弹塑性力学 陈明祥版的 课后习题答案++汇总

合集下载

弹塑性力学习题答案

弹塑性力学习题答案

弹塑性力学习题答案弹塑性力学习题答案弹塑性力学是力学中的一个重要分支,研究物体在外力作用下的弹性变形和塑性变形。

通过学习弹塑性力学,我们可以更好地理解材料的变形行为以及结构的稳定性。

下面是一些弹塑性力学学习题的答案,希望对大家的学习有所帮助。

1. 什么是弹性变形和塑性变形?弹性变形是指物体在外力作用下发生的可逆变形,当外力撤除后,物体可以恢复到原来的形状。

而塑性变形是指物体在外力作用下发生的不可逆变形,即使外力撤除,物体也无法完全恢复到原来的形状。

2. 什么是弹性模量和塑性模量?弹性模量是衡量物体抵抗弹性变形的能力的物理量,记作E。

它的单位是帕斯卡(Pa)。

弹性模量越大,物体越难发生弹性变形。

塑性模量是衡量物体抵抗塑性变形的能力的物理量,记作G。

它的单位也是帕斯卡(Pa)。

塑性模量越大,物体越难发生塑性变形。

3. 什么是屈服点和屈服强度?屈服点是指物体在外力作用下发生塑性变形的临界点,即当外力超过一定程度时,物体开始发生塑性变形。

屈服强度是指物体在屈服点处所承受的最大外力,也就是物体开始发生塑性变形时的外力大小。

4. 什么是弹性极限和断裂强度?弹性极限是指物体在外力作用下能够恢复到原来形状的最大外力,也就是物体发生弹性变形的临界点。

断裂强度是指物体在外力作用下发生断裂的最大外力,也就是物体完全破坏的外力大小。

5. 什么是杨氏模量和泊松比?杨氏模量是衡量物体在弹性变形时应力和应变之间关系的物理量,记作Y。

它的单位是帕斯卡(Pa)。

杨氏模量越大,物体越难发生弹性变形。

泊松比是衡量物体在受到外力作用时,横向收缩相对于纵向伸长的比例关系的物理量,记作ν。

它是一个无单位的数值,通常在0和0.5之间。

泊松比越大,物体在受到外力作用时横向收缩的程度越大。

这些弹塑性力学学习题的答案只是对相关概念的简单解释,实际的弹塑性力学问题可能更加复杂。

在解决实际问题时,我们需要综合运用弹塑性力学的理论知识,并结合实际情况进行分析和计算。

弹塑性力学习题集_很全有答案_

弹塑性力学习题集_很全有答案_
态。
题 2—13 图
题 2—14 图
2—14* 如题 2—14 图所示的变截面杆,受轴向拉伸载荷 P 作用,试确定杆体两侧外 表面处应力 σ z (横截面上正应力)和在材料力学中常常被忽
略的应力 σ x 、 τ zx 之间的关系。 2—15 如题 2—15 图所示三角形截面水坝,材料的比重 为 γ ,水的比重为 γ 1 ,已求得其应力解为: σ x = ax + by ,
2—42 如题 2—42 图所示的圆截面杆扭转时得到的应变分量为: ε x = ε y = ε z = γ xy = 0,
γ zy = θ x, γ zx = −θ y 。试检查该应变是否满足变形连续性条件,并求位移分量 u、v、w。设
在原点处 u 0 = v 0 = w0 = 0, dz 在 xoz 和 yoz 平面内没有转动,dx 在 xoy 平面内没有转动。
弹塑性力学习题
第二章 应力理论·应变理论
2—1 试用材料力学公式计算:直径为 1cm 的圆杆,在轴向拉力 P = 10KN 的作用下杆 横截面上的正应力 σ 及与横截面夹角 α = 30° 的斜截面上的总应力 Pα 、正应力 σ α 和剪应力
τ α ,并按弹塑性力学应力符号规则说明其不同点。 2—2 试用材料力学公式计算:题 2—2 图所示单元体主应力和主平面方位(应力单位 MPa) ,并表示在图上。说明按弹塑性力学应力符号规则有何不同。
题 2—41 图
题 2—42 图
第三章 弹性变形·塑性变形·本构方程
试证明在弹性变形时,关于一点的应力状态,下式成立。 1 (1) γ 8 = τ 8 ; (2) σ = kε (设ν = 0.5 ) G 3—2* 试以等值拉压应力状态与纯剪切应力状态的关系, 由应变能公式证明 G、 E、 ν之 间的关系为: 1 G= 2(1 + ν ) 1 1 3—3* 证明:如泊松比ν = ,则 G = E , λ → ∞ , k → ∞ , e = 0 ,并说明此时上述 2 3 各弹性常数的物理意义。 3—4* 如设材料屈服的原因是形状改变比能(畸形能)达到某一极值时发生,试根据 单向拉伸应力状态和纯剪切应力状态确定屈服极限 σ s 与 τ s 的关系。 3—5 试依据物体单向拉伸侧向不会膨胀,三向受拉体积不会缩小的体积应变规律来 1 证明泊松比ν 的上下限为: 0 < ν < 。 2 2 3—6* 试由物体三向等值压缩的应力状态来推证:K = λ + G 的关系, 并验证是否与 3 E K= 符合。 3(1 − 2v) 3—7 已知钢材弹性常数 E1 = 210Gpa,v1 = 0.3, 橡皮的弹性常数 E 2 =5MPa,v 2 = 0.47, 试比较它们的体积弹性常数(设 K1 为钢材,K2 为橡皮的体积弹性模量) 。 3—8 有一处于二向拉伸应力状态下的微分体( σ 1 ≠ 0, σ 2 ≠ 0, σ 3 = 0 ) ,其主应变

弹塑性力学习题及答案

弹塑性力学习题及答案

.本教材习题和参考答案及部分习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。

答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。

2.2证明:若ijji a a =,则0ijk jk e a =。

(需证明)2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。

弹塑性力学习题答案

弹塑性力学习题答案

第二章 习题解答2-1解:已知 0,0,===-==y x xy y xf f q τσσ1)⎪⎪⎩⎪⎪⎨⎧+∂∂+∂∂+∂∂+∂∂xy y yxx x y yx τστσ23()()⎩⎨⎧++s xy y s yx x l m m l σστστσ 有:lq t x -=代入(*4理、几何方程得:E x u x ==∂∂ε11E y v y ==∂∂ε0==∂∂+∂∂xy yux v γ ()()⇒=+∴0dyy df dx x dg 类似于教材题2-3,可求出 ()()wx v x g wy u y f +=-=00,001;1v wx qy Ev u wy qx Eu ++--=+---=∴υυ从v u ,表达式可见,位移分量是坐标的单值函数,满足位移单值条件。

综合1)~4),。

q xy y x 为问题的正确解答0,=-==τσσ2-2x =σxy τ注意:y x ,代入均满足。

2)验证相容方程:0)(2=+∇y x σσ 亦满足。

3)验证应力边界条件: i) 主要边界:()0,2=±=h y yx yτσ满足ii) 次要边界:()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰-=-=-=222222320)1(0h h lx xy h h l x x h h l x x Pdy ydy dy τσσ (1)、(2)满足,(3)式左=⎰-===⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-223332212*41*618218hh P h I P h h I P dy y h I P 右 结论:所列xy y x τσσ,,满足平衡方程、相容方程;在主要边界上严格满足应力边界条件,次要边界近似满足应力边界条件,又为单连体,故在圣维南原理的前提下为问题的正确解。

2-3、证明:1)由,,yVf xV fy x∂∂-=∂∂-=则平衡微分方程为: ()()⎪⎪⎩⎪⎪⎨⎧=∂τ∂+∂-σ∂=∂τ∂+∂-σ∂⇒⎪⎪⎩⎪⎪⎨⎧=∂∂-∂τ∂+∂σ∂=∂∂-∂τ∂+∂σ∂0x y V 0yx V 0y V x y 0x V y x yx y xyx yx y xy x (*) 类似于题2-10的推证过程,(*)式的通解为:y x x V yV 2xy 22y 22x ∂∂ϕ∂-=τ∂ϕ∂=-σ∂ϕ∂=-σ;;即: yx V xV y2xy 22y 22x ∂∂ϕ∂-=τ+∂ϕ∂=σ+∂ϕ∂=σ;;2) 对于平面应力问题,相容方程为:()()⎪⎪⎭⎫⎝⎛∂∂+∂∂+-=+∇y f x f y x y xυσσ12即:2222 2-4、x, y n l σσ2==2l 应力主向成∴l σn3-3、解: 1由x=0得: 2由 得: Fx Ex Cx Bx Ax y ++++=∴注:公式中已略去ϕ中与应力分量无关的一次项和常数项。

弹塑性力学 陈明祥版的 课后习题答案

弹塑性力学 陈明祥版的 课后习题答案

0 1
0 0
0 0 1
(I-17)
4.张量的基本运算
A、张量的加减:
张量可以用矩阵表示,称为张量矩阵,如:
a11 a12 a13
aij a21
a22
a23
a31 a32 a33
(I-19)
凡是同阶的两个或几个张量可以相加(或相减), 并得到同阶的张量,它的分量等于原来张量中标号 相同的诸分量之代数和。 即:
(I-2)
3
aib j j aib j j ai1b1ai2b2ai3b3 j1
33
aijbicj
aijbicj
i1 j1
a 1b 1 c 1 a 1b 2 1 c 2 a 1b 3 1 c 3
a 2b 1 2 c 1 a 2b 2 c 2 a 3b 3 2 c 3
a 3b 3 1 c 1 a 3b 2 3 c 2 a 3b 3 c 3
2uz xj xk
(I-25 )
4.张量的分解
张量一般是非对称的。若张量 aij的分量满足
aij a ji
(I-27)
则 aij 称为对称张量。 如果 的分aij量满足
aij aji
(I-28)
则称为反对称张量。显然反对称张量中标号重复的
分量(也即主对角元素)为零,即 a11a22。a330
◆ 法国科学家库伦(C.A.Corlomb1773年)、 屈雷斯卡(H.Tresca1864年)、 圣文南和莱 ( M.Levy ) 波兰力学家胡勃(M.T.Houber 1904年)、 米塞斯(R.von Mises1913年)、 普朗特(L.Prandtl 1924) 罗伊斯(A.Reuss 1930)、享奇 (H.Hencky)、 纳戴(A.L.Nadai) 、伊留申(A.A.Ииьющин)

弹塑性力学习题集很全有答案

弹塑性力学习题集很全有答案

直边及斜边上的边界条件,确定常数 a、b、c、d。
2—16* 已知矩形截面高为 h,宽为 b 的梁受弯曲时的正
应力σ z
=
My J
=
12M bh 3
y ,试求当非纯弯时横截面上的剪应力公
式。(利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0
2—17
已知一点处的应力张量为: σ ij
=
6
10
题 2—4 图
2—5* 如题 2—5 图,刚架 ABC 在拐角 B 点处受 P 力,已知刚架的 EJ,求 B、C 点的 转角和位移。(E 为弹性模量、J 为惯性矩)
2—6 悬挂的等直杆在自重 W 的作用下如题 2—6 图所示。材料比重为 γ ,弹性模量为 E,横截面积为 A。试求离固定端 z 处一点 c 的应变 ε z 与杆的总伸长 ∆l 。
P8 ,正应力 σ 8 ,剪应力τ 8 。 2—25 试求各主剪应力τ1 、τ 2 、τ 3 作用面上的正应力。 2—26* 用应力圆求下列(a)、(b) 图示应力状态的主应力及最大剪应力,并讨论若(b)
图中有虚线所示的剪应力τ ′ 时,能否应用平面应力圆求解。
题 2—26 图
2—27* 试求:如(a) 图所示,ABC 微截面与 x、y、z 轴等倾斜,但τ xy ≠ 0, τ yz ≠ 0, τ zx ≠ 0, 试问该截面是否为八面体截面?如图(b) 所示,八面体各截面上的τ 8 指向是否垂直棱边?
题 2—13 图
题 2—14 图
2—14* 如题 2—14 图所示的变截面杆,受轴向拉伸载荷 P 作用,试确定杆体两侧外
表面处应力 σ z (横截面上正应力)和在材料力学中常常被忽 略的应力 σ x 、τ zx 之间的关系。

弹塑性力学习题集_很全有答案_

弹塑性力学习题集_很全有答案_

题 2—41 图
题 2—42 图
第三章 弹性变形·塑性变形·本构方程
试证明在弹性变形时,关于一点的应力状态,下式成立。 1 (1) γ 8 = τ 8 ; (2) σ = kε (设ν = 0.5 ) G 3—2* 试以等值拉压应力状态与纯剪切应力状态的关系, 由应变能公式证明 G、 E、 ν之 间的关系为: 1 G= 2(1 + ν ) 1 1 3—3* 证明:如泊松比ν = ,则 G = E , λ → ∞ , k → ∞ , e = 0 ,并说明此时上述 2 3 各弹性常数的物理意义。 3—4* 如设材料屈服的原因是形状改变比能(畸形能)达到某一极值时发生,试根据 单向拉伸应力状态和纯剪切应力状态确定屈服极限 σ s 与 τ s 的关系。 3—5 试依据物体单向拉伸侧向不会膨胀,三向受拉体积不会缩小的体积应变规律来 1 证明泊松比ν 的上下限为: 0 < ν < 。 2 2 3—6* 试由物体三向等值压缩的应力状态来推证:K = λ + G 的关系, 并验证是否与 3 E K= 符合。 3(1 − 2v) 3—7 已知钢材弹性常数 E1 = 210Gpa,v1 = 0.3, 橡皮的弹性常数 E 2 =5MPa,v 2 = 0.47, 试比较它们的体积弹性常数(设 K1 为钢材,K2 为橡皮的体积弹性模量) 。 3—8 有一处于二向拉伸应力状态下的微分体( σ 1 ≠ 0, σ 2 ≠ 0, σ 3 = 0 ) ,其主应变
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。

弹塑性力学作业(含答案)(1)

弹塑性力学作业(含答案)(1)

第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。

解:在右图示单元体上建立xoy 坐标,则知 σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定)代入材力有关公式得:3030cos 2sin 2221041041cos 602sin 607322226.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()2x yx yxy x yxy MPa MPa σσσσσατασστατα+-=+----+=++=--⨯+=----+=⋅+=⋅-=--⨯=--代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +23030()cos 2sin 2221041041cos 602sin 607322226.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()22x yx yxy x yxy MPa MPa σσσσσατασστατα+-=++---+=++=--⨯+=----+=-⋅+=-⋅+=⨯+⨯=由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。

2—6. 悬挂的等直杆在自重W 作用下(如图所示)。

材料比重为γ弹性模量为 E ,横截面面积为A 。

试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。

解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:c 截面的内力:N z =γ·A ·z ;c 截面上的应力:z z N A zz A Aγσγ⋅⋅===⋅; 所以离下端为z 处的任意一点c 的线应变εz 为:题图1-3zz zE Eσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22z z z z z z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆=== ;(W=γAl )2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。

弹塑性力学陈明祥版课后习题答案++

弹塑性力学陈明祥版课后习题答案++
弹塑性力学
第一章 绪 论
一、 学科分类 ·弹塑性力学 二、 弹塑性力学的研究对象 三、 弹塑性力学的基本思路与研究方法 四、 弹塑性力学的基本任务 五、 弹塑性力学基本假设 六、 弹塑性力学发展概况 七、张量概念及其基本运算
一、学科分类 ·弹塑性力学
1、学科分类
按运动与否分:
静力学:研究力系或物体的平衡问题,不涉及 物体运动状态的改变;如飞机停在地 面或巡航。
◆ 法国科学家库伦(C.A.Corlomb1773年)、 屈雷斯卡(H.Tresca1864年)、 圣文南和莱 ( M.Levy ) 波兰力学家胡勃(M.T.Houber 1904年)、 米塞斯(R.von Mises1913年)、 普朗特(L.Prandtl 1924) 罗伊斯(A.Reuss 1930)、享奇 (H.Hencky)、 纳戴(A.L.Nadai) 、伊留申(A.A.Ииьющин)
建立起普 遍适用的理 论与解法。
1、涉及数学理论较复杂,并以其理论与解
法的严密性和普遍适用性为特点;
2、弹塑性的工程解答一般认为是精确的;
3、可对初等力学理论解答的精确度和可靠
进行度量。
四、 弹塑性力学的基本任务
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
阐明了应力、应变的概念和理论; 弹性力学和弹塑性力学的基本理论框架 得以确立。
七、张量概念及其基本运算(附录一)
1、张量概念

弹塑性力学 陈明祥版的 课后习题答案++ppt课件

弹塑性力学 陈明祥版的 课后习题答案++ppt课件
◆ 分析研究物理现象的方法和工具的选用与人们 当时对客观事物的认识水平有关,会影响问题 的求解与表述。
.
◆ 所有与坐标系选取无关的量,统称为物理恒量。
◆ 在一定单位制下,只需指明其大小即足以被说明
的物理量,统称为标量。例如温度、质量、功等。
◆ 在一定单位制下,除指明其大小还应指出其方向
的物理量,称为矢量。例如速度、加速度等。
进行度量。
四、 弹塑性力学的基本任务 .
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
◆ 法国科学家库伦(C.A.Corlomb1773. 年)、 屈雷斯卡(H.Tresca1864年)、 圣文南和莱 ( M.Levy ) 波兰力学家胡勃(M.T.Houber 1904年)、 米塞斯(R.von Mises1913年)、 普朗特(L.Prandtl 1924) 罗伊斯(A.Reuss 1930)、享奇 (H.Hencky)、 纳戴(A.L.Nadai) 、伊留申(A.A.Ииьющин)
弹塑性力学 .
陈明祥
中国地质大学 力学教研室
第一章 绪 论
.
一、 学科分类 ·弹塑性力学 二、 弹塑性力学的研究对象 三、 弹塑性力学的基本思路与研究方法 四、 弹塑性力学的基本任务
五、 弹塑性力学基本假设 六、 弹塑性力学发展概况 七、张量概念及其基本运算
一、学科分类 ·弹塑性力学.
1、学科分类
◆ 固体力学:研究对象是可变形固体。研究材料

应用弹塑性力学习题解答

应用弹塑性力学习题解答

应⽤弹塑性⼒学习题解答应⽤弹塑性⼒学习题解答⽬录第⼆章习题答案设某点应⼒张量的分量值已知,求作⽤在过此点平⾯上的应⼒⽮量,并求该应⼒⽮量的法向分量。

解该平⾯的法线⽅向的⽅向余弦为⽽应⼒⽮量的三个分量满⾜关系⽽法向分量满⾜关系最后结果为利⽤上题结果求应⼒分量为时,过平⾯处的应⼒⽮量,及该⽮量的法向分量及切向分量。

解求出后,可求出及,再利⽤关系可求得。

最终的结果为已知应⼒分量为,其特征⽅程为三次多项式,求。

如设法作变换,把该⽅程变为形式,求以及与的关系。

解求主⽅向的应⼒特征⽅程为式中:是三个应⼒不变量,并有公式代⼊已知量得为了使⽅程变为形式,可令代⼊,正好项被抵消,并可得关系代⼊数据得,,已知应⼒分量中,求三个主应⼒。

解在时容易求得三个应⼒不变量为,,特征⽅程变为求出三个根,如记,则三个主应⼒为记已知应⼒分量,是材料的屈服极限,求及主应⼒。

解先求平均应⼒,再求应⼒偏张量,,,,,。

由此求得然后求得,,解出然后按⼤⼩次序排列得到,,已知应⼒分量中,求三个主应⼒,以及每个主应⼒所对应的⽅向余弦。

解特征⽅程为记,则其解为,,。

对应于的⽅向余弦,,应满⾜下列关系(a)(b)(c)由(a),(b)式,得,,代⼊(c)式,得,由此求得对,,代⼊得对,,代⼊得对,,代⼊得当时,证明成⽴。

解由,移项之得证得第三章习题答案取为弹性常数,,是⽤应变不变量表⽰应⼒不变量。

解:由,可得,由,得物体内部的位移场由坐标的函数给出,为,,,求点处微单元的应变张量、转动张量和转动⽮量。

解:⾸先求出点的位移梯度张量将它分解成对称张量和反对称张量之和转动⽮量的分量为,,该点处微单元体的转动⾓度为电阻应变计是⼀种量测物体表⾯⼀点沿⼀定⽅向相对伸长的装置,同常利⽤它可以量测得到⼀点的平⾯应变状态。

如图所⽰,在⼀点的3个⽅向分别粘贴应变⽚,若测得这3个应变⽚的相对伸长为,,,,求该点的主应变和主⽅向。

解:根据式先求出剪应变。

考察⽅向线元的线应变,将,,,,,代⼊其中,可得则主应变有解得主应变,,。

弹塑性力学习题集很全有答案

弹塑性力学习题集很全有答案

cxy cy 2
0 0
0
0 0
axy 2
(2)
ε ij
=
0
1 2
(ax 2
+
by 2 )
0 ax 2 y 1 (az 2 + by 2 ) 2
1
2 1
2
(ax 2 (az 2
+ +
by
2
)
by 2 )
0
c(x 2 + y 2 ) (3) ε ij = cxyz
cxyz cy 2 x
0 0
2—35* 已知物体中一点的应变分量为
10 4 − 2
ε ij
=
4
5
3
×
10
−4
− 2 3 − 1
试确定主应变及最大主应变的方向。 2—36* 某一应变状态的应变分量 γ xy 和 γ yz =0,试证明此条件能否表示 ε x 、ε y 、ε z 中
之一为主应变? 2—37 已知下列应变状态是物体变形时产生的:
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为:
εz
=
γz E
,
εx
=εy
=
− νγz E
;
γ xy = γ yz = γ zx = 0;
试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
2—42 如题 2—42 图所示的圆截面杆扭转时得到的应变分量为:ε x = ε y = ε z = γ xy = 0,
题 2—27 图
2—28 设一物体的各点发生如下的位移:
u = a0 + a1x + a2 y + a3 z v = b0 + b1x + b2 y + b3 z w = c0 + c1x + c2 y + c3 z 式中 a0 L, a1 L, a2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阐明了应力、应变的概念和理论; 弹性力学和弹塑性力学的基本理论框架 得以确立。
七、张量概念及其基本运算(附录一)
1、张量概念
◆ 张量分析是研究固体力学、流体力学及连续介 质力学的重要数学工具 。
◆ 张量分析具有高度概括、形式简洁的特点。
◆ 任一物理现象都是按照一定的客观规律进行的, 它们是不以人们的意志为转移的。
静力学:研究力系或物体的平衡问题,不涉及 物体运动状态的改变;如飞机停在地 面或巡航。
运动学:研究物体如何运动,不讨论运动与受 力的关系; 如飞行轨迹、速度、 加速度。
动力学:研究力与运动的关系。 如何提供加速度?
● 按研究对象分:
◆ 一般力学: 研究对象是刚体。研究力及其与
运动的关系。分支学科有理论力学,分析力学等。
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所 占有的全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内 部各点处,以及每一点处各个方向上的 物理性质相同。
(3)力学模型的简化假设: (A)完全弹性假设 ; (B)弹塑性假设。
⑷ 几何假设——小变形条件
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定: (A)在弹塑性体产生变形后建立平衡方程时,可以
◆ 分析研究物理现象的方法和工具的选用与人们 当时对客观事物的认识水平有关,会影响问题 的求解与表述。
◆ 所有与坐标系选取无关的量,统称为物理恒量。
◆ 在一定单位制下,只需指明其大小即足以被说明
的物理量,统称为标量。例如温度、质量、功等。
◆ห้องสมุดไป่ตู้在一定单位制下,除指明其大小还应指出其方向
的物理量,称为矢量。例如速度、加速度等。
二、 弹塑性力学的研究对象
在研究对象上,材料力学的研究对象是固 体,且基本上是各种杆件,即所谓一维构件。
弹塑性力学研究对象也是固体,是不受 几何尺寸与形态限制的能适应各种工程技术 问题需求的物体。
造成两者间这种差异的根本原因是什么呢?
三、弹塑性力学的基本思路与研究方法
1、弹塑性力学分析问题的基本思路
按应用领域分:
有飞行力学、船舶结构力学、岩土力学、量 子力学等。
2、弹塑性力学
弹塑性力学是固体力学的一个重要分支 学科,是研究可变形固体受到外荷载或温度 变化等因素的影响而发生的应力、应变和位 移及其分布规律的一门科学,是研究固体在 受载过程中产生的弹性变形和塑性变形阶段 这两个紧密相连的变形阶段力学响应的一门 科学。
◆ 固体力学:研究对象是可变形固体。研究材料
变形、流动和断裂时的力学响应。其分支学科有: 材料力学、结构力学、弹性力学、 塑性力学、 弹塑性力学、断裂力学、流变学、疲劳等。
◆ 流体力学:研究对象是气体或液体。涉及到:
水力学、空气动力学等学科。
按研究手段分:(理论分析、实验和数值计算)
有实验力学、计算力学二个方面的分支。
◆ 绝对标量只需一个量就可确定,而绝对矢量则需
三个分量来确定。
◆ 若我们以r表示维度,以n表示幂次,则关于三维
空间,描述一切物理恒量的分量数目可统一地表 示成:
◆ 法国科学家库伦(C.A.Corlomb1773年)、 屈雷斯卡(H.Tresca1864年)、 圣文南和莱 ( M.Levy ) 波兰力学家胡勃(M.T.Houber 1904年)、 米塞斯(R.von Mises1913年)、 普朗特(L.Prandtl 1924) 罗伊斯(A.Reuss 1930)、享奇 (H.Hencky)、 纳戴(A.L.Nadai) 、伊留申(A.A.Ииьющин)
建立起普 遍适用的理 论与解法。
1、涉及数学理论较复杂,并以其理论与解
法的严密性和普遍适用性为特点;
2、弹塑性的工程解答一般认为是精确的;
3、可对初等力学理论解答的精确度和可靠
进行度量。
四、 弹塑性力学的基本任务
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
弹塑性力学与材料力学同属固体力学的 分支学科,它们在分析问题解决问题的基本 思路上都是一致的,但在研究问题的基本方 法上各不相同。其基本思路如下:
(1) 受力分析及静力平衡条件 (力的分析)
物体受力作用处于平衡状态,应当满足的条件 是什么?(静力平衡条件)
(2) 变形的几何相容条件 (几何分析)
材料是均匀连续的,在受力变形后仍应是连续 的。固体内既不产生“裂隙”,也不产生“重叠 ”, 此时材料变形应满足的条件是什么?(几何相 容条件)
(3) 力与变形间的本构关系 (物理分析)
固体材料受力作用必然产生相应的变形。 不同的材料,不同的变形,就有相应不同的 物理关系。
◆ 弹塑性力学研究问题的基本方法
以受力物 体内某一 点(单元 体)为研 究对象
单元体的受力—— 应力理论;
单元体的变形—— 变形几何理论;
单元体受力与变形
间的关系——本构理 论;
不考虑因变形而引起的力作用线方向的改变; (B)在研究问题的过程中可以略去相关的二次及二
次以上的高阶微量;
从而使得平衡条件与几何变形条件线性化。
六、弹塑性力学发展概况
◆ 1678年英国科学家虎克(R.Hooke)提出 了固体材 料的弹性变形与所受外力成正比——虎克定律。
◆ 19世纪20年代,法国科学家纳维叶 ( C.L.M.H.Navier )、柯西 ( A.L.Cauchy )和 圣文南 ( A.J.C.B.Saint Venant ) 等建立了 弹性力学的理论基础。
弹塑性力学
陈明祥
中国地质大学 力学教研室
第一章 绪 论
一、 学科分类 ·弹塑性力学 二、 弹塑性力学的研究对象 三、 弹塑性力学的基本思路与研究方法 四、 弹塑性力学的基本任务 五、 弹塑性力学基本假设 六、 弹塑性力学发展概况 七、张量概念及其基本运算
一、学科分类 ·弹塑性力学
1、学科分类
按运动与否分:
相关文档
最新文档