人教版八年级复习资料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级复习资料
人教版八年级复习资料一第一章勾股定理
1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。满足的三个正整数称为勾股数。
第二章实数
1.平方根和算术平方根的概念及其性质:
(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。
(2)性质:①当≥0时,≥0;当0)。
人教版八年级复习资料二第三章图形的平移与旋转
1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这点定点称为旋转中心,转动的角称为旋转角。旋转不改变图形大小和形状,改变了图形
的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。
3.作平移图与旋转图。
第四章四边形性质的探索
1.多边形的分类:
2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:
(1)平行四边形:两组对边分别平行的四边形叫做平行四边形。平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
(2)菱形:一组邻边相等的平行四边形叫做菱形。菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。菱形的面积等于两条对角线乘积的一半(面积计算,即s菱形=l1*l2/2)。
(3)矩形:有一个内角是直角的平行四边形叫做矩形。矩形的对角线相等;四个角都是直角。对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。直角三角形斜边上的中线等于斜边长的一半;在直角三角形中30°所对的直角边是斜边的
一半。
(4)正方形:一组邻边相等的矩形叫做正方形。正方形具有平行四边形、菱形、矩形的一切性质。
(5)等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形。
(6)三角形中位线:连接三角形相连两边重点的线段。性质:平行且等于第三边的一半
3.多边形的内角和公式:(n-2)*180°;多边形的外角和都等于。
4.中心对称图形:在平面内,一个图形绕某个点旋转,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。
人教版八年级复习资料三第五章位置的确定
1.直角坐标系及坐标的相关知识。
2.点的坐标间的关系:如果点a、b横坐标相同,则∥轴;如果点a、b纵坐标相同,则∥轴。
3.将图形的纵坐标保持不变,横坐标变为原来的倍,所得到的图形与原图形关于轴对称;将图形的横坐标保持不变,纵坐标变为原来的倍,所得到的图形与原图形关于轴对称;将图形的横、纵坐标都变为原来的倍,所得到的图形与原图形关于原点成中心对称。
第六章一次函数
1.一次函数定义:若两个变量间的关系可以表示成(为常数,)的形式,则称是的一次函数。当时称是的正比例函数。正比例函
数是特殊的一次函数。
2.作一次函数的图象:列表取点、描点、连线,标出对应的函数关系式。
3.正比例函数图象性质:经过;>0时,经过一、三象限;0时,随的增大而增大,图象呈上升趋势;当0,>0时函数图象经过一、二、三象限;>0,0时函数图象经过一、二、四象限;<0,<0时函数图象经过二、三、四象限。
(4)在两个一次函数中,当它们的值相等时,其图象平行;当它们的值不等时,其图象相交;当它们的值乘积为时,其图象垂直。
4.已经任意两点求一次函数的表达式、根据图象求一次函数表达式。
5.运用一次函数的图象解决实际问题。