可判断MN 不与AB 平行,根据异面直线平面角知MN 与BC 所成的角为90°,应用反证知OC 不与平面VAC 垂直,由面面垂直的判定知面VAC ⊥面VBC ,即可知正确选项.【详解】M ,N 分别为VA ,VC 的中点,在△VAC 中有//MN AC ,在面ABC 中AB AC A =,MN 不与AB 平行;AC BC C =,知:MN 与BC 所成的角为90BCA ∠=︒;因为OC ⋂面VAC C =,OC 与平面内交线,AC VC 都不垂直,OC 不与平面VAC 垂直; 由VA ⊥面ABC ,BC ⊂面ABC 即VA BC ⊥,而90BCA ∠=︒知AC BC ⊥,AC VA A ⋂=有BC ⊥面VAC ,又BC ⊂面VBC ,所以面VAC ⊥面VBC ; 故选:D【点睛】本题考查了异面直线的位置关系、夹角,以及线面垂直的性质,面面垂直判定的应用,属于基础题.5.C解析:C【分析】首先找出过点1C 且与平面CMN 平行的平面,然后可知点P 的轨迹即为该平面与侧面四边形11ADD A 的交线段,进而可以利用解三角形的知识求出线段1C P 长度的取值范围.【详解】 如图所示:,取11A D 的中点G ,取MD 的中点E ,1A G 的中点F ,1D D 的三等分点H 靠近D ,并连接起来.由题意可知1//C G CM ,//GH MN ,所以平面1//C GH 平面CMN .即当点P 在线段GH 上时,1//C P 平面CMN .在1H C G 中,2212222C G =+=2212222C H =+=22GH =, 所以1H C G 为等边三角形,取GH 的中点O ,1226C O ==故线段1C P 长度的取值范围是6,22].故选:C .【点睛】本题主要考查线面平行,面面平行的判定定理和性质定理的应用,以及解三角形,意在考查学生的逻辑推理能力和数学运算能力,属于中档题.6.C解析:C【分析】先证明PO ⊥平面ABC ,接着求出19cos 19PAO =∠,再得到214r PO =和114R PO =,从而得到35rR=,最后求出球2O与球1O的表面积之比即可.【详解】如图,取ABC的外心O,连接PO,AO,则PO必过1O,2O,且PO⊥平面ABC,可知PAO∠为侧棱与底面所成的角,即219cos19PAO=∠.取AB的中点M,连接PM,MC.设圆1O,2O的半径分别为R,r,令2OA=,则19PA=,23AB=,3AM=,1OM=,所以214r OMPO PM==,即24PO r=,从而145PO r r R r R=++=+,所以1154R RPO r R==+,则35rR=,所以球2O与球1O的表面积之比为925.故选:C.【点睛】本题考查三棱锥内切球的应用,考查空间想象能力,逻辑推理能力,是中档题.7.D解析:D【分析】解:设G,H,I分别为CD、1CC、11C D边上的中点,证明平面1//A BGE平面1B HI,得到1//B F面1A BE,则F落在线段HI上,求出1122HI CD==【详解】解:设G,H,I分别为CD、1CC、11C D边上的中点,1//A B EG,则1A BEG四点共面,11//,//EG HI B H A E , 平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上,正方体1111ABCD A B C D -中的棱长为a ,11222HI CD a ∴==, 即F 在侧面11CDD C 上的轨迹的长度是22a . 故选:D .【点睛】本题考查利用线面平行求线段长度,找到动点的运动轨迹是解题的关键,属于基础题. 8.A解析:A【分析】首先根据已知条件找到四面体外接球的球心,再求出半径,即可得到球体的表面积.【详解】如图所示,1O ,2O 分别为ABC 和DAC △的外接圆圆心,因为菱形ABCD ,60B ∠=,所以ABC 和DAC △为等边三角形.设E 为AC 的中点,连接DE ,BE ,则DE AC ⊥,BE AC ⊥,又因为平面ACD ⊥平面ABC AC =,所以DE ⊥平面ABC .分别过1O ,2O 作垂直平面ABC 和平面ACD 的直线,则交点O 为四面体ABCD 外接球的球心.因为2233332⎛⎫==-= ⎪⎝⎭EB DE ,四边形12OO EO 为矩形, 所以123==O B DO ,1213===O E O E OO . 所以外接圆半径为()223153=22⎛⎫+⎪ ⎪⎝⎭,表面积为15π. 故选:A【点睛】 本题主要考查四面体外接球的表面积,根据题意确定外接球的球心为解题关键,属于中档题.9.B解析:B【分析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:()210020220202100204010210202840m 0m S =⨯⨯+⨯⨯+⨯-⨯⨯+⨯⨯=.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.10.C解析:C【分析】对①,运用长方体模型,找出符合条件的直线和平面,即可判断;对②,运用线面平行的性质定理和线面垂直的性质定理,即可判断;对③,运用面面平行的性质定理,即可判断;对④,由平行的传递性及线面角的定义,即可判断④.【详解】对于命题①,可运用长方体举反例证明其错误:如图,不妨设AA '为直线m ,CD 为直线n ,ABCD 所在的平面为α,ABC D ''所在的平面为β,显然这些直线和平面满足题目条件,但αβ⊥不成立;命题②正确,证明如下:设过直线n 的某平面与平面α相交于直线l ,则//l n ,由m α⊥知m l ⊥,从而m n ⊥,结论正确;由平面与平面平行的定义知命题如果//αβ,m α⊂,那么//m β.③正确;由平行的传递性及线面角的定义知命题:如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等,④正确.故选:C .【点睛】本题考查命题的真假判断,考查空间线面、面面平行和垂直的位置关系,注意运用判定定理和性质定理,考查推理能力,属于中档题.11.C解析:C【分析】根据直观图的画法,可以得到直角坐标系下3014A B (,),(,),还原三角形的图象,求得面积.【详解】根据直观图的画法,可以得到直角坐标系下3014A B (,),(,),如图所示:故原三角形面积为:13462S =⨯⨯= 故选:C【点睛】 本题考查了还原直观图为直角坐标系的图像问题,考查了学生概念理解,直观想象,数学运算的能力,属于基础题.12.C解析:C【分析】在A 中,a 与b 可以成任意角;在B 中a 与b 是平行的;在C 中,可得b α⊥,从而得到a b ⊥;在D 中,可得a 与b 可以成任意角,从而得到正确结果.【详解】由a ,b 是两条不同的直线,,αβ是两个不同的平面,在A 中,a α⊥,b β//,αβ⊥,因为b 的方向不确定,则a 与b 可以成任意角,故A 错误;在B 中,a α⊥,b β⊥,//αβ,根据对应的性质可知,可知a 与b 是平行的,故B 错误;在C 中,由a α⊂,b β⊥,//αβ,可知b α⊥,由线面垂直的性质可知a b ⊥,故C 正确;在D 中,a α⊂,b β//,αβ⊥,可得a 与b 可以成任意角,故D 错误.故选:C.【点睛】该题考查线线垂直的充分条件的判断,考查空间中线线、线面、面面间的位置关系等基础知识,在解题的过程中,注意结合图形去判断,属于中档题目.13.A解析:A【分析】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,计算得到答案.【详解】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,易知5BC =,'12A C =,故'13A B =.故选:A .【点睛】本题考查了立体几何中的最短距离问题,意在考查学生的计算能力和空间想象能力. 14.A解析:A【分析】计算得到12:1:4r r =,根据相似得到3134l =+,计算得到答案. 【详解】圆台上、下底面的面积之比为1:16,则12:1:4r r =.设圆台母线长为l ,根据相似得到:3134l =+,故9l =. 故选:A .【点睛】本题考查了圆台的母线长,意在考查学生的计算能力和空间想象能力. 二、解答题15.(1)证明见解析;(2)3.【分析】(1)取AB 中点E ,连接11,,CE A B A E ,根据已知条件,利用等腰三角形的性质得到1A E AB ⊥,,CE AB ⊥利用线面垂直的判定定理证得AB ⊥面1,CEA 即可得到1AB A C ⊥ ;(2) 在1CEA 中可以证明1A E CE ⊥,结合1A E AB ⊥,利用线面垂直判定定理得到1A E ⊥平面ABC ,作为三棱柱的高,进而计算体积.【详解】(1)取AB 中点E ,连接11,,CE A B A E ,11,60AB AA BAA ∠︒==,1BAA ∴是等边三角形,1A E AB ∴⊥,CA CB =,,CE AB ∴⊥1,CE A E E ⋂=AB ∴⊥面1,CEA1AB A C ∴⊥.(2)由于CAB ∆为等边三角形,CE ∴11222S AB CE ⨯⨯⨯=底面积==1CEA 中,CE 1EA 1AC =1A E CE ∴⊥,结合1A E AB ⊥,又,,AB CE E AB CE ⋂=⊂平面ABC ,1A E ∴⊥平面ABC ,1h A E ∴=3V Sh ==.【点睛】本题考查线面垂直的判定与证明,考查棱柱的体积计算,属基础题,为证明线线垂直,常常先证线面垂直,为证明线面垂直,又常常需要先证明线线垂直,这是线面垂直关系常用的证明与判定方式,要熟练掌握.16.(1)详见解析;(2【分析】(1)要证明线线垂直,需证明线面垂直,根据题中所给的垂直关系,证明AF ⊥平面DEB ;(2)首先确定点E 的位置,再根据等体积转化求点到平面的距离.【详解】(1)由圆柱性质可知,DA ⊥平面ABE ,EB ⊂平面AEB ,DA EB ∴⊥, AB 是圆柱底面的直径,点E 在圆周上,AE EB ∴⊥,又AE DA A ⋂=,BE ∴⊥平面DAE ,AF ⊂平面DAE ,EB AF ∴⊥,又AF DE ⊥,且EB DE E =,AF ∴⊥平面DEB ,DB ⊂平面DEB ,AF DB ∴⊥;(2)13D AEB AEB V S DA -=⨯⨯,3DA =, 当D AEB V -最大时,即AEB S 最大,即AEB △是等腰直角三角形时,2DA AB ==∵,BE ∴=DE ==,并且点E 到平面ABCD 的距离就是点E 到直线AB 的距离112AB =, 设点C 到平面EBD 的距离为h ,则1111262213232C DBE E CBD V V h --==⨯⨯⨯⨯=⨯⨯⨯⨯, 解得:233h = 【点睛】方法点睛:本题重点考查垂直关系,不管证明面面垂直还是证明线面垂直,关键都需转化为证明线线垂直,一般证明线线垂直的方法包含1.矩形,直角三角形等,2.等腰三角形,底边中线,高重合,3.菱形对角线互相垂直,4.线面垂直,线线垂直.17.(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点.连结PO ,又因为P 是1DD 的中点,所以1//PO BD .又因为PO ⊂平面PAC ,1BD ⊄平面PAC所以直线1//BD 平面PAC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==212AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30.【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m n m n α=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.18.(1)证明见解析;(2)217. 【分析】(1)由题意可得11//OE B C ,1//OF C C ,利用面面平行的判定定理可得平面//OEF 平面11BB C C ,由面面平行的性质定理即可证明. (2)利用等体法111112A A B C C AA B V V --=,求出点1C 到平面11AA B 的距离2217d =,由11sin d A C θ=即可求解. 【详解】证明:(1)∵O ,E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,∴11//OE B C ,1//OF C C ,1111B C C C C ⋂=,//OE ∴平面11B C C ,//OF ∴平面11B C C ,又OE OF O ⋂=,∴平面//OEF 平面11BB C C ,∵EF ⊂平面OEF ,∴//EF 平面11BB C C .(2)解:设点1C 到平面11AA B 的距离为d ,∵111112A A B C C AA B V V --=, ∴111111111323AA B AC B C AO S d ⨯⨯⨯⨯=⨯⨯,AO ==1OB ==1AB ==,∵11AA B中,111A B AB ==,12AA =,∴11AA B S =∴11122323d ⨯⨯⨯=,解得7d =, 设11A C 与平面11AA B 所成角为θ,∴11A C 与平面11AA B所成角的正弦值为:11sin 7d AC θ==. 【点睛】方法点睛:证明线面平行的常用方法:(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理.(3)利用面面平行的性质.19.(1)证明见解析;(2. 【分析】(1)取PB 中点G ,推出//FG BC ,证明四边形DEGF 是平行四边形,得到//DF EG ,然后证明//DF 平面PEB .(2)以E 为原点,EA ,EB ,EP 分别为x ,y ,z 轴建立空间直角坐标系,求出平面PDC 的法向量,求出EF ,利用空间向量的数量积求解EF 与平面PDC 所成角的正弦值.【详解】(1)证明:取PB 中点G ,因为F 是PC 中点,//FG BC ∴,且12FG BC =, E 是AD 的中点,则//DE BC ,且12DE BC =, //FG DE ∴,且FG DE =,∴四边形DEGF 是平行四边形,//DF EG ∴,又DF ⊂/平面PEB ,EG ⊂平面PEB ,//DF ∴平面PEB .(2)因为E 是正三角形PAD 边为AD 的中点,则PE AD ⊥. 因为平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,PE ⊂平面PAD ,PE ∴⊥平面ABCD ,四边形ABCD 为菱形,60BAD ∠=︒,∴正三角形BAD 中,BE AD ⊥,以E 为原点,EA ,EB ,EP 分别为x ,y ,z 轴建立空间直角坐标系, 不妨设菱形ABCD 的边长为2,则1AE ED ==,2PA =,3PE =,223BE AB AE =-=则点33(0,0,0),(1,0,0),(3,0),3),(E D C P F ---, ∴(1DC =-30),(1DP =,03),设平面PDC 的法向量为(n x =,y ,)z ,则·0·0n DC n DP ⎧=⎨=⎩,即3030x z x ⎧=⎪⎨-+=⎪⎩,解得33x x z⎧=⎪⎨=⎪⎩,不妨令1z =,得(3n =-,1-,1); 又33(1,2EF =-, 设EF 与平面PDC 所成角为θ,∴36sin |cos |555?2EF n θ=<>=⋅=,.所以EF 与平面PDC 6. 【点睛】对于线面角可以转化为直线的方向向量与平面的法向量的夹角运算,对于证明线线关系,线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明.20.(1)证明见解析;(2)证明见解析. 【分析】(1)取DA 的中点G ,连接FG ,GE ,推导出四边形BFGE 为平行四边形,从而BF //EG ,由此能证明BF //平面ADE.(2)取DE 的中点H ,连AH ,CH ,推导出AH ⊥DE ,AH ⊥HC ,从而AH ⊥平面BCDE ,由此能证明平面ADE ⊥BCDE . 【详解】(1)如图所示,取DA 的中点G ,连接FG ,GE.∵F 为AC 的中点, ∴GF //DC ,且GF =12DC .又DC //BE ,CD =2BE =4, ∴EB //GF ,且EB =GF ∴四边形BFGE 是平行四边形, ∴BF //EG .∵EG ⊂平面ADE ,BF ⊄平面ADE , ∴BF //平面ADE .(2)取DE 的中点H ,连接AH ,CH . ∵△ADE 是边长为2的等边三角形, ∴AH ⊥DE ,且AH 3.在△DHC 中,DH =1,DC =4,∠HDC =60°根据余弦定理可得HC 2=DH 2+DC 2-2DH ·DCcos 60°=12+42-2×1×4×12=13,即HC 13 在△AHC 中,AH 3HC 13AC =4. 所以AC 2=AH 2+HC 2,即AH ⊥HC .因为AH DE ⊥,AH HC ⊥,DE HC H ⋂=AH ∴⊥平面BCDE ∵AH ⊂平面ADE ,∴平面ADE ⊥平面BCDE . 【点睛】方法点睛:要证线面平行,一般需要证明(1)线线平行(2)面面平行两种方法,在平行的证明中,线线平行一般需要考虑中位线、平行四边形,平行线分线段成比例的逆定理.21.(1)答案见解析;(2)11. 【分析】(1)选择①,结合直二面角的定义,证明BD ⊥平面EOA 内的两条相交直线,EO AO ;(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =CO x =,可得EB 关于x 的函数,求出EB 取得最小值时x 的值,连结EM ,作QF EM ⊥于F ,连结BF ,求出sin QBF ∠的值,即可得答案; 【详解】解:(1)命题P :若AB AD =,则BD ⊥平面EOA . ∵AC GH ⊥,∴AO GH ⊥,EO GH ⊥, 又二面角E GH B --的大小为90°, ∴90AOE ∠=︒,即EO AO ⊥, ∴EO ⊥平面ABCD , ∴EO BD ⊥,又AB BC =,∴AO BD ⊥,AO EO O =,∴BD ⊥平面EOA .(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =设CO x =,OM x =,222216OB OM MB x =+=-+,2222216EB EO OB x =+=-+,当x =min EB =连结EM ,作QF EM ⊥于F ,连结BF , 由(1)知BD ⊥平面EOA , ∴BD QF ⊥,∴QF ⊥平面EBD , ∴QBF ∠即为QB 与平面EBD 所成角,在Rt EMB 中,EB =2BM =,EM =AE =,由()2222(2)2QB AE AB BE QB +=+⇒=,2QF =∴sin QF QBF QB ∠==,即QB 与平面EBD .【点睛】求线面角首先要根据一作、二证、三求找出线面角,然后利用三角函数的知识,求出角的三角函数值即可. 22.(I)证明见解析;(II)3 . 【分析】(I )取AD 的中点P ,连结EP PC ,,MP ,利用平行四边形及线面垂直的性质定理证明,,PE PC AD 相互垂直,从而可证明EC 与,MP MD 垂直,然后可得线面垂直,面面垂直;(II )取Q CD 为的中点,连结,PQ EQ ,可得EQP ∠为二面角A CD E --的平面角,在Rt EPQ △中求得其余弦值.【详解】(Ⅰ)证明:取AD 的中点P ,连结EP PC ,.则EF AP =,∵//FE AP =,∴四边形FAPE 是平行四边形, ∴//FA EP =,同理,//AB PC =.又∵FA ⊥平面ABCD ,∴EP ⊥平面ABCD ,而PC AD ,都在平面ABCD 内,∴.EP PC EP AD ⊥⊥, 由AB AD ⊥,可得PC AD ⊥, 设FA a =,则2.EP PC PD a CD DE EC a ======,所以△ECD 为正三角形.∵DC DE =且M 为CE 的中点,∴DM CE ⊥.连结MP ,则.MP CE ⊥PM ∩MD =M ,而PM ,MD 在平面AMD 内 , ∴CE ⊥平面AMD而CE ⊂平面CDE ,所以平面AMD ⊥CDE . (Ⅱ)解:取Q CD 为的中点,连结,PQ EQ , ∵CE DE =,∴.EQ CD ⊥ ∵PC PD =,∴PQ CD ⊥∴EQP ∠为二面角A CD E --的平面角.由(Ⅰ)可得, EP PQ EQ a PQ ==⊥,,.于是在Rt EPQ △中,cos 3PQ EQP EQ ∠==.∴二面角A CD E --. 【点睛】方法点睛:本题考查证明面面垂直,考查求二面角.求二面角的几何方法:一作二证三计算,一作:作出二面角的平面角;二证:证明所作的角是二面角的平面角;三计算:在三角形中求出这个角(这个角的余弦值). 23.(1)证明见解析;(2)14【分析】(1)由余弦定理可得23BD =,证得AD BD ⊥,则BC BD ⊥由PD ⊥底面ABCD ,BC ⊂平面ABCD ,证得PD BC ⊥,得证.(2)Q 为PC 的中点,利用等积法12D PBQ D BCQ Q BCD P BCD V V V V ----=== ,即可求出结果. 【详解】(1) 在ABD △中,由余弦定理得2222cos 3BD BA AD BA AD DAB =+-⋅∠=, ∵222AD BD AB +=,∴AD BD ⊥,∵//AD BC ,∴BC BD ⊥.又∵PD ⊥底面ABCD ,BC ⊂平面ABCD ∴PD BC ⊥.∵PD BD D ⋂=,∴BC ⊥平面PBD .(2)因为Q 为PC 的中点,所以三棱锥D PBQ -的体积A PBQ V -, 与三棱锥D QBC -的体积相等,即11111232412D PBQ D BCQ Q BCD P BCD V V V V ----=⨯⨯====. 所以三棱锥A PBQ -的体积14D PBQ V -=.【点睛】本题主要考查了线面垂直的证明,在含有长度时需要解三角形来证垂直,并且不要忘记线面垂直的性质运用,在求三棱锥的体积时注意等体积法的使用 24.(1)证明见解析;(2)2. 【分析】(1)取PD 中点N ,证明BMNC 为平行四边形,得到//BM NC ,从而得到//BM 平面PCD .(2)对三棱锥B CDM -进行等体积转化,转化为求P BCD -的体积的一半.取AB 中点O ,连PO ,可证PO 为三棱锥P BCD -的高并求出其长度,求出BCD △的面积,得到三棱锥P BCD -的体积,即可求出三棱锥B CDM -的体积. 【详解】证明:(1)取PD 中点N ,连接MN ,NC , MN 为PAD △的中位线,//MN AD ∴,且12MN AD =, 又//BC AD ,且12BC AD =,//MN BC ∴,且MN BC =, 则BMNC 为平行四边形,//BM NC ∴,又NC ⊂平面PCD ,MB ⊂/平面PCD , //BM ∴平面PCD .(2)取AB 中点O ,连PO ,,PB PA PO AB =∴⊥,又平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PO ⊂平面PAB ,PO ∴⊥平面ABCD . PO ∴为三棱锥P BCD -的高, PA PB =,4AB =,PB PA ⊥, PAB ∴为等腰直角三角形,2PO =, 90DAB ABC ,//AD BC ,1134622BCDSBC AB =⨯⨯=⨯⨯=, M 是PA 的中点,∴三棱锥B CDM -的体积为:11162223126P B CDM M BCD BCD BCDV V V SPO ---==⨯=⨯=⨯⨯=.【点睛】本题考查通过线线平行证明线面平行,通过面面垂直证明线面垂直,变换顶点和底面进行等体积转化,求三棱锥的体积,属于中档题. 25.(1)证明见解析;(22. 【分析】(1)在正方体1111ABCD A B C D -中,易证1,C O BD CO BD ⊥⊥,由线面垂直的判定定理得到BD ⊥平面1C OC ,然后再利用面面垂直的判定定理证明.(2)由(1)知BD ⊥平面1C OC ,且平面1C BD ⋂平面CBD BD =,得到1C OC ∠是二面角1C BD C --的平面角 ,然后在1Rt C OC ∆中求解. 【详解】(1)∵在正方体1111ABCD A B C D -中, 点O 是BD 中点 , 又11BC DC = , BC DC = ,∴ 1,C O BD CO BD ⊥⊥11,C O CO O C O =⊂平面1,C OC CO ⊂平面1C OC ,BD ∴⊥平面1C OC ,又∵BD ⊂平面11BDD B , ∴平面11BDD B ⊥平面1C OC .… (2)由(1)知:平面1C BD ⋂平面CBD BD =,11,C O BD C O ⊥⊂半平面1;,C BD CO BD CO ⊥⊂ 半平面;CBD所以1C OC ∠是二面角1C BD C --的平面角 则在正方体1111ABCD A B C D -中121,C C OC == ∴在1Rt C OC ∆中,11tan 2C CC OC OC∠== 故二面角1C BD C --2 . 【点睛】本题主要考查线面垂直,面面垂直的判定定理以及二面角的求法,还考查了逻辑推理和运算求解的能力,属于中档题.26.(1)证明见解析;(2)证明见解析;(3)8 3 .【分析】(1)由线面垂直判定定理,要证线面垂直,需证AD垂直平面PBE内两条相交直线,由,E是AD的中点,易得AD垂直于,再由底面是菱形,得三角形为正三角形,所以AD垂直于PA,(2)由线面平行判定定理,要证线面平行,需证PC平行于平面内一条直线,根据1h是的中点,联想到取AC中点O所以OQ为△PAC中位线.所以OQ // PA注意在写定理条件时,不能省,要全面.例如,线面垂直判定定理中有五个条件,线线垂直两个,相交一个,线在面内两个;线面平行判定定理中有三个条件,平行一个,线在面内一个,线在面外一个,(3)研究体积问题关键在于确定高,由于两个底面共面,所以求的值就转化为求对应高的长度比.【详解】(1)因为E是AD的中点,PA=PD,所以AD⊥PE.因为底面ABCD是菱形,∠BAD=,所以AB=BD,又因为E是AD的中点,所以AD⊥BE.因为PE∩BE=E,所以AD⊥平面PBE.(2)连接AC交BD于点O,连结OQ.因为O是AC中点,Q是PC的中点,所以OQ为△PAC中位线.所以OQ//PA.因为PA 平面BDQ,OQ平面BDQ.所以PA//平面BDQ.(3)设四棱锥P-BCDE,Q-ABCD的高分别为2h,1h,所以V P-BCDE=13S BCDE2h,V Q-ABCD=13S ABCD1h.因为V P-BCDE=2V Q-ABCD,且底面积S BCDE=S ABCD.所以,因为,所以.。
(必考题)高中数学必修二第一章《立体几何初步》检测(含答案解析)(4)
一、选择题1.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为正方形,PA AB =,E 为AP 的中点,则异面直线PC 与DE 所成的角的正弦值为( ).A .25B .55C .155D .1052.如图,在Rt ABC △中,1AC =,BC x =,D 是斜边AB 的中点,将BCD △沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是( )A .(0,3⎤⎦B .2,2⎛⎤ ⎥ ⎝⎦C .3,23D .(]2,4 3.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .264.如图,在正四棱锥P ABCD -中,设直线PB 与直线DC 、平面ABCD 所成的角分别为α、β,二面角P CD B --的大小为γ,则( )A .,αβγβ>>B .,αβγβ><C .,αβγβ<>D .,αβγβ<<5.正方体1111ABCD A B C D -的棱长为2,E 是1CC 的中点,则点1C 到平面EBD 的距离为( )A .34B .63C .5D .2236.已知点A ,B ,C 在半径为5的球面上,且214AB AC ==,27BC =,P 为球面上的动点,则三棱锥P ABC -体积的最大值为( )A .5673B .5273C .4973D .147 7.已知E ,F 是四面体的棱AB ,CD 的中点,过EF 的平面与棱AD ,BC 分别相交于G ,H ,则( )A .GH 平分EF ,BH AG HC GD = B .EF 平分GH ,BH GD HC AG = C .EF 平分GH ,BH AG HC GD = D .GH 平分EF ,BH GD HC AG= 8.如图,在四棱锥P ABCD -中,底面ABCD 是矩形.其中3AB =,2AD =,PAD △是以A ∠为直角的等腰直角三角形,若60PAB ∠=︒,则异面直线PC 与AD 所成角的余弦值是( )A 22B .22C 27D 211 9.已知球O 的半径为5,球面上有,,A B C 三点,满足14,7AB AC BC ===,则三棱锥O ABC -的体积为( )A .77B .142C .714D .14710.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A .263+B .463+C .4263-D .2263- 11.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .212.已知三棱锥D ABC -,记二面角C AB D --的平面角是θ,直线DA 与平面ABC 所成的角是1θ,直线DA 与BC 所成的角是2θ,则( )A .1θθ≥B .1θθ≤C .2θθ≥D .2θθ≤二、填空题13.已知某空心圆锥的母线长为5cm ,高为4cm ,记该圆锥内半径最大的球为球O ,则球O 与圆锥侧面的交线的长为________cm .14.已知一个几何体的三视图如图所示,俯视图为等腰三角形,则该几何体的外接球表面积为_________.15.已知一个圆锥内接于球O (圆锥的底面圆周及顶点均在同一球面上),圆锥的高是底面半径的3倍,圆锥的侧面积为910π,则球O 的表面积为________.16.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.17.如图,在正方体1111ABCD A B C D -中,E ,F ,G 分别是棱11A B ,1BB ,11B C 的中点,则下列结论中:①FG BD ⊥; ②1B D ⊥面EFG ;③面//EFG 面11ACC A ; ④//EF 面11CDD C .正确结论的序号是________.18.在棱长为2的正方体1111ABCD A B C D -中,P 是11A B 的中点,过点1A 作与平面1PBC 平行的截面,则此截面的面积是_______________.19.祖恒是我国南北朝时代的伟大科学家,他总结了刘徽的有关工作,提出来体积计算的原理“幂势既同,则积不容异”,称为祖恒原理,意思是底面处于同一平面上的两个同高的几何体,若在等高处 的截面面积始终相等,则它们的体积相等,利用这个原理求半球O 的体积时,需要构造一个几何体,该几何体的三视图如图所示,则该几何体的体积为_________________20.在正方体1111ABCD A B C D -中,P 为线段1AB 上的任意一点,有下面三个命题:①//PB 平面11CC D D ;②1BD AC ⊥;③1BD PC ⊥.上述命题中正确命题的序号为__________(写出所有正确命题的序号).三、解答题21.如图(1)在ABC 中,AC BC =,D 、E 、F 分别是AB 、AC 、BC 边的中点,现将ACD △沿CD 翻折,使得平面ACD ⊥平面BCD .如图(2)(1)求证://AB 平面DEF ;(2)求证:BD AC ⊥.22.如图,该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成,其中正方形ABCD 的边长为4,H 是线段EF 上(不含端点)的动点,36==FC EB .(1)证明://GH 平面ABCD ;(2)求H 到平面AEC 的距离.23.如图,AB 是O 的直径,PA 垂直于O 所在的平面,C 是圆周上不同于A ,B 的一动点.(1)证明:BC ⊥面PAC ;(2)若PA =AC =1,AB =2,求直线PB 与平面PAC 所成角的正切值.24.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,∠ADP =90°,PD =AD ,∠PDC =60°,E 为PD 中点.(1)求证:PB //平面ACE :(2)求四棱锥E ABCD -的体积.25.如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为233PB =60PBC ∠=,点F 为线段AP 的中点.(1)证明:PC ⊥平面ABC ;(2)求直线BF 与平面PAC 所成角的大小.26.如图,在直角梯形ABED 中,//BE AD ,DE AD ⊥,BC AD ⊥,4AB =,23BE =.将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE .(1)若BC BE =,证明:平面ABD ⊥平面ACE ;(2)当三棱锥A BCE -的体积最大时,求平面ADE 与平面ABC 所成的锐二面角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】 先取正方形的中心O ,连接OE ,由PC//OE 知OED ∠为异面直线PC 与DE 所成的角,再在OED 中求OED ∠的正弦即可.【详解】连AC ,BD 相交于点O ,连OE 、BE ,因为E 为AP 的中点,O 为AC 的中点,有PC//OE ,可得OED ∠为异面直线PC 与DE 所成的角,不妨设正方形中,2AB =,则2PA =,由PA ⊥平面ABCD ,可得,PA AB PA AD ⊥⊥, 则145BE DE ==+=1122222OD BD ==⨯= 因为BE DE =,O 为BD 的中点,所以90EOD ∠=︒,210sin 55OD OED DE ∠===. 故选:D.【点睛】方法点睛: 求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果. 2.A解析:A【分析】取BC 中点E ,连接DE ,AE ,若CB AD ⊥,则可证明出BC ⊥平面ADE ,则可得BC AE ⊥. 根据题目中各边长的关系可得出AE ,AD 关于x 的表达式,然后在ADE 中,利用三边关系求解即可.【详解】由题意得BC x =,则212x AD CD BD +===,如图所示,取BC 中点E ,翻折前,在图1中,连接DE ,CD ,则1122DE AC ==, 翻折后,在图2中,若CB AD ⊥,则有: ∵BC DE ⊥,BC AD ⊥,AD DE D ⋂=,且,AD DE平面ADE , ∴BC ⊥平面ADE ,∴BC AE ⊥,又BC AE ⊥,E 为BC 中点,∴1AB AC == ∴2114AE x =-212x AD +=, 在ADE 中,由三边关系得:22111124x x ++>-22111124x x +<+-③0x >; 由①②③可得03x <<.故选:A.【点睛】 本题考查折叠性问题,考查线面垂直的判定及性质在解题中的运用,解答本题的主要思路分析在于将异面直线间的垂直转化为线面垂直关系,即作出辅助线DE 与AE ,根据题目条件确定出BC ⊥平面ADE ,得到BC AE ⊥,从而通过几何条件求解.3.A解析:A【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值,因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M =, 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥,则222211111(2)3M B A A M B =+=+=,故选:A.【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题. 4.A解析:A【分析】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,根据正棱锥的性质可知,PCE α∠=,PCO β∠=,PEO γ∠=,再比较三个角的正弦值可得结果.【详解】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,如图:因为//AB CD ,所以PBA α∠=,又因为四棱锥P ABCD -为正四棱锥,所以PCE α∠=,由正四棱锥的性质可知,PO ⊥平面ABCD ,所以PCO β∠=,易得OE CD ⊥,PE CD ⊥,所以PEO γ∠=, 因为sin PE PC α=,sin POPCβ=,且PE PO >,所以sin sin αβ>,又,αβ都是锐角,所以αβ>,因为sin PO PE γ=,sin POPCβ=,且PC PE >,所以sin sin γβ>,因为,βγ都是锐角,所以γβ>.故选:A 【点睛】关键点点睛:根据正棱锥的性质,利用异面直线所成角、直线与平面所成角、二面角的平面角的定义得到这三个角是解题关键,属于中档题.5.B解析:B 【分析】利用等体积法11C EBD D C EB V V --=,设点1C 到平面EBD 的距离为d ,利用三棱锥的体积公式代入面积即求得d . 【详解】如图,利用等体积法,11C EBD D C EB V V --=,设点1C 到平面EBD 的距离为d ,正方体1111ABCD A B C D -的棱长为2,故22,5BD BE ED ===,如图,2215232h ED BD ⎛⎫=-=-= ⎪⎝⎭11223622EBDSBD h =⨯⨯=⨯= 又点D 到平面1C EB 的距离,即D 到平面11C CBB 的距离,为CD =2,111212EBC S=⨯⨯=, 由11C EBD D C EB V V --=得,111233d =⨯⨯,故3d ==. 故选:B. 【点睛】 方法点睛:空间中求点到平面的距离的常见方法: (1)定义法:直接作垂线,求垂线段长;(2)等体积法:利用三棱锥换底求体积,结合两个面积和另一个高求未知高,即得距离; (3)向量法:过点的一个斜线段对应的向量a ,平面法向量n ,则a n d n⋅=.6.A解析:A 【分析】求出球心到平面ABC 的距离,由这个距离加上球半径得P 到平面ABC 距离的最大值,再由体积公式可得P ABC -体积的最大值. 【详解】如图,M 是ABC 的外心,O 是球心,OM ⊥平面ABC ,当P 是MO 的延长线与球面交点时,P到平面ABC 距离最大,由AB AC ==,BC =,得cos 4ACB ∠==,则sin 4ACB ∠=,28sin 4AB AM CB ===∠,4AM =,3OM ===,358PM =+=,又11sin 22ABC S AC BC ACB =⋅⋅∠=⨯=△所以最大的183P ABC V -=⨯=故选:A .【点睛】本题考查求三棱锥的体积,解题关键是确定三棱锥体积最大时P 点在球面上的位置,根据球的性质易得结论.当底面ABC 固定,M 是ABC 外心,当PM ⊥平面ABC ,且球心O 在线段PM 上时,P 到平面ABC 距离最大.7.C解析:C 【分析】举特例舍去不正确选项,可得正确答案. 【详解】过EF 的平面为平面ABF 时,G 在A 点, H 在B 点, 所以0BH AGHC GD==,EF 平分GH , 即BH AG HC GD =,所以舍去ABD ,选C 故选:C8.D解析:D 【分析】在图形中找到(并证明)异面直线所成的角,然后在三角形中计算. 【详解】因为//AD BC ,所以PCB ∠是异面直线PC 与AD 所成角(或其补角), 又PA AD ⊥,所以PA BC ⊥,因为AB BC ⊥,AB PA A ⋂=,,AB PA ⊂平面PAB ,所以BC ⊥平面PAB , 又PB ⊂平面PAB ,所以PB BC ⊥. 由已知2PA AD ==,所以22222cos 23223cos607PB PA AB PA AB PAB =+-⋅∠=+-⨯⨯︒= 22211cos 11(7)2BC PCB PC ∠===+,所以异面直线PC 与AD 所成角的余弦值为21111. 故选:D . 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.9.A解析:A 【分析】利用正弦定理求出ABC 的外接圆半径,则可求出三棱锥的高,进而求出三棱锥体积. 【详解】设ABC 的外接圆的圆心为D ,半径为r , 在ABC 中,72cos 4214ABC ∠==,14sin 4ABC ∴∠=, 由正弦定理可得28sin ACr ABC==∠,即4r =,则22543OD =-=,1111421427377332O ABC ABCV SOD -∴=⨯⨯=⨯⨯⨯⨯⨯=. 故选:A.【点睛】本题考查球内三棱锥的相关计算,解题的关键是利用正弦定理求出ABC 的外接圆半径,利用勾股关系求出高.10.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为'2'2'22441626R AF AD AE =++=++6R =2241625DE DF AD AE ==++=2222EF BE BF =+= 在DFE △中,22210cos 21022522DE EF DF DEF DE EF +-∠===⨯⨯⨯, 所以DEF ∠为锐角,所以2310sin 1cos DEF DEF ∠=-∠=, DEF 的外接圆的半径为5522sin 3310DF r DEF ===∠,则球心到DEF 2223R r -=,以FDE 为底面的三棱锥G -DEF 的高h 的最大值为1R OO +263. 故选:A. 【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.11.C解析:C 【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果. 【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD △是等腰三角形,且底边和底边上的高线都是2; 且侧棱AD ⊥底面BCD ,1AD =,所以112=221=323V ⨯⨯⨯⨯, 故选:C. 【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称; (2)根据三视图还原几何体; (3)利用椎体体积公式求解即可.12.A解析:A 【分析】设三棱锥D -ABC 是棱长为2的正四面体,取AB 中点E ,DC 中点M ,AC 中点M ,连结DE 、CE 、MN 、EN ,过D 作DO CE ⊥,交CE 于O ,连结AO ,则DEC θ∠=,1DAO θ∠=,2MNE θ∠=,排除B ,C .当二面角C AB D --是直二面角时,2θθ≥,排除D .由此能求出结果. 【详解】设三棱锥D -ABC 是棱长为2的正四面体,取AB 中点E ,DC 中点M ,AC 中点M ,连结DE 、CE 、MN 、EN , 过D 作DO ⊥CE ,交CE 于O ,连结AO ,则DEC θ∠=,1DAO θ∠=,2MNE θ∠=,413DE CE ==-=2DC =,∴1cos 3233θ==⨯⨯,2233AO CO CE ===∴12333cos 33AO AD θ===, 取BC 中点F ,连结DF 、AF ,则DF BC ⊥,AF BC ⊥,又DF AF F ⋂=,∴BC ⊥平面AFD ,∴BC AD ⊥,∴290θ=︒, ∴21θθθ≥≥,排除B ,C ,当二面角C AB D --是直二面角时,2θθ≥,排除D , 故选:A . 【点睛】关键点点睛:将三棱锥看成特殊的正四面体,采用排除法,充分理解线线角、线面角以及面面的概念是解题的关键.二、填空题13.【分析】由题可求出底面半径根据三角形相似关系可求出球半径再利用三角形面积关系可求出球O 与圆锥的侧面的交线的半径即可求出交线长【详解】圆锥的轴截图如图所示由题可知圆锥的高母线设的内切圆与圆锥的母线相切 解析:125π 【分析】由题可求出底面半径,根据三角形相似关系可求出球半径,再利用三角形面积关系可求出球O 与圆锥的侧面的交线的半径,即可求出交线长. 【详解】圆锥的轴截图如图所示,由题可知,圆锥的高4cm AF =,母线5cm AB AC ==, 设ABC 的内切圆O 与圆锥的母线相切与点E ,则OE AB ⊥, 则该圆锥内半径最大的球即以O 为圆心,OE 为半径的球, 在直角三角形ABF 中,2222543cm BF AB AF =--=,由圆的切线性质可得3cm BE BF ==, 所以532cm AE AB BE =-=-=, 在直角三角形AFB 和直角三角形AEO 中, 因为∠∠EAO BAF =,所以△△AFB AEO ~,所以AE OE AF BF =,则可得3cm 2OE =, 过点E 作ED AF ⊥,D 为垂足,则球O 与圆锥的侧面的交线是以DE 为半径的圆,354cm 22AO AF OF =-=-=, 因为1122△AEO S AE OE ED AO =⋅=⋅,所以6cm 5ED =, 所以球O 与圆锥的侧面的交线长为6122cm 55ππ⨯=. 故答案为:125π. 【点睛】本题考查圆锥与球的相切问题,解题的关键是利用轴截面,用平面几何的知识解决.14.【分析】首先把三视图转换为直观图进一步求出几何体的外接球的半径最后求出球的表面积【详解】根据几何体的三视图可知该几何体是底面为等腰三角形高为2的三棱锥体如图所示:设底面外接圆的半径为t 圆心为H 则解得 解析:414π【分析】首先把三视图转换为直观图,进一步求出几何体的外接球的半径,最后求出球的表面积. 【详解】根据几何体的三视图可知该几何体是底面为等腰三角形,高为2的三棱锥体.如图所示:设底面外接圆的半径为t ,圆心为H ,则2221(2)t t =+-,解得54t =, 设外接球的半径r ,球心为O ,则OH ⊥底面,且1OH =, 则22541()14r =+=所以41414().164S ππ=⨯⨯= 故答案为:414π 【点睛】关键点点睛:球心与底面外接圆圆心连线垂直底面,且OH 等于棱锥高的一半,利用勾股定理求出球的半径,由面积公式计算即可.15.【分析】设圆锥的底面半径为球的半径为根据勾股定理可得根据圆锥的侧面积公式可得再根据球的表面积公式可得结果【详解】设圆锥的底面半径为球的半径为则圆锥的高为则球心到圆锥的底面的距离为根据勾股定理可得化简 解析:100π【分析】设圆锥的底面半径为r ,球O 的半径为R ,根据勾股定理可得53R r =,根据圆锥的侧面积公式可得3,5r R ==,再根据球的表面积公式可得结果. 【详解】设圆锥的底面半径为r ,球O 的半径为R ,则圆锥的高为3r , 则球心O 到圆锥的底面的距离为3r R -, 根据勾股定理可得()2223R r r R =+-,化简得53R r =, 因为圆锥的高为3r ()22310r r r +=, 所以圆锥的侧面积为21010r r r ππ=,所以210910rππ=,解得r =3,所以5353R =⨯=, 所以球O 的表面积为24425100R πππ=⨯=. 故答案为:100π 【点睛】关键点点睛:利用圆锥的侧面积公式和球的表面积公式求解是解题关键.16.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值解析:4747,33⎡⎤-+⎢⎥⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果. 【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N , 可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===, 22,1OH OM ON ===,所以7HM HN ==tan tan 7NHO OHM ∠=∠=, 1117827477tan tan()1637117O HN O HO NHO ---∠=∠-∠====++11tan tan()1O HM O HO OHM ∠=∠+∠==== 所以tan θ的取值范围是44,33⎡+⎢⎣⎦,故答案为:4433⎡⎢⎣⎦. 【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下:(1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值;(3)结合图形求得相应角的正切值;(4)利用和差角正切公式求得结果. 17.②④【分析】由是正三角形可判断①;判断出平面平面平面可判断②;假设面面则可以推出可判断③;由平面平面平面可判断④【详解】连接分别是的中点对于①因方是正三角形所以与不垂直;对于②连接因为且所以平面平面解析:②④.【分析】由1//FG BC ,1BDC 是正三角形,可判断①;判断出1DB ⊥平面11A C B ,平面11//AC B 平面EFG ,可判断②;假设面//EFG 面11ACC A ,则可以推出1//AA EF 可判断③;由平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,可判断④.【详解】连接11A C ,1A B ,1BC ,BD ,1B D ,E ,F ,G 分别是1A B ,1BB ,11B C 的中点. 对于①,因方1//FG BC ,1BDC 是正三角形,所以FG 与BD 不垂直;对于②,连接11D B ,因为1111111AC B D ,AC BB ⊥⊥,且1111B D BB B ⋂=,所以 11A C ⊥平面11BDD B ,1DB ⊂平面11BDD B ,所以111AC DB ⊥,同理11BC DB ⊥, 且1111A C BC C ,所以1DB ⊥平面11A C B ,因为1//A B EF ,11//AC EG ,且111A B AC A ⋂=,EF EG E =,所以平面11//AC B 平面EFG ,所以1B D ⊥平面EFG .正确; 对于③,如果面//EFG 面11ACC A ,由平面EFG平面11ABB A EF =, 平面11CC A A 平面111BB A A A A =,则1//AA EF ,显然不正确;对于④,因为平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,所以//EF 平面11CDD C ,正确故选:②④.【点睛】方法点睛:本题主要考查了正方体中垂直与平行关系,考查了线线垂直、线面垂直的判定、线面平行的判断、面面平行的判断与性质,对于证明线线关系、线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明, 属于中档题.18.【分析】取的中点分别为连接先证明四边形是平行四边形再利用面面平行的判断定理证明平面平面可得平行四边形即为所求的截面再计算其面积即可【详解】取的中点分别为连接因为所以四边形是平行四边形所以因为所以四边 解析:26【分析】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,先证明四边形1A MCN 是平行四边形,再利用面面平行的判断定理证明平面1//PBC 平面1A MCN ,可得平行四边形1A MCN 即为所求的截面,再计算其面积即可.【详解】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,因为11A P NC ,所以四边形11A PC N 是平行四边形,所以11A N PC , 因为1PM CC 所以四边形1PMCC 是平行四边形,所以1MC PC ,所以1A N MC ,所以四边形1A MCN 是平行四边形,因为11//PC A N ,1PC ⊄平面1A MCN ,1A N ⊂平面1A MCN ,所以1//PC 平面1A MCN ,同理可证//PB 平面1A MCN ,因为1PC PB P ⋂=,所以平面1//PBC 平面1A MCN ,因此过点1A 作与平面1PBC 平行的截面,即是平行四边形1A MCN ,连接MN ,作1A H MN ⊥于点H ,由11AM A N ==,MN =可得1A H ==所以111122A MN S MN A H =⨯⨯=⨯=,所以平行四边形1A MCN 的面积为12A MN S=故答案为:【点睛】 关键点点睛:本题的关键点是找出过点1A 与平面1PBC 平行的截面,所以想到作平行线,利用面面平行的判断定理证明所求的截面即是平行四边形1A MCN ,先求四边形一半的面积,乘以2即可得所求平行四边形的面积,也可以直接求菱形的面积.19.【分析】根据给定的几何体的三视图得到该几何体为一个圆柱挖去一个圆锥得出圆柱的底面半径和高利用圆柱和圆锥的体积以及圆的公式即可求解【详解】解:根据给定的几何体的三视图可得该几何体表示一个圆柱挖去一个圆 解析:23π 【分析】根据给定的几何体的三视图,得到该几何体为一个圆柱挖去一个圆锥,得出圆柱的底面半径和高,利用圆柱和圆锥的体积以及圆的公式,即可求解.【详解】解:根据给定的几何体的三视图,可得该几何体表示一个圆柱挖去一个圆锥,且底面半径1,高为1的组合体,所以几何体的体积为:2221311113πππ⨯⨯⨯=⨯-⨯. 故答案为:23π.【点睛】关键点点睛:本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解. 20.①②③【分析】①证明线面平行可判断对错;②证明线面垂直可判断对错;③证明线面垂直可判断对错【详解】①如下图所示:因为平面平面平面所以平面故①正确;②连接如下图所示:因为平面所以又因为且所以平面又因为解析:①②③【分析】①证明线面平行可判断对错;②证明线面垂直可判断对错;③证明线面垂直可判断对错.【详解】①如下图所示:因为平面11//ABB A 平面11CC D D ,BP 平面11ABB A ,所以//PB 平面11CC D D ,故①正确;②连接,AC BD ,如下图所示:因为1DD ⊥平面ABCD ,所以1DD AC ⊥,又因为AC BD ⊥且1DD BD D =,所以AC ⊥平面1DBD ,又因为1BD ⊂平面1DBD ,所以1BD AC ⊥,故②正确;③连接11,,,AC PC B C BC ,如下图所示:因为11D C ⊥平面11BCC B ,所以11D C ⊥1B C ,又因为11BC B C ⊥,且1111D C BC C ⋂=,所以1B C ⊥平面11BD C ,又1BD ⊂平面11BD C ,所以11B C BD ⊥,由②的证明可知1BD AC ⊥,且1AC B C C ⋂=,所以1BD ⊥平面1AB C ,又因为PC ⊂平面1AB C ,所以1BD PC ⊥,故③正确,故答案为:①②③.【点睛】本题考查空间线面平行、线线垂直关系的判断,涉及线面平行判定定理、线面垂直判定定理的运用,主要考查学生对空间中位置关系的逻辑推理能力,难度一般.三、解答题21.(1)证明见解析;(2)证明见解析.【分析】(1)根据三角形中位线的性质,得到//EF AB ,利用线面平行的判定定理证得结果;(2)根据面面垂直的性质定理,得到BD ⊥平面ACD ,进而证得BD AC ⊥.【详解】证明:(1)如图(2):在ABC 中,E 、F 分别是AC 、BC 中点,得//EF AB , 又AB ⊄平面DEF ,EF ⊂平面DEF ,//AB ∴平面DEF .(2)∵平面ACD ⊥平面BCD 且交线为CD ,BD CD ⊥,且BD ⊂平面BCD , ∴BD ⊥平面ACD ,又AC ⊂平面ACD∴BD AC ⊥.【点睛】方法点睛:该题考查的是有关空间关系的证明问题,解题方法如下:(1)熟练掌握线面平行的判定定理,在解题过程中,一定不要忘记线在面内、线在面外的条件;(2)根据面面垂直的条件,结合线线垂直,利用面面垂直的性质定理,得到线面垂直,进而证得线线垂直.22.(1)证明见解析;(2.【分析】(1)取BC 的中点M ,连接HM ,DM .证明四边形DGHM 是平行四边形,可得线面平行;(2)由H 到平面AEC 的距离为F 到平面AEC 的距离的一半,先求出F 到平面AEC 的距离,用体积法可求得F 到平面AEC 的距离.【详解】(1)证明:取BC 的中点M ,连接HM ,DM .因为该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成,所以截面AEFG 是平行四边形,则4=-=DG CF EB .因为36==FC EB , 所以1(26)42=⨯+=HM ,且DG//FC//HM , 所以四边形DGHM 是平行四边形,所以GH //DM . 因为DM ⊂平面ABCD ,GH ⊄平面ABCD ,所以//GH 平面ABCD .(2)解:连接HA ,HC ,AF ,记F 到平面ACE 的距离为d ,则H 到平面ACE 的距离为2d . 在CEF △中,6EF =,高为4,所以CEF △的面积为164122⨯⨯=. 因为三棱锥A CEF -的高为4,所以A CEF -的体积为1124163⨯⨯=.在ACE 中,AC =AE CE ==,所以ACE 的面积为22142(25)(22)462⨯⨯-=. 因为A CEF -的体积与F ACE -的体积相等,所以146163⨯⨯=d ,所以26d =.故H 到平面ACE 的距离为6.【点睛】方法点睛:本题考查证明线面平行,考查求点到平面的距离.求点到平面的距离的常用方法: (1)定义法:作出点到平面的垂线段,求出垂线段的长;(2)用体积法计算;(3)空间向量法:求出平面外的点到平面内任一点连线的向量在平面的法向量方向上投影的绝对值.23.(1)证明见解析;(2)62【分析】(1)证明AC ⊥BC 和PA ⊥BC ,BC ⊥面PAC 即得证;(2)先证明∠BPC 为PB 与平面PAC 所成的角,再通过解三角形求出,BC PC 即得解.【详解】证明:(1) AB 为圆O 直径 ∴∠ACB =90°即AC ⊥BCPA ⊥面ABC ,∴PA ⊥BCAC PA =A∴BC ⊥面PAC.(2) BC ⊥面PAC , ∴∠BPC 为PB 与平面PAC 所成的角,在直角三角形ABC 中,22213BC =-=, 在直角三角形PAC 中,22112PC =+=, 在直角三角形PBC 中,tan ∠BPC =3622=. 故直线PB 与平面PAC 所成角的正切值为62. 【点睛】方法点睛:求线面角常用几何法求解,其步骤为:找→作→证(定义)→指→求(解三角形).24.(1)证明见解析;(2)233. 【分析】(1)证明线面平行,用线面平行的判定定理,在面ACE 内找一条直线与PB 平行;(2)利用等体积法求体积.【详解】 (1)取AC 与BD 的交点为O ,连接EO ,可知,EO 为PBD △的中位线,PB EO ∥,又EO ⊂平面ACE ,PB ⊄平面ACE ,所以PB 平面ACE(2)因为,,AD PD AD DC PD DC D ⊥⊥⋂=,所以AD ⊥平面PDC ,又因为,60PD CD PDC =∠=︒,所以PDC △为等边三角形,12E ABCD P ABCD A PDC V V V ---== 112322sin 60232A PDC V -=⨯⨯⨯⨯︒⨯=. 【点睛】立体几何解答题的基本结构:(1)第一问一般是几何关系的证明,用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离).如果当时求体积,常用的方法有:(1) 直接法;(2)等体积法;(3) 补形法;(4)向量法.25.(1)证明见解析;(2)45.【分析】(1)利用余弦定理求出PC ,利用勾股定理可证得PC BC ⊥,再由PC AB ⊥结合线面垂直的判定定理可证得PC ⊥平面ABC ;(2)取AC 的中点H ,连接BH 、FH ,推导出直线BF 与平面PAC 所成的角为BFH ∠,求出BH 、FH ,即可求得BFH ∠,即为所求.【详解】(1)在PBC 中,43PB =,23BC =,60PBC ∠=,由余弦定理可得2222cos 36PC PB BC PB BC PBC =+-⋅∠=,222PC BC PB ∴+=, PC BC ∴⊥,PC AB ⊥,AB BC B ⋂=,PC ∴⊥平面ABC ;(2)取AC 的中点H ,连接BH 、FH ,如下图所示:ABC 是边长为3H 为AC 的中点,BH AC ∴⊥且sin 603BH AB ==,PC ⊥平面ABC ,BH ⊂平面ABC ,BH PC ∴⊥,AC PC C ⋂=,BH ∴⊥平面PAC ,所以,BFH ∠就是直线BF 与平面PAC 所成角.HF ⊂平面PAC ,BH FH ∴⊥,。
(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)(3)
一、选择题1.若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积取最小值时,该圆锥体积与其内切球体积比为( )A .2:1B .4:1C .8:1D .8:3 2.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π 3.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .264.在空间四边形ABCD 中,AB BC =,AD DC =,则对角线AC 与BD 所成角的大小是( )A .90︒B .60︒C .45︒D .305.在三棱锥P ABC -中,PA ⊥平面ABC ,120224BAC AP AB AC ∠====,,则三棱锥P ABC -的外接球的表面积是( )A .18πB .36πC .40πD .72π6.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面ABDA '是铅垂面,下宽3m AA '=,上宽4m BD =,深3m ,平面BDEC 是水平面,末端宽5m CE =,无深,长6m (直线CE 到BD 的距离),则该羡除的体积为( )A .324mB .330mC .336mD .342m 7.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4C .π3D .π28.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .79.在长方体1111ABCD A B C D -中,2AB =,1AD =,12AA =,点E 为11C D 的中点,则二面角11B A B E --的余弦值为( )A .3B .3C .33D 310.如下图所示是一个正方体的平面展开图,在这个正方体中①//BM 平面ADE ;②DE BM ⊥;③平面//BDM 平面AFN ;④AM ⊥平面BDE .以上四个命题中,真命题的序号是( )A .①②③④B .①②③C .①②④D .②③④ 11.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .212.已知长方体1111ABCD A B C D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A ,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( )A .169πB .161πC .164πD .265π二、填空题13.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.14.如图,在矩形ABCD 中,2AB =,1AD =,点E 为CD 的中点,F 为线段CE (端点除外)上一动点.现将DAF △沿AF 折起,使得平面ABD ⊥平面ABC .设直线FD 与平面ABCF 所成角为θ,θ的取值范围为__________.15.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;16.已知等腰直角三角形ABC 中,2C π∠=,22CA =,D 为AB 的中点,将它沿CD 翻折,使点A 与点B 间的距离为22,此时三棱锥C ABD -的外接球的表面积为____.17.如图,已知一个八面体的各条棱长均为2,四边形ABCD 为正方形,给出下列说法:①该八面体的体积为83;②该八面体的外接球的表面积为8π; ③E 到平面ADF 3;④EC 与BF 所成角为60°.其中正确的说法为__________.(填序号)18.如图,在三棱锥V ABC -中,22AB =,VA VB =,1VC =,且AV BV ⊥,AC BC ⊥,则二面角V AB C --的余弦值是_____.19.已知扇形的面积为56π,圆心角为6π,则由该扇形围成的圆锥的外接球的表面积为_________. 20.在一个密闭的容积为1的透明正方体容器内装有部分液体,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围是 .三、解答题21.如图,四棱锥P ABCD -中,2PC PD DC AD ===,底面ABCD 为矩形,平面PCD ⊥平面ABCD ,O 、E 分别是棱CD 、PA 的中点.(1)求证://OE 平面PBC ;(2)求二面角P AB C 的大小.22.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是梯形,,//AB CD AB AD ⊥,22CD AB AD ==.(1)求证:BD ⊥平面1BCC ;(2)在线段11C D 上是否存在一点E ,使//AE 面1BC D .若存在,确定点E 的位置并证明;若不存在,请说明理由.23.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1AP =,3AD =,四棱锥P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .24.已知四棱锥S ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=︒,6SA SD ==,22SB =,点E 是棱AD 的中点,点F 是棱SC 上靠近S 的一个三等分点.(1)求证:平面SBE ⊥平面ABCD ;(2)求三棱锥F SEB -的体积.25.如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为233PB =60PBC ∠=,点F 为线段AP 的中点.(1)证明:PC ⊥平面ABC ;(2)求直线BF 与平面PAC 所成角的大小.26.如图,四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD ,226AB PD ==,,O 为AC 与BD 的交点,E 为棱PB 上一点.(1)证明:平面EAC ⊥平面PBD ;(2)若//PD 平面EAC ,求三棱锥B AEC -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形相似得出圆锥的底面半径和高的关系,根据体积公式和基本不等式得出答案.【详解】设圆锥的高为h ,底面半径为r ,则当球面与圆锥的侧面以及底面都相切时,轴截面如图,由~AOE ACF 可得:22(1)11h r --=,即22r h h =-, ∴圆锥的体积22148[(2)4]33(2)323h V r h h h h ππππ===-++--. 当且仅当22h -=,即4h =时取等号.∴该圆锥体积的最小值为83π. 内切球体积为43π. 该圆锥体积与其内切球体积比2:1.故选:A .【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2.A解析:A【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积.【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆,且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-, 222(3)3R R ∴=-+,解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A .【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.3.A解析:A【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值,因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M =因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥,则222211111(2)3M B A A M B =+=+=故选:A.【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.4.A解析:A【分析】取AC 中点O ,根据条件分析AC 与平面BOD 的位置关系,由此得到异面直线AC 与BD 所成角的大小.【详解】取AC 中点O ,连接,,BO DO BD ,如图所示:因为AB BC =,AD DC =,所以,BO AC DO AC ⊥⊥,且BODO O =,所以AC ⊥平面BOD ,又BD ⊂平面BOD ,所以AC BD ⊥,所以AC 与BD 所成角为90︒,故选:A.【点睛】关键点点睛:解答问题的关键是通过找AC 中点证明线面垂直,从而确定出线线垂直关系,和常规的求解异面直线所成角的方法不同.5.D解析:D【分析】先找出ABC 的外接圆的半径,然后取ABC 的外接圆的圆心N ,过N 作平面ABC 的垂线NG ,作PA 的中垂线,交NG 于O ,则O 是外接球球心, OA 为外接球半径,求解半径并求表面积即可.【详解】如图所示,1204BAC AB AC ∠===,,取BC 中点M ,连接AM 并延长到N 使AM =MN ,则四边形ABNC 是两个等边三角形组成的菱形,AN =BN =CN ,点N 是ABC 的外接圆圆心,过N 作平面ABC 的垂线NG ,则球心一定在垂线NG 上,因为PA ⊥平面ABC ,则PA //NG ,PA 与NG 共面,在面内作PA 的中垂线,交NG 于O ,则O 是外接球球心,半径R =OA ,Rt AON 中,122ON AP ==,4AN =,故()224232R =+=2441872S R πππ==⨯=.故选:D.【点睛】求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.本题就是采用这个方法.本题使用了定义法. 6.C解析:C【分析】在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算.【详解】如图,在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',则三棱柱ABC A B C '''-是斜三棱柱,该羡除的体积V V =三棱柱ABC A B C '''-V +四棱锥A B DEC '''-()311123636336m 232+⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故选:C .【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力.7.D解析:D【分析】取AC 中点E ,连接1,A E BE ,先通过BE ⊥平面11ACC A 可得BE AM ⊥,再由1ACM A AE ≅可得1AM A E ⊥,即可得出AM ⊥平面1A BE ,即1AM A B ⊥.【详解】取AC 中点E ,连接1,A E BE , ABC 为正三角形,BE AC ∴⊥,正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,BE ⊂平面ABC ,1CC BE ∴⊥,1AC CC C =,BE ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,BE AM ∴⊥,在直角三角形ACM 和直角三角形1A AE 中,1,AC A A CM AE ==,1ACM A AE ∴≅,1CAM AA E ∴∠=∠,12CAM A EA π∴∴∠+∠=,则1AM A E ⊥,1BE A E E ⋂=,AM ∴⊥平面1A BE , 1A B ⊂平面1A BE ,1AM A B ∴⊥,故异面直线AM 与1A B 所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM ⊥平面1A BE 判断出1AM A B ⊥.8.D解析:D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-7 所以几何体的体积为11(24)676732⋅+⋅=. 故选:D【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解. 9.C解析:C【分析】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,可证EGF ∠为二面角11B A B E --的平面角,通过计算可得结果.【详解】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,因为,E F 分别为1111,C D A B 的中点,所以11//EF A D ,在长方体1111ABCD A B C D -中,因为11A D ⊥平面11ABB A ,所以EF ⊥平面11ABB A , 因为1A B ⊂平面11ABB A ,所以1EF A B ⊥,因为1FG A B ⊥,且FG EF F =,所以1A B ⊥平面EFG ,因为EG ⊂平面EFG ,所以1A B EG ⊥,所以EGF ∠为二面角11B A B E --的平面角,因为12AB AA ==,所以14FAG π∠=,因为11A F =,所以12222FG A F ==, 在直角三角形EFG 中,221612EG EF FG =+=+=, 所以cos FG EGF EG ∠==23236=. 所以二面角11B A B E --3. 故选:C【点睛】关键点点睛:根据二面角的定义作出其中一个平面角是解题关键. 10.A解析:A【分析】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,得出BM ∥平面ADNE ,判断①正确;由连接AN ,则AN ∥BM ,又ED AN ⊥,判断②正确;由BD ∥FN ,得出BD ∥平面AFN ,同理BM ∥平面AFN ,证明平面BDM ∥平面AFN ,判断③正确;由MC BD ⊥,ED ⊥AM ,根据线面垂直的判定,判断④正确.【详解】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,如图1所示;对于①,平面BCMF ∥平面ADNE ,BM ⊂平面BCMF ,∴BM ∥平面ADNE ,①正确;对于②,如图2所示,连接AN ,则AN ∥BM ,又ED AN ⊥,所以DE BM ⊥,②正确; 对于③,如图2所示,BD ∥FN ,BD ⊄平面AFN ,FN ⊂平面AFN ,∴BD ∥平面AFN ;同理BM ∥平面AFN ,且BD ∩BM =B ,∴平面BDM ∥平面AFN ,③正确;对于④,如图3所示,连接AC ,则BD AC ⊥,又MC ⊥平面ABCD ,BD ⊂平面ABCD ,所以MC BD ⊥,又ACMC C ,所以BD ⊥平面ACM ,所以BD ⊥AM , 同理得ED ⊥AM ,ED BD D =,所以AM ⊥平面BDE ,∴④正确.故选:A .【点睛】关键点点睛:解决本题的关键在于展开空间想象,将正方体的平面展开图还原,再由空间的线线,线面,面面关系及平行,垂直的判定定理去判断命题的正确性.11.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD △是等腰三角形,且底边和底边上的高线都是2;且侧棱AD ⊥底面BCD ,1AD =, 所以112=221=323V ⨯⨯⨯⨯, 故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下: (1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.12.C解析:C【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积.【详解】如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长,所以球O 的半径R 满足2222688164R =++=所以球O 的表面积24164S R ππ==.故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.二、填空题13.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC A C 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积.【详解】4,2AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC A C 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则412OP OA ==,2222413(22)22OD OA AD ⎛⎫=-=-= ⎪ ⎪⎝⎭, 所以11135422OD DD OD AA OD =-=-=-=, 222211415222PD OP OD ⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭,P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆, 其面积为224S ππ=⨯=.故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上. 14.【分析】在矩形中作交于交于在翻折后的几何体中证得平面平面从而平面得是直线与平面所成的角设C 求得的范围后可得范围【详解】在矩形中作交于交于设由图易知∴即∴则在翻折后的几何体中又平面∴平面又平面∴平面平 解析:(0,]6π 【分析】在矩形ABCD 中作DO AF ⊥,交AF 于O ,交AB 于M ,在翻折后的几何体中,证得平面ODM ⊥平面ABCF ,从而DM ⊥平面ABCF ,得DFM ∠是直线FD 与平面ABCF 所成的角.设(01)CF x x =<<C ,求得sin θ的范围后可得θ范围.【详解】在矩形ABCD 中作DO AF ⊥,交AF 于O ,交AB 于M ,设(01)CF x x =<<,AM t =,由图易知DAM FDA △△, ∴AM AD DA DF =,即112t x =-,∴12t x=-,01x <<,则112t <<. 在翻折后的几何体中,AF OD ⊥,AF OM ⊥,又OD OM O =,,OD OM ⊂平面ODM ,∴AF ⊥平面ODM ,又AF ⊂平面ABCF ,∴平面ODM ⊥平面ABCF ,又平面ABD ⊥平面ABC AB =.平面ODM 平面ABD DM =,∴DM ⊥平面ABCF ,连接MF ,则DFM ∠是直线FD 与平面ABCF 所成的角.DFM θ∠=,而21DM t =-,12DF x t =-=, ∴2422211sin 1()24DM t t t t t DF θ==-=-+=--+, ∵112t <<,∴2114t <<,∴10sin 2θ<≤,即06πθ<≤. 故答案为:(0,]6π.【点睛】方法点睛:本题考查求直线与平面所成的角,求线面角常用方法:(1)定义法:作出直线与平面所成的角并证明,然后在直角三角形中计算可得;(2)向量法:建立空间直角坐标系,由直线的方向向量与平面的法向量夹角的余弦的绝对值等于直线与平面所成角的正弦值计算.15.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认 解析:22【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==,所以DE AB ⊥,DE A E ⊥',3DE =30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED '平面EDCB DE =,所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力.. 16.12【分析】根据题意可判断出两两垂直即可求出外接球半径得出表面积【详解】等腰直角三角形中为的中点满足两两垂直设外接球的半径为则即三棱锥的外接球的表面积为故答案为:【点睛】本题考查三棱锥外接球问题解题 解析:12π【分析】根据题意可判断出,,DC DA DB 两两垂直,即可求出外接球半径,得出表面积.【详解】等腰直角三角形ABC 中,2C π∠=,22CA CB ==,D 为AB 的中点,2CD AD BD ∴===,,CD AD CD BD ∴⊥⊥, 22AB =,满足222AD BD AB +=,AD BD ∴⊥,,,DC DA DB ∴两两垂直,设外接球的半径为R ,则222222223R =++=,即3R =,∴三棱锥C ABD -的外接球的表面积为2412R ππ=.故答案为:12π.【点睛】本题考查三棱锥外接球问题,解题的关键是得出,,DC DA DB 两两垂直.17.②④【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点即可得出半径求出表面积;③取AD 的中点G 连接EGFGEF 过E 作求出即可;④可得为所成角【详解】①八面体的体积为;②八面体 解析:②④【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点,即可得出半径求出表面积;③取AD 的中点G ,连接EG ,FG ,EF ,过E 作EH FG ⊥,求出EH 即可;④可得DEC ∠为所成角.【详解】①八面体的体积为21822(22)3⨯⨯⨯=; ②八面体的外接球球心为正方形ABCD 对角线交点,易得外接球半径为2,表面积为8π;③取AD 的中点G ,连接EG ,FG ,EF ,易得3EG FG ==AD ⊥平面EGF ,过E 作EH FG ⊥,交FG 的延长线于H ,又EH AD ⊥,AD FG G ⋂=,故EH ⊥平面ADF ,解得63EH =,所以E 到平面ADF 的距离为263; ④因为//ED BF ,所以EC 与BF 所成角为60︒.故答案为:②④.【点睛】解本题的关键是正确理解正八面体的性质,根据线面垂直关系得到点到平面的垂线段. 18.【分析】取的中点连接证明出可得出面角的平面角为计算出利用余弦定理求得由此可得出二面角的余弦值【详解】取的中点连接如下图所示:为的中点则且同理可得且所以二面角的平面角为由余弦定理得因此二面角的余弦值为解析:34【分析】 取AB 的中点O ,连接VO 、OC ,证明出VO AB ⊥,OC AB ⊥,可得出面角V AB C --的平面角为VOC ∠,计算出VO 、OC ,利用余弦定理求得cos VOC ∠,由此可得出二面角V AB C --的余弦值.【详解】取AB 的中点O ,连接VO 、OC ,如下图所示:VA VB =,O 为AB 的中点,则VO AB ⊥,且AV BV ⊥,22AB =122VO AB ∴== 同理可得OC AB ⊥,且2OC =V AB C --的平面角为VOC ∠,由余弦定理得2223cos 24VO OC VC VOC VO OC +-∠==⋅, 因此,二面角V AB C --的余弦值为34. 故答案为:34. 【点睛】本题考查二面角余弦值的计算,考查二面角的定义,考查计算能力,属于中等题. 19.【分析】由扇形的面积及圆心角可得扇形的半径再由扇形的弧长等于圆锥的底面周长可得底面半径再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径进而求出球的表面积【详解】设扇形的长为l 半径为R 则解得 解析:36π【分析】由扇形的面积及圆心角可得扇形的半径,再由扇形的弧长等于圆锥的底面周长可得底面半径,再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径,进而求出球的表面积.【详解】设扇形的长为l ,半径为R ,则221116562223S lR R R παπ===⨯=,解得30R =,扇形弧长l 为锥底面周长2r π,∴底面的半径5r =,∴圆锥的高为225R r -=.设外接球的半径为1R ,∴()222115(5)R R =-+,解得13R =,∴该外接球的表面积为21436R ππ=,故答案为:36π.【点睛】本题考查扇形的弧长与圆锥的底面周长的关系及外接球的半径和圆锥的高及底面半径的关系,和球的表面积公式的应用,属于中档题.20.【详解】试题分析:如图正方体ABCD-EFGH 此时若要使液面不为三角形则液面必须高于平面EHD 且低于平面AFC 而当平面EHD 平行水平面放置时若满足上述条件则任意转动该正方体液面的形状都不可能是三角形解析:15,66⎛⎫ ⎪⎝⎭【详解】试题分析:如图,正方体ABCD-EFGH ,此时若要使液面不为三角形,则液面必须高于平面EHD ,且低于平面AFC .而当平面EHD 平行水平面放置时,若满足上述条件,则任意转动该正方体,液面的形状都不可能是三角形.所以液体体积必须>三棱柱G-EHD 的体积16,并且<正方体ABCD-EFGH 体积-三棱柱B-AFC 体积15166-=考点:1.棱柱的结构特征;2.几何体的体积的求法三、解答题21.(1)证明见解析;(2)3π. 【分析】(1)取PB 中点F ,连接,EF FC ,证明EFCO 是平行四边形,得线线平行后可证得线面平行;(2)取AB 中点G ,连接,,OG PG OP ,可证PGO ∠(或其补角)是二面角PAB C 的平面角.然后在PGO △中求解.【详解】(1)取PB 中点F ,连接,EF FC , 因为E 是PA 中点,∴//EF AB ,且12EF AB =, 又ABCD 是矩形,//,AB CD AB CD =,O 是CD 中点,∴//,EF OC EF OC =,∴EFCO 是平行四边形,∴//OE CF ,而OE ⊄平面PBC ,CF ⊂平面PBC ,∴//OE 平面PBC .(2)取AB 中点G ,连接,,OG PG OP ,ABCD 是矩形,O 是CD 中点,则OG AB ⊥,又PA PC CD ==,∴PO CD ⊥,而平面PCD ⊥平面ABCD ,平面PCD 平面ABCD CD =,PO ⊂平面PCD , ∴PO ⊥平面ABCD ,∵,OG AB ⊂平面ABCD ,∴PO AB ⊥,PO OG ⊥. PO OG O =,,PO OG ⊂平面POG ,∴AB ⊥平面POG ,而PG ⊂平面POG , ∴AB PG ⊥,∴PGO ∠(或其补角)是二面角PAB C 的平面角. 设1AD =,则1OG =,2CD =,3PO =,∴3tan 3PO PGO OG ∠===,[0,]PGO π∠∈,∴3PGO π∠=. ∴二面角P AB C 的大小为3π.【点睛】方法点睛:本题考查证明线面平行,考查求二面角.求二面角的方法:(1)定义法:根据定义作出二面角的平面角,然后通过解三角形得解;(2)空间向量法:建立空间直角坐标系,求出二面角的两个面的法向量,由法向量夹角得二面角.22.(1)证明见解析(2)存在,点E 是11C D 的中点,证明见解析【分析】(1)根据线面垂直的判定定理即可证明BD ⊥平面1BDC ;(2)存在点E 是11C D 的中点,使//AE 平面1BDC ,由线面平行的判定定理进行证明即可得到结论.【详解】(1)因为1AA ⊥底面ABCD ,所以1CC ⊥底面ABCD ,因为BD ⊂底面ABCD ,所以1CC BD ⊥,因为底面ABCD 是梯形,//AB DC ,90BAD ∠=︒,22CD AB AD ==,设1AB =,则1AD =,2CD = 所以2BD =,2BC =,所以在BCD ∆中,222BD BC CD +=, 所以90CBD ∠=︒,所以BD BC ⊥,又因为1CC BD ⊥,且1CC BC C ⋂=所以BD ⊥平面1BCC .(2)存在点E 是11C D 的中点,使//AE 平面1BDC证明如下:取线段11C D 的中点为点E ,连结AE ,如图,所以11//C D CD ,且112C P CD = 因为//AB CD ,12AB CD =, 所以1//C E AB ,且1C E AB =所以四边形1ABC E 是平行四边形.所以1//AE CB .又因为1BC ⊂平面1BDC ,AE ⊂/平面1BDC ,所以//AE 平面1BDC .【点睛】关键点点睛:解决是否存在问题时,可以先寻求特殊位置,再证明,本题中取中点后连结AE ,可利用平行四边形 1//AE CB ,再根据线面平行的判定定理求证即可,属于先猜后证的方法.23.(1)证明见解析;(2)证明见解析.【分析】( 1)设BD 与AC 的交点为O ,连接EO ,通过直线与平面平行的判定定理证明//PB 平面AEC ;( 2)通过体积得到底面为正方形,再由线面垂直得到面面垂直即可.【详解】(1)连接BD 交AC 于点O ,连结EO ,因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以//EO PB ,EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .(2)因为113P ABCD V AB AD AP -=⨯⨯⨯=, 所以3AB =,所以底面ABCD 为正方形,所以BD AC ⊥,因为PA ABCD ⊥,所以BD PA ⊥,且AC PA A ⋂=,所以BD ⊥平面PAC , 又BD ⊂平面PBD ,所以平面PAC ⊥平面PBD .【点睛】本题主要考查了立体几何及其运算,要证明线面平行先证明线线平行,要证明面面垂直,先证明线面垂直,考查了学生的基础知识、空间想象力.24.(1)证明见解析;(2)159. 【分析】(1)根据等腰三角形三线合一证明SE AD ⊥,BE AD ⊥,即可证明出AD ⊥平面SEB ,所以平面SBE ⊥平面ABCD ;(2)先证明出BC ⊥平面SEB ,利用三角形相似可得F 到平面SBE 的距离1233d BC ==,计算出SEB △的面积,再代入体积计算公式求解.【详解】(1)证明:∵E 是AD 的中点,6SA SD ==∴SE AD ⊥ 因为ABCD 是菱形,60BAD ∠=︒,∴BE AD ⊥, ∵BE SE E =∩∴AD ⊥平面SEB ,∵AD ⊂平面ABCD ,∴平面SBE ⊥平面ABCD .(2)连接BE ,AC 相交于点G ,则由三角形相似得2CG AG =∵//AD BC ,∴BC ⊥平面SEB ,∵点E 是棱AD 的中点,F 是棱SC 上靠近S 的一个三等分点.∴//SA FG ,∴21CF CG BC SF GA AE ===, ∴F 到平面SBE 的距离1233d BC ==,115352SBE S ∆=⨯⨯= ∴三棱锥F SEB -的体积1153F SEB SBE V S d -∆=⨯⨯=.【点睛】方法点睛:关于三棱锥的体积的求解常见的有两种解法,一是利用等体积法,需要证明出线面垂直,再换底换高计算;二是利用空间直角坐标系,计算点到面的距离,然后代入体积计算公式即可.25.(1)证明见解析;(2)45.【分析】(1)利用余弦定理求出PC ,利用勾股定理可证得PC BC ⊥,再由PC AB ⊥结合线面垂直的判定定理可证得PC ⊥平面ABC ;(2)取AC 的中点H ,连接BH 、FH ,推导出直线BF 与平面PAC 所成的角为BFH ∠,求出BH 、FH ,即可求得BFH ∠,即为所求.【详解】(1)在PBC 中,43PB =23BC =60PBC ∠=,由余弦定理可得2222cos 36PC PB BC PB BC PBC =+-⋅∠=,222PC BC PB ∴+=, PC BC ∴⊥,PC AB ⊥,AB BC B ⋂=,PC ∴⊥平面ABC ;(2)取AC 的中点H ,连接BH 、FH ,如下图所示:ABC 是边长为3H 为AC 的中点,BH AC ∴⊥且sin 603BH AB ==,PC ⊥平面ABC ,BH ⊂平面ABC ,BH PC ∴⊥,AC PC C ⋂=,BH ∴⊥平面PAC ,所以,BFH ∠就是直线BF 与平面PAC 所成角.HF ⊂平面PAC ,BH FH ∴⊥, F 、H 分别为PA 、AC 的中点,132FH PC ∴==,BH FH ∴=, 所以,BHC △为等腰直角三角形,且BHF ∠为直角,所以,45BFH ∠=.因此,直线BF 与平面PAC 所成角为45.【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin h lθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.26.(1)证明见解析;(2)263. 【分析】(1)证明出AC ⊥平面PBD ,利用面面垂直的判定定理可证得结论成立;。
(压轴题)高中数学必修二第一章《立体几何初步》检测题(包含答案解析)
一、选择题1.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A .3B .6C .23D .26 2.已知正方体1111ABCD A B C D -的棱长为2,E 为棱1AA 的中点,截面1CD E 交棱AB 于点F ,则四面体1CDFD 的外接球表面积为( )A .394πB .414πC .12πD .434π 3.某几何体的三视图如图所示,其中网格纸的小正方形的边长是1,则该几何体外接球的体积为( )A .323πB .48πC 323D .643π 4.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B .3C .102D .25.已知球O 的半径为5,球面上有,,A B C 三点,满足214,27AB AC BC ===,则三棱锥O ABC -的体积为( )A .77B .142C .714D .147 6.在下面四个正方体ABCD A B C D ''''-中,点M 、N 、P 均为所在棱的中点,过M 、N 、P 作正方体截面,则下列图形中,平面MNP 不与直线A C '垂直的是( ) A . B . C . D . 7.在正方体1111ABCD A B C D -中,M 是棱1CC 的中点.则下列说法正确的是( ) A .异面直线AM 与BC 所成角的余弦值为53B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B 所成角的正弦值等于105D .直线1AC 与平面BDM 相交 8.如图是某个四面体的三视图,则下列结论正确的是( )A .该四面体外接球的体积为48πB .该四面体内切球的体积为23π C .该四面体外接球的表面积为323πD .该四面体内切球的表面积为2π9.在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为43的体积为( )A .3πB 6πC .3πD .86π 10.已知四面体ABCD ,AB ⊥平面BCD ,1AB BC CD BD ====,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .73πB .7πC .712πD .79π 11.设m 、n 是两条不同的直线,α是平面,m 、n 不在α内,下列结论中错误的是( )A .m α⊥,//n α,则m n ⊥B .m α⊥,n α⊥,则//m nC .m α⊥,m n ⊥,则//n αD .m n ⊥,//n α,则m α⊥ 12.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'二、填空题13.圆锥底面半径为1,母线长为4,轴截面为PAB ,如图,从A 点拉一绳子绕圆锥侧面一周回到A 点,则最短绳长为_________.14.如图,点E 是正方体1111ABCD A B C D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________.①直线AD 与直线1C M 始终是异面直线②存在点M ,使得1B M AE ⊥③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC15.已知直三棱柱111ABC A B C -,90CAB ∠=︒,1222AA AB AC ===,则直线1A B 与侧面11B C CB 所成角的正弦值是______.16.在三棱锥P ABC -中,PA ⊥平面ABC ,22AB =,3BC =,4PA =,4ABC π∠=,则该三棱锥的外接球体积为___________.17.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.18.已知正四棱锥的体积为18,侧棱与底面所成的角为45,则该正四棱锥外接球的表面积为___________.19.如图,圆柱的体积为16π,正方形ABCD 为该圆柱的轴截面,F 为AB 的中点,E为母线BC 的中点,则异面直线AC ,EF 所成的角的余弦值为______.20.在三棱锥-P ABC 中,侧面PBC 和底面ABC 都是边长为2的正三角形,若3PA =,则侧棱PA 与底面ABC 所成的角的大小是___________. 三、解答题21.如图,在正四棱柱1111ABCD A B C D -中,11,2AB AA ==,点E 为1CC 中点,点F 为1BD 中点.(1)求异面直线1BD 与1CC 的距离;(2)求直线1BD 与平面BDE 所成角的正弦值;(3)求点F 到平面BDE 的距离.22.正四棱台两底面边长分别为3和9,若侧棱所在直线与上、下底面正方形中心的连线所成的角为45,求棱台的侧面积.23.如图,圆柱的轴截面ABCD 是长方形,点E 是底面圆周上异于A ,B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,3AD =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 24.如图,在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒且AC a =,侧棱12AA =,D ,E 分别是1CC ,11A B 的中点.(1)求直三棱柱111ABC A B C -的体积(用字母a 表示);(2)若点E 在平面ABD 上的射影是三角形ABD 的重心G ,①求直线EB 与平面ABD 所成角的余弦值;②求点1A 到平面ABD 的距离25.如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为23的正三角形,43PB =﹐60PBC ∠=,点F 为线段AP 的中点.(1)证明:PC ⊥平面ABC ;(2)求直线BF 与平面PAC 所成角的大小.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值,因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M = 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥,则222211111(2)3M B A A M B =+=+=故选:A.【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题. 2.B解析:B【分析】可证F 为AB 的中点,设1DD 的中点为G ,DFC △的外接圆的球心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,利用解三角形的方法可求DFC △的外接圆的半径,从而可求四面体1CDFD 的外接球的半径.【详解】设1DD 的中点为G ,DFC △的外接圆的圆心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,因为平面11//A ABB 平面11D DCC ,平面1CD E ⋂平面11A ABB EF =,平面1CD E ⋂平面111D DCC D C =,故1//EF D C ,而11//A B D C ,故1//EF A B ,故F 为AB 的中点, 所以145DF CF ==+=,故3cos 5255DFC ∠==⨯⨯, 因为DFC ∠为三角形的内角,故4sin 5DFC ∠=,故DFC △的外接圆的半径为1254245⨯=,1OO ⊥平面ABCD ,1DD ⊥平面ABCD ,故11//OO DD ,在平面1GDO O 中,111,OG DD O D DD ⊥⊥,故1//OG O D ,故四边形1GDO O 为平行四边形,故1//OO GD ,1OO GD =,所以四面体1CDFD 2541116+= 故四面体1CDFD 的外接球表面积为41414164ππ⨯=, 故选:B.【点睛】方法点睛:三棱锥的外接球的球的半径,关键是球心位置的确定,通常利用“球心在过底面外接圆的圆心且垂直于底面的直线上”来确定. 3.A解析:A【分析】由三视图可知,该几何体是四棱锥,其中四棱锥底面是边长为4的正方形,将四棱锥补成棱长为4的正方体,则该几何体的外接球就是正方体的外接球,进而可得答案. 【详解】由三视图可知,该几何体是如图所示的四棱锥P ABCD -, 其中四棱锥底面是边长为4的正方形,四棱锥的一条侧棱与底面垂直,四棱锥的高为4, 将四棱锥补成棱长为4的正方体, 则该几何体的外接球就是正方体的外接球, 外接球的直径2R 等于正方体的对角线长, 即24323R R =⇒=,所以该几何体外接球的体积为()34233π⨯=323π,故选:A.【点睛】方法点睛:三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.4.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD 3,∴222BD AB AD =+=所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,22BM AM ==. 同理,在直角三角形CBD 中,13,22DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()122CM CN MN =+=+= 在直角三角形AMC 中,22227310()222AC CM AM ⎛⎫=+=+= ⎪ ⎪⎝⎭故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.5.A解析:A 【分析】利用正弦定理求出ABC 的外接圆半径,则可求出三棱锥的高,进而求出三棱锥体积. 【详解】设ABC 的外接圆的圆心为D ,半径为r ,在ABC 中,72cos 4214ABC ∠==,14sin ABC ∴∠=, 由正弦定理可得28sin ACr ABC==∠,即4r =,则22543OD =-=,11114214273773324O ABC ABCV SOD -∴=⨯⨯=⨯⨯⨯⨯⨯=. 故选:A.【点睛】本题考查球内三棱锥的相关计算,解题的关键是利用正弦定理求出ABC 的外接圆半径,利用勾股关系求出高.6.A解析:A 【分析】利用线面垂直的判定定理可判断BCD 选项,利用假设法推出矛盾,可判断A 选项. 【详解】对于A 选项,连接B C ',假设A C '⊥平面MNP ,在正方体ABCD A B C D ''''-中,A B ''⊥平面BB C C '',B C '⊂平面BB C C '',A B B C '''∴⊥,所以,A B C ''为直角三角形,且A CB ''∠为锐角,因为M 、N 分别为BB '、BC 的中点,则//MN B C ',所以,MN 与A C '不垂直, 这与A C '⊥平面MNP 矛盾,故假设不成立,即A C '与平面MNP 不垂直;对于B 选项,连接B D ''、A C '',如下图所示:因为四边形A B C D ''''为正方形,则A C B D ''''⊥,CC '⊥平面A B C D '''',B D ''⊂平面A B C D '''',CC B D '''∴⊥, A C CC C ''''=,B D ''∴⊥平面A CC '',A C '⊂平面A CC '',A CB D '''∴⊥,M 、P 分别为A B ''、A D ''的中点,则//MN B D '',可得MP A C '⊥, 同理可证A C MN '⊥,MP MN M ⋂=,A C '∴⊥平面MNP ;对于C 选项,连接C D '、A N '、CN 、A P '、PC ,取A B ''的中点E ,连接C E '、PE ,因为四边形CC D D ''为正方形,则CD C D ''⊥,A D ''⊥平面CC D D '',C D '⊂平面CC D D '',C D A D '''∴⊥, CD A D D ''''=,C D '∴⊥平面A CD '',A C '⊂平面A CD '',A C C D ''∴⊥,M 、N 分别为DD '、C D ''的中点,//MN C D '∴,A C MN '∴⊥,在正方形A B C D ''''中,E 、N 分别为A B ''、C D ''的中点,//A E C N ''∴且A E C N ''=, 所以,四边形A EC N ''为平行四边形,所以,//A N C E ''且A N C E ''=, 同理可证四边形CC EP '为平行四边形,//C E CP '∴且C E CP '=, 所以,//A N CP '且A N CP '=,所以,四边形A PCN '为平行四边形, 易得A N CN '=,所以,四边形A PCN '为菱形,所以,A C PN '⊥,MN PN N =,A C '∴⊥平面MNP ;对于D 选项,连接AC 、BD ,因为四边形ABCD 为正方形,则AC BD ⊥,AA '⊥平面ABCD ,BD ⊂平面ABCD ,AA BD '∴⊥, AC AA A '⋂=,BD ∴⊥平面AA C ',A C '⊂平面AA C ',AC BD '∴⊥,M 、N 分别为CD 、BC 的中点,则//MN BD ,A C MN '∴⊥,同理可证A C MP '⊥,MN MP M ⋂=,A C '∴⊥平面MNP .故选:A. 【点睛】方法点睛:证明线面垂直的方法: 一是线面垂直的判定定理; 二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.7.C解析:C 【分析】A 通过平移,找出异面直线所成角,利用直角三角形求余弦即可. B.求出三角形的三边,通过勾股定理说明是不是直角三角形.C.求出点M 到面11BB D D 的距离,再求直线BM 与平面11BDD B 所成角的正弦.D.可通过线线平行证明线面平行. 【详解】 设正方体棱长为2A. 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠ 由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,5tan 2AMN ∠=,故2cos 3AMN ∠=B. BDM 中,5BM =,22BD =,5DM =,不满足勾股定理,不是直角三角形C. AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D 的距离等于C 到面11BB D D 的距离,即为122d AC ==直线BM 与平面11BDD B 所成角为θ210sin 55d BM θ===直线BM 与平面11BDD B 所成角的正弦值等于105D.如图ACBD O =OM 为1ACC △的中位线,有1//OM AC故直线1AC 与平面BDM 平行故选:C 【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.8.D解析:D 【分析】先找到几何体原图,再求出几何体的外接球的半径和内切球的半径,再判断每一个选项得解. 【详解】由三视图得几何体为下图中的三棱锥A BCD -,AB ⊥平面BCD ,42AB =,2CE DE ==,2BE =,由题得2CBD π∠=.设外接球的球心为,O 外接球的半径为R ,则OE ⊥平面BCD , 连接,OB OA ,取AB 中点F ,连接OF .由题得1222OE BF AB ===,所以222(22)2,23R R =+∴=, 所以外接球的体积为34(23)3233ππ⨯=,所以选项A 错误; 所以外接球的表面积为24(23)48ππ⨯=,所以选项C 错误; 由题得22(42)(22)210AC AD ==+=, 所以△ACD △的高为24026-=, 设内切球的半径为r ,则1111111(422242222446)24423222232r ⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯⨯⨯⨯ 所以22r, 所以内切球的体积为3422)323ππ⨯=(,所以选项B 错误; 所以内切球的表面积为224()22ππ⨯=,所以选项D 正确. 故选:D【点睛】方法点睛:求几何体外接球的半径一般有两种方法:模型法和解三角形法.模型法就是把几何体放在长方体中,使几何体的顶点和长方体的若干个顶点重合,则几何体的外接球和长方体的外接球是重合的,长方体的外接球的半径22212r a b c =++几何体的外接球半径.如果已知中有多个垂直关系,可以考虑用此种方法.解三角形法就是找到球心O 和截面圆的圆心O ',找到OO '、球的半径OA 、截面圆的半径O A '确定的Rt OO A '△,再解Rt OO A '△求出球的半径OA .9.B解析:B 【分析】根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 【详解】解:设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======, 由于三棱锥11A B CD -的表面积为43, 所以()12133442242AB CS S a==⨯⨯=所以2a =()()()2222226++=, 所以正方体的外接球的体积为34663ππ⎛⎫= ⎪ ⎪⎝⎭故选:B . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.10.A解析:A 【分析】本题首先可根据题意将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,然后求出直三棱柱的外接球的半径,最后根据球的表面积计算公式即可得出结果. 【详解】因为AB ⊥平面BCD ,1AB BC CD BD ====,所以可将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,如图所示:则四面体ABCD 的外接球即直三棱柱的外接球,因为底面三角形BCD 的外心到三角形BCD 的顶点的长度为222131323, 所以直三棱柱的外接球的半径221372312r, 则球O 的表面积277π4π4π123S r , 故选:A. 【点睛】关键点点睛:本题考查四面体的外接球的表面积的计算,能否将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分是解决本题的关键,考查直三棱柱的外接球的半径的计算,是中档题.11.D解析:D 【分析】利用线面平行的性质定理和线面垂直的定义可判断A 选项的正误;由线面垂直的性质定理可判断B 选项的正误;根据已知条件判断直线n 与平面α的位置关系,可判断C 选项的正误;根据已知条件判断直线m 与平面α的位置关系,可判断D 选项的正误. 【详解】 对于A ,//n α,由线面平行的性质定理可知,过直线n 的平面β与平面α的交线l 平行于n ,m α⊥,l α⊂,m l ∴⊥,m n ∴⊥,故A 正确;对于B ,若m α⊥,n α⊥,由直线与平面垂直的性质,可得//m n ,故B 正确; 对于C ,若m α⊥,m n ⊥,则//n α或n ⊂α,又n α⊄,//n α∴,故C 正确;对于D ,若m n ⊥,//n α,则//m α或m 与α相交或m α⊂, 而m α⊄,则//m α或m 与α相交,故D 错误. 故选:D . 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.12.C解析:C 【分析】设AH a =,则BH a =,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则BH a =,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB ,又Rt ABC ,1,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,'C H ==Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.二、填空题13.【分析】把圆锥侧面展开为一个平面图形利用平面上两点间线段最短可得【详解】由题意所以圆锥侧面展开图中心角为如图则故答案为:【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题空间几何体表面上两点间的最解析:【分析】把圆锥侧面展开为一个平面图形,利用平面上两点间线段最短可得. 【详解】由题意1,4r l ==,所以圆锥侧面展开图中心角为2142ππθ⨯==,如图,2APA π'∠=, 则2442AA '=⨯=.故答案为:42.【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题,空间几何体表面上两点间的最短距离问题的解决方法常常是把几何体的表面展开摊平为一个平面图形,利用平面上两点间线段最短求解.14.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④. 【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④. 【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈,所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确;对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确;对于④:当12D M MB =时,442,,333M ⎛⎫⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由22222220242333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确; 故答案为:②③④. 【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可; (2)利用性质://,αββγαγ⊥⇒⊥(客观题常用); (3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.15.【分析】取中点连接证明平面可得为直线与侧面所成的角进而可得答案【详解】取中点连接直三棱柱中平面平面又又面平面在平面上的射影为故为直线与侧面所成的角中中中故答案为:【点睛】方法点睛:求直线与平面所成的 解析:10 【分析】取11B C 中点D ,连接1,A D BD ,证明1A D ⊥平面11B C CB ,可得1A BD ∠为直线1A B 与侧面11B C CB 所成的角,进而可得答案. 【详解】取11B C 中点D ,连接1,A D BD ,直三棱柱中,1BB ⊥平面111A B C ,1A D ⊂平面111A B C ,11BB A D ∴⊥,又11111A B A C ==,111A D B C ∴⊥, 又1111B C BB B =,111,B C BB ⊂面11BB C C ,1A D ∴⊥平面11B C CB ,1A B ∴在平面11B C CB 上的射影为DB ,故1A BD ∠为直线1A B 与侧面11B C CB 所成的角,11Rt A B B 中,22211121125BB A B A B =+=+=111Rt B A C 中,1112212122B C A D=⨯==,1Rt A BD ∴中,1112102sin 5A D A BD AB ∠===, 故答案为:1010. 【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.16.【分析】利用余弦定理求得利用正弦定理计算出的外接圆直径可计算出三棱锥的外接球半径然后利用球体体积公式可求得结果【详解】如下图所示圆柱的底面圆直径为圆柱的母线长为则的中点到圆柱底面圆上每点的距离都相等 解析:1326π【分析】利用余弦定理求得AC ,利用正弦定理计算出ABC 的外接圆直径2r ,可计算出三棱锥P ABC -的外接球半径R ,然后利用球体体积公式可求得结果.【详解】如下图所示,圆柱12O O 的底面圆直径为2r ,圆柱的母线长为h , 则12O O 的中点O 到圆柱底面圆上每点的距离都相等, 所以,圆柱12O O 的外接球直径为()2222R r h =+.本题中,作出ABC 的外接圆2O ,由于PA ⊥平面ABC ,可将三棱锥P ABC -放在圆柱12O O 中,在ABC 中,22AB =3BC =,4ABC π∠=,由余弦定理可得222cos 5AC AB BC AB BC ABC +-⋅∠=,由正弦定理可知,ABC 的外接圆直径为5210sin 2ACr ABC===∠ 则三棱锥P ABC -的外接球直径为()222226R PA r =+=26R =, 因此,三棱锥P ABC -的外接球的体积为334426132633V R ππ==⨯=⎝⎭. 故答案为:13263. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.17.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:2【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:82 【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.18.【分析】作出图形计算出正四棱锥的高与底面边长设底面的中心为计算得出为正四棱锥的外接球球心可求得该正四棱锥的外接球半径即可得解【详解】如下图所示设正四棱锥的底面的中心为连接设正四棱锥的底面边长为则由于 解析:36π【分析】作出图形,计算出正四棱锥P ABCD -的高与底面边长,设底面ABCD 的中心为E ,计算得出E 为正四棱锥P ABCD -的外接球球心,可求得该正四棱锥的外接球半径,即可得解. 【详解】如下图所示,设正四棱锥P ABCD -的底面ABCD 的中心为E ,连接PE 、AC 、BD ,设正四棱锥P ABCD -的底面边长为a ,则2AC BD a ==,由于E 为正四棱锥P ABCD -的底面ABCD 的中心,则PE ⊥平面ABCD , 由于正四棱锥P ABCD -的侧棱与底面所成的角为45,则45PAC PCA ∠=∠=, 所以,PAC △是以APC ∠为直角的等腰直角三角形, 同理可知,PBD △是以BPD ∠为直角的等腰直角三角形,E 为AC 的中点,122PE AC a ==,2ABCD S a =正方形,2311183326P ABCD ABCD V S PE a a a -=⋅=⨯⨯==正方形,解得a =,232PE a ==,由直角三角形的性质可得1122PE AC BD ==,即PE AE BE CE DE ====,所以,E 为正四棱锥P ABCD -外接球的球心, 球E 的半径为3r PE ==,该球的表面积为2436r ππ=. 故答案为:36π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.19.【分析】由圆柱体积求得底面半径母线长设底面圆心为可得为异面直线与所成的角(或其补角)在对应三角形中求解可得【详解】设圆柱底面半径为则母线长为由得设底面圆心为连接则所以为异面直线所成的角在中所以故答案【分析】由圆柱体积求得底面半径,母线长,设底面圆心为O ,可得OEF ∠为异面直线AC 与EF 所成的角(或其补角).在对应三角形中求解可得. 【详解】设圆柱底面半径为r ,则母线长为2r ,由2216r r ππ⋅=得2r.设底面圆心为O ,连接OE ,OF .则//OE AC ,所以OEF ∠为异面直线AC ,EF 所成的角.在Rt OEF △中,2OF =,OE =EF =所以cos 3OE OEF EF ∠==..【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.20.【分析】先画出直观图证明平面平面然后侧棱与底面ABC 所成的角即为根据题目中的数据算出即可【详解】如图作的中点连结因为侧面PBC 和底面ABC 都是边长为2的正三角形而为的中点所以又所以平面同时平面所以平解析:o 60. 【分析】先画出直观图,证明平面PAD ⊥平面ABC ,然后侧棱PA 与底面ABC 所成的角即为PAD ∠,根据题目中的数据算出即可.【详解】如图,作BC 的中点D ,连结AD 、PD 因为侧面PBC 和底面ABC 都是边长为2的正三角形 而D 为BC 的中点,所以BC PD ⊥,BC AD ⊥,又PD AD D ⋂=,所以BC ⊥平面PAD ,同时BC ⊂平面ABC。
人教版高中数学必修第二册第三单元《立体几何初步》检测题(有答案解析)
一、选择题1.点A ,B ,C 在球O 表面上,2AB =,4BC =,60ABC ∠=︒,若球心O 到截面ABC 的距离为22,则该球的体积为( )A .323π B .86π C .36π D .323π2.如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A .12πB .32πC .36πD .48π3.已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm ),则此构件的表面积为( )A .27600mmB .28400mmC .29200mmD .210000mm5.已知三棱锥A BCD -的所有棱长都为2,且球O 为三棱锥A BCD -的外接球,点M 是线段BD 上靠近D 的四等分点,过点M 作平面α截球O 得到的截面面积为Ω,则Ω的取值范围为( )A .π3π,42⎡⎤⎢⎥⎣⎦B .3π3π,42⎡⎤⎢⎥⎣⎦ C .π3π,22⎡⎤⎢⎥⎣⎦D .,42ππ⎡⎤⎢⎥⎣⎦6.如图,梯形ABCD 中,AD ∥BC ,AD =AB =1,AD ⊥AB ,∠BCD =45°,将△ABD 沿对角线BD 折起,设折起后点A 的位置为A ′,使二面角A ′—BD —C 为直二面角,给出下面四个命题:①A ′D ⊥BC ;②三棱锥A ′—BCD 的体积为2;③CD ⊥平面A ′BD ;④平面A ′BC ⊥平面A ′D C .其中正确命题的个数是( )A .1B .2C .3D .47.如图,已知正方体1111ABCD A B C D -,Q 为棱1AA 的中点,P 为棱1CC 的动点,设直线m 为平面BDP 与平面11B D P 的交线,直线n 为平面ABCD 与平面11B D Q 的交线,下列结论中错误的是( )A .//m 平面11B D QB .平面PBD 与平面11B D P 不垂直C .平面PBD 与平面11B D Q 可能平行 D .直线m 与直线n 可能不平行8.已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行截面间的距离是( ) A .1 B .2 C .1或7D .2或69.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .61cmC 61cmD .234cm10.已知四棱锥的各个顶点都在同一个球的球面上,且侧棱长都相等,高为4,底面是边长为32的正方形,则该球的表面积为( ) A .75518πB .62516πC .36πD .34π11.长方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E 为AB 的中点,3CE =,53cos 9ACE ∠=,且四边形11ABB A 为正方形,则球O 的直径为( ) A .4B .51C .4或51D .4或512.设l 是直线,α,β是两个不同的平面,下列命题正确的是( ) A .若//l α,//l β,则//αβ B .若αβ⊥,//l α,则l β⊥ C .若αβ⊥,l α⊥,则//l β D .若//l α,l β⊥,则αβ⊥ 13.垂直于同一条直线的两条直线的位置关系是( )A .平行B .相交C .异面D .A 、B 、C 均有可能14.用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm ,则圆台的母线长是( )A .9cmB .10cmC .12cmD .15cm二、解答题15.在如图所示的几何体中,侧面CDEF 为正方形,底面ABCD 中,//AB CD ,222AB BC DC ===,30BAC ∠=,AC FB ⊥.(1)求证:AC ⊥平面FBC ;(2)线段AC 上是否存在点M ,使//EA 平面FDM ?证明你的结论.16.如图所示的四棱锥E -ABCD 中,底面ABCD 为矩形,AE =EB =BC =2,AD ⊥平面ABE ,且CE 上的点F 满足BF ⊥平面ACE .(1)求证:AE ∥平面BFD ; (2)求三棱锥C -AEB 的体积.17.如图,在长方形ABCD 中,4AB =,2AD =,点E 是DC 的中点.将ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,连结DB 、DC 、EB(1)求证:AD ⊥平面BDE ;(2)求平面ADE 与平面BDC 所成锐二面角的余弦值.18.如图,在四棱锥P ABCD -中,底面ABCD 为正方形, PA ⊥底面ABCD ,2AB AP ==,E 为棱PD 的中点.(Ⅰ)求证CD AE ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值; (Ⅲ)求点A 到平面PBD 的距离.19.如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 平面1ABB 所成的角的正弦值.20.如图,在直三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 是CC 1上的中点,且BC =1,BB 1=2.(1)证明:B 1E ⊥平面ABE ; (2)若三棱锥A -BEA 1的体积是3,求异面直线AB 和A 1C 1所成角的大小. 21.如图,棱长为2的正方体ABCD —A 1B 1C 1D 1,E 、F 分别为棱B 1C 1、BB 1中点,G 在A 1D 上且DG =3GA 1,过E 、F 、G 三点的平面α截正方体.(1)作出截面图形并求出截面图形面积(保留作图痕迹);(2)求A 1C 1与平面α所成角的正弦值. (注意:本题用向量法求解不得分)22.已知三棱柱ABC -A 1B 1C 1中BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C(1)求证:C 1B ⊥平面ABC ; (2)求三棱柱ABC -A 1B 1C 1的体积,(3)试在棱CC 1(不包含端点C ,C 1)上确定一点E ,使得EA ⊥EB 1; 23.如图,在四棱锥O ﹣ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =3π,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(I )证明:直线MN //平面OCD ; (II )求异面直线AB 与MD 所成角的余弦值.24.已知四棱锥P ABCD -的底面ABCD 是菱形,PD ⊥平面ABCD ,2AD PD ==,60DAB ∠=,F ,G 分别为PD ,BC 中点,AC BD O =.(Ⅰ)求证:FG ∥平面PAB ; (Ⅱ)求三棱锥A PFB -的体积;25.如图,在直三棱柱111ABC A B C -中,E ,F 分别为11A C 和BC 的中点.(1)求证://EF 平面11AA B B ;(2)若13AA =,23AB =,求EF 与平面ABC 所成的角.26.如图所示,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,过E 点作EF PB ⊥交PB 于点F .求证:(1)//PA 平面EDB ; (2)PB ⊥平面EFD .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先判断出底面三角形的形状,然后从球心作截面的垂足,确定垂足的位置后,再利用勾股定理得到半径,再求体积即可. 【详解】由2AB =,4BC =,60ABC ∠=︒及余弦定理得,2222cos 416224cos6012AC AB BC AB BC ABC =+-⋅∠=+-⨯⨯︒=,所以222BC AB AC =+,即A 是直角,BC 是底面圆的直径,过球心O 作OD ⊥平面ABC ,D 即为BC 的中点,所以22OD =,122BD BC == 连接OB ,OB 即为半径,由勾股定理得2223OB OD BD =+=, 所以球的体积为34(23)3233V ππ==, 故选:D.【点睛】本题考查了球的外接问题,确定球心在截面上的射影的位置是关键,属于基础题.2.C解析:C 【分析】根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积. 【详解】∵M ,N 分别为棱SC ,BC 的中点, ∴MN ∥SB∵三棱锥S −ABC 为正棱锥, ∴SB ⊥AC (对棱互相垂直) ∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A , ∴MN ⊥平面SAC , ∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==, ∴R =3, ∴V =36π. 故选:C 【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键.3.B解析:B 【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可. 【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立, 当αβ⊥时,l β⊥不一定成立, 即“l β⊥”是“αβ⊥”的充分不必要条件, 故选:B . 【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.4.B解析:B 【分析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可. 【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示, 其表面积为:()210020220202100204010210202840m 0m S =⨯⨯+⨯⨯+⨯-⨯⨯+⨯⨯=.故选:B. 【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.5.B解析:B 【分析】求出三棱锥A BCD -的外接球半径R ,可知截面面积的最大值为2πR ,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,截面圆的半径的最小值22R OM -,进而可求出截面面积的最小值. 【详解】三棱锥A BCD -是正四面体,棱长为2,将三棱锥A BCD -放置于正方体中, 可得正方体的外接球就是三棱锥A BCD -的外接球. 因为三棱锥A BCD -的棱长为2,故正方体的棱长为2, 可得外接球直径22226R =++=,故62R =, 故截面面积的最大值为2263πππ2R ⎛⎫= ⎪ =⎪⎝⎭. 因为M 是BD 上的点,当球心O 到截面的距离最大时,截面面积最小, 此时球心O 到截面的距离为OM ,△OBD 为等腰三角形, 过点O 作BD 的垂线,垂足为H ,222662,12OD OH OD HD ⎛⎫==-=-= ⎪ ⎪⎝⎭, 得222113244OM OH HM =+=+=, 则所得截面半径的最小值为22633444R OM -=-=, 所以截面面积的最小值为233ππ()44=. 故Ω的取值范围为3π3π,42⎡⎤⎢⎥⎣⎦.故选:B. 【点睛】外接球问题与截面问题是近年来的热点问题,平常学习中要多积累,本题考查学生的空间想象能力、推理能力及计算求解能力,属于中档题.6.C解析:C 【分析】根据//AD BC ,1AD AB ==,AD AB ⊥,45BCD ︒∠=, 易得 CD BD ⊥,再根据,平面A BD '⊥平面BCD ,得CD ⊥平面A BD ',可判断③的正误;由二面角A BD C '--为直二面角,可得A H '⊥平面BCD ,则可求出A BDC V '-,进而可判断②的正误;根据CD ⊥平面A BD ',有CD AB '⊥,,A B A D ''⊥ 得A B '⊥平面CDA ',④利用面面垂直的判定定理判断④的正误;根据CD ⊥平面A BD ',有CD A D '⊥,若A D BC '⊥,则可证AD '⊥平面BCD ,则得到A D BD '⊥,与已知矛盾,进而可判断①的正误.【详解】由题意,取BD 中点H ,连接A H ',则折叠后的图形如图所示:由二面角A BD C '--为直二面角,可得A H '⊥平面BCD ,则A H CD '⊥, ∴A BDC V '-=1221326⨯⨯=,②正确, ∵CD BD ⊥,A H CD '⊥,且A H BD H '=,∴CD ⊥平面A BD ',故③正确,∵1A B '=,由几何关系可得3A C '=,2BC =,∴2222132A B A C BC ''+=+==,∴A B A C ''⊥,由CD ⊥平面A BD ',得CD A B '⊥,又A CCD C '=∴A B '⊥平面A DC ',∵A B '⊂平面A BC ',∴ 平面A BC '⊥平面A DC ',④正确, CD ⊥平面A BD ',CD A D '∴⊥,若A D BC '⊥,则可证A D '⊥平面BCD ,则得到A D BD '⊥,与已知矛盾,所以①错误.故选C .【点睛】本题通过折叠性问题,考查了面面垂直的性质,面面垂直的判定,考查了体积的计算,解题关键是利用好直线与平面,平面与平面垂直关系的转化关系,属于中档题.7.D解析:D【分析】在正方体1111ABCD A B C D -中,可得11//BD B D ,根据线面平行的判定定理和性质定理可得11////m BD B D ,可判断选项A 结论;分别取11,BD B D 中点1,O O ,连1,OP O P ,则1OPO ∠为平面PBD 与平面11B D P 的平面角,判断1OPO ∠是否为直角,即可判断选项B 的结论;若P 为1CC 中点时,可证平面PBD 与平面11B D Q 平行,即可判断选项C 的结论;根据面面平行的性质定理可得11//n B D ,即可判断选项D 的结论.【详解】在正方体1111ABCD A B C D -中,四边形11BB D D 为矩形,11//,BD B D BD ∴⊂平面PBD ,11B D ⊄平面PBD ,11//B D 平面PBD ,11B D ⊂平面11B D P ,平面BDP 与平面1111////P B D m m B D BD =∴,选项A ,11//,m B D m ⊄平面11B D Q ,11B D ⊂平面11B D Q ,//m 平面11B D Q ,选项A 结论正确;选项B ,分别取11,BD B D 中点1,O O ,连11,,OP O P OO ,设正方体的边长为2,设CP h =,则11BP DP B P D P ====,,PO BD PO m ∴⊥⊥,同理1PO m ⊥,1OPO ∴∠为平面PBD 与平面11B D P 的平面角,在1OO P △中,22222112,2(2),4OP h O P h OO =+=+-=,22211OP O P OO +>,1OPO ∴∠不是直角,所以平面PBD 与平面11B D P 不垂直,选项B 结论正确;选项C ,若P 为1CC 中点,取1BB 中点E 连1,C E QE ,则1//C E BP ,又Q 为棱1AA 的中点,1111//,QE C D QE C D ∴=,四边形11C D QE 为平行四边形,1111//,//,D Q C E D Q BP D Q ∴∴⊄面PBD ,BP ⊂平面PBD ,1//D Q ∴平面PBD ,同理11//B D 平面PBD ,1111111,,B D D Q D B D D Q =⊂平面11B D Q ,∴平面//PBD 平面11B D Q ,选项C 结论正确;选项D ,在正方体中,平面//ABCD 平面1111D C B A ,平面ABCD 平面11B D Q n =,平面1111A B C D 平面1111B Q D B D =11//,//n B D n m ∴∴,选项D 结论不正确.故选:D .【点睛】本题考查空间线、面位置关系,涉及到线线平行、线面平行、面面平行、面面垂直的判定,掌握平行、垂直的判定定理和性质定理是解题的关键,属于中档题.8.C解析:C【分析】求出两个平行截面圆的半径,由勾股定理求出球心到两个截面的距离.分两个平行截面在球心的同侧和两侧讨论,即得两平行截面间的距离.【详解】设两平行截面圆的半径分别为12,r r ,则121226,28,3,4r r r r ππππ==∴==. ∴球心到两个截面的距离分别为222212534,543d d =-==-=.当两个平行截面在球心的同侧时,两平行截面间的距离为12431d d -=-=; 当两个平行截面在球心的两侧时,两平行截面间的距离为12437d d +=+=. 故选:C .【点睛】本题考查球的截面间的距离,属于基础题.9.A解析:A【分析】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,计算得到答案.【详解】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,易知5BC =,'12A C =,故'13A B =.故选:A .【点睛】本题考查了立体几何中的最短距离问题,意在考查学生的计算能力和空间想象能力. 10.B解析:B【分析】如图所示,设四棱锥P ABCD -中,球的半径为R ,底面中心为O '且球心为O ,可得OP ⊥底面ABCD .3AO '=,4PO '=,在Rt AOO ∆'中,利用勾股定理解得R ,即可得出球的表面积.【详解】如图所示,设球的半径为R ,底面中心为O '且球心为O .∵四棱锥P ABCD -中,32AB =,∴3AO '=.∵4PO '=,∴Rt AOO ∆'中,|4|OO R '=-,222AO AO OO ''=+,∴2223(4)R R =+-,解得258R =, ∴该球的表面积为222562544816R πππ⎛⎫=⨯= ⎪⎝⎭.故选:B .【点睛】本题考查几何体的外接球问题,此类问题常常构造直角三角形利用勾股定理进行求解,属于中等题.11.C解析:C【分析】设2AB x =,则AE x =,29BC x =-,由余弦定理可得222539392393x x x =++-⨯⨯+⨯,求出x ,即可求出球O 的直径. 【详解】 根据题意,长方体内接于球O 内,则球的直径为长方体的体对角线,如图作出长方体1111ABCD A B C D -:设2AB x =,则AE x =,29BC x =-,由余弦定理可得:222539392393x x x =++-⨯+,∴1x =6, ∴2AB =,22BC =O 4484++=;或26AB =3BC =,球O 2424351++=故选:C .【点睛】本题考查球的直径的计算方法,考查余弦定理,考查计算能力和分析能力,属于常考题. 12.D解析:D【分析】利用空间线线、线面、面面的位置关系对选项进行逐一判断,即可得到答案.【详解】A.若//l α,//l β,则α与β可能平行,也可能相交,所以不正确.B.若αβ⊥,//l α,则l 与β可能的位置关系有相交、平行或l β⊆,所以不正确.C.若αβ⊥,l α⊥,则可能l β⊆,所以不正确.D.若//l α,l β⊥,由线面平行的性质过l 的平面与α相交于l ',则ll ',又l β⊥.所以l β'⊥,所以有αβ⊥,所以正确.故选:D【点睛】本题考查面面平行、垂直的判断,线面平行和垂直的判断,属于基础题.13.D解析:D【分析】结合公理及正方体模型可以判断:A ,B ,C 均有可能,可以利用反证法证明结论,也可以从具体的实物模型中去寻找反例证明.【详解】解:如图,在正方体1AC 中,1A A ⊥平面ABCD ,1A A AD ,1A A BC ⊥, 又//AD BC ,∴选项A 有可能; 1A A ⊥平面ABCD ,1A A AD ,1A A AB ⊥,又AD AB A =,∴选项B 有可能;1A A ⊥平面ABCD ,1A A ⊥平面1111D C B A ,AC ⊂平面ABCD ,11A D ⊂平面1111D C B A ,1A A AC ∴⊥,111A A A D ⊥,又AC 与11A D 不在同一平面内,∴选项C 有可能.故选:D .【点睛】本题主要考查了空间中直线与直线之间的位置关系,考查空间想象能力和思维能力,属于中档题.14.A解析:A【分析】计算得到12:1:4r r =,根据相似得到3134l =+,计算得到答案. 【详解】圆台上、下底面的面积之比为1:16,则12:1:4r r =.设圆台母线长为l ,根据相似得到:3134l =+,故9l =. 故选:A .【点睛】本题考查了圆台的母线长,意在考查学生的计算能力和空间想象能力.二、解答题15.(1)证明见解析;(2)M 为AC 的中点,证明见解析.【分析】(1)本题首先可通过正弦定理得出90ACB ∠=以及AC BC ⊥,然后根据AC FB ⊥以及线面垂直的判定即可证得结果;(2)本题首先可取AC 的中点M ,连接CE 、MN ,然后通过三角形中位线的性质得出//EA MN ,最后通过线面平行的判定即可得出结果.【详解】(1)因为30BAC ∠=,2AB =,1BC =, 所以sin sin AB BC ACB BAC =∠∠,即211sin 2ACB ,解得sin 1ACB ∠=,90ACB ∠=,AC BC ⊥,因为AC FB ⊥,BC FB B ⋂=,所以AC ⊥平面FBC .(2)当M 为AC 的中点时,//EA 平面FDM .证明如下:如图,取AC 的中点M ,连接CE ,与DF 交于点N ,连接MN ,因为四边形CDEF 为正方形,所以N 为CE 的中点,因为M 是AC 的中点,所以//EA MN ,因为MN ⊆平面FDM ,EA ⊄平面FDM ,所以//EA 平面FDM .【点睛】关键点点睛:本题考查线面垂直与线面平行的判定,若直线与平面内的两条相交直线都垂直,则线面垂直,若平面外一条直线平行平面内一条直线,则线面平行,考查数形结合思想,是中档题.16.(1)证明见解析;(2)43. 【分析】(1)由ABCD 为矩形,易得G 是AC 的中点,又BF ⊥平面ACE ,BC =BE ,则F 是EC 的中点,从而FG ∥AE ,再利用线面平行的判定定理证明.(2)根据AD ⊥平面ABE ,易得AE ⊥BC ,再由BF ⊥平面ACE ,得到AE ⊥BF ,进而得到AE ⊥平面BCE ,然后由C AEB A BCE V V --=求解.【详解】(1)如图所示:因为底面ABCD 为矩形,所以AC ,BD 的交点G 是AC 的中点,连接FG ,∵BF ⊥平面ACE ,则CE ⊥BF ,而BC =BE ,∴F 是EC 的中点,∴FG ∥AE .又AE ⊄平面BFD ,FG ⊂平面BFD ,∴AE ∥平面BFD .(2)∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE ,则AE ⊥BC .又BF ⊥平面ACE ,则AE ⊥BF ,∴AE ⊥平面BCE .∴三棱锥C -AEB 的体积11142223323C AEB A BCE BCE V V S AE --⎛⎫==⋅=⨯⨯⨯⨯= ⎪⎝⎭△. 【点睛】方法点睛:1、判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).17.(1)证明见解析;(2)1111. 【分析】(1)计算出AE BE =得证AE BE ⊥,从而由面面垂直性质定理得线面垂直中,又得线线垂直AD BE ⊥,再由已知线线垂直AD AE ⊥可证得结论线面垂直;(2)取AE 的中点O ,连结DO , 可证DO ⊥平面ABCE ,过E 作直线//EF DO ,以EA 、EB 、EF 分别为x 轴,y 轴,z 轴建立空间直角坐标系,用空间向量法求二面角的余弦.【详解】(1)证明:∵2AD DE ==,90ADE ∠=︒ ∴22AE BE ==,4AB =,∴222AE BE AB +=,∴AE BE ⊥又平面ADE ⊥平面ABCE ,平面ADE平面ABCE AE =, ∴BE ⊥平面ADE ,又AD ⊂平面ADE ,所以AD BE ⊥, 又AD DE ⊥,DE BE E ⋂=,所以AD ⊥平面BDE.(2)取AE 的中点O ,连结DO ,∵DA DE =,∴DO AE ⊥,又平面ADE ⊥平面ABCE ,∴DO ⊥平面ABCE ,过E 作直线//EF DO ,以EA 、EB 、EF 分别为为x 轴,y 轴,z 轴建立空间直角坐标系:则(0,0,0),(22,0,0),(0,22,0),(2,0,2)E A B D ,(2,2,0)C -平面ADE 的法向量1//n EB ,∴1(0,1,0)n = 又(2,2,0)CB =,(2,22,2)DB =-,设平面BDC 的法向量为()2,,n x y z =, 2200n CB n DB ⎧⋅=⎪∴⎨⋅=⎪⎩,22022220x x y z +=∴-+=⎪⎩,即020x y x y z +=⎧⎨-+-=⎩ ∴平面BDC 的法向量2(1,1,3)n =-- ()12122221211cos ,111113n n n n n n ⋅∴===⋅⨯+-+ ∴平面ADE 与平面BDC 所成锐二面角的余弦值为1111. 【点睛】方法点睛:本题考查证明线面垂直,考查求二面角.证明线面垂直的方法是:根据线面垂直的判定定理先证线线垂直,当然证明线线垂直又根据面面垂直的性质定理得线面垂直,从而得线线垂直.三个垂直相互转化可证结论; 求二面角(空间角)常用方法是建立空间直角坐标系,用空间向量法求空间角,用计算代替证明.18.(Ⅰ)证明见解析;(Ⅱ6;(Ⅲ23 【分析】(Ⅰ)根据PA ⊥底面ABCD ,PA ⊥CD ,再由底面ABCD 为正方形,利用线面垂直的判定定理证得CD PAD ⊥面即可.(Ⅱ)以点A 为原点建立空间直角坐标系,不妨设2AB AP ==,求得向量AE 的坐标,和平面PBD 的一个法向量(,,)n x y z =, 由cos ,AEn AE n AE n ⋅=⋅求解.(Ⅲ)利用空间向量法,由AE n d n ⋅=求解.【详解】 (Ⅰ)证明:因为PA ⊥底面ABCD ,所以PA ⊥CD ,因为AD CD ⊥,PA AD A ⋂=所以CD PAD ⊥面.因为AE PAD ⊂面,所以CD AE ⊥. (Ⅱ)依题意,以点A 为原点建立空间直角坐标系(如图),不妨设2AB AP ==,可得()()()()2,0,0,2,2,0,0,2,0,0,0,2B C D P , 由E 为棱PD 的中点,得(0,1,1)E . (0,1,1)AE =,向量(2,2,0)BD =-,(2,0,2)PB =-.设平面PBD 的一个法向量(,,)n x y z =,则00n BD n PB ⎧⋅=⎨⋅=⎩,即220220x y x z -+=⎧⎨-=⎩, 令y=1,可得n =(1,1,1),所以 6cos ,AE nAE n AE n ⋅==⋅ 所以直线AE 与平面PBD . (Ⅲ)由(Ⅱ)知:(0,1,1)AE =,平面PBD 的一个法向量n =(1,1,1), 所以点A 到平面PBD 的距离 3AE n d n ⋅===. 【点睛】方法点睛:利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.19.(1)证明见解析;(2)13. 【分析】(1)由已知条件可得2221111A B AB AA +=,2221111AB B C AC +=,则111AB A B ⊥,111AB B C ⊥,再利用线面垂直的判定定理可证得结论;(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD ,可证得1C D ⊥平面1ABB ,从而1C AD ∠是1AC 与平面1ABB 所成的角,然后在1Rt C AD 求解即可【详解】(1)证明: 由2AB =,14AA=,12BB =,1AA AB ⊥,1BB AB ⊥得111AB A B ==,所以2221111A B AB AA +=,由111AB A B ⊥.由2BC =,12BB =,11CC =,1BB BC ⊥,1CC BC ⊥得11B C =,由2AB BC ==,120ABC ∠=︒得AC =由1CC AC ⊥,得1AC =,所以2221111AB B C AC +=,故111AB B C ⊥,又11111A B B C B =,因此1AB ⊥平面111A B C .(2)解 如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD .由1AB ⊥平面111A B C ,1AB ⊂平面1ABB ,得平面111A B C ⊥平面1ABB ,由111C D A B ⊥,得1C D ⊥平面1ABB ,所以1C AD ∠是1AC与平面1ABB 所成的角.由11B C =11AB =,11AC =得1116cos 7C AB ∠=,111sin 7C A B ∠=, 所以13CD =,故11139sin C D C AC AD ∠==. 因此,直线1AC 与平面1ABB 所成的角的正弦值是39.【点睛】关键点点睛:此题考查线面垂直的判定和线面角的求法,解题的关键是通过过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD ,然后结合条件可证得1C AD ∠是1AC 与平面1ABB 所成的角,从而在三角形中求解即可,考查推理能力和计算能力,属于中档题 20.(1)证明见解析;(2)30.【分析】(1)由AB ⊥侧面BB 1C 1C 可得1AB B E ⊥,由勾股定理可得1BE B E ⊥,即可证明; (2)由11//A B AB 可得111C A B ∠即为异面直线AB 和A 1C 1所成角,由等体积法可求得AB 长度,即可求出角的大小.【详解】(1)AB ⊥侧面BB 1C 1C ,1B E ⊂侧面BB 1C 1C ,1AB B E ∴⊥,BC =1,BB 1=2,E 是CC 1上的中点,12BE B E ∴=22211BE B E BB +=,1BE B E ∴⊥,AB BE B ⋂=, ∴B 1E ⊥平面ABE ; (2)11//A B AB ,111C A B ∴∠即为异面直线AB 和A 1C 1所成角,且1A 到平面ABE 的距离等于1B 到平面ABE 的距离,由(1)B 1E ⊥平面ABE ,故B 1E 的长度即为1B 到平面ABE 的距离,由AB ⊥侧面BB 1C 1C 可得AB ⊥BE , 则111111322332ABEA A ABE ABE V V S B E AB --==⋅=⨯⨯⨯⨯=,解得3AB =, 则113A B AB ==, 在111Rt A B C △中,11111113tan 3B C C A B A B ∠===,11130A C B ∴∠=, 即异面直线AB 和A 1C 1所成角为30.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.21.(1)截面见解析,面积为22;(2)12. 【分析】(1)先根据线面平行的性质定理确定出,EF MN 的位置关系,再根据,EF MN 的长度关系确定出,M N 的位置,从而截面的形状可确定以及截面面积可求;(2)记11ME AC H =,通过线面垂直证明1A HG ∠即为所求的线面角,从而计算出11A C 与平面α所成角的正弦值.【详解】(1)如图截面为矩形EFNM :因为//EF 平面11ADD A ,且平面EFNM平面11ADD A MN =,所以//EF MN , 又因为111111////,==22EF BC AD EF BC AD ,且3DG GA =,所以可知111//,2MN AD MN AD =, 所以//,MN EF MN EF =,所以可知,M N 为棱111,AA A D 的中点, 所以四边形EFNM 为矩形,且112,2EF ME =+==,所以截面EFNM 的面积为22;(2)记11ME AC H =,连接GH ,如图所示:因为//NF AB ,AB ⊥平面11AA D D ,所以NF ⊥平面11AA D D , 又1AG ⊂平面11AA D D ,所以1NF A G ⊥, 由(1)知1//MN AD 且11A D AD ⊥,所以1MN A D ⊥,所以1MN AG ⊥,且MN NF N =,1A G ⊥平面EFNM ,所以11A C 与平面α所成角为1A HG ∠, 因为111222442AG A D ===,111122A H AC ==1111sin 2A G A HG A H ∠==, 所以11A C 与平面α所成角的正弦值为12. 【点睛】方法点睛:求解线面角的正弦值的两种方法:(1)几何法:通过线面垂直的证明,找到线面角,通过长度的比值即可计算线面角的正弦值;(2)向量法:求解出直线的方向向量和平面的法向量,根据直线的方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值求解出结果.22.(1)证明见解析;(263)E 为CC 1的中点时,EA ⊥EB 1. 【分析】(1)证明11,AB BC BC BC ⊥⊥然后证明1C B ⊥平面ABC ;(2)求出ABC S ,求出13C B ,然后求解三棱柱111ABC A B C -的体积;(3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE ,证明1EB ⊥平面ABE ,得到EA ⊥EB 1.【详解】(1)∵BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C∴AB ⊥BC 1在△BCC 1中,由余弦定理得BC =3,则BC 2+BC 2=CC 2,∴BC ⊥BC 1又∵BC ∩AB =B ,且AB ,BC ⊂平面ABC, ∴C 1B ⊥平面ABC .(2)由已知可得S △ABC =12AB ·BC =12×2×1=22由(1)知C 1B ⊥平面ABC ,C 1B =3,所以三棱柱ABC -A 1B 1C 1的体积V =S △ABC ·C 1B =22×3=62. (3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE .∵EA ⊥1EB ,AB ⊥1EB ,AB ∩AE=A ,AB ,AE ⊂平面ABE ,∴1EB ⊥平面ABE .又∵BE ⊂平面ABE ,∴BE ⊥1EB .不妨设CE =x (0<x <2),则C 1E =2x -,在△BCE 中,由余弦定理得BE =221x x +-在△B 1C 1E 中,∠B 1C 1E =120°,由余弦定理得B 1E 2=257x x -+在Rt △BEB 1中,由B 1E 2+BE 2=B 1B 2,得()()222225714x x x x -+++-=, 解得x =1或x =2(舍去).故E 为CC 1的中点时,EA ⊥EB 1.【点睛】关键点点睛:在确定动点位置时,设CE =x (0<x <2),则C 1E =2x -,根据条件,建立关于x 的方程,求解确定动点位置,属于常用方法.23.(I) 证明见解析;2 【分析】(I )取OD 的中点E ,通过证明四边形MNCE 是平行四边形可得MN //EC ,即可证明; (II )可得MDC ∠为异面直线AB 与MD 所成的角(或其补角),连接,AC MC ,求出三角形各边长,即可根据余弦定理求出.【详解】(Ⅰ)证明:取OD 的中点E ,∵M 为OA 的中点 12MEAD ∴, ∵N 为BC 的中点,12NCAD ∴, 12ME NC ∴, ∴四边形MNCE 是平行四边形,∴MN //EC ,∵MN ⊄平面OCD ,EC ⊂平面OCD ,∴MN //平面OC D.(Ⅱ)解://CD ABMDC ∴∠为异面直线AB 与MD 所成的角(或其补角), 连接,AC MC ,1,3AD AB BC ABC π===∠=, 1AC ∴=,M 是OA 的中点,1AM ∴=,OA ⊥平面ABCD ,∴OA ⊥AD ,2MD MC ∴==2cos 4212MDC ∴∠==⨯⨯ 【点睛】 方法点睛:证明线面平行的方法是在平面内找一条直线与已知直线平行,常用的证明线线平行的方法是构造平行四边形或者利用三角形的中位线定理.24.(Ⅰ)证明见解析;(Ⅱ)33 . 【分析】 (Ⅰ)通过证明平面//OFG 平面PAB ,进一步得出结论;(Ⅱ)利用等体积法即1124A PFB A PDB P ABCD V V V ---==,进一步求出答案. 【详解】(Ⅰ)如图,连接OF ,OG ∵O 是BD 中点,F 是PD 中点,∴//OF PB ,而OF ⊂/平面PAB ,PB ⊂平面PAB ,∴//OF 平面PAB ,又∵O 是AC 中点,G 是BC 中点,∴//OG AB ,而OG ⊂/平面PAB ,AB平面PAB ,∴//OG 平面PAB ,又OG OF O =∴平面//OFG 平面PAB ,即//FG 平面PAB .(Ⅱ)∵PD ⊥底面ABCD ,∴PD AO ⊥,又四边形ABCD 为菱形,∴BD AO ⊥,又ADDB D =,∴AO ⊥平面PDB ,而F 为PD 的中点, ∴1111322sin 6022443A PFB A PDB P ABCD V V V ︒---===⨯⨯⨯⨯⨯= 【点睛】本题主要考查立体几何的知识点,属于中档题. 立体几何常用的三种解题方法为: (1)分割法;(2)补形法;(3)等体积法.25.(1)证明见解析;(2)60°.【分析】(1)取AB 中点D ,连结1A D 、DF ,推导出四边形1DFEA 是平行四边形,从而1//A D EF ,由此能证明//EF 平面AA 11B B . (2)取AC 中点H ,连结HF ,则EFH ∠为EF 与面ABC 所成角,由此能求出EF 与平面ABC 所成的角.【详解】(1)取AB 中点D ,连结1A D 、DF ,在ABC ∆中,D 、F 为中点,1//2DF AC =∴, 又11//A C AC ,且11112A E AC =,1//DF A E =∴, ∴四边形1DFEA 是平行四边形,1//A D EF ∴,1A D ∴⊂平面11AA B B ,EF ⊂/平面11AA B B ,//EF ∴平面AA 11B B .(2)取AC 中点H ,连结HF ,1//EH AA ,1AA ⊥面ABC ,EH ∴⊥面ABC ,EFH ∴∠为EF 与面ABC 所成角,在Rt EHF ∆中,3FH =,13EH AA ==,tan 3tan 603HFE ∴∠===︒,60HFE ∴∠=︒,EF ∴与平面ABC 所成的角为60︒.【点睛】本题考查线面平行的证明,考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力、空间想象能力、数形结合思想,是中档题. 26.(1)证明见解析;(2)证明见解析.【分析】(1)连结AC 、BD ,交于点O ,连结OE ,通过//OE PA 即可证明;(2)通过PD BC ⊥, CD BC ⊥可证BC ⊥平面PDC ,即得DE BC ⊥,进而通过DE ⊥平面PBC 得DE PB ⊥,结合EF PB ⊥即证.【详解】证明:(1)连结AC 、BD ,交于点O ,连结OE ,底面ABCD 是正方形,∴O 是AC 中点, 点E 是PC 的中点,//OE PA ∴.OE ⊂平面EDB , PA ⊄平面EDB , ∴//PA 平面EDB .(2)PD DC =,点E 是PC 的中点,DE PC ∴⊥. 底面ABCD 是正方形,侧棱PD ⊥底面ABCD , ∴PD BC ⊥, CD BC ⊥,且 PD DC D ⋂=, ∴BC ⊥平面PDC ,∴DE BC ⊥, 又PC BC C ⋂=,∴DE ⊥平面PBC , ∴DE PB ⊥,EF PB ⊥,EF DE E ⋂=,PB ∴⊥平面EFD .【点睛】本题考查线面平行和线面垂直的证明,属于基础题.。
高中数学必修2立体几何练习题附答案
高中数学必修2立体几何练习题一.单选题(共__小题)1.已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是()A.2B.C.3D.2.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°3.如果棱台的两底面积分别是S,S′,中截面的面积是S0,那么()A.2B.S0=C.2S0=S+S′D.S02=2S"S4.把边长为1的正方形A B C D沿对角线A C折起,构成三棱锥A B C D,则下列命题:①以A、B、C、D四点为顶点的棱锥体积最大值为;②当体积最大时直线B D和平面A B C所成的角的大小为45°;③B、D两点间的距离的取值范围是(0,];④当二面角D-A C-B的平面角为90°时,异面直线B C与A D所成角为45°.其中正确结论个数为()A.4个B.3个C.2个D.1个5、把一个皮球放入如图所示的由8根长均为20c m的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径()A.l0cm B.10cm C.10cm D.30cm6.如图,正方体A B C D-A1B1C1D1的棱长为1,点M是对角线A1B上的动点,则A M+M D1的最小值为()A.B.C.D.27.下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个面互相平行,其余各面都是梯形的多面体是棱台D.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥.8.平行六面体A B C D-A1B1C1D1中A B=1,A D=2,A A1=3,∠B A D=90°,∠B A A1=∠D A A1=60°,则A C1的长为()A.B.C.D.9、如图,正方体A B C D-A1B1C1D1的棱长为2,动点P在对角线B D1上,过点P作垂直于B D1的平面α,记这样得到的截面多边形(含三角形)的周长为y,设B P=x,则当x∈[1,5]时,函数y=f(x)的值域为()A.[2,6]B.[2,18]C.[3,18]D.[3,6]10.一个棱柱为正四棱柱的充要条件是()A.底面是正方形,有两个侧面垂直与底面B.底面是正方形,有两个侧面是矩形C.底面是菱形,且过一个顶点的三条棱两两垂直D.各个面都是矩形的平行六面体二.填空题(共__小题)11.在一个棱长为6的正四面体纸盒内放一个正方体,并且能使正方体在纸盒内任意转动,则正方体的棱长的最大值为______•12.一个圆柱的底面面积是16,侧面展开图是正方形,则该圆柱的侧面积是______.13.若用长度分别为1,1,1,1,x,x的六根笔直的铁棒通过焊接其端点(不计损耗)可以得到两种不同形状的三棱锥形的铁架,则实数x的取值范围是______.14.一平面与正方形的十二条棱所成的角都等于α,则s i n12α=______.15.一个正四棱锥的中截面(过各侧棱中点的截面)的面积为Q,则它的底面边长为______.16.若一个n面体中共有m个面是直角三角形,则称这个n面体的“直度”为.由此可知,四棱锥“直度”的最大值为______.17.在三棱锥P-A B C中,给出下列四个命题:①如果P A⊥B C,P B⊥A C,那么点P在平面A B C内的射影是△A B C的垂心;②如果点P到△A B C的三边所在直线的距离都相等,那么点P在平面A B C 内的射影是△A B C的内心;③如果棱P A和B C所成的角为60?,P A=B C=2,E、F分别是棱P B、A C的中点,那么E F=1;④三棱锥P-A B C的各棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于;⑤如果三棱锥P-A B C的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-a r c c o s.其中正确命题的序号是______.18.若长方体的三个面的面积分别为6c m2,3c m2,2c m2,则此长方体的对角线长为______.19.已知长方体A B C D-A1B1C1D1的体积为216,则四面体A B1C D1与四面体A1B C1D 的重叠部分的体积为______.20.一个长方体共一顶点的三条棱长为1,2,3,则这个长方体对角线的长是______三.简答题(共__小题)21.已知正四棱台两底面边长分别为a和b(a<b).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.22.试构造出一个三棱锥S-A B C,使其四个面中成直角三角形的个数最多,作出图形,指出所有的直角,并证明你的结论.23、已知三棱锥S-A B C的三条侧棱S A、S B、S C两两互相垂直且长度分别为a、b、c,设O为S在底面A B C上的射影.求证:(1)O为△A B C的垂心;(2)O在△A B C内;(3)设S O=h,则++=.参考答案一.单选题(共__小题)1.已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是()A.2B.C.3D.答案:A解析:解:设正四棱台的高为h,斜高为x,由题意可得4••(3+6)x=32+62,∴x=.再由棱台的高、斜高、边心距构成直角梯形、可得h==2,故选A.2.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°答案:C解析:解析:如图,四棱锥P-A B C D中,过P作P O⊥平面A B C D于O,连接A O则A O是A P在底面A B C D上的射影.∴∠P A O即为所求线面角,∵A O=,P A=1,∴c o s∠P A O==.∴∠P A O=45°,即所求线面角为45°.故选C.3.如果棱台的两底面积分别是S,S′,中截面的面积是S0,那么()A.2B.S0=C.2S0=S+S′D.S02=2S"S答案:A解析:解:不妨设棱台为三棱台,设棱台的高为2r,上部三棱锥的高为a,根据相似比的性质可得:消去r,然后代入一个方程,可得2故选A.4.把边长为1的正方形A B C D沿对角线A C折起,构成三棱锥A B C D,则下列命题:①以A、B、C、D四点为顶点的棱锥体积最大值为;②当体积最大时直线B D和平面A B C所成的角的大小为45°;③B、D两点间的距离的取值范围是(0,];④当二面角D-A C-B的平面角为90°时,异面直线B C与A D所成角为45°.其中正确结论个数为()A.4个B.3个C.2个D.1个答案:C解析:解:把边长为1的正方形A B C D沿对角线A C折起,构成三棱锥A B C D,如图所示,则下列命题:①以A、B、C、D四点为顶点的棱锥,当侧面A C D⊥底面A B C时,体积最大值==,正确;②由①可知:当体积最大时直线B D和平面A B C所成的角的大小为∠O B D=45°,正确;③B、D两点间的距离的取值范围是(0,),因此不正确;④当二面角D-A C-B的平面角为90°时,由①可知:异面直线B C与A D所成角为90°,因此不正确.综上可知:只有①②正确.故选:C.5、把一个皮球放入如图所示的由8根长均为20c m的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径()A.l0cm B.10cm C.10cm D.30cm答案:B解析:解:因为底面是一个正方形,一共有四条棱,皮球心距这四棱最小距离是10,∵四条棱距离正方形的中心距离为10,所以皮球的表面与8根铁丝都有接触点时,半径应该是边长的一半∴球的半径是10故选B.6.如图,正方体A B C D-A1B1C1D1的棱长为1,点M是对角线A1B上的动点,则A M+M D1的最小值为()A.B.C.D.2答案:A解析:解:将平面A B A1和平面B C D D1A1放在同一个平面上,如图,则A M+M D1的最小值即为线段A D1,在直角三角形A E D1中,A E=,E D1=,∴A D1==,故选A.7.下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个面互相平行,其余各面都是梯形的多面体是棱台D.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥.答案:B解析:解:如图所示:A.如图(1)符合条件但却不是棱柱;B.图中P A⊥底面A B C,A B是圆O的直径,点C是圆上的一点,则四个面都是直角三角形,符合题意;C.其侧棱不相较于一点,故不是棱台;D.以直角三角形的斜边A B为轴旋转得到的是两个对底的圆锥.综上可知:只有B正确.故选B.8.平行六面体A B C D-A1B1C1D1中A B=1,A D=2,A A1=3,∠B A D=90°,∠B A A1=∠D A A1=60°,则A C1的长为()A.B.C.D.答案:B解析:解:平行六面体,如图所示:∵∠B A A1=∠D A A1=60°∴A1在平面A B C D上的射影必落在直线A C上,∴平面A C C1A1⊥平面A B C D,∵A B=1,A D=2,A A1=3,∵=∴||2=()2=||2+||2+||2+2+2+2=1+9+4+0+2×1×3×+2×2×3×=23,∴||=,∴A C1等于.故选:B.9、如图,正方体A B C D-A1B1C1D1的棱长为2,动点P在对角线B D1上,过点P作垂直于B D1的平面α,记这样得到的截面多边形(含三角形)的周长为y,设B P=x,则当x∈[1,5]时,函数y=f(x)的值域为()A.[2,6]B.[2,18]C.[3,18]D.[3,6]答案:D解析:解:∵正方体A B C D-A1B1C1D1的棱长为2,∴正方体的对角线长为6,∵x∈[1,5],∴x=1或5时,三角形的周长最小,设截面正三角形的边长为t,则由等体积可得,∴t=,∴y m i n=;x=2或4时,三角形的周长最大,截面正三角形的边长为2,∴y m a x=6.∴当x∈[1,5]时,函数y=f(x)的值域为[3,6].故选D.10.一个棱柱为正四棱柱的充要条件是()A.底面是正方形,有两个侧面垂直与底面B.底面是正方形,有两个侧面是矩形C.底面是菱形,且过一个顶点的三条棱两两垂直D.各个面都是矩形的平行六面体答案:C解析:解:若底面是正方形,有相对的两个侧面垂直于底面,另外两个侧面不垂直于底面,则棱柱为斜棱柱,故A不满足要求;若底面是正方形,有相对的两个侧面是矩形,另外两个侧面是不为矩形的平行四边形,则棱柱为斜棱柱,故B不满足要求;底面是菱形,且过一个顶点的三条棱两两垂直,则底面为正方形,侧棱与底面垂直,此时棱柱为正四棱柱,故C满足要求;各个面都是矩形的平行六面体,其底面可能不是正方形,故D不满足要求;故选C二.填空题(共__小题)11.在一个棱长为6的正四面体纸盒内放一个正方体,并且能使正方体在纸盒内任意转动,则正方体的棱长的最大值为______•答案:解析:解:设球的半径为r,由正四面体的体积得:,所以r=,设正方体的最大棱长为a,所以,,a=故答案为:12.一个圆柱的底面面积是16,侧面展开图是正方形,则该圆柱的侧面积是______.答案:64π解析:解:圆柱的侧面展开图是正方形,如图;设圆柱的底面半径为r,高为l,∵圆柱的底面面积是16,∴πr2=16,∴r=;∴l=2πr=2π×=8,∴圆柱的侧面积是l2==64π;故答案为:64π.13.若用长度分别为1,1,1,1,x,x的六根笔直的铁棒通过焊接其端点(不计损耗)可以得到两种不同形状的三棱锥形的铁架,则实数x的取值范围是______.答案:(0,)解析:解:根据条件,四根长为1的直铁棒与两根长为x的直铁棒要组成三棱锥形的铁架,有以下两种情况:①底面是边长为1的正三角形,三条侧棱长为1,x,x,如图,此时x应满足:∵A D=,S D=,且S D<S A+A D,∴<1+,即x2<2+,∴<x<;②构成三棱锥的两条对角线长为x,其他各边长均为1,如图所示,此时应满足0<x<;综上,x的取值范围是(0,).故答案为:(0,).14.一平面与正方形的十二条棱所成的角都等于α,则s i n12α=______.答案:解析:解:∵一平面与正方形的十二条棱所成的角都等于α,∴正方体的面对角线与棱的夹角,∵设正方体的棱长为1,∴A到三角形A B1D1中心的距离为:×=,∴A1点到面A B1D1距离为:=,∴s i nα=∴s i n12α=()6=,故答案为:15.一个正四棱锥的中截面(过各侧棱中点的截面)的面积为Q,则它的底面边长为______.答案:解析:解:∵四棱锥的中截面与底面相似,且相似比为1:2,面积比为1:4,∴若正四棱锥的中截面的面积为Q,则底面面积为4Q,∵底面为正方形,面积为边长的平方,∴它的底面边长为2故答案为216.若一个n面体中共有m个面是直角三角形,则称这个n面体的“直度”为.由此可知,四棱锥“直度”的最大值为______.答案:解析:解:∵四棱锥有5个面组成,∴n=5,当四棱锥的底面是矩形,一条侧棱与底面垂直时,四棱锥的4个侧面都是直角三角形,∴m=4,∴四棱锥“直度”的最大值为,故答案为:.17.在三棱锥P-A B C中,给出下列四个命题:①如果P A⊥B C,P B⊥A C,那么点P在平面A B C内的射影是△A B C的垂心;②如果点P到△A B C的三边所在直线的距离都相等,那么点P在平面A B C 内的射影是△A B C的内心;③如果棱P A和B C所成的角为60?,P A=B C=2,E、F分别是棱P B、A C的中点,那么E F=1;④三棱锥P-A B C的各棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于;⑤如果三棱锥P-A B C的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-a r c c o s.其中正确命题的序号是______.答案:①④⑤解析:解:①若P A⊥B C,P B⊥A C,因为P H⊥底面A B C,所以A H⊥B C,同理B H⊥A C,可得H是△A B C的垂心,正确.②若P A=P B=P C,易得A H=B H=C H,则H是△A B C的外心,不正确.③如果棱P A和B C所成的角为60°,P A=B C=2,E、F分别是棱P B、A C的中点,那么E F=1或;不正确.④如果三棱锥P-A B C的各条棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于,正确.⑤如果三棱锥P-A B C的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-a r c c o s,正确.故答案为:①④⑤.18.若长方体的三个面的面积分别为6c m2,3c m2,2c m2,则此长方体的对角线长为______.答案:解:设长方体的三度分别为:a,b,c,由题意可知:a b=6,b c=2,a c=3所以,a=3,b=2,c=1,所以长方体的对角线长为:故答案为:.19.已知长方体A B C D-A1B1C1D1的体积为216,则四面体A B1C D1与四面体A1B C1D 的重叠部分的体积为______.答案:36解析:解:如图所示,四面体A B1C D1与四面体A1B C1D的重叠部分是以长方体各面中心为定点的多面体,摘出如图,设长方体的过同一顶点的三条棱长分别为a,b,c,则a b c=216,重叠部分的体积为两个同底面的四棱锥体积和,等于.故答案为:36.20.一个长方体共一顶点的三条棱长为1,2,3,则这个长方体对角线的长是______答案:解:因为在长方体中,底面对角线的平方是底面长和宽的平方和,体对角线的平方等于面对角线的平方加上高的平方;长方体对角线的长:故答案为:三.简答题(共__小题)21.已知正四棱台两底面边长分别为a和b(a<b).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.答案:解:(1)如图所示,∵P O⊥平面A B C D,侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,∴∠P A O=45°,∴P O=O A=,P O1=O1A1=a.分别取A B,A1B1的中点E,E1,连接O E,O1E1.则P E==,P E1==.∴斜高E E1=P E-P E1=.∴棱台的侧面积S侧==;(2)∵棱台的侧面积等于两底面面积之和,∴=a2+b2,∴E E1=.∴O O1===.22.试构造出一个三棱锥S-A B C,使其四个面中成直角三角形的个数最多,作出图形,指出所有的直角,并证明你的结论.答案:解:如图,S A⊥平面A B C,∠A B C=90°,则∠S A C=∠S A B=90°,又A B⊥B C,所以B C⊥S B,所以∠S B C=90°,即四个面S A B,S A C,S B C,A B C为直角三角形.23、已知三棱锥S-A B C的三条侧棱S A、S B、S C两两互相垂直且长度分别为a、b、c,设O为S在底面A B C上的射影.求证:(1)O为△A B C的垂心;(2)O在△A B C内;(3)设S O=h,则++=.答案:证明:(1)∵S A⊥S B,S A⊥S C,∴S A⊥平面S B C,B C⊂平面S B C.∴S A⊥B C.而A D是S A在平面A B C上的射影,∴A D⊥B C.同理可证A B⊥C F,A C⊥B E,故O为△A B C的垂心.(2)证明△A B C为锐角三角形即可.不妨设a≥b≥c,则底面三角形A B C中,A B=为最大,从而∠A C B为最大角.用余弦定理求得c o s∠A C B=>0,∴∠A C B为锐角,△A B C为锐角三角形.故O在△A B C内.(3)S B•S C=B C•S D,故S D=,=+,又S A•S D=A D•S O,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何单元测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行.其中正确的命题是()A.①②B.②④C.①③D.②③答案:B2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是() A.平行B.相交C.平行或相交D.不相交解析:由棱台的定义知,各侧棱的延长线交于一点,所以选B.答案:B3.一直线l与其外三点A,B,C可确定的平面个数是()A.1个B.3个C.1个或3个D.1个或3个或4个解析:当A、B、C共线且与l平行或相交时,确定一个平面;当A、B、C共线且与l 异面时,可确定3个平面;当A、B、C三点不共线时,可确定4个平面.答案:D4.若三个平面两两相交,有三条交线,则下列命题中正确的是()A.三条交线为异面直线B.三条交线两两平行C.三条交线交于一点D.三条交线两两平行或交于一点答案:D5.如图,在△ABC中,∠BAC=90°,P A⊥面ABC,AB=AC,D是BC的中点,则图中直角三角形的个数是()A.5 B.8C.10 D.6解析:这些直角三角形是:△P AB,△P AD,△P AC,△BAC,△BAD,△CAD,△PBD,△PCD.共8个.答案:B6.下列命题正确的有()①若△ABC在平面α外,它的三条边所在直线分别交α于P、Q、R,则P、Q、R三点共线.②若三条平行线a、b、c都与直线l相交,则这四条直线共面.③三条直线两两相交,则这三条直线共面.A.0个B.1个C.2个D.3个解析:易知①与②正确,③不正确.答案:C7.若平面α⊥平面β,α∩β=l,且点P∈α,P∉l,则下列命题中的假命题是()A.过点P且垂直于α的直线平行于βB.过点P且垂直于l的直线在α内C.过点P且垂直于β的直线在α内D.过点P且垂直于l的平面垂直于β答案:B8.如右图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM()A.与AC、MN均垂直相交B.与AC垂直,与MN不垂直C.与MN垂直,与AC不垂直D.与AC、MN均不垂直解析:易证AC⊥面BB1D1D,OM⊂面BB1D1D,∴AC⊥OM.计算得OM2+MN2=ON2=5,∴OM⊥MN.答案:A9.(2010·江西高考)如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列四个命题:①过M点有且只有一条直线与直线AB,B1C1都相交;②过M点有且只有一条直线与直线AB,B1C1都垂直;③过M点有且只有一个平面与直线AB,B1C1都相交;④过M点有且只有一个平面与直线AB,B1C1都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③解析:将过点M的平面CDD1C1绕直线DD1旋转任意非零的角度,所得平面与直线AB,B1C1都相交,故③错误,排除A,B,D.答案:C10.已知平面α外不共线的三点A、B、C到α的距离相等,则正确的结论是() A.平面ABC必平行于αB.平面ABC必不垂直于αC.平面ABC必与α相交D.存在△ABC的一条中位线平行于α或在α内解析:排除A、B、C,故选D.答案:D11.(2009·广东高考)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③(1)BD 与CD 的关系为________.(2)∠BAC =________.解析:(1)AB =AC ,AD ⊥BC ,∴BD ⊥AD ,CD ⊥AD ,∴∠BDC 为二面角的平面角,∠BDC =90°,∴BD ⊥DC .(2)设等腰直角三角形的直角边长为a ,则斜边长为2a .∴BD =CD =22a . ∴折叠后BC =⎝⎛⎭⎫22a 2+⎝⎛⎭⎫22a 2=a . ∴折叠后△ABC 为等边三角形.∴∠BAC =60°.答案:(1)BD ⊥CD (2)60°16.在正方体ABCD —A ′B ′C ′D ′中,过对角线BD ′的一个平面交AA ′于E ,交CC ′于F ,则①四边形BFD ′E 一定是平行四边形.②四边形BFD ′E 有可能是正方形.③四边形BFD ′E 在底面ABCD 内的投影一定是正方形.④平面BFD ′E 有可能垂直于平面BB ′D .以上结论正确的为__________.(写出所有正确结论的编号)解析:如图所示:∵BE =FD ′,ED ′=BF ,∴四边形BFD ′E 为平行四边形.∴①正确.②不正确(∠BFD ′不可能为直角).③正确(其射影是正方形ABCD ).④正确.当E 、F 分别是AA ′、CC ′中点时正确.答案:①③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如下图,已知ABCD 是矩形,E 是以CD 为直径的半圆周上一点,且面CDE ⊥面ABCD .求证:CE ⊥平面ADE .证明: ⎭⎪⎬⎪⎫面ABCD ⊥面CED ABCD 为矩形 ⎭⎪⎬⎪⎫⇒AD ⊥面CDE ⇒AD ⊥CE点E 在直径为CD 的半圆上⇒CE ⊥ED 又AD ∩ED =D⇒CE ⊥面ADE .18.(12分)求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形. 已知:如图,三棱锥S —ABC ,SC ∥截面EFGH ,AB ∥截面EFGH .求证:截面EFGH 是平行四边形.证明:∵SC ∥截面EFGH ,SC ⊄平面EFGH ,SC ⊂平面ASC ,且平面ASC ∩平面EFGH =GH , ∴SC ∥GH .同理可证SC ∥EF ,∴GH ∥EF .同理可证HE ∥GF .∴四边形EFGH 是平行四边形.19.(12分)已知正方体ABCD —A 1B 1C 1D 1的棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,如图.(1)求证:MN∥面BB1C1C;(2)求MN的长.解:(1)证明:作NP⊥AB于P,连接MP.NP∥BC,∴APAB=ANAC=A1MA1B,∴MP∥AA1∥BB1,∴面MPN∥面BB1C1C.MN⊂面MPN,∴MN∥面BB1C1C.(2)NPBC=ANAC=23a2a=13,NP=13a,同理MP=23a.又MP∥BB1,∴MP⊥面ABCD,MP⊥PN.在Rt△MPN中MN=49a2+19a2=53a.20.(12分)(2009·浙江高考)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.解:(1)证明:因为P,Q分别为AE,AB的中点,所以PQ∥EB.又DC∥EB,因此PQ∥DC,又PQ⊄平面ACD,从而PQ∥平面ACD.(2)如图,连接CQ,DP,因为Q为AB的中点,且AC=BC,所以CQ⊥AB. 因为DC⊥平面ABC,EB∥DC,所以EB⊥平面ABC,因此CQ⊥EB.故CQ⊥平面ABE.由(1)有PQ∥DC,又PQ=12EB=DC,所以四边形CQPD为平行四边形,故DP∥CQ,因此DP⊥平面ABE,∠DAP为AD和平面ABE所成的角,在Rt△DP A中,AD=5,DP=1,sin∠DAP=5 5,因此AD和平面ABE所成角的正弦值为55.21.(12分)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD 的中点.求证:(1)直线EF∥面ACD.(2)平面EFC⊥平面BCD.证明:(1)在△ABD中,∵E、F分别是AB、BD的中点,∴EF∥AD.又AD⊂平面ACD,EF⊄平面ACD,∴直线EF∥面ACD.(2)在△ABD中,∵AD⊥BD,EF∥AD,∴EF⊥BD.在△BCD中,∵CD=CB,F为BD的中点,∴CF⊥BD.∵CF∩EF=F,∴BD⊥平面EFC,又∵BD⊂平面BCD,∴平面EFC⊥平面BCD.22.(12分)(2010·安徽文)如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求四面体B—DEF的体积.解:(1)证明:设AC与BD交于G,则G为AC中点,连接EG,GH,由于H为BC中点,故GH綊12AB.又∵EF綊12AB,∴EF綊GH,∴四边形EFHG为平行四边形,∴EG∥FH,而EG⊂平面EDB,FH⊄平面EDB,∴FH∥平面EDB.(2)证明:由于四边形ABCD为正方形,∴AB⊥BC,∵EF∥AB,∴EF⊥BC,而EF⊥FB,∴EF⊥平面BFC,∴EF⊥FH,∴AB⊥FH.∵BF=FC,H为BC中点,∴FH⊥BC,∴FH⊥平面ABCD,∴FH⊥AC,∵FH∥EG,∴AC⊥EG.∵AC⊥BD,EG∩BD=G,∴AC⊥平面EDB. (3)∵EF⊥FB,∠BFC=90°,∴BF⊥平面CDEF,∴BF是四面体B—DEF的高,∵BC=AB=2,∴BF=FC= 2.∴V B-DEF=13×12×1×2×2=13.。