2017高考数学真题导数专题

合集下载

2017年全国各地高考数学分类汇编8-导数

2017年全国各地高考数学分类汇编8-导数

2017年全国各地高考数学分类汇编8-导数一、选择题(共3小题;共15分)1. 已知奇函数 f (x ) 在 R 上是增函数,g (x )=xf (x ).若 a =g (−log 25.1),b =g (20.8),c =g (3),则 a ,b ,c 的大小关系为 ( ) A. a <b <c B. c <b <a C. b <a <c D. b <c <a2. 若 x =−2 是函数 f (x )=(x 2+ax −1)e x−1 的极值点,则 f (x ) 的极小值为 ( ) A. −1B. −2e −3C. 5e −3D. 13. 函数 y =f (x ) 的导函数 y =fʹ(x ) 的图象如图所示,则函数 y =f (x ) 的图象可能是 ( )A. B.C. D.二、填空题(共6小题;共30分)4. 设 f (x ) 是定义在 R 上且周期为 1 的函数,在区间 [0,1) 上,f (x )={x 2,x ∈Dx,x ∉D ,其中集合 D ={x∣ x =n−1n,n ∈N ∗},则方程 f (x )−lgx =0 的解的个数是 .5. 已知函数 f (x )=x 3−2x +e x −1ex ,其中 e 是自然对数的底数.若 f (a −1)+f (2a 2)≤0.则实数 a 的取值范围是 .6. 已知 a ∈R ,设函数 f (x )=ax −lnx 的图象在点 (1,f (1)) 处的切线为 l ,则 l 在 y 轴上的截距为 .7. 曲线 y =x 2+1x 在点 (1,2) 处的切线方程为 .8. 如图,圆形纸片的圆心为 O ,半径为 5 cm ,该纸片上的等边三角形 ABC 的中心为 O .D ,E ,F 为圆 O 上的点,△DBC ,△ECA ,△FAB 分别是以 BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以 BC ,CA ,AB 为折痕折起 △DBC ,△ECA ,△FAB ,使得 D ,E ,F 重合,得到三棱锥.当 △ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为 .9. 若函数 e x f (x )(e ≈2.71828⋯ 是自然对数的底数)在 f (x ) 的定义域上单调递增,则称函数 f (x ) 具有 M 性质.下列函数中所有具有 M 性质的函数的序号为 . ① f (x )=2−x ② f (x )=3−x ③ f (x )=x 3 ④ f (x )=x 2+2.三、解答题(共15小题;共195分)10. 已知函数 f (x )=(x −√2x −1)e −x (x ≥12).(1)求 f (x ) 的导函数; (2)求 f (x ) 在区间 [12,+∞) 上的取值范围.11. 设函数 f (x )=(1−x 2)e x .(1)讨论 f (x ) 的单调性; (2)当 x ≥0 时,f (x )≤ax +1,求 a 的取值范围.12. 设 A ,B 为曲线 C :y =x 24 上两点,A 与 B 的横坐标之和为 4.(1)求直线 AB 的斜率;(2)设 M 为曲线 C 上一点,C 在 M 处的切线与直线 AB 平行,且 AM ⊥BM ,求直线 AB 的方程.13. 已知函数 f (x )=x 3+ax 2+bx +1(a >0,b ∈R ) 有极值,且导函数 fʹ(x ) 的极值点是 f (x ) 的零点(极值点是指函数取极值时对应的自变量的值). (1)求 b 关于 a 的函数关系式,并写出定义域; (2)证明:b 2>3a ; (3)若 f (x ),fʹ(x ) 这两个函数的所有极值之和不小于 −72,求 a 的取值范围.14. 设 a ∈Z ,已知定义在 R 上的函数 f (x )=2x 4+3x 3−3x 2−6x +a 在区间 (1,2) 内有一个零点x 0,g (x ) 为 f (x ) 的导函数. (1)求 g (x ) 的单调区间;(2)设 m ∈[1,x 0)∪(x 0,2],函数 ℎ(x )=g (x )(m −x 0)−f (m ),求证:ℎ(m )ℎ(x 0)<0; (3)求证:存在大于 0 的常数 A ,使得对于任意的正整数 p ,q ,且 pq ∈[1,x 0)∪(x 0,2],满足 ∣∣∣p q −x 0∣∣∣≥1Aq 4.15. 已知函数 f (x )=x −1−alnx .(1)若 f (x )≥0,求 a 的值;(2)设 m 为整数,且对于任意正整数 n ,(1+12)(1+122)⋯(1+12n )<m ,求 m 的最小值.16. 设 a,b ∈R ,∣a ∣≤1.已知函数 f (x )=x 3−6x 2−3a (a −4)x +b ,g (x )=e x f (x ).(1)求f(x)的单调区间;(2)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0−1,x0+1]上恒成立,求b的取值范围.17. 已知函数f(x)=e x(e x−a)−a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.18. 已知函数f(x)=x2+2cosx,g(x)=e x(cosx−sinx+2x−2),其中e≈2.17828⋯是自然对数的底数.(1)求曲线y=f(x)在点(π,f(π))处的切线方程;(2)令ℎ(x)=g(x)−af(x)(a∈R),讨论ℎ(x)的单调性并判断有无极值,有极值时求出极值.19. 已知函数f(x)=lnx+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤−34a−2.20. 已知函数f(x)=13x3−12ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x−a)cosx−sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.21. 已知函数f(x)=ae2x+(a−2)e x−x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.22. 已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N∗),证明:当n∈N∗时,(1)0<x n+1<x n;(2)2x n+1−x n≤x n x n+12;(3)12n−1≤x n≤12n−2.23. 在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,椭圆C截直线y=1所得线段的长度为2√2.(1)求椭圆C的方程;(2)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M%..点N是M关于O的对称点,⊙N的半径为∣NO∣.设D为AB的中点,DE,DF与⊙N分别相切于点E,F%,,求∠EDF的最小值.24. 如图,已知抛物线x2=y,点A(−12,14),B(32,94),抛物线上的点P(x,y)(−12<x<32),过点B作直线AP的垂线,垂足为Q.(1)求直线AP斜率的取值范围;(2)求∣PA∣⋅∣PQ∣的最大值.答案第一部分1. C 【解析】奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且fʹ(x)>0,所以g(x)=xf(x),则gʹ(x)=f(x)+xfʹ(x)>0,所以g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,所以a=g(−log25.1)=g(log25.1),则2<−log25.1<3,1<20.8<2,由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3),所以b<a<c.2. A 【解析】函数f(x)=(x2+ax−1)e x−1,可得fʹ(x)=(2x+a)e x−1+(x2+ax−1)e x−1,x=−2是函数f(x)=(x2+ax−1)e x−1的极值点,可得:−4+a+(3−2a)=0.解得a=−1.可得fʹ(x)=(2x−1)e x−1+(x2−x−1)e x−1=(x2+x−2)e x−1,函数的极值点为:x1=−2,x2=1.当x<−2或x>1时,fʹ(x)>0,函数是增函数;x∈(−2,1)时,fʹ(x)<0,函数是减函数,x=1时,函数取得极小值:f(1)=(12−1−1)e1−1=−1.3. D 【解析】由当fʹ(x)<0时,函数f(x)单调递减,当fʹ(x)>0时,函数f(x)单调递增,则由导函数y=fʹ(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除 A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B.第二部分4. 8【解析】由于f(x)∈[0,1),则需考虑1≤x<10的情况,在此范围内,x∈Q且x∈D时,设x=q p,p,q∈N∗,p≥2,且p,q互质,若lgx∈Q,则由lgx∈(0,1),可设lgx=nm,m,n∈N∗,m≥2,且m,n互质,因此10n m=qp ,则10n=(qp)m,此时左边为整数,右边为非整数,矛盾,因此lgx∉Q,因此lgx不可能与每个周期内x∈D对应的部分相等,只需考虑lgx与每个周期x∉D的部分的交点,画出函数图象,图中交点除外 (1,0) 其他交点横坐标均为无理数,属于每个周期 x ∉D 的部分,且 x =1 处 yʹ∣x=1=(lgx )ʹ∣x=1=1xln10∣x=1=1ln10<1,则在 x =1 附近仅有一个交点,因此方程 f (x )−lgx =0 的解的个数为 8. 5. [−1,12]6. 17. x −y +1=0 8. 4√15 cm 3【解析】由题意,连接 OD ,交 BC 于点 G ,由题意得 OD ⊥BC ,OG =√36BC ,即 OG 的长度与 BC 的长度成正比, 设 OG =x ,则 BC =2√3x ,DG =5−x ,三棱锥的高 ℎ=√DG 2−OG 2=√25−10x +x 2−x 2=√25−10x , S △ABC =12×√32×(2√3x)2=3√3x 2,则 V =13S △ABC ×ℎ=√3x 2×√25−10x =√3⋅√25x 4−10x 5, 令 f (x )=25x 4−10x 5,x ∈(0,52),fʹ(x )=100x 3−50x 4, 令 fʹ(x )≥0,即 x 4−2x 3≤0,解得 x ≤2, 故 f (x ) 在 (0,2] 上单调递增,在 [2,52) 上单调递减, 则 f (x )≤f (2)=80,所以 V ≤√3×√80=4√15 cm 3, 所以体积最大值为 4√15 cm 3. 9. ①④【解析】对于①,f (x )=2−x ,则 g (x )=e x f (x )=e x ⋅2−x =(e2)x为实数集上的增函数;对于②,f (x )=3−x ,则 g (x )=e x f (x )=e x ⋅3−x =(e3)x为实数集上的减函数;对于③,f (x )=x 3,则 g (x )=e x f (x )=e x ⋅x 3,gʹ(x )=e x ⋅x 3+3e x ⋅x 2=e x (x 3+3x 2)=e x ⋅x 2(x +3),当 x <−3 时,gʹ(x )<0, 所以 g (x )=e x f (x ) 在定义域 R 上先减后增;对于④,f (x )=x 2+2,则 g (x )=e x f (x )=e x (x 2+2),gʹ(x )=e x (x 2+2)+2xe x =e x (x 2+2x +2)>0 在实数集 R 上恒成立, 所以 g (x )=e x f (x ) 在定义域 R 上是增函数.所以具有 M 性质的函数的序号为①④. 第三部分10. (1) 函数 f (x )=(x −√2x −1)e −x (x ≥12),导数fʹ(x )=(1−12√2x−12)e −x −(x −√2x −1)e −x =(1−x +√2x−1e −x=(1−x )(1√2x−1)e −x ;(2) 由 f (x ) 的导数 fʹ(x )=(1−x )(1√2x−1e −x , 可得 fʹ(x )=0 时,x =1或52,当 12<x <1 时,fʹ(x )<0,f (x ) 递减; 当 1<x <52 时,fʹ(x )>0,f (x ) 递增; 当 x >52 时,fʹ(x )<0,f (x ) 递减,且 x ≥√2x −1⇔x 2≥2x −1⇔(x −1)2≥0, 则 f (x )≥0. 由 f (12)=12e −12,f (1)=0,f (52)=12e −52,即有 f (x ) 的最大值为 12e −12,最小值为 f (1)=0.则 f (x ) 在区间 [12,+∞) 上的取值范围是 [0,12e −12].11. (1) 因为 f (x )=(1−x 2)e x ,x ∈R , 所以 fʹ(x )=(1−2x −x 2)e x ,令 fʹ(x )=0 可知 x =−1±√2,当 x <−1−√2 或 x >−1+√2 时 fʹ(x )<0,当 −1−√2<x <−1+√2 时 fʹ(x )>0,所以 f (x ) 在 (−∞,−1−√2),(−1+√2,+∞) 上单调递减,在 (−1−√2,−1+√2) 上单调递增; (2) 由题可知 f (x )=(1−x )(1+x )e x .下面对 a 的范围进行讨论: ①当 a ≥1 时,设函数 ℎ(x )=(1−x )e x ,则 ℎʹ(x )=−xe x <0(x >0), 因此 ℎ(x ) 在 [0,+∞) 上单调递减, 又因为 ℎ(0)=1, 所以 ℎ(x )≤1,所以 f (x )=(1+x )ℎ(x )≤x +1≤ax +1;②当 0<a <1 时,设函数 g (x )=e x −x −1,则 gʹ(x )=e x −1>0(x >0), 所以 g (x ) 在 [0,+∞) 上单调递增, 又 g (0)=1−0−1=0, 所以 e x ≥x +1.因为当 0<x <1 时 f (x )>(1−x )(1+x )2, 所以 (1−x )(1+x )2−ax −1=x (1−a −x −x 2),取x0=√5−4a−12∈(0,1),则(1−x0)(1+x0)2−ax0−1=0,所以f(x0)>ax0+1,矛盾;③当a≤0时,取x0=√5−12∈(0,1),则f(x0)>(1−x0)(1+x0)2−1≥ax0+1,矛盾;综上所述,a的取值范围是[1,+∞).12. (1)设A(x1,x124),B(x2,x224)为曲线C:y=x24上两点,则直线AB的斜率为k=x124−x224x1−x2=14(x1+x2)=14×4=1;(2)设直线AB的方程为y=x+t,代入曲线C:y=x24,可得x2−4x−4t=0,即有Δ>0,x1+x2=4,x1x2=−4t,再由y=x24的导数为yʹ=12x,设M(m,m 24),可得M处切线的斜率为12m,由C在M处的切线与直线AB平行,可得12m=1,解得m=2,即M(2,1),由AM⊥BM可得,k AM⋅k BM=−1,即为x124−1x1−2⋅x224−1x2−2=−1,化为x1x2+2(x1+x2)+20=0,即为−4t+8+20=0,解得t=7,满足Δ>0,则直线AB的方程为y=x+7.13. (1)因为f(x)=x3+ax2+bx+1,所以g(x)=fʹ(x)=3x2+2ax+b,gʹ(x)=6x+2a,令gʹ(x)=0,解得x=−a3.由于当x>−a3时gʹ(x)>0,g(x)=fʹ(x)单调递增;当x<−a3时gʹ(x)<0,g(x)=fʹ(x)单调递减;所以fʹ(x)的极小值点为x=−a3,由于导函数fʹ(x)的极值点是原函数f(x)的零点,所以f(−a3)=0,即−a327+a39−ab3+1=0,所以b=2a29+3a(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以fʹ(x)=3x2+2ax+b=0有两个不等的实根,所以4a2−12b>0,即a2−2a23+9a>0,解得a>3,所以b=2a29+3a(a>3).(2)由(1)可知ℎ(a)=b2−3a=4a481−5a3+9a2=181a2(4a3−27)(a3−27),由于a>3,所以ℎ(a)>0,即b2>3a.(3)由(1)可知fʹ(x)的极小值为fʹ(−a3)=b−a23,设x1,x2是y=f(x)的两个极值点,则x1+x2=−2a3,x1x2=b3,所以f(x1)+f(x2)=x13+x23+a(x12+x22)+b(x1+x2)+2=(x1+x2)[(x1+x2)2−3x1x2]+a[(x1+x2)2−2x1x2]+b(x1+x2)+2=4a327−2ab3+2.又因为f(x),fʹ(x)这两个函数的所有极值之和不小于−72,所以b−a23+4a327−2ab3+2=3a−a29≥−72,因为a>3,所以2a3−63a−54≤0,所以2a(a2−36)+9(a−6)≤0,所以(a−6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a−6≤0,解得a≤6,所以a的取值范围是(3,6].14. (1)由f(x)=2x4+3x3−3x2−6x+a,可得g(x)=fʹ(x)=8x3+9x2−6x−6,进而可得gʹ(x)=24x2+18x−6.令gʹ(x)=0,解得x=−1,或x=14.当x变化时,gʹ(x),g(x)的变化情况如下表:x(−∞,−1)(−1,14)(14,+∞)gʹ(x)+−+ g(x)↗↘↗所以,g(x)的单调递增区间是(−∞,−1),(14,+∞),单调递减区间是(−1,14).(2)由ℎ(x)=g(x)(m−x0)−f(m),得ℎ(m)=g(m)(m−x0)−f(m),ℎ(x0)=g(x0)(m−x0)−f(m).令函数H1(x)=g(x)(x−x0)−f(x),则Hʹ1(x)=gʹ(x)(x−x0).由(Ⅰ)知,当x∈[1,2]时,gʹ(x)>0,故当x∈[1,x0)时,Hʹ1(x)<0,H1(x)单调递减;当x∈(x0,2]时,Hʹ1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=−f(x0)=0,可得H1(m)>0即ℎ(m)>0,令函数H2(x)=g(x0)(x−x0)−f(x),则H2ʹ(x)=gʹ(x0)−g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H2ʹ(x)>0,H2(x)单调递增;当 x ∈(x 0,2] 时,H 2ʹ(x )<0,H 2(x ) 单调递减. 因此,当 x ∈[1,x 0)∪(x 0,2] 时,H 2(x )>H 2(x 0)=0, 可得 H 2(m )<0 即 ℎ(x 0)<0. 所以,ℎ(m )ℎ(x 0)<0.(3) 对于任意的正整数 p ,q ,且 pq ∈[1,x 0)∪(x 0,2], 令 m =pq ,函数 ℎ(x )=g (x )(m −x 0)−f (m ).由(Ⅱ)知,当 m ∈[1,x 0) 时,ℎ(x ) 在区间 (m,x 0) 内有零点; 当 m ∈(x 0,2] 时,ℎ(x ) 在区间 (x 0,m ) 内有零点. 所以 ℎ(x ) 在 (1,2) 内至少有一个零点,不妨设为 x 1, 则 ℎ(x 1)=g (x 1)(p q −x 0)−f (pq )=0.由(Ⅰ)知 g (x ) 在 [1,2] 上单调递增,故 0<g (1)<g (x 1)<g (2),于是 ∣∣∣p q −x 0∣∣∣=∣∣∣∣f(pq )g (x 1)∣∣∣∣≥∣∣∣f(pq )∣∣∣g (2)=∣2p 4+3p 3q−3p 2q 2−6pq 3+aq 4∣g (2)q 4. 因为当 x ∈[1,2] 时,g (x )>0,故 f (x ) 在 [1,2] 上单调递增,所以 f (x ) 在区间 [1,2] 上除 x 0 外没有其他的零点,而 pq ≠x 0,故 f (pq )≠0.又因为 p ,q ,a 均为整数,所以 ∣2p 4+3p 3q −3p 2q 2−6pq 3+aq 4∣ 是正整数, 从而 ∣2p 4+3p 3q −3p 2q 2−6pq 3+aq 4∣≥1.所以 ∣∣∣p q −x 0∣∣∣≥1g (2)q 4.所以,只要取 A =g (2),就有 ∣∣∣p q −x 0∣∣∣≥1Aq 4. 15. (1) 因为函数 f (x )=x −1−alnx ,x >0, 所以 fʹ(x )=1−ax =x−a x,且 f (1)=0.所以当 a ≤0 时 fʹ(x )>0 恒成立,此时 y =f (x ) 在 (0,+∞) 上单调递增,这与 f (x )≥0 矛盾;当 a >0 时令 fʹ(x )=0,解得 x =a ,所以 y =f (x ) 在 (0,a ) 上单调递减,在 (a,+∞) 上单调递增,即 f (x )min =f (a ), 又因为 f (x )min =f (a )≥0, 所以 a =1;(2) 由(1)可知当 a =1 时 f (x )=x −1−lnx ≥0,即 lnx ≤x −1, 所以 ln (x +1)≤x 当且仅当 x =0 时取等号, 所以 ln (1+12k )<12k ,k ∈N ∗. 一方面,ln (1+12)+ln (1+122)+⋯+ln (1+12n )<12+122+⋯+12n=1−12n<1,即 (1+12)(1+122)⋯(1+12n )<e ; 另一方面,n ≥3 时,(1+12)(1+122)⋯(1+12n )≥(1+12)(1+122)(1+123)=13564>2,所以当 n ≥3 时,(1+12)(1+122)⋯(1+12n )∈(2,e ).因为 m 为整数,且对于任意正整数 n ,(1+12)(1+122)⋯(1+12n )<m 成立, 所以 m 的最小值为 3.16. (1) 由 f (x )=x 3−6x 2−3a (a −4)x +b ,可得 fʹ(x )=3x 2−12x −3a (a −4)=3(x −a )(x −(4−a )),令 fʹ(x )=0,解得 x =a ,或 x =4−a . 由 ∣a ∣≤1,得 a <4−a .当 x 变化时,fʹ(x ),f (x ) 的变化情况如下表:x(−∞,a )(a,4−a )(4−a,+∞)fʹ(x )+−+f (x )↗↘↗所以 f (x ) 的单调递增区间为 (−∞,a ),(4−a,+∞),单调递减区间为 (a,4−a ); (2) (i )因为 gʹ(x )=e x(f (x )+fʹ(x )),由题意知 {g (x 0)=e x 0,gʹ(x 0)=e x 0,所以 {f (x 0)e x 0=e x 0,e x 0(f (x 0)+fʹ(x 0))=e x 0,解得 {f (x 0)=1,fʹ(x 0)=0.所以 f (x ) 在 x =x 0 处的导数等于 0;(ii )因为 g (x )≤e x ,x ∈[x 0−1,x 0+1],由 e x >0,可得 f (x )≤1. 又因为 f (x 0)=1,fʹ(x 0)=0,故 x 0 为 f (x ) 的极大值点,由(1)知 x 0=a . 另一方面,由于 ∣a ∣≤1,故 a +1<4−a ,由(1)知 f (x ) 在 (a −1,a ) 内单调递增,在 (a,a +1) 内单调递减,故当 x 0=a 时,f (x )≤f (a )=1 在 [a −1,a +1] 上恒成立,从而 g (x )≤e x 在 [x 0−1,x 0+1] 上恒成立.由 f (a )=a 3−6a 2−3a (a −4)a +b =1,得 b =2a 3−6a 2+1,−1≤a ≤1. 令 t (x )=2x 3−6x 2+1,x ∈[−1,1], 所以 tʹ(x )=6x 2−12x ,令 tʹ(x )=0,解得 x =2(舍去),或 x =0.因为 t (−1)=−7,t (1)=−3,t (0)=1,故 t (x ) 的值域为 [−7,1]. 所以 b 的取值范围是 [−7,1]. 17. (1) f (x )=e x (e x −a )−a 2x ,所以 fʹ(x )=2e 2x −ae x −a 2=(2e x +a )(e x −a ), ①当 a =0 时,fʹ(x )>0 恒成立, 所以 f (x ) 在 R 上单调递增,②当a>0时,2e x+a>0,令fʹ(x)=0,解得x=lna,当x<lna时,fʹ(x)<0,函数f(x)单调递减,当x>lna时,fʹ(x)>0,函数f(x)单调递增,③当a<0时,e x−a>0,令fʹ(x)=0,解得x=ln(−a2),当x<ln(−a2)时,fʹ(x)<0,函数f(x)单调递减,当x>ln(−a2)时,fʹ(x)>0,函数f(x)单调递增,综上所述,当a=0时,f(x)在R上单调递增,当a>0时,f(x)在(−∞,lna)上单调递减,在(lna,+∞)上单调递增,当a<0时,f(x)在(−∞,ln(−a2))上单调递减,在(ln(−a2),+∞)上单调递增.(2)①当a=0时,f(x)=e2x>0恒成立,②当a>0时,由(1)可得f(x)min=f(lna)=−a2lna≥0,所以lna≤0,所以0<a≤1,③当a<0是,由(1)可得f(x)min=f(ln(−a2))=3a24−a2ln(−a2)≥0,所以ln(−a2)≤34,所以−2e34≤a<0,综上所述a的取值范围为[−2e 34,1].18. (1)f(π)=π2−2.fʹ(x)=2x−2sinx,所以fʹ(π)=2π,所以曲线y=f(x)在点(π,f(π))处的切线方程为:y−(π2−2)=2π(x−π).化为:2πx−y−π2−2=0.(2)ℎ(x)=g(x)−af(x)=e x(cosx−sinx+2x−2)−a(x2+2cosx),ℎʹ(x)=e x(cosx−sinx+2x−2)+e x(−sinx−cosx+2)−a(2x−2sinx) =2(x−sinx)(e x−a)=2(x−sinx)(e x−e lna).令u(x)=x−sinx,则uʹ(x)=1−cosx≥0,所以函数u(x)在R上单调递增.因为u(0)=0,所以x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,e x−a>0,所以x>0时,ℎʹ(x)>0,函数ℎ(x)在(0,+∞)单调递增;x<0时,ℎʹ(x)<0,函数ℎ(x)在(−∞,0)单调递减,所以x=0时,函数ℎ(x)取得极小值,ℎ(0)=−1−2a.(2)a>0时,令ℎʹ(x)=2(x−sinx)(e x−e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(−∞,lna)时,e x−e lna<0,ℎʹ(x)>0,函数ℎ(x)单调递增;x∈(lna,0)时,e x−e lna>0,ℎʹ(x)<0,函数ℎ(x)单调递减;x∈(0,+∞)时,e x−e lna>0,ℎʹ(x)>0,函数ℎ(x)单调递增.所以当x=0时,函数ℎ(x)取得极小值,ℎ(0)=−2a−1,当x=lna时,函数ℎ(x)取得极大值,ℎ(lna)=−a[ln2a−2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,ℎʹ(x)≥0,所以函数ℎ(x)在R上单调递增.③1<a时,lna>0,x∈(−∞,0)时,e x−e lna<0,ℎʹ(x)>0,函数ℎ(x)单调递增;x∈(0,lna)时,e x−e lna<0,ℎʹ(x)<0时,函数ℎ(x)单调递减;x∈(lna,+∞)时,e x−e lna>0,ℎʹ(x)>0,函数ℎ(x)单调递增.所以当x=0时,函数ℎ(x)取得极小值,ℎ(0)=−2a−1.当x=lna时,函数ℎ(x)取得极大值,ℎ(lna)=−a[ln2a−2lna+sin(lna)+cos(lna)+2].综上所述,a≤0时,函数ℎ(x)在(0,+∞)单调递增;x<0时,函ℎ(x)在(−∞,0)单调递减.x=0时,函数ℎ(x)取得极小值,ℎ(0)=−1−2a.0<a<1时,函数ℎ(x)在x∈(−∞,lna)是单调递增;函数ℎ(x)在x∈(lna,0)上单调递减.当x=0时,函数ℎ(x)取得极小值,ℎ(0)=−2a−1.当x=lna时,函数ℎ(x)取得极大值,ℎ(lna)=−a[ln2a−2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数ℎ(x)在R上单调递增.a>1时,函数ℎ(x)在(−∞,0),(lna,+∞)上单调递增,函数ℎ(x)在(0,lna)上单调递减.当x=0时,函数ℎ(x)取得极大值,ℎ(0)=−2a−1.当x=lna时,函数ℎ(x)取得极小值,ℎ(lna)=−a[ln2a−2lna+sin(lna)+cos(lna)+2].19. (1)因为f(x)=lnx+ax2+(2a+1)x,求导fʹ(x)=1x+2ax+(2a+1)=2ax2+(2a+1)x+1x=(2ax+1)(x+1)x(x>0),①当a=0时,fʹ(x)=1x+1>0恒成立,此时y=f(x)在(0,+∞)上单调递增;②当a>0,由于x>0,所以(2ax+1)(x+1)>0恒成立,此时y=f(x)在(0,+∞)上单调递增;③当a<0时,令fʹ(x)=0,解得:x=−12a.因为当x∈(0,−12a ),fʹ(x)>0,当x∈(−12a,+∞),fʹ(x)<0,所以y=f(x)在(0,−12a )上单调递增,在(−12a,+∞)上单调递减.综上可知:当a≥0时f(x)在(0,+∞)上单调递增,当a<0时,f(x)在(0,−12a )上单调递增、在(−12a,+∞)上单调递减;(2)由(1)可知:当a<0时f(x)在(0,−12a )上单调递增,在(−12a,+∞)上单调递减,所以当x=−12a 时函数y=f(x)取最大值f(x)max=f(−12a)=−1−ln2−14a+ln(−1a).从而要证f(x)≤−34a −2,即证f(−12a)≤−34a−2,即证−1−ln2−14a +ln(−1a)≤−34a−2,即证−12(−1a)+ln(−1a)≤−1+ln2.令t=−1a ,则t>0,问题转化为证明:−12t+lnt≤−1+ln2.(∗)令g(t)=−12t+lnt,则gʹ(t)=−12+1t,令gʹ(t)=0可知t=2,则当0<t<2时gʹ(t)>0,当t>2时gʹ(t)<0,所以y=g(t)在(0,2)上单调递增,在(2,+∞)上单调递减,即g(t)≤g(2)=−12×2+ln2=−1+ln2,即(∗)式成立,所以当a<0时,f(x)≤−34a−2成立.20. (1)当a=2时,f(x)=13x3−x2,所以fʹ(x)=x2−2x,所以k=fʹ(3)=9−6=3,f(3)=13×27−9=0,所以曲线y=f(x)在点(3,f(3))处的切线方程y=3(x−3),即3x−y−9=0.(2)函数g(x)=f(x)+(x−a)cosx−sinx=13x3−12ax2+(x−a)cosx−sinx,所以gʹ(x)=x2−ax+cosx−(x−a)sinx−cosx=x2−ax+(x−a)sinx=(x−a)(x+sinx),令gʹ(x)=0,解得x=a,或x=0,当x<0时,x+sinx<0,当x≥0,x+sinx≥0,①若a>0时,当x<0时,gʹ(x)>0恒成立,故g(x)在(−∞,0)上单调递增,当x>a时,gʹ(x)>0恒成立,故g(x)在(a,+∞)上单调递增,当0<x<a时,gʹ(x)<0恒成立,故g(x)在(0,a)上单调递减,所以当x=a时,函数有极小值,极小值为g(a)=−16a3−sina,当x=0时,有极大值,极大值为g(0)=−a,②若a<0时,当x>0时,gʹ(x)>0恒成立,故g(x)在(−∞,0)上单调递增,当x<a时,gʹ(x)>0恒成立,故g(x)在(−∞,a)上单调递增,当a<x<0时,gʹ(x)<0恒成立,故g(x)在(a,0)上单调递减,所以当x=a时,函数有极大值,极大值为g(a)=−16a3−sina,当x=0时,有极小值,极小值为g(0)=−a,③当a=0时,gʹ(x)=x(x+sinx),当x>0时,gʹ(x)>0恒成立,故g(x)在(0,+∞)上单调递增,当x<0时,gʹ(x)>0恒成立,故g(x)在(−∞,0)上单调递增,所以g(x)在R上单调递增,无极值.21. (1) 由 f (x )=ae 2x +(a −2)e x −x ,求导 fʹ(x )=2ae 2x +(a −2)e x −1,当 a =0 时,fʹ(x )=−2e x −1<0,所以当 x ∈R ,f (x ) 单调递减,当 a >0 时,fʹ(x )=(2e x +1)(ae x −1)=2a (e x +12)(e x −1a ), 令 fʹ(x )=0,解得:x =ln 1a , 当 fʹ(x )>0,解得:x >ln 1a , 当 fʹ(x )<0,解得:x <ln 1a ,所以 x ∈(−∞,ln 1a ) 时,f (x ) 单调递减,x ∈(ln 1a ,+∞) 时单调递增; 当 a <0 时,fʹ(x )=2a (e x +12)(e x −1a )<0 恒成立, 所以当 x ∈R ,f (x ) 单调递减,综上可知:当 a ≤0 时,f (x ) 在 R 上是单调减函数,当 a >0 时,f (x ) 在 (−∞,ln 1a ) 上是减函数,在 (ln 1a ,+∞) 上是增函数.方法二:由 f (x )=ae 2x +(a −2)e x −x ,求导 fʹ(x )=2ae 2x +(a −2)e x −1,当 a =0 时,fʹ(x )=2e x −1<0,所以当 x ∈R ,f (x ) 单调递减,当 a >0 时,fʹ(x )=(2e x +1)(ae x −1)=2a (e x +12)(e x −1a ), 令 fʹ(x )=0,解得:x =−lna , 当 fʹ(x )>0,解得:x >−lna , 当 fʹ(x )<0,解得:x <−lna ,所以 x ∈(−∞,−lna ) 时,f (x ) 单调递减,x ∈(−lna,+∞) 时单调递增; 当 a <0 时,fʹ(x )=2a (e x +12)(e x −1a )<0,恒成立, 所以当 x ∈R ,f (x ) 单调递减,综上可知:当 a ≤0 时,f (x ) 在 R 上是单调减函数,当 a >0 时,f (x ) 在 (−∞,−lna ) 上是减函数,在 (−lna,+∞) 上是增函数.(2) ①若 a ≤0 时,由(1)可知:f (x ) 最多有一个零点, 当 a >0 时,f (x )=ae 2x +(a −2)e x −x , 当 x →−∞ 时,e 2x →0,e x →0,所以当 x →−∞ 时,f (x )→+∞,当 x →+∞,e 2x →+∞,且远远大于 e x 和 x , 所以当 x →+∞,f (x )→+∞,所以函数有两个零点,f (x ) 的最小值小于 0 即可, 由 f (x ) 在 (−∞,ln 1a ) 是减函数,在 (ln 1a ,+∞) 是增函数, 所以 f (x )min =f (ln 1a )=a ×1a 2+(a −2)×1a −ln 1a <0, 所以 1−1a −ln 1a <0,即 ln 1a +1a −1>0, 设 t =1a ,则 g (t )=lnt +t −1(t >0),因为gʹ(t)=1t+1>0,所以g(t)在(0,+∞)上单调递增,又因为g(1)=0,所以t=1a>1,解得:0<a<1,所以a的取值范围(0,1).方法二:①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=−lna时,f(x)取得最小值,f(x)min=f(−lna)=1−1a −ln1a,当a=1时,f(−lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1−1a −ln1a>0,即f(−lna)>0,故f(x)没有零点,当a∈(0,1)时,1−1a −ln1a<0,f(−lna)<0,由f(−2)=ae−4+(a−2)e−2+2>−2e−2+2>0,故f(x)在(−∞,−lna)有一个零点,假设存在正整数n0,满足n0>ln(3a−1),则f(n0)=e n0(ae n0+a−2)−n0>e n0−n0>2n0−n0> 0,由ln(3a−1)>−lna,因此在(−lna,+∞)有一个零点.所以a的取值范围(0,1).22. (1)用数学归纳法证明:x n>0,当n=1时,x1=1>0,成立,假设当n=k时成立,则x k>0,那么n=k+1时,若x k+1<0,则0<x k=x k+1+ln(1+x k+1)<0,矛盾,故x n+1>0,因此x n>0(n∈N∗),所以x n=x n+1+ln(1+x n+1)>x n+1,因此0<x n+1<x n(n∈N∗).(2)由x n=x n+1+ln(1+x n+1)得x n x n+1−4x n+1+2x n=x n+12−2x n+1+(x n+1+2)ln(1+x n+1),记函数f(x)=x2−2x+(x+2)ln(1+x),x≥0,所以fʹ(x)=2x2+xx+1+ln(1+x)>0,所以f(x)在(0,+∞)上单调递增,所以f(x)≥f(0)=0,因此x n+12−2x n+1+(x n+1+2)ln(1+x n+1)≥0,故2x n+1−x n≤x n x n+12.(3)因为x n=x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,所以x n≥12n−1,由x n x n+12≥2x n+1−x n得1x n+1−12≥2(1x n−12)>0,所以1x n −12≥2(1x n−1−12)≥⋯≥2n−1(1x1−12)=2n−2,所以x n≤12n−2,综上所述12n−1≤x n≤12n−2.23. (1)因为椭圆C的离心率为√22,所以a 2−b 2a 2=12,a 2=2b 2%,,因为椭圆 C 截直线 y =1 所得线段的长度为 2√2%,, 所以椭圆 C 过点 (√2,1)%,, 因为 2a 2+1b 2=1%,, 所以 b 2=2,a 2=4%,, 所以椭圆 C 的方程为x 24+y 22=1.(2) 设 A ,B 的横坐标为 x 1,x 2, 则 A (x 1,kx 1+m ),B (x 2,kx 2+m ),D (x 1+x 22,k 2(x 1+x 2)+m),联立 {x 24+y 22=1,y =kx +m%sin α2=EN DN =ONDN =2m1+2k 2√k 4+3k 2+1=22√k 4+3k 2+1可得 (1+2k 2)x 2+4kmx +2m 2−4=0,所以 x 1+x 2=−4km1+2k 2,所以 D (−2km1+2k 2,m1+2k 2)%sinα2=EN DN=ON DN=2m1+2k 2√k 4+3k 2+1=22√k 4+3k 2+1,因为 M (0,m ),则 N (0,−m ), 所以 ⊙N 的半径为 ∣m ∣,∣DN ∣=√(m 1+2k 2+m)2+(−2km 1+2k 2)2=∣2m∣1+2k 2√k 4+3k 2+1,设 ∠EDF =α, 所以sin α2=EN DN =ONDN =2m1+2k 2√k 4+3k 2+1=22√k 4+3k 2+1令 y =22√k 4+3k 2+1,则 yʹ=22√k 4+3k 2+1(k 4+3k 2+1) 当 k =0 时,sin α2 取得最小值,最小值为 12, 所以 ∠EDF 的最小值是 60∘.24. (1) 由题可知 P (x,x 2),−12<x <32,所以 k AP =x 2−14x+12=x −12∈(−1,1),故直线 AP 斜率的取值范围是:(−1,1). (2) 由(1)知 P (x,x 2),−12<x <32, 所以 PA ⃗⃗⃗⃗⃗ =(−12−x,14−x 2),设直线 AP 的斜率为 k ,则 AP:y =kx +12k +14,BP:y =−1k x +32k +94, 联立直线 AP ,BP 方程可知 Q (3+4k−k 22k 2+2,9k 2+8k+14k 2+4),故 PQ⃗⃗⃗⃗⃗ =(1+k−k 2−k 31+k 2,−k 4−k 3+k 2+k1+k 2),又因为 PA ⃗⃗⃗⃗⃗ =(−1−k,−k 2−k ), 故−∣PA ∣⋅∣PQ ∣=PA ⃗⃗⃗⃗⃗ ⋅PQ ⃗⃗⃗⃗⃗ =(1+k )3(k−1)1+k 2+k 2(1+k )3(k−1)1+k 2=(1+k )3(k −1),所以 ∣PA ∣⋅∣PQ ∣=(1+k )3(1−k ),令 f (x )=(1+x )3(1−x ),−1<x <1,则 fʹ(x )=(1+x )2(2−4x )=−2(1+x )2(2x −1),由于当 −1<x <−12 时 fʹ(x )>0,当 12<x <1 时 fʹ(x )<0, 故 f (x )max =f (12)=2716,即 ∣PA ∣⋅∣PQ ∣ 的最大值为 2716.。

2017年高考数学理试题分类汇编:导数及其应用

2017年高考数学理试题分类汇编:导数及其应用

2017年高考数学理试题分类汇编:导数及其应用D故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1当0<a <1时,设函数g (x )=e x -x -1,g ’(x )=e x -1>0(x >0),所以g (x )在在[0,+∞)单调递增,而g (0)=0,故e x ≥x +1当0<x <1,2()(1)(1)f x x x =-+,22(1)(1)1(1)x x ax x a x x -+--=---,取05412a x-=则2000(0,1),(1)(1)0,()1x x x ax f x ax ∈-+-=〉+故当00000510,()1-(1)2112a x f x x x ax ≤=〉+=〉+时,取()综上,a 的取值范围[1,+∞)(2017年新课标Ⅰ文) 21.已知函数()f x =e x (e x ﹣a )﹣a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围. 21. (12分)(1)函数()f x 的定义域为(,)-∞+∞,22()2(2)()xxxxf x e ae a e a e a '=--=+-,①若0a =,则2()xf x e =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. ③若0a <,则由()0f x '=得ln()2a x =-. 当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a -+∞单调递增.(2)①若0a =,则2()xf x e =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a=-.从而当且仅当2ln 0aa -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2a x =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a af a -=--.从而当且仅当23[ln()]042aa --≥,即342e a ≥-时()0f x ≥.综上,a 的取值范围为34[2e ,1]-. 14.(2017年新课标Ⅰ文)曲线21y x x=+在点(1,2)处的切线方程为_y=x+1(2017年新课标Ⅰ) 21.已知函数2()(2)xx f x aea e x=+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.综上,a 的取值范围为(0,1).20.(2017年浙江卷)已知函数f (x )=(x–21x -)e x-(12x ≥).(Ⅰ)求f (x )的导函数;(Ⅱ)求f (x )在区间1[+)2∞,上的取值范围. 【答案】(Ⅰ)f '(x )=(1-x )(1-221x -)xe -;(Ⅱ)[0,1212e -].(Ⅱ)由解得或.因为x()1 ()()- 0+ 0-f (x )↓ 0 ↑ ↓又,所以f (x )在区间[)上的取值范围是.(2017年北京卷理) (19)已知函数f (x )=e x cos x −x .(Ⅰ)求曲线y = f (x )在点(0,f (0))处的切线方程; (Ⅱ)求函数f (x )在区间[0,π2]上的最大值和最小值. 【答案】(Ⅰ)f (x )=e x ·cos x -x ∴f (0)=1∴f ´(x )=e x (cos x -sin x )-1 f ´(0)=0∴y =f (x )在(0,f (0))处切线过点(0,1),k =0 ∴切线方程为y =1(Ⅱ)f ´(x )=e x (cos x -sin x )-1,设f ´(x )=g (x ) ∴g ´(x )=-2sin x ·e x ≤0 ∴g (x )在[0,2π]上单调递减, ∴g (x )≤g (0)=0 ∴f ’(x )≤0∴f (x )在[0,2π]上单调递减, f (x )max =f (0)=1 ∴f (x )min =f (2π)=-2π (2017年江苏卷) 11.已知函数31()2e e x xf x x x =-+-,其中e 是自然对数的底数.若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 ▲ . 【解析】因为31()2e ()ex x f xx f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 322e e 0x x x x f 'xx x --=-++≥-+⋅≥,所以数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221aa≤-,即2120aa +-≤,解得112a -≤≤,故实数a 的取值范围为1[1,]2-. (2017年江苏卷) 20. 已知函数32()1(0,)f x xax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a>;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.20. 【解析】(1)因为2()32f x x ax b'=++,所以()620f x x a ''=+=,所以3a x =-, 所以()03af -=,所以3239a b a=+,因为24120ab ∆=->,所以3a >.(2)26345-39813b a a a =-+,23459(27)813y t t t a =-+=>因为135278t =<, 所以min(27)0yy >=,所以b ²>3a .7. ( 2017年全国Ⅲ卷文)函数2sin 1xy x x=++的部分图像大致为( )答案:D12. ( 2017年全国Ⅲ卷文)已知函数)(2)(112+--++-=x x e e a x x x f 有唯一零点,则=a ( ) A 21- B 31C 21 D 1【解析】 0)(22)(11'=-+-=+--x x e ea x x f得1=x即1=x 为函数的极值点,故0)1(=f 则0221=+-a ,21=a 21. ( 2017年全国Ⅲ卷文)设函数2()ln (21)f x x axa x=+++.(1)讨论()f x 的单调性; (2)当0a <时,证明3()24f x a ≤--. 解:(1)由2()ln (21),(0)f x x ax a x x =+++>有'1()221f x ax a x=+++ 22(21)1ax a x x+++= (2)①当0a =时,'()10,()f x f x =>单增 ① 当0a ≠时,令'()0f x =,即22(21)10axa x +++= 解得1211(,2x xa=-=-舍)…………2()2(21)1g x ax a x =+++ⅰ.当0a >时,()g x 开口向上,102a -<,()0g x >,即'()0f x >,()f x 单增 ⅱ.当0a <时,()g x 开口向上,102a ->,此时,在1(0,)2a -上,()0g x <,即'()0f x <,()f x 单减在1(,)2a-+∞上,()0g x >,即'()0f x >,()f x 单增 (6)(2)由(1)可得:max111()()ln()1224f x f a a a=-=---故要证3()24f x a ≤--即证113ln()12244a a a ---≤-- ……即证11ln()1022a a -++≤ 即证ln 10(0)t t t -+≤>…令()ln 1g t t t =-+ 则'1()1g t t=-令'()0g t ≥,得1t <max ()(1)0g t g ∴==()0g t ∴≤ (12)故原命题得证.(15)(2017年山东卷理)若函数()xe f x ( 2.71828e =是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 . ①()2xf x -= ②()3xf x -= ③()3f x x = ④()22f x x=+【答案】①④ 【解析】①()22xx x x e e f x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2xf x -=具有M 性质;②()33xxxxe ef x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3xxe f x ex =⋅,令()3xg x ex =⋅,则()()32232xx x g x ex e x x e x '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴()3xxe f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④()()22xxe f x e x =+,令()()22xg x e x =+,则()()()2222110xx x g x e xe x e x ⎡⎤'=++⋅=++>⎣⎦,∴()()22x x e f x e x =+在R 上单调递增,故()22f x x =+具有M 性质.(10)(2017年天津卷文)已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为___________. 【答案】1(20)(2017年山东卷理)已知函数()22cos f x x x=+,()()cos sin 22xg x e x x x =-+-,其中 2.71828e =是自然对数的底数.(Ⅰ)求曲线()y f x =在点()(),f x π处的切线方程;(Ⅱ)令()()()()h x g x af x a R =-∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值. 【答案】(Ⅰ)222y x ππ=--.(Ⅱ)综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增, 函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值, 极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值; 当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值, 极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.【解析】解:(Ⅰ)由题意()22f ππ=-又()22sin f x x x '=-,所以()2f ππ'=,因此 曲线()y f x =在点()(),f ππ处的切线方程为()()222y x πππ--=-,即222y x ππ=--.(Ⅱ)由题意得()()()22cos sin 222cos h x e x x x a x x =-+--+,因为()()()()cos sin 22sin cos 222sin xxh x e x x x e x x a x x '=-+-+--+--()()2sin 2sin x e x x a x x =---()()2sin x e a x x =--,令()sin m x x x =-则()1cos 0m x x '=-≥所以()m x 在R 上单调递增. 所以 当0x >时,()m x 单调递减,当0x >时,()0m x < 当a 0exa ≤->时,(2)当0a >时,()()()ln 2sin xa h x ee x x '=--由()0h x '=得1ln x a=,2=0x①当01a <<时,ln 0a <, 当(),ln x a ∈-∞时,()ln 0,0xa e e h x '-<>,()h x 单调递增;当()ln ,0x a ∈时,()ln 0,0xa e e h x '-><,()h x 单调递减; 当()0,x ∈+∞时,()ln 0,0xa ee h x '->>,()h x 单调递增.所以 当ln x a =时()h x 取得极大值. 极大值为()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,当0x =时()h x 取到极小值,极小值是()021h a =--;②当1a =时,ln 0a =,所以 当(),x ∈-∞+∞时,()0h x '≥,函数()h x 在(),-∞+∞上单调递增,无极值;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.综上所述:当0a ≤时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增, 函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值, 极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值; 当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值, 极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.(10)(2017年山东卷文)若函数()e xf x (e=2.71828是自然对数的底数)在()f x 的定义域上单调递增,学@科网则称函数()f x 具有M 性质.下列函数中具有M 性质的是(A )()2xf x -= (B )()2f x x = (C )()3xf x -= (D )()cos f x x = 【答案】A【解析】对于A,令()e2xx g x -=⋅,11()e (22ln )e 2(1ln )022x x x x x g x ---'=+=+>,则()g x 在R上单调递增,故()f x 具有M 性质,故选A. (20)(2017年山东卷文)已知函数()3211,32f x xax a =-∈R .(Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程; (Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值. 【答案】(Ⅰ)390x y --=,(Ⅱ)见解析.3x-y-9=0(20)(2017年天津卷理)设a ∈Z ,已知定义在R 上的函数432()2336f x x x x x a=+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数.(Ⅰ)求()g x 的单调区间; (Ⅱ)设00[1,)(,2]m x x ∈,函数0()()()()h x g x m x f m =--,求证:0()()0h m h x <;(Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且00[1,)(,2],px x q∈ 满足041||px qAq -≥.【答案】(1)增区间是(,1)-∞-,1(,)4+∞,减区间是1(1,)4-.(2)(3)证明见解析【解析】(Ⅰ)由432()2336f x x x x x a=+--+,可得32()()8966g x f x xx x '==+--,进而可得2()24186g x xx '=+-.令()0g x '=,解得1x =-,或14x =. 当x 变化时,(),()g x g x '的变化情况如下表:x (,1)-∞- 1(1,)4- 1(,)4+∞()g x ' + - + ()g x↗↘↗所以,()g x 的单调递增区间是(,1)-∞-,1(,)4+∞,单调递减区间是1(1,)4-. (Ⅱ)证明:由0()()()()h x g x m x f m =--,得0()()()()h m g m m x f m =--,000()()()()h x g x m x f m =--.(III )证明:对于任意的正整数 p ,q ,且00[1)(,],2px x q∈,令pm q =,函数0()()()()h g m x x x m f =--.由(II )知,当0[1),m x ∈时,()h x 在区间0(,)m x 内有零点;当0(,2]m x ∈时,()h x 在区间0(),x m 内有零点.1110x ,)()()()0p pg x x f q q=--=不妨设为 则 h(x所以041|2|()px qg q -≥.所以,只要取()2A g =,就有041||p x qAq -≥.(19)(2017年天津卷文)设,a b ∈R,||1a ≤.已知函数32()63(4)f x x x a a x b=---+,()e ()x g x f x =.(Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e xy =的图象在公共点(x 0,y 0)处有相同的切线,(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e xg x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围. 【解析】(Ⅰ)由324()63()f x x a x x a b=--+-,可得2()3123()3()((44))f 'x x a x a a x x a -=---=--,令()0f 'x =,解得x a =或4x a =-.由||1a ≤,得4a a <-. 当x 变化时,()f 'x ,()f x 的变化情况如下表:x(,)a -∞(),4a a -(4,)a -+∞()f 'x +-+()f x所以,()f x 的单调递增区间为(,)a -∞,(4,)a -+∞,单调递减区间为(),4a a -.(Ⅱ)(i )因为()e (()())xx x g'f f 'x =+,由题意知0000()e ()e xx x x g g'⎧=⎪⎨=⎪⎩,所以000000()e e e (()())ex x xx f f f x 'x x ⎧=⎪⎨+=⎪⎩,解得00()1()0f 'x x f =⎧⎨=⎩.所以,()f x 在0x x =处的导数等于0.(ii )因为()e xg x ≤,00[11],x xx ∈-+,由ex>,可得()1f x ≤.又因为0()1f x =,0()0f 'x =,故0x 为()f x 的极大值点,由(Ⅰ)知0x a=.另一方面,由于||1a ≤,故14a a +<-,。

高考数学导数切线专题

高考数学导数切线专题

类型一:在型切线方程1.(2017·高考全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.2.(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.3:2016考全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.4.曲线y =a ln x (a >0)在x =1处的切线与两坐标轴围成的三角形的面积为4,则a =________.5.(2018·山师附中质检)已知直线y =kx +b 与曲线y =ax 2+2+ln x 相切于点P (1,4),则b 的值为( )A .3B .1C .-3D .-16.(2018·福州质检)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .47.(2018·赣中南五校联考)已知函数f n (x )=x n +1,n ∈N 的图象与直线x =1交于点P ,若图象在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 019x 1+log 2 019x 2+…+log 2 019x 2 018的值为( )A .-1B .1-log 2 0192 018C .-log 2 0192 018D .18.(2018·兰州模拟)已知函数f (x ),g (x )满足f (5)=5,f ′(5)=3,g (5)=4,g ′(x )=1,则函数y =f (x )+2g (x )的图象在x =5处的切线方程为________.9.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.则f (x )的解析式为________.类型二:过型切线方程1. 已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A .x +y -1=0B .x -y -1=0C .x +y +1=0D .x -y +1=02 若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________.3.函数f (x )=ln x +ax 存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A .(-∞,2] B .(-∞,2) C .(2,+∞) D .(0,+∞)类型三:公切线问题1 (2016·高考全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.2.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( ) A .-1 B .0 C .1D .2 3.(2018·南昌模拟)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-24.(2018·潍坊模拟)若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,则a 的值是________.类型一:在型切线方程1.(2017·高考全国卷Ⅰ)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析:∵y =x 2+1x ,∴y ′=2x -1x 2,∴y ′|x =1=2-1=1,∴所求切线方程为y -2=x -1,即x -y +1=0. 答案:x -y +1=02.(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:由题意可知f ′(x )=a -1x ,所以f ′(1)=a -1,因为f (1)=a ,所以切点坐标为(1,a ),所以切线l 的方程为y -a =(a -1)(x -1), 即y =(a -1)x +1.令x =0,得y =1,即直线l 在y 轴上的截距为1. 答案:13:2016考全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:令x >0,则-x <0,f (-x )=ln x -3x , 又f (-x )=f (x ), ∴f (x )=ln x -3x (x >0), 则f ′(x )=1x-3(x >0),∴f ′(1)=-2,∴在点(1,-3)处的切线方程为y +3= -2(x -1),则y =-2x -1. 答案:y =-2x -14.曲线y =a ln x (a >0)在x =1处的切线与两坐标轴围成的三角形的面积为4,则a =________.解析:∵y =a ln x ,∴y ′=ax,∴在x =1处的切线的斜率k =a ,而f (1)=a ln 1=0, 故切点为(1,0),∴切线方程为y =a (x -1).令y =0,得x =1;令x =0,得y =-a . ∴三角形面积S =12×a ×1=4,∴a =8.答案:85.(2018·山师附中质检)已知直线y =kx +b 与曲线y =ax 2+2+ln x 相切于点P (1,4),则b 的值为( )A .3B .1C .-3D .-1解析:选D.法一:因为点P (1,4)在曲线y =ax 2+2+ln x 上,所以a +2=4,解得a =2,故y ′=2ax +1x =4x +1x,所以y ′|x =1=5=k ,将点P (1,4)代入y =5x +b ,得b =-1.故选D.法二:由题意得y ′=2ax +1x ,所以在点P (1,4)处的切线方程为y -4=(2a +1)(x -1),即y =(2a +1)x -2a +3,故⎩⎪⎨⎪⎧2a +1=k ,-2a +3=b ,a +2=4,解得⎩⎪⎨⎪⎧a =2,k =5,b =-1.6.(2018·福州质检)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B.依题意得f (3)=k ×3+2=1,k =-13,则f ′(3)=k =-13,g ′(3)=f (3)+3f ′(3)=1-1=0,故选B.7.(2018·赣中南五校联考)已知函数f n (x )=x n +1,n ∈N 的图象与直线x =1交于点P ,若图象在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 019x 1+log 2 019x 2+…+log 2 019x 2 018的值为( )A .-1B .1-log 2 0192 018C .-log 2 0192 018D .1解析:选A.由题意可得点P 的坐标为(1,1),f ′n (x )=(n +1)·x n ,所以f n (x )图象在点P 处的切线的斜率为n +1,故可得切线的方程为y -1=(n +1)(x -1),所以切线与x 轴交点的横坐标为x n =nn +1,则log 2 019x 1+log 2 019x 2+…+log 2 019x 2 018=log 2 019(x 1x 2…x 2 018)=log 2019⎝⎛⎭⎫12×23×34×…×2 0182 019=log 2 01912 019=-1,故选A.8.(2018·兰州模拟)已知函数f (x ),g (x )满足f (5)=5,f ′(5)=3,g (5)=4,g ′(5)=1,则函数y =f (x )+2g (x )的图象在x =5处的切线方程为________.解析:由y =f (x )+2g (x )=h (x )知y ′=h ′(x )=f ′(x )g (x )-(f (x )+2)g ′(x )g 2(x )得h ′(5)=f ′(5)g (5)-(f (5)+2)g ′(5)g 2(5)=3×4-(5+2)×142=516.又h (5)=f (5)+2g (5)=5+24=74,所以切线方程为y -74=516(x -5),即5x -16y +3=0. 答案:5x -16y +3=09.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.则f (x )的解析式为________.解析:方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .答案:f (x )=x -3x类型二:过型切线方程1. 已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A .x +y -1=0B .x -y -1=0C .x +y +1=0D .x -y +1=0解析:∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.故选B. 答案:B2 若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________. 解析:设切点为(x 0,x 0ln x 0), 由y ′=(x ln x )′=ln x +x ·1x =ln x +1,得切线的斜率k =ln x 0+1,故切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0), 整理得y =(ln x 0+1)x -x 0,与y =2x +m 比较得⎩⎪⎨⎪⎧ln x 0+1=2,-x 0=m ,解得x 0=e ,故m =-e. 答案:-e3.函数f (x )=ln x +ax 存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A .(-∞,2] B .(-∞,2) C .(2,+∞)D .(0,+∞)解析:直线2x -y =0的斜率为2,且f ′(x )=1x +a (x >0),令1x +a =2得a =2-1x .因为x>0,则1x>0,所以a <2.故选B.答案:B类型三:公切线问题1 (2016·高考全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:直线y =kx +b 与曲线y =ln x +2,y =ln(x +1)均相切,设切点分别为A (x 1,y 1),B (x 2,y 2),由y =ln x +2得y ′=1x ,由y =ln(x +1)得y ′=1x +1,∴k =1x 1=1x 2+1,∴x 1=1k ,x 2=1k -1,∴y 1=-ln k +2,y 2=-ln k .即A ⎝⎛⎭⎫1k ,-ln k +2, B ⎝⎛⎭⎫1k -1,-ln k , ∵A 、B 在直线y =kx +b 上,∴⎩⎨⎧2-ln k =k ·1k+b ,-ln k =k ·⎝⎛⎭⎫1k -1+b ⇒⎩⎪⎨⎪⎧b =1-ln 2,k =2. 答案:1-ln 22.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( ) A .-1 B .0 C .1D .2解析:选C.依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b , 于是有f ′(0)=g ′(0),即-a sin 0=2×0+b ,b =0, m =f (0)=g (0),即m =a =1,因此a +b =1.3.(2018·南昌模拟)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D.∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1,又f (1)=0, ∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有⎩⎪⎨⎪⎧x 0+m =1,y 0=x 0-1,y 0=12x 2+mx 0+72,m <0解得m =-2.4.(2018·潍坊模拟)若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,则a 的值是________.解析:易知点O (0,0)在曲线y =x 3-3x 2+2x 上. ①当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.②当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =y ′|x =x 0=3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.答案:1或164。

历年高考数学导数压轴题

历年高考数学导数压轴题

历年高考数学导数压轴题
1. 2017年高考数学导数题:
①已知函数f(x)的导数是g(x),若g(x)的导数等于函数f(x)的二阶导数,求f(x)的表达式。

解:令数列{y,y’,y”}表示函数f(x)的值与其一阶导数与二阶导数,
令数列{u,u’}表示函数g(x)的值与其一阶导数,那么依据题意有:
u’=y”,u=y’,由于积分的连续性,可得函数f(x)的表达式:f(x)=xu-
1/2∫udu+φ(x),其中φ(x)是任意可导函数。

2. 2018年高考数学导数题:
①已知函数f(x)在(-1,1)上有关于x的二阶导数存在且满足f'(-1)=f'(1),
求f(x)的一般形式。

解:由题意可知f'(-1)=f'(1),即函数f(x)在(-1,1)处有极值,f”(x)存在于(-1,1),根据可导多次函数的性质,在(-1,1)处函数f(x)可表示为:
f(x)=ax^3+bx^2+cx+d,其中a、b、c、d均为常数,求出常数a、b、c
值可得f(x)的一般形式。

3. 2019年高考数学导数题:
①已知函数f(x)的导数为2x-1,求f(x)的一般形式;
解:令y=f(x),则有y’=2x-1,由积分的连续性,可得y=x^2-2ln|x|+C,其中C为任意常数,即f(x)=x^2-2ln|x|+C。

【K12高考数学】2017年高考真题分类汇编(理数):专题2导数(解析版)

【K12高考数学】2017年高考真题分类汇编(理数):专题2导数(解析版)

2017年高考真题分类汇编(理数):专题2导数一、单选题(共3题;共6分)1、(2017•浙江)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A、B、C、D、2、(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A、﹣1B、﹣2e﹣3C、5e﹣3D、13、(2017•新课标Ⅲ)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A、﹣B、C、D、1二、解答题(共8题;共50分)4、(2017•浙江)已知函数f(x)=(x﹣)e﹣x(x≥).(Ⅰ)求f(x)的导函数;(Ⅱ)求f(x)在区间[,+∞)上的取值范围.5、(2017•山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(13分)(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g(x)﹣af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.6、(2017•北京卷)已知函数f(x)=e x cosx﹣x.(13分)(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.7、(2017·天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.8、(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.9、(2017•新课标Ⅰ卷)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(12分)(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.10、(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(Ⅰ)求a;(Ⅱ)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.11、(2017•新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx.(Ⅰ)若f(x)≥0,求a的值;(Ⅱ)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.答案解析部分一、单选题1、【答案】D【考点】函数的图象,函数的单调性与导数的关系【解析】【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选D【分析】根据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f(x)的图象可能2、【答案】A【考点】导数的运算,利用导数研究函数的单调性,利用导数研究函数的极值【解析】【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.【分析】求出函数的导数,利用极值点,求出a,然后判断函数的单调性,求解函数的极小值即可.3、【答案】C【考点】利用导数研究函数的单调性,导数在最大值、最小值问题中的应用,函数的零点与方程根的关系,函数的零点【解析】【解答】解:因为f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)=﹣1+(x﹣1)2+a(e x﹣1+)=0,所以函数f(x)有唯一零点等价于方程1﹣(x﹣1)2=a(e x﹣1+)有唯一解,等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+)的图象只有一个交点.①当a=0时,f(x)=x2﹣2x≥﹣1,此时有两个零点,矛盾;②当a<0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1+)在(﹣∞,1)上递增、在(1,+∞)上递减,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+)的图象的最高点为B(1,2a),由于2a<0<1,此时函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+)的图象有两个交点,矛盾;③当a>0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1+)在(﹣∞,1)上递减、在(1,+∞)上递增,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+)的图象的最低点为B(1,2a),由题可知点A与点B重合时满足条件,即2a=1,即a=,符合条件;综上所述,a=,故选:C.【分析】通过转化可知问题等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+)的图象只有一个交点求a的值.分a=0、a<0、a>0三种情况,结合函数的单调性分析可得结论.二、解答题4、【答案】解:(Ⅰ)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(Ⅱ)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].【考点】简单复合函数的导数,利用导数研究函数的单调性,导数在最大值、最小值问题中的应用【解析】【分析】(Ⅰ)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;(Ⅱ)求出f(x)的导数,求得极值点,讨论当<x<1时,当1<x<时,当x>时,f(x)的单调性,判断f(x)≥0,计算f(),f(1),f(),即可得到所求取值范围.5、【答案】解:(Ⅰ)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(Ⅱ)h(x)=g(x)﹣af(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(i)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(ii)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].【考点】导数的加法与减法法则,导数的乘法与除法法则,函数的单调性与导数的关系,利用导数研究函数的单调性,利用导数研究函数的极值,利用导数研究曲线上某点切线方程【解析】【分析】(Ⅰ)f(π)=π2﹣2.f′(x)=2x﹣2sinx,可得f′(π)=2π即为切线的斜率,利用点斜式即可得出切线方程.(Ⅱ)h(x)=g(x)﹣af(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx),可得h′(x)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,可得函数u(x)在R上单调递增.由u(0)=0,可得x>0时,u(x)>0;x<0时,u(x)<0.对a分类讨论:a≤0时,0<a<1时,当a=1时,a>1时,利用导数研究函数的单调性极值即可得出.6、【答案】(1)解:函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)解:函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.【考点】利用导数求闭区间上函数的最值,利用导数研究曲线上某点切线方程【解析】【分析】(1.)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2.)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.7、【答案】(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x=.当x变化时,g′(x),g(x)的变化情况如下表:x(﹣∞,﹣1)(﹣1,)(,+∞)g′(x)+﹣+g(x)↗↘↗所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.所以,h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;当m∈(x0,2]时,h(x)在区间(x0,m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0.由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),于是|﹣x0|=≥=.因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以|﹣x0|≥.所以,只要取A=g(2),就有|﹣x0|≥.【考点】利用导数研究函数的单调性,利用导数研究函数的极值,不等式的证明,函数的零点【解析】【分析】(Ⅰ)求出函数的导函数g(x)=f′(x)=8x3+9x2﹣6x﹣6,求出极值点,通过列表判断函数的单调性求出单调区间即可.(Ⅱ)由h(x)=g(x)(m﹣x0)﹣f(m),推出h(m)=g(m)(m﹣x0)﹣f(m),令函数H1(x)=g(x)(x﹣x0)﹣f(x),求出导函数H′1(x)利用(Ⅰ)知,推出h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,当m∈(x0,2]时,通过h(x)的零点.转化推出|﹣x0|=≥=.推出|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.然后推出结果.8、【答案】(Ⅰ)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+>0,解得a>3,所以b=+(a>3).(Ⅱ)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(Ⅲ)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].【考点】导数的运算,利用导数研究函数的单调性,利用导数研究函数的极值,导数在最大值、最小值问题中的应用【解析】【分析】(Ⅰ)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣,从而f(﹣)=0,整理可知b=+(a>0),结合f(x)=x3+ax2+bx+1(a >0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(Ⅱ)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(Ⅲ)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2,进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣,因式分解即得结论.9、【答案】(1)解:由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)由f(x)=ae2x+(a﹣2)e x﹣x=0,有两个零点,由(1)可知:当a>0时,f(x)=0,有两个零点,则f(x)min=a+(a﹣2)﹣ln,=a()+(a﹣2)×﹣ln,=1﹣﹣ln,由f(x)min<0,则1﹣﹣ln<0,整理得:a﹣1+alna<0,设g(a)=alna+a﹣1,a>0,g′(a)=lna+1+1=lna+2,令g′(a)=0,解得:a=e﹣2,当a∈(0,e﹣2),g′(a)<0,g(a)单调递减,当a∈(e﹣2,+∞),g′(a)>0,g(a)单调递增,g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,由g(1)=1﹣1﹣ln1=0,∴0<a<1,a的取值范围(0,1).【考点】导数的运算,利用导数研究函数的单调性,利用导数求闭区间上函数的最值,函数零点的判定定理【解析】【分析】(1.)求导,根据导数与函数单调性的关系,分类讨论,即可求得f (x)单调性;(2.)由(1)可知:当a>0时才有个零点,根据函数的单调性求得f(x)最小值,由f(x)min<0,g(a)=alna+a﹣1,a>0,求导,由g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,g(1)=0,即可求得a的取值范围.10、【答案】(Ⅰ)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(Ⅱ)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=﹣+=>;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【考点】导数的运算,利用导数研究函数的极值,利用导数求闭区间上函数的最值,导数在最大值、最小值问题中的应用,不等式的综合【解析】【分析】(Ⅰ)通过分析可知f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,进而利用h′(x)=a﹣可得h(x)min=h(),从而可得结论;(Ⅱ)通过(Ⅰ)可知f(x)=x2﹣x﹣xlnx,记t(x)=f′(x)=2x﹣2﹣lnx,解不等式可知t(x)min=t()=ln2﹣1<0,从而可知f′(x)=0存在两根x0,x2,利用f(x)必存在唯一极大值点x0及x0<可知f(x0)<,另一方面可知f(x0)>f()=﹣+=>.11、【答案】解:(Ⅰ)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣=,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,所以在(0,1)上f(x)<0,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f(a),又因为f(x)min=f(a)≥0,所以a=1;(Ⅱ)由(Ⅰ)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1+)<,k∈N*,所以,k∈N*.一方面,因为++…+=1﹣<1,所以,(1+)(1+)…(1+)<e;另一方面,(1+)(1+)…(1+)>(1+)(1+)(1+)=>2,同时当n≥3时,(1+)(1+)…(1+)∈(2,e).因为m为整数,且对于任意正整数n(1+)(1+)…(1+)<m,所以m的最小值为3.【考点】函数的单调性与导数的关系,利用导数研究函数的单调性,等比数列的前n项和,反证法与放缩法【解析】【分析】(Ⅰ)通过对函数f(x)=x﹣1﹣alnx(x>0)求导,分a≤0、a>0两种情况考虑导函数f′(x)与0的大小关系可得结论;(Ⅱ)通过(Ⅰ)可知lnx≤x﹣1,进而取特殊值可知ln(1+)<,k∈N*.一方面利用等比数列的求和公式放缩可知(1+)(1+)…(1+)<e;另一方面可知(1+)(1+)…(1+)>2,且当n≥3时,(1+)(1+)…(1+)∈(2,e).。

高考数学真题导数专题及答案

高考数学真题导数专题及答案

2017年高考真题导数专题一.解答题(共12小题)1.已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.3.已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.4.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.6.已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.7.已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.8.已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.9.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.10.已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f (x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.12.已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.2017年高考真题导数专题参考答案与试题解析一.解答题(共12小题)1.(2017•新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,由ln(﹣1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).2.(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,求导可知h′(x)=a﹣.则当a≤0时h′(x)<0,即y=h(x)在(0,+∞)上单调递减,所以当x0>1时,h(x0)<h(1)=0,矛盾,故a>0.因为当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.3.(2017•新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.【解答】解:(1)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣=,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f (a),又因为f(x)min=f(a)≥0,所以a=1;(2)由(1)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1+)<,k∈N*.一方面,ln(1+)+ln(1+)+…+ln(1+)<++…+=1﹣<1,即(1+)(1+)…(1+)<e;另一方面,(1+)(1+)…(1+)>(1+)(1+)(1+)=>2;从而当n≥3时,(1+)(1+)…(1+)∈(2,e),因为m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m成立,所以m的最小值为3.4.(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0的实根,所以4a2﹣12b≥0,即a2﹣+≥0,解得a≥3,所以b=+(a≥3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].5.(2017•新课标Ⅱ)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.【解答】解:(1)因为f(x)=(1﹣x2)e x,x∈R,所以f′(x)=(1﹣2x﹣x2)e x,令f′(x)=0可知x=﹣1±,当x<﹣1﹣或x>﹣1+时f′(x)<0,当﹣1﹣<x<﹣1+时f′(x)>0,所以f(x)在(﹣∞,﹣1﹣),(﹣1+,+∞)上单调递减,在(﹣1﹣,﹣1+)上单调递增;(2)由题可知f(x)=(1﹣x)(1+x)e x.下面对a的范围进行讨论:①当a≥1时,设函数h(x)=(1﹣x)e x,则h′(x)=﹣xe x<0(x>0),因此h(x)在[0,+∞)上单调递减,又因为h(0)=1,所以h(x)≤1,所以f(x)=(1﹣x)h(x)≤x+1≤ax+1;②当0<a<1时,设函数g(x)=e x﹣x﹣1,则g′(x)=e x﹣1>0(x>0),所以g(x)在[0,+∞)上单调递增,又g(0)=1﹣0﹣1=0,所以e x≥x+1.因为当0<x<1时f(x)>(1﹣x)(1+x)2,所以(1﹣x)(1+x)2﹣ax﹣1=x(1﹣a﹣x﹣x2),取x0=∈(0,1),则(1﹣x0)(1+x0)2﹣ax0﹣1=0,所以f(x0)>ax0+1,矛盾;③当a≤0时,取x0=∈(0,1),则f(x0)>(1﹣x0)(1+x0)2=1≥ax0+1,矛盾;综上所述,a的取值范围是[1,+∞).6.(2017•浙江)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].7.(2017•山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.【解答】解:(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(2)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].8.(2017•北京)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.9.(2017•天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.【解答】(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x=.当x变化时,g′(x),g(x)的变化情况如下表:x(﹣∞,﹣1)(﹣1,)(,+∞)g′(x)+﹣+g(x)↗↘↗所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.所以,h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;当m∈(x0,2]时,h(x)在区间(x0,m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0.由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),于是|﹣x0|=≥=.因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以|﹣x0|≥.所以,只要取A=g(2),就有|﹣x0|≥.10.(2017•山东)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.【解答】解:(1)当a=2时,f(x)=x3﹣x2,∴f′(x)=x2﹣2x,∴k=f′(3)=9﹣6=3,f(3)=×27﹣9=0,∴曲线y=f(x)在点(3,f(3))处的切线方程y=3(x﹣3),即3x﹣y﹣9=0(2)函数g(x)=f(x)+(x﹣a)cosx﹣sinx=x3﹣ax2+(x﹣a)cosx﹣sinx,∴g′(x)=(x﹣a)(x﹣sinx),令g′(x)=0,解得x=a,或x=0,①若a>0时,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x>a时,g′(x)>0恒成立,故g(x)在(a,+∞)上单调递增,当0<x<a时,g′(x)<0恒成立,故g(x)在(0,a)上单调递减,∴当x=a时,函数有极小值,极小值为g(a)=﹣a3﹣sina当x=0时,有极大值,极大值为g(0)=﹣a,②若a<0时,当x>0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x<a时,g′(x)>0恒成立,故g(x)在(﹣∞,a)上单调递增,当a<x<0时,g′(x)<0恒成立,故g(x)在(a,0)上单调递减,∴当x=a时,函数有极大值,极大值为g(a)=﹣a3﹣sina当x=0时,有极小值,极小值为g(0)=﹣a③当a=0时,g′(x)=x(x+sinx),当x>0时,g′(x)>0恒成立,故g(x)在(0,+∞)上单调递增,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,∴g(x)在R上单调递增,无极值.11.(2017•天津)设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.【解答】(Ⅰ)解:由f(x)=x3﹣6x2﹣3a(a﹣4)x+b,可得f'(x)=3x2﹣12x ﹣3a(a﹣4)=3(x﹣a)(x﹣(4﹣a)),令f'(x)=0,解得x=a,或x=4﹣a.由|a|≤1,得a<4﹣a.当x变化时,f'(x),f(x)的变化情况如下表:x(﹣∞,a)(a,4﹣a)(4﹣a,+∞)f'(x)+﹣+f(x)↗↘↗∴f(x)的单调递增区间为(﹣∞,a),(4﹣a,+∞),单调递减区间为(a,4﹣a);(Ⅱ)(i)证明:∵g'(x)=e x(f(x)+f'(x)),由题意知,∴,解得.∴f(x)在x=x0处的导数等于0;(ii)解:∵g(x)≤e x,x∈[x0﹣1,x0+1],由e x>0,可得f(x)≤1.又∵f(x0)=1,f'(x0)=0,故x0为f(x)的极大值点,由(I)知x0=a.另一方面,由于|a|≤1,故a+1<4﹣a,由(Ⅰ)知f(x)在(a﹣1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时,f(x)≤f(a)=1在[a﹣1,a+1]上恒成立,从而g(x)≤e x在[x0﹣1,x0+1]上恒成立.由f(a)=a3﹣6a2﹣3a(a﹣4)a+b=1,得b=2a3﹣6a2+1,﹣1≤a≤1.令t(x)=2x3﹣6x2+1,x∈[﹣1,1],∴t'(x)=6x2﹣12x,令t'(x)=0,解得x=2(舍去),或x=0.∵t(﹣1)=﹣7,t(1)=﹣3,t(0)=1,故t(x)的值域为[﹣7,1].∴b的取值范围是[﹣7,1].12.(2017•新课标Ⅰ)已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.【解答】解:(1)f(x)=e x(e x﹣a)﹣a2x=e2x﹣e x a﹣a2x,∴f′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a),①当a=0时,f′(x)>0恒成立,∴f(x)在R上单调递增,②当a>0时,2e x+a>0,令f′(x)=0,解得x=lna,当x<lna时,f′(x)<0,函数f(x)单调递减,当x>lna时,f′(x)>0,函数f(x)单调递增,③当a<0时,e x﹣a>0,令f′(x)=0,解得x=ln(﹣),当x<ln(﹣)时,f′(x)<0,函数f(x)单调递减,当x>ln(﹣)时,f′(x)>0,函数f(x)单调递增,综上所述,当a=0时,f(x)在R上单调递增,当a>0时,f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,当a<0时,f(x)在(﹣∞,ln(﹣))上单调递减,在(ln(﹣),+∞)上单调递增,(2)①当a=0时,f(x)=e2x>0恒成立,②当a>0时,由(1)可得f(x)min=f(lna)=﹣a2lna≥0,∴lna≤0,∴0<a≤1,③当a<0时,由(1)可得f(x)min=f(ln(﹣))=﹣a2ln(﹣)≥0,∴ln(﹣)≤,∴﹣2≤a<0,综上所述a的取值范围为[﹣2,1]。

2017全国一卷数学导数题

2017全国一卷数学导数题

2017全国一卷数学导数题天上的星星真多啊!数也数不清。

有的星星喜欢穿着一身黑色的衣服,那是因为它们害怕被太阳公公看到自己穿着的白衣服。

可我发现了一颗明亮的星星,它的身体呈黄色,它那乌黑的眼睛里闪烁着神奇的光芒,像是在对我说:“请问你需要什么帮助吗?”你猜我想对它说什么呢?(注意:写完后再仔细读一遍)(5分)一、下面两个命题,哪个与原命题等价?(4分)(1)小数的性质命题A: 1/ x=1/(x+y)=1/ x+y(2)正数的性质命题B: 1/ x=1/(x+y)=x(2分)1、1。

(4分)命题A:假设,并证明。

结论:假设:小数点右移两位,将得到假设命题:若y大于0,则x可以省略。

由假设知x>0,并且x是整数。

证明:∵ x^2+(y-1)(x-y)=0,∴(x^2+(y-1)(x-y))+((x-y)^2+(x^2+(y-1)(x-y)))=0,∴(x^2+(y-1)(x-y))+((x-y)^2+(x^2+(y-1)(x-y)))=0,∴x=y-1,∵x=y-1,∴x+y=y-1,综上,∴x>y-1,∴(x^2+(y-1)(x-y))+((x-y)^2+(x^2+(y-1)(x-y)))>0,即x>y-1。

二、比较,选择(6分) 1。

(6分)小数的性质和正数的性质。

命题A与原命题无关。

命题B与原命题有关。

证明:原命题为假设与结论均为整数,由小数的性质有小数点右移两位将得到小数,并且小数点左移两位将得到原小数的近似值,根据近似值的特点和定义可知,原命题为真,从而得到命题B为真。

3。

(4分)正数的性质与小数的性质。

命题A与原命题无关。

命题B与原命题有关。

17年高考真题—文科数学2:导数

17年高考真题—文科数学2:导数

2017高考真题分类汇编:导数1.【2017浙江 7】函数()y f x =的导函数()y f x '=的图像如图所示,则函数()y f x =的图像可能是( )2.【2017天津 10】已知a R ∈,设函数()ln f x ax x =-的图象在点()()1,1f 处的切线为l ,则l 在y 轴上的截距为__________。

3.【2017课标I 14】曲线21y x x=+在点()1,2处的切线方程为__________________。

4.【2017天津 19】设,a b R ∈,||1a ≤。

已知函数()()32634f x x x a a x b =---+,()()xg x e f x =。

⑴求()f x 的单调区间;⑵已知函数()y g x =和x y e =的图象在公共点()00,x y 处有相同的切线,①求证:()f x 在0x x =处的导数等于0;②若关于x 的不等式()x g x e ≤在区间[]001,1x x -+上恒成立,求b 的取值范围。

5.【2017北京 20】已知函数()cos xf x e x x =-。

⑴求曲线()y f x =在点()()0,0f 处的切线方程;⑵求函数()f x 在区间[]0,2π上的最大值和最小值。

6.【2017江苏 20】已知函数()()3210,f x x ax bx a b R =+++>∈有极值,且导函数()f x '的极值点是()f x 的零点(极值点是指函数取极值时对应的自变量的值)。

⑴求b 关于a 的函数关系式,并写出定义域;⑵证明:23b a >;⑶若()(),f x f x '这两个函数的所有极值之和不小于72-,求a 的取值范围。

7.【2017山东 20】已知函数()()321132f x x ax a R =-∈。

⑴当2a =时,求曲线()y f x =在点()()3,3f 处的切线方程;⑵设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值。

【精品】2017-2018年高考数学导数大题+答案(40页)

【精品】2017-2018年高考数学导数大题+答案(40页)

【精品】2017-2018年高考数学导数大题+答案一.解答题(共28小题)1.已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.2.已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.3.已知函数f(x)=lnx+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤﹣﹣2.4.已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.5.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f (x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.6.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.7.已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.8.设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.9.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.10.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.11.已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.12.已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.13.已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.14.已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.15.设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.(Ⅰ)令g(x)=f′(x),求g(x)的单调区间;(Ⅱ)已知f(x)在x=1处取得极大值,求实数a的取值范围.16.已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.17.设函数f(x)=xe a﹣x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,(Ⅰ)求a,b的值;(Ⅱ)求f(x)的单调区间.18.设函数f(x)=ax2﹣a﹣lnx,g(x)=﹣,其中a∈R,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x>1时,g(x)>0;(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.19.(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x﹣2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.20.设函数f(x)=lnx﹣x+1.(1)讨论f(x)的单调性;(2)证明当x∈(1,+∞)时,1<<x;(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>c x.21.设函数f(x)=(x﹣1)3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=3;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[0,2]上的最大值不小于.22.设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.23.设函数f(x)=ax2﹣a﹣lnx,其中a∈R.(Ⅰ)讨论f(x)的单调性;(Ⅱ)确定a的所有可能取值,使得f(x)>﹣e1﹣x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).24.设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.25.已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.26.已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.27.设函数f(x)=x3+ax2+bx+c.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;(3)求证:a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.28.已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.导数大题-近两年高考题参考答案与试题解析一.解答题(共28小题)1.(2017•新课标Ⅰ)已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.【解答】解:(1)f(x)=e x(e x﹣a)﹣a2x=e2x﹣e x a﹣a2x,∴f′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a),①当a=0时,f′(x)>0恒成立,∴f(x)在R上单调递增,②当a>0时,2e x+a>0,令f′(x)=0,解得x=lna,当x<lna时,f′(x)<0,函数f(x)单调递减,当x>lna时,f′(x)>0,函数f(x)单调递增,③当a<0时,e x﹣a>0,令f′(x)=0,解得x=ln(﹣),当x<ln(﹣)时,f′(x)<0,函数f(x)单调递减,当x>ln(﹣)时,f′(x)>0,函数f(x)单调递增,综上所述,当a=0时,f(x)在R上单调递增,当a>0时,f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,当a<0时,f(x)在(﹣∞,ln(﹣))上单调递减,在(ln(﹣),+∞)上单调递增,(2)①当a=0时,f(x)=e2x>0恒成立,②当a>0时,由(1)可得f(x)min=f(lna)=﹣a2lna≥0,∴lna≤0,∴0<a≤1,③当a<0时,由(1)可得f(x)min=f(ln(﹣))=﹣a2ln(﹣)≥0,∴ln(﹣)≤,∴﹣2≤a<0,综上所述a的取值范围为[﹣2,1]2.(2017•新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,由ln(﹣1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).3.(2017•新课标Ⅲ)已知函数f(x)=lnx+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤﹣﹣2.【解答】(1)解:因为f(x)=lnx+ax2+(2a+1)x,求导f′(x)=+2ax+(2a+1)==,(x>0),①当a=0时,f′(x)=+1>0恒成立,此时y=f(x)在(0,+∞)上单调递增;②当a>0,由于x>0,所以(2ax+1)(x+1)>0恒成立,此时y=f(x)在(0,+∞)上单调递增;③当a<0时,令f′(x)=0,解得:x=﹣.因为当x∈(0,﹣)f′(x)>0、当x∈(﹣,+∞)f′(x)<0,所以y=f(x)在(0,﹣)上单调递增、在(﹣,+∞)上单调递减.综上可知:当a≥0时f(x)在(0,+∞)上单调递增,当a<0时,f(x)在(0,﹣)上单调递增、在(﹣,+∞)上单调递减;(2)证明:由(1)可知:当a<0时f(x)在(0,﹣)上单调递增、在(﹣,+∞)上单调递减,所以当x=﹣时函数y=f(x)取最大值f(x)max=f(﹣)=﹣1﹣ln2﹣+ln(﹣).从而要证f(x)≤﹣﹣2,即证f(﹣)≤﹣﹣2,即证﹣1﹣ln2﹣+ln(﹣)≤﹣﹣2,即证﹣(﹣)+ln(﹣)≤﹣1+ln2.令t=﹣,则t>0,问题转化为证明:﹣t+lnt≤﹣1+ln2.…(*)令g(t)=﹣t+lnt,则g′(t)=﹣+,令g′(t)=0可知t=2,则当0<t<2时g′(t)>0,当t>2时g′(t)<0,所以y=g(t)在(0,2)上单调递增、在(2,+∞)上单调递减,即g(t)≤g(2)=﹣×2+ln2=﹣1+ln2,即(*)式成立,所以当a<0时,f(x)≤﹣﹣2成立.4.(2017•新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.【解答】解:(1)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣=,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f (a),又因为f(x)min=f(a)≥0,所以a=1;(2)由(1)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1+)<,k∈N*.一方面,ln(1+)+ln(1+)+…+ln(1+)<++…+=1﹣<1,即(1+)(1+)…(1+)<e;另一方面,(1+)(1+)…(1+)>(1+)(1+)(1+)=>2;从而当n≥3时,(1+)(1+)…(1+)∈(2,e),因为m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m成立,所以m的最小值为3.5.(2017•天津)设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.【解答】(Ⅰ)解:由f(x)=x3﹣6x2﹣3a(a﹣4)x+b,可得f'(x)=3x2﹣12x ﹣3a(a﹣4)=3(x﹣a)(x﹣(4﹣a)),令f'(x)=0,解得x=a,或x=4﹣a.由|a|≤1,得a<4﹣a.当x变化时,f'(x),f(x)的变化情况如下表:∴f(x)的单调递增区间为(﹣∞,a),(4﹣a,+∞),单调递减区间为(a,4﹣a);(Ⅱ)(i)证明:∵g'(x)=e x(f(x)+f'(x)),由题意知,∴,解得.∴f(x)在x=x0处的导数等于0;(ii)解:∵g(x)≤e x,x∈[x0﹣1,x0+1],由e x>0,可得f(x)≤1.又∵f(x0)=1,f'(x0)=0,故x0为f(x)的极大值点,由(I)知x0=a.另一方面,由于|a|≤1,故a+1<4﹣a,由(Ⅰ)知f(x)在(a﹣1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时,f(x)≤f(a)=1在[a﹣1,a+1]上恒成立,从而g(x)≤e x在[x0﹣1,x0+1]上恒成立.由f(a)=a3﹣6a2﹣3a(a﹣4)a+b=1,得b=2a3﹣6a2+1,﹣1≤a≤1.令t(x)=2x3﹣6x2+1,x∈[﹣1,1],∴t'(x)=6x2﹣12x,令t'(x)=0,解得x=2(舍去),或x=0.∵t(﹣1)=﹣7,t(1)=﹣3,t(0)=1,故t(x)的值域为[﹣7,1].∴b的取值范围是[﹣7,1].6.(2017•天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.【解答】(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x=.当x变化时,g′(x),g(x)的变化情况如下表:(所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.所以,h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;当m∈(x0,2]时,h(x)在区间(x0,m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0.由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),于是|﹣x0|=≥=.因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以|﹣x0|≥.所以,只要取A=g(2),就有|﹣x0|≥.7.(2017•山东)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.【解答】解:(1)当a=2时,f(x)=x3﹣x2,∴f′(x)=x2﹣2x,∴k=f′(3)=9﹣6=3,f(3)=×27﹣9=0,∴曲线y=f(x)在点(3,f(3))处的切线方程y=3(x﹣3),即3x﹣y﹣9=0(2)函数g(x)=f(x)+(x﹣a)cosx﹣sinx=x3﹣ax2+(x﹣a)cosx﹣sinx,∴g′(x)=(x﹣a)(x﹣sinx),令g′(x)=0,解得x=a,或x=0,①若a>0时,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x>a时,g′(x)>0恒成立,故g(x)在(a,+∞)上单调递增,当0<x<a时,g′(x)<0恒成立,故g(x)在(0,a)上单调递减,∴当x=a时,函数有极小值,极小值为g(a)=﹣a3﹣sina当x=0时,有极大值,极大值为g(0)=﹣a,②若a<0时,当x>0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x<a时,g′(x)>0恒成立,故g(x)在(﹣∞,a)上单调递增,当a<x<0时,g′(x)<0恒成立,故g(x)在(a,0)上单调递减,∴当x=a时,函数有极大值,极大值为g(a)=﹣a3﹣sina当x=0时,有极小值,极小值为g(0)=﹣a③当a=0时,g′(x)=x(x+sinx),当x>0时,g′(x)>0恒成立,故g(x)在(0,+∞)上单调递增,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,∴g(x)在R上单调递增,无极值.8.(2017•新课标Ⅱ)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.【解答】解:(1)因为f(x)=(1﹣x2)e x,x∈R,所以f′(x)=(1﹣2x﹣x2)e x,令f′(x)=0可知x=﹣1±,当x<﹣1﹣或x>﹣1+时f′(x)<0,当﹣1﹣<x<﹣1+时f′(x)>0,所以f(x)在(﹣∞,﹣1﹣),(﹣1+,+∞)上单调递减,在(﹣1﹣,﹣1+)上单调递增;(2)由题可知f(x)=(1﹣x)(1+x)e x.下面对a的范围进行讨论:①当a≥1时,设函数h(x)=(1﹣x)e x,则h′(x)=﹣xe x<0(x>0),因此h(x)在[0,+∞)上单调递减,又因为h(0)=1,所以h(x)≤1,所以f(x)=(1﹣x)h(x)≤x+1≤ax+1;②当0<a<1时,设函数g(x)=e x﹣x﹣1,则g′(x)=e x﹣1>0(x>0),所以g(x)在[0,+∞)上单调递增,又g(0)=1﹣0﹣1=0,所以e x≥x+1.因为当0<x<1时f(x)>(1﹣x)(1+x)2,所以(1﹣x)(1+x)2﹣ax﹣1=x(1﹣a﹣x﹣x2),取x0=∈(0,1),则(1﹣x0)(1+x0)2﹣ax0﹣1=0,所以f(x0)>ax0+1,矛盾;③当a≤0时,取x0=∈(0,1),则f(x0)>(1﹣x0)(1+x0)2=1≥ax0+1,矛盾;综上所述,a的取值范围是[1,+∞).9.(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0的实根,所以4a2﹣12b≥0,即a2﹣+≥0,解得a≥3,所以b=+(a≥3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].10.(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,求导可知h′(x)=a﹣.则当a≤0时h′(x)<0,即y=h(x)在(0,+∞)上单调递减,所以当x0>1时,h(x0)<h(1)=0,矛盾,故a>0.因为当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.11.(2017•山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.【解答】解:(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(2)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].12.(2017•北京)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.13.(2017•浙江)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].14.(2016•新课标Ⅱ)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.15.(2016•山东)设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.(Ⅰ)令g(x)=f′(x),求g(x)的单调区间;(Ⅱ)已知f(x)在x=1处取得极大值,求实数a的取值范围.【解答】解:(Ⅰ)∵f(x)=xlnx﹣ax2+(2a﹣1)x,∴g(x)=f′(x)=lnx﹣2ax+2a,x>0,g′(x)=﹣2a=,当a≤0,g′(x)>0恒成立,即可g(x)的单调增区间是(0,+∞);当a>0,当x>时,g′(x)<0,函数为减函数,当0<x<,g′(x)>0,函数为增函数,∴当a≤0时,g(x)的单调增区间是(0,+∞);当a>0时,g(x)的单调增区间是(0,),单调减区间是(,+∞);(Ⅱ)∵f(x)在x=1处取得极大值,∴f′(1)=0,①当a≤0时,f′(x)单调递增,则当0<x<1时,f′(x)<0,f(x)单调递减,当x>1时,f′(x)>0,f(x)单调递增,∴f(x)在x=1处取得极小值,不合题意,②当0<a<时,>1,由(1)知,f′(x)在(0,)内单调递增,当0<x<1时,f′(x)<0,当1<x<时,f′(x)>0,∴f(x)在(0,1)内单调递减,在(1,)内单调递增,即f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f′(x)在(0,1)内单调递增,在(1,+∞)上单调递减,则当x>0时,f′(x)≤0,f(x)单调递减,不合题意.④当a>时,0<<1,当<x<1时,f′(x)>0,f(x)单调递增,当x>1时,f′(x)<0,f(x)单调递减,∴当x=1时,f(x)取得极大值,满足条件.综上实数a的取值范围是a>.16.(2016•新课标Ⅰ)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增;②当a<0时,若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;x→﹣∞,f(x)→+∞.f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,f(x)在(1,+∞)单调递增,又x≤1时,f(x)<0,所以f(x)不存在两个零点.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).17.(2016•北京)设函数f(x)=xe a﹣x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,(Ⅰ)求a,b的值;(Ⅱ)求f(x)的单调区间.【解答】解:(Ⅰ)∵y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,∴当x=2时,y=2(e﹣1)+4=2e+2,即f(2)=2e+2,同时f′(2)=e﹣1,∵f(x)=xe a﹣x+bx,∴f′(x)=e a﹣x﹣xe a﹣x+b,则,即a=2,b=e;(Ⅱ)∵a=2,b=e;∴f(x)=xe2﹣x+ex,∴f′(x)=e2﹣x﹣xe2﹣x+e=(1﹣x)e2﹣x+e=(1﹣x+e x﹣1)e2﹣x,∵e2﹣x>0,∴1﹣x+e x﹣1与f′(x)同号,令g(x)=1﹣x+e x﹣1,则g′(x)=﹣1+e x﹣1,由g′(x)<0,得x<1,此时g(x)为减函数,由g′(x)>0,得x>1,此时g(x)为增函数,则当x=1时,g(x)取得极小值也是最小值g(1)=1,则g(x)≥g(1)=1>0,故f′(x)>0,即f(x)的单调区间是(﹣∞,+∞),无递减区间.18.(2016•四川)设函数f(x)=ax2﹣a﹣lnx,g(x)=﹣,其中a∈R,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x>1时,g(x)>0;(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.【解答】(Ⅰ)解:由f(x)=ax2﹣a﹣lnx,得f′(x)=2ax﹣=(x>0),当a≤0时,f′(x)<0在(0,+∞)成立,则f(x)为(0,+∞)上的减函数;当a>0时,由f′(x)=0,得x==,∴当x∈(0,)时,f′(x)<0,当x∈(,+∞)时,f′(x)>0,则f(x)在(0,)上为减函数,在(,+∞)上为增函数;综上,当a≤0时,f(x)为(0,+∞)上的减函数,当a>0时,f(x)在(0,)上为减函数,在(,+∞)上为增函数;(Ⅱ)证明:要证g(x)>0(x>1),即﹣>0,即证,也就是证,令h(x)=,则h′(x)=,∴h(x)在(1,+∞)上单调递增,则h(x)min=h(1)=e,即当x>1时,h(x)>e,∴当x>1时,g(x)>0;(Ⅲ)解:由f(x)>g(x),得,设t(x)=,由题意知,t(x)>0在(1,+∞)内恒成立,∵t(1)=0,∴有t′(x)=2ax=≥0在(1,+∞)内恒成立,令φ(x)=,则φ′(x)=2a=,当x≥2时,φ′(x)>0,令h(x)=,h′(x)=,函数在[1,2)上单调递增,∴h(x)min=h(1)=﹣1.又2a≥1,e1﹣x>0,∴1<x<2,φ′(x)>0,综上所述,x>1,φ′(x)>0,φ(x)在区间(1,+∞)单调递增,∴t′(x)>t′(1)≥0,即t(x)在区间(1,+∞)单调递增,∴a≥.19.(2016•新课标Ⅱ)(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x﹣2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g (x)的最小值为h(a),求函数h(a)的值域.【解答】解:(1)证明:f(x)=f'(x)=e x()=∵当x∈(﹣∞,﹣2)∪(﹣2,+∞)时,f'(x)>0∴f(x)在(﹣∞,﹣2)和(﹣2,+∞)上单调递增∴x>0时,>f(0)=﹣1即(x﹣2)e x+x+2>0(2)g'(x)===a∈[0,1)由(1)知,当x>0时,f(x)=的值域为(﹣1,+∞),只有一解使得,只需•e t≤0恒成立,可得﹣2<t≤2,由x>0,可得t∈(0,2]当x∈(0,t)时,g'(x)<0,g(x)单调减;当x∈(t,+∞),g'(x)>0,g(x)单调增;h(a)===记k(t)=,在t∈(0,2]时,k'(t)=>0,故k(t)单调递增,所以h(a)=k(t)∈(,].20.(2016•新课标Ⅲ)设函数f(x)=lnx﹣x+1.(1)讨论f(x)的单调性;(2)证明当x∈(1,+∞)时,1<<x;(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>c x.【解答】解:(1)函数f(x)=lnx﹣x+1的导数为f′(x)=﹣1,由f′(x)>0,可得0<x<1;由f′(x)<0,可得x>1.即有f(x)的增区间为(0,1);减区间为(1,+∞);(2)证明:当x∈(1,+∞)时,1<<x,即为lnx<x﹣1<xlnx.由(1)可得f(x)=lnx﹣x+1在(1,+∞)递减,可得f(x)<f(1)=0,即有lnx<x﹣1;设F(x)=xlnx﹣x+1,x>1,F′(x)=1+lnx﹣1=lnx,当x>1时,F′(x)>0,可得F(x)递增,即有F(x)>F(1)=0,即有xlnx>x﹣1,则原不等式成立;(3)证明:设G(x)=1+(c﹣1)x﹣c x,G′(x)=c﹣1﹣c x lnc,可令G′(x)=0,可得c x=,由c>1,x∈(0,1),可得1<c x<c,即1<<c,由(1)可得c x=恰有一解,设为x=x0是G(x)的最大值点,且0<x0<1,由G(0)=G(1)=0,且G(x)在(0,x0)递增,在(x0,1)递减,可得G(x0)=1+(c﹣1)x0﹣c x0>0成立,则c>1,当x∈(0,1)时,1+(c﹣1)x>c x.21.(2016•天津)设函数f(x)=(x﹣1)3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=3;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[0,2]上的最大值不小于.【解答】解:(1)函数f(x)=(x﹣1)3﹣ax﹣b的导数为f′(x)=3(x﹣1)2﹣a,当a≤0时,f′(x)≥0,f(x)在R上递增;当a>0时,当x>1+或x<1﹣时,f′(x)>0,当1﹣<x<1+,f′(x)<0,可得f(x)的增区间为(﹣∞,1﹣),(1+,+∞),减区间为(1﹣,1+);(2)证明:f′(x0)=0,可得3(x0﹣1)2=a,由f(x0)=(x0﹣1)3﹣3x0(x0﹣1)2﹣b=(x0﹣1)2(﹣2x0﹣1)﹣b,f(3﹣2x0)=(2﹣2x0)3﹣3(3﹣2x0)(x0﹣1)2﹣b=(x0﹣1)2(8﹣8x0﹣9+6x0)﹣b=(x0﹣1)2(﹣2x0﹣1)﹣b,即为f(3﹣2x0)=f(x0)=f(x1),即有3﹣2x0=x1,即为x1+2x0=3;(3)证明:要证g(x)在区间[0,2]上的最大值不小于,即证在[0,2]上存在x1,x2,使得f(x1)﹣f(x2)≥.当a≥3时,f(x)在[0,2]递减,f(2)=1﹣2a﹣b,f(0)=﹣1﹣b,f(0)﹣f(2)=2a﹣2≥4>,递减,成立;当0<a<3时,f(1﹣)=(﹣)3﹣a(1﹣)﹣b=﹣﹣a+a﹣b=﹣a﹣b,f(1+)=()3﹣a(1+)﹣b=﹣a﹣a﹣b=﹣﹣a﹣b,f(2)=1﹣2a﹣b,f(0)=﹣1﹣b,f(2)﹣f(0)=2﹣2a,若0<a≤时,f(2)﹣f(0)=2﹣2a≥成立;若a>时,f(1﹣)﹣f(1+)=>成立.综上可得,g(x)在区间[0,2]上的最大值不小于.22.(2016•新课标Ⅲ)设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.【解答】(I)解:f′(x)=﹣2asin2x﹣(a﹣1)sinx.(II)当a≥1时,|f(x)|=|acos2x+(a﹣1)(cosx+1)|≤a|cos2x|+(a﹣1)|(cosx+1)|≤a|cos2x|+(a﹣1)(|cosx|+1)|≤a+2(a﹣1)=3a﹣2=f(0),因此A=3a﹣2.当0<a<1时,f(x)等价为f(x)=acos2x+(a﹣1)(cosx+1)=2acos2x+(a﹣1)cosx﹣1,令g(t)=2at2+(a﹣1)t﹣1,则A是|g(t)|在[﹣1,1]上的最大值,g(﹣1)=a,g(1)=3a﹣2,且当t=时,g(t)取得极小值,极小值为g()=﹣﹣1=﹣,(二次函数在对称轴处取得极值)令﹣1<<1,得a<(舍)或a>.因此A=3a﹣2①当0<a≤时,g(t)在(﹣1,1)内无极值点,|g(﹣1)|=a,|g(1)|=2﹣3a,|g(﹣1)|<|g(1)|,∴A=2﹣3a,②当<a<1时,由g(﹣1)﹣g(1)=2(1﹣a)>0,得g(﹣1)>g(1)>g(),又|g()|﹣|g(﹣1)|=>0,∴A=|g()|=,综上,A=.(III)证明:由(I)可得:|f′(x)|=|﹣2asin2x﹣(a﹣1)sinx|≤2a+|a﹣1|,当0<a≤时,|f′(x)|≤1+a≤2﹣4a<2(2﹣3a)=2A,当<a<1时,A==++≥1,∴|f′(x)|≤1+a≤2A,当a≥1时,|f′(x)|≤3a﹣1≤6a﹣4=2A,综上:|f′(x)|≤2A.23.(2016•四川)设函数f(x)=ax2﹣a﹣lnx,其中a∈R.(Ⅰ)讨论f(x)的单调性;(Ⅱ)确定a的所有可能取值,使得f(x)>﹣e1﹣x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).【解答】解:(Ⅰ)由题意,f′(x)=2ax﹣=,x>0,①当a≤0时,2ax2﹣1≤0,f′(x)≤0,f(x)在(0,+∞)上单调递减.②当a>0时,f′(x)=,当x∈(0,)时,f′(x)<0,当x∈(,+∞)时,f′(x)>0,故f(x)在(0,)上单调递减,在(,+∞)上单调递增.(Ⅱ)原不等式等价于f(x)﹣+e1﹣x>0在x∈(1.+∞)上恒成立,一方面,令g(x)=f(x)﹣+e1﹣x=ax2﹣lnx﹣+e1﹣x﹣a,只需g(x)在x∈(1.+∞)上恒大于0即可,又∵g(1)=0,故g′(x)在x=1处必大于等于0.令F(x)=g′(x)=2ax﹣+﹣e1﹣x,g′(1)≥0,可得a.另一方面,当a时,F′(x)=2a+≥1+=+e1﹣x,∵x∈(1,+∞),故x3+x﹣2>0,又e1﹣x>0,故F′(x)在a时恒大于0.∴当a时,F(x)在x∈(1,+∞)单调递增.∴F(x)>F(1)=2a﹣1≥0,故g(x)也在x∈(1,+∞)单调递增.∴g(x)>g(1)=0,即g(x)在x∈(1,+∞)上恒大于0.综上,a.24.(2016•天津)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||}=max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.25.(2016•新课标Ⅰ)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.26.(2016•山东)已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.【解答】(Ⅰ)解:由f(x)=a(x﹣lnx)+,得f′(x)=a(1﹣)+==(x>0).若a≤0,则ax2﹣2<0恒成立,∴当x∈(0,1)时,f′(x)>0,f(x)为增函数,当x∈(1,+∞)时,f′(x)<0,f(x)为减函数;当a>0,若0<a<2,当x∈(0,1)和(,+∞)时,f′(x)>0,f(x)为增函数,当x∈(1,)时,f′(x)<0,f(x)为减函数;若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上为增函数;若a>2,当x∈(0,)和(1,+∞)时,f′(x)>0,f(x)为增函数,当x∈(,1)时,f′(x)<0,f(x)为减函数;(Ⅱ)解:∵a=1,令F(x)=f(x)﹣f′(x)=x﹣lnx﹣1=x﹣lnx+.令g(x)=x﹣lnx,h(x)=.则F(x)=f(x)﹣f′(x)=g(x)+h(x),由,可得g(x)≥g(1)=1,当且仅当x=1时取等号;又,设φ(x)=﹣3x2﹣2x+6,则φ(x)在[1,2]上单调递减,且φ(1)=1,φ(2)=﹣10,∴在[1,2]上存在x0,使得x∈(1,x0)时φ(x0)>0,x∈(x0,2)时,φ(x0)<0,∴函数h(x)在(1,x0)上单调递增;在(x0,2)上单调递减,由于h(1)=1,h(2)=,因此h(x)≥h(2)=,当且仅当x=2取等号,∴f(x)﹣f′(x)=g(x)+h(x)>g(1)+h(2)=,∴F(x)>恒成立.即f(x)>f′(x)+对于任意的x∈[1,2]成立.27.(2016•北京)设函数f(x)=x3+ax2+bx+c.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;(3)求证:a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.【解答】解:(1)函数f(x)=x3+ax2+bx+c的导数为f′(x)=3x2+2ax+b,可得y=f(x)在点(0,f(0))处的切线斜率为k=f′(0)=b,切点为(0,c),可得切线的方程为y=bx+c;(2)设a=b=4,即有f(x)=x3+4x2+4x+c,由f(x)=0,可得﹣c=x3+4x2+4x,由g(x)=x3+4x2+4x的导数g′(x)=3x2+8x+4=(x+2)(3x+2),当x>﹣或x<﹣2时,g′(x)>0,g(x)递增;当﹣2<x<﹣时,g′(x)<0,g(x)递减.即有g(x)在x=﹣2处取得极大值,且为0;g(x)在x=﹣处取得极小值,且为﹣.由函数f(x)有三个不同零点,可得﹣<﹣c<0,解得0<c<,则c的取值范围是(0,);(3)证明:若f(x)有三个不同零点,令f(x)=0,可得f(x)的图象与x轴有三个不同的交点.即有f(x)有3个单调区间,即为导数f′(x)=3x2+2ax+b的图象与x轴有两个交点,可得△>0,即4a2﹣12b>0,即为a2﹣3b>0;若a2﹣3b>0,即有导数f′(x)=3x2+2ax+b的图象与x轴有两个交点,当c=0,a=b=4时,满足a2﹣3b>0,即有f(x)=x(x+2)2,图象与x轴交于(0,0),(﹣2,0),则f(x)的零点为2个.故a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.28.(2016•江苏)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.【解答】解:函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①方程f(x)=2;即:=2,可得x=0.②不等式f(2x)≥mf(x)﹣6恒成立,即≥m()﹣6恒成立.令t=,t≥2.不等式化为:t2﹣mt+4≥0在t≥2时,恒成立.可得:△≤0或即:m2﹣16≤0或m≤4,∴m∈(﹣∞,4].实数m的最大值为:4.(2)g(x)=f(x)﹣2=a x+b x﹣2,g′(x)=a x lna+b x lnb=a x[+]lnb,0<a<1,b>1可得,令h(x)=+,则h(x)是递增函数,而,lna<0,lnb>0,因此,x0=时,h(x0)=0,因此x∈(﹣∞,x0)时,h(x)<0,a x lnb>0,则g′(x)<0.x∈(x0,+∞)时,h(x)>0,a x lnb>0,则g′(x)>0,则g(x)在(﹣∞,x0)递减,(x0,+∞)递增,因此g(x)的最小值为:g(x0).①若g(x0)<0,x<log a2时,a x>=2,b x>0,则g(x)>0,因此x1<log a2,且x1<x0时,g(x1)>0,因此g(x)在(x1,x0)有零点,则g(x)至少有两个零点,与条件矛盾.②若g(x0)>0,函数g(x)=f(x)﹣2有且只有1个零点,g(x)的最小值为g(x0),可得g(x0)=0,由g(0)=a0+b0﹣2=0,因此x0=0,因此=0,﹣=1,即lna+lnb=0,ln(ab)=0,则ab=1.可得ab=1.。

专题02+导数+2017年高考数学(理)试题分项版分析+Word版含分析

专题02+导数+2017年高考数学(理)试题分项版分析+Word版含分析

专題02导数1.【2017课标II,理11】若x=—2是函数f (x) =(x2• ax-1)e x」的极值点,贝U f(x)的极小值为( )3 3A. -1B.-2e_C.5e_D.1【答案】A【解析】试题分析:由题可得八X)= (2x+ + (j? = [7 +(4+2)*+d—10"S^/V2> = 0,所臥“1, /(x) = (Y l-x-l)A1,故八© = 令广(功>0,解得兀c-2或兀:>1,所以才(力在()单调递増,在(-2J)单调递减所以/(劝极小值为于⑴= (1T—= T ,故选A【考点】函数的极值;函数的单调性【名师点睛】(1)可导函数y= f(x)在点x o处取得极值的充要条件是f'x0) = 0,且在x o左侧与右侧f'刈的符号不同。

⑵若f(x)在(a, b)内有极值,那么f(x)在(a, b)内绝不是单调函数,即在某区间上单调增或减的函数没有极值。

2.【2017课标3,理11】已知函数f (x) = x2「2x • a(e x‘ • e戏1)有唯一零点,则a=1 1 1A. B. — C. —D. 12 3 2【答案】C【解析】试题分析:函数的零点满足x2 -2x - -a e x4 - e^1, 设g x=e x4e"1,则g x =e xJ -e"^e x4当g x =0时,x =1,当x 1时,g x : 0,函数g x单调递减, 当x 1时,g'x £,函数g x单调递增,当x =1时,函数取得最小值g 1 =2 ,设h x =x2-2x,当x =1时,函数取得最小值一1 , 2 x J1 _ e Tx-1 一x-4 e e若-a>0 ,函数丘(兀)与函数吆(x)没有交点,当-时,-觀⑴=人⑴时,止匕时函数加x)和觀(兀)有一个交点,即—Q2=-1,解得a = -•故选C.2【考点】函数的零点;导函数研究函数的单调性,分类讨论的数学思想【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.3.【2017浙江,7】函数y=f(x)的导函数y = f (x)的图像如图所示,则函数y=f(x)的图像可能是【答案】D【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D.【考点】导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x轴的交点为x0,且图象在X。

2017高考试题分类汇编之函数导数(精校版)

2017高考试题分类汇编之函数导数(精校版)

2017年高考试题分类汇编之函数与导数一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1(2017北京文)已知函数,则().A是偶函数,且在R上是增函数.B是奇函数,且在R上是增函数.C是偶函数,且在R上是减函数.D是奇函数,且在R上是增函数2.(2017新课标Ⅱ文)函数2()ln(28)f x x x=--的单调递增区间是().A(,2)-∞-.B(,1)-∞.C(1,)+∞.D(4,)+∞3.(2017山东文)设()()121,1xf xx x<<=-≥⎪⎩,若()()1f a f a=+,则1fa⎛⎫=⎪⎝⎭()2.A4.B6.C8.D4.(2017山东文)若函数()e xf x在()f x的定义域上单调递增,则称函数()f x具有M性质.下列函数中具有M性质的是()xxfA-=2)(..B()2f x x=.C()3xf x-=.D()cosf x x=5.(2017新课标Ⅰ文数)函数sin21cosxyx=-的部分图像大致为()6.(2017新课标Ⅰ文数)已知函数()ln ln(2)f x x x=+-,则().A)(xfy=在)2,0(单调递增.B)(xfy=在)2,0(单调递减.C)(xfy=的图像关于直线1=x对称.D)(xfy=的图像关于点)0,1(对称7.(2017天津文)已知奇函数()f x在R上是增函数.若0.8221(log),(log 4.1),(2)5a fb fc f=-==,则,,a b c的大小关系为().A a b c<<.B b a c<<.C c b a<<.D c a b<<1()3()3x xf x=-()f x8.(2017天津文)已知函数||2,1,()2, 1.x xf xx xx+<⎧⎪=⎨+≥⎪⎩设Ra∈,若关于x的不等式()||2xf x a≥+在R上恒成立,则a的取值范围是().A[2,2]-.B[-.C[-.D[-9.(2017新课标Ⅲ文数)函数2sin1xxxy++=的部分图像大致为().A.B.C.D10.(2017新课标Ⅲ文数)已知函数211()2()x xf x x x a e e--+=-++有唯一零点,则=a()21.-A.B13.C121.D11.(2017新课标Ⅲ理数)已知函数211()2()x xf x x x a e e--+=-++有唯一零点,则=a()21.-A31.B21.C1.D12.(2017新课标Ⅰ理数)函数()f x在(,)-∞+∞单调递减,且为奇函数.若(11)f=-,则满足21()1xf--≤≤的x的取值范围是().A[2,2]-.B[1,1]-.C[0,4].D[1,3]13.(2017新课标Ⅱ理)若2x=-是函数21()(1)e xf x x ax-=+-的极值点,则()f x的极小值为()1.-A.B32e--.C35e-1.D14.(2017天津理)已知奇函数()f x在R上是增函数,()()g x xf x=.若2(log 5.1)a g=-,0.8(2)b g=,(3)c g=,则cba,,的大小关系为().A a b c<<.B c b a<<.C b a c<<.D b c a<<15.(2017天津理)已知函数23,1,()2, 1.x x xf xx xx⎧-+≤⎪=⎨+>⎪⎩设Ra∈,若关于x的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是() ]2,1647.[-A ]1639,1647.[-B ]2,32.[-C ]1639,32.[-D 16.(2017山东理)已知当[]0,1x ∈时,函数()21y mx =-的图象与y m 的图象有且只有一个交点,则正实数m 的取值范围是().A (])0,1⎡+∞⎣ .B (][)0,13,+∞ .C()⎡+∞⎣.D ([)3,+∞17.(2017浙江)若函数b ax x x f ++=2)(在区间]1,0[上的最大值是M ,最小值是m ,则m M -().A 与a 有关,且与b 有关 .B 与a 有关,但与b 无关 .C 与a 无关,且与b 无关.D 与a 无关,但与b 有关18.(2017浙江)函数)(x f y =的导函数的图象如图所示, 则函数)(x f y =的图象可能是()二、填空题(将正确的答案填在题中横线上)19.(2017山东文)已知)(x f 是定义在R 上的偶函数,且)2()4(-=+x f x f .若当[3,0]x ∈-时,()6x f x -=,则=)919(f .20.(2017天津文)已知a ∈R ,设函数()ln f x ax x =-的图象在点))1(,1(f 处的切线为l ,则l 在y 轴上的截距为 .21.(2017新课标Ⅱ文)已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =.22.(2017新课标Ⅲ文数)设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是__________.()y f x '=23.(2017新课标Ⅰ文数)曲线21y x x=+在点)2,1(处的切线方程为_______. 24.(2017新课标Ⅲ理数)设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_____________.25.(2017山东理)若函数()x e f x ( 2.71828e = 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为. ①()2x f x -=②()3x f x -=③()3f x x = ④()22f x x =+26.(2017江苏)已知函数.若,则实数的取值范围是.27.(2017江苏).设是定义在R 上且周期为1的函数,在区间上,其中集合,,则方程的解的个数是. 三、解答题(应写出必要的文字说明、证明过程或演算步骤) 28.(2017北京文)已知函数. (Ⅰ)求曲线在点处的切线方程; (Ⅱ)求函数在区间上的最大值和最小值.29.(2017新课标Ⅱ文)设函数2()(1)e x f x x =-.(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.31()2e exx f x x x =-+-2(1)(2)0f a f a -+≤a ()f x [0,1)2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩1{n D x x n-==*}n ∈N ()lg 0f x x -=()e cos x f x x x =-()y f x =(0,(0))f ()f x π[0,]230.(2017天津文))设,a b ∈R ,||1a ≤.已知32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点),(00y x 处有相同的切线, (i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.31.(2017新课标Ⅲ文数)已知函数.)12(ln )(2x a ax x x f +++=(1)讨论()f x 的单调性;(2)当0<a 时,证明3()24f x a≤--.32.(2017新课标Ⅰ文数)已知函数.)()(2x a a e e x f x x --=(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.33.(2017山东文)已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当2=a 时,求曲线()y f x =在点()()3,3f 处的切线方程;(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.34.(2017新课标Ⅱ理)已知函数2()ln f ax a x x x x =--,且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220e ()2f x --<<.35.(2017北京理)已知函数.cos )(x x e x f x -= (Ⅰ)求曲线)(x f y =在点))0(,0(f 处的切线方程; (Ⅱ)求函数)(x f 在区间[0,]上的最大值和最小值.π236.(2017浙江)已知函数).21()12()(≥--=-x e x x x f x(Ⅰ)求)(x f 的导函数;(Ⅱ)求)(x f 在区间上的取值范围.37.(2017山东理)已知函数()22cos f x x x =+,()()cos sin 22x g x e x x x =-+-. (Ⅰ)求曲线()y f x =在点()(),f x π处的切线方程;(Ⅱ)令()()()()h x g x af x a R =-∈,讨论()h x 单调性并判断有无极值,若有求出极值.38.(2017新课标Ⅰ理数)已知函数2()(2)x x f x ae a e x =+--.1[+)2∞,(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.39.(2017江苏)已知函数有极值,且导函数的极值点是的零点.(1)求关于的函数关系式,并写出定义域; (2)证明:;(3)若,这两个函数的所有极值之和不小于,求的取值范围.40.(2017新课标Ⅲ理数)已知函数.ln 1)(x a x x f --=32()1(0,)f x x ax bx a b =+++>∈R ()f x '()f x b a 23b a >()f x ()f x '72-a()0f x ≥(1)若,求a 的值; (2)设m 为整数,且对于任意正整数n ,21111++1+)222n ()(1)(m <,求m 的最小值.41.(2017天津理)设a ∈Z ,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数. (Ⅰ)求()g x 的单调区间;(Ⅱ)设00[1,)(,2]m x x ∈ ,函数0()()()()h x g x m x f m =--,求证:0()()0h m h x <; (Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且00[1,)(,2],px x q∈ 满足041||p x q Aq -≥.。

2017全国高考导数解答题文科

2017全国高考导数解答题文科

2017文(全国高考导数解答题) 科.高考如是考1、2017年全国一卷21.(12分)xx2xaa已知函数=e(e﹣)﹣.)f(x(1)讨论的单调性;)(xf a的取值范围.,求(2)若0?xf()2、2017全国二卷(21)(12分)x2xf(x). 设函数)e=(1-f(x) 1()讨论的单调性;axf(x)ax. )当0时,,求+1的取值范围2(??)(本小题20(文)数学北京卷(3、2017年分)13.已知函数x x ecos x??f(x)(Ⅰ)求曲线在点处的切线方程;(0)))(?yfx(0,fπ上的最大值和最小(Ⅱ)求函数在区间)(fx][0,2值.高考如是考参考答案年全国一卷21.(12分)1、2017xx2xaa )﹣﹣.已知函数=e(e)f(x(1)讨论的单调性;)f(x a)若,求的取值范围.(20f(x)?,为义域的解析】(1)函数定【),??(x)(??f,. ,在单调递增①若,则xx2xx2?)??ef?(x)2eea?aea?a)(?(2.x2e)?xf()(??,??0a?得,则由②若?0)f?(x ax?a?0ln,所时,当时,;当??0)?()?0?x(ln a,??)x?x(??,ln a)ff(x. 以在单调递减,在单调递增)a(x),(??,ln a)??(ln f a. ③若,则由得?)ln(?x?0f(x)?0a?2aa,当时,时,;当??)???x?(ln(?x?(??,ln(),))0f)(x?x0)f?(22aa单调递减,在在单调递增故. )),??))?(ln(??(,ln(?)f(x22(2)①若,则,所以.②若,则由(1)得,当时,取得最2x e?x)(f0(x)?f0a?小)xf(a ln xa?0?值,最小值为.从而当且仅当,.22a ln)f(ln a??a0?a ln a?时,即0?)x(f1?aa取得最时,)得,当,则由(③若1)?x?ln()(xf0?a2a3a 从而当且仅当.小值,最小值为2)]?ln(a[(ln(f??))?224.3a3,即时22e a??0?)]?ln(a[?0(fx)?4243的取值范围为综上,.a,1]e2[?42、2017全国二卷(21)(12分)2x xf(x). =(1-)e设函数f(x)的单调性; 1)讨论(xf(x)axa.时,)当(20的取值范围,求+1??.分))(本小题1320((文)数学北京卷、32017年.已知函数x xx)?ecos x?(f在点(Ⅰ)求曲线处的切线方程;(0))(0,fxy?f()π[0,]上的最大值和最小(Ⅱ)求函数在区间)x(f2值.?. 1)(【答案】Ⅰ;最小值;(Ⅱ)最大值?1y?2。

2017年高考数学理试题分类汇编:导数及其应用

2017年高考数学理试题分类汇编:导数及其应用

2017年高考数学理试题分类汇编:导数及其应用1. (2017年新课标Ⅰ文) 8.函数sin21cos xy x=-的部分图像大致为 (C )2. ( 2017年新课标Ⅱ卷理) 11。

若2x =-是函数21`()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A.1- B 。

32e -- C.35e - D 。

1 【答案】A【解析】由题可得12121()(2)(1)[(2)1]x x x f x x a ex ax e x a x a e ---'=+++-=+++-因为(2)0f '-=,所以1a =-,21()(1)x f x x x e-=--,故21()(2)x f x x x e -'=+-令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞单调递增,在(2,1)-单调递减 所以()f x 极小值(1)f =11(111)1e-=--=-,故选A 。

3. (2017年新课标Ⅰ文) 9.已知函数()ln ln(2)f x x x =+-,则 (C ) A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称4. (2017年浙江卷)函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】原函数先减再增,再减再增,因此选D.5. (2017年新课标Ⅲ卷理) 11.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12- B .13C .12D .1【答案】C6. ( 2017年新课标Ⅱ卷理)21.已知函数()2ln f x ax ax x x =--,且()0f x ≥。

17年高考真题—理科数学2:导数

17年高考真题—理科数学2:导数

2017高考真题分类汇编:导数1.【2017浙江 7】函数()y f x =的导函数()y f x '=的图像如图所示,则函数()y f x =的图像可能是( )2.【2017课标II 11】若2x =-是函数()()211x f x x ax e -=+-的极值点,则()f x 的极小值为( )(A )1- (B )32e -- (C )35e - (D )13.【2017课标III 11】已知函数()()2112x x f x x x a e e --+=-++有唯一零点,则( )(A )12-(B )13 (C )12(D )1 4.【2017北京 19】已知函数()cos xf x e x x =-。

⑴求曲线()y f x =在点()()0,0f 处的切线方程;⑵求函数()f x 在区间[]0,2π上的最大值和最小值。

5.【2017天津 20】设a Z ∈,已知定义在R 上的函数()4322336f x x x x x a =+--+在区间()1,2内有一个零点0x ,()g x 为()f x 的导函数。

⑴求()g x 的单调区间;⑵设[)(]001,,2m x x ∈,函数()()()()0h x g x m x f m =--,求证:()()00h m h x <;⑶求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且[)(]001,,2px x q∈,满足041||p x q Aq-≥。

6.【2017江苏 20】已知函数()()3210,f x x ax bx a b R =+++>∈有极值,且导函数()f x '的极值点是()f x 的零点(极值点是指函数取极值时对应的自变量的值)。

⑴求b 关于a 的函数关系式,并写出定义域;⑵证明:23b a >;⑶若()(),f x f x '这两个函数的所有极值之和不小于72-,求a 的取值范围。

2017年高考数学试题分项版—函数、导数应用(原卷版)

2017年高考数学试题分项版—函数、导数应用(原卷版)

2017年高考数学试题分项版—函数、导数应用(原卷版)一、选择题1.(2017·全国Ⅰ文,8)函数y =sin 2x1-cos x的部分图象大致为( )2.(2017·全国Ⅰ文,9)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)上单调递增 B .f (x )在(0,2)上单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称3.(2017·全国Ⅱ文,8)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)4.(2017·全国Ⅲ文,7)函数y =1+x +sin x x2的部分图象大致为( )5.(2017·全国Ⅲ文,12)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a 等于( )A .-12B .13C .12D .16.(2017·北京文,5)已知函数f (x )=3x -⎝⎛⎭⎫13x,则f (x )( ) A .是偶函数,且在R 上是增函数B .是奇函数,且在R 上是增函数C .是偶函数,且在R 上是减函数D .是奇函数,且在R 上是减函数7.(2017·北京文,8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN 最接近的是( )(参考数据:lg 3≈0.48)A .1033B .1053C .1073D .10938.(2017·天津文,6)已知奇函数f (x )在R 上是增函数.若a =-f ⎝⎛⎭⎫log 215,b =f ()log 24.1,c =f (20.8),则a ,b ,c 的大小关系为( ) A .a <b <c B .b <a <c C .c <b <aD .c <a <b9.(2017·天津文,8)已知函数f (x )=⎩⎪⎨⎪⎧|x |+2,x <1,x +2x ,x ≥1.设a ∈R ,若关于x 的不等式f (x )≥⎪⎪⎪⎪x2+a 在R 上恒成立,则a 的取值范围是( ) A .[-2,2] B .[-23,2] C .[-2,23]D .[-23,23]10.(2017·山东文,9)设f (x )=⎩⎨⎧x ,0<x <1,2 x -1 ,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a 等于( ) A .2 B .4 C .6 D .811.(2017·山东文,10)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质,下列函数中具有M 性质的是( ) A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x12.(2017·浙江,5)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关13.(2017·浙江,7)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )14.(2017·全国Ⅰ理,5)已知函数f (x )在(-∞,+∞)上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( ) A .[-2,2] B .[-1,1] C .[0,4] D .[1,3]15.(2017·全国Ⅰ理,11)设x ,y ,z 为正数,且2x =3y =5z ,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z16.(2017·全国Ⅱ理,11)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3C .5e -3D .117.(2017·全国Ⅲ理,11)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a 等于( )A .-12B .13C .12D .118.(2017·北京理,5)已知函数f (x )=3x -⎝⎛⎭⎫13x,则f (x )( ) A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数19.(2017·北京理,8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN 最接近的是( )(参考数据:lg 3≈0.48) A .1033 B .1053 C .1073D .109320.(2017·天津理,6)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a21.(2017·天津理,8)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x +3,x ≤1,x +2x ,x >1.设a ∈R ,若关于x 的不等式f (x )≥⎪⎪⎪⎪x2+a 在R 上恒成立,则a 的取值范围是( ) A.⎣⎡⎦⎤-4716,2 B.⎣⎡⎦⎤-4716,3916 C.[]-23,2D.⎣⎡⎦⎤-23,3916 22.(2017·山东理,10)已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( ) A .(0,1]∪[23,+∞) B .(0,1]∪[3,+∞) C .(0,2]∪[23,+∞) D .(0,2]∪[3,+∞)二、填空题1.(2017·全国Ⅰ文,14)曲线y =x 2+1x在点(1,2)处的切线方程为________.2.(2017·全国Ⅱ文,14)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________.3.(2017·全国Ⅲ文,16)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.4.(2017·天津文,10)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.5.(2017·山东文,14)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.6.(2017·浙江,17)已知a ∈R ,函数f (x )=|x +4x -a |+a 在区间[1,4]上的最大值是5,则a 的取值范围是________.7.(2017·江苏,11)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.8.(2017·江苏,14)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________.9.(2017·全国Ⅲ理,15)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.10.(2017·山东理,15)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质,下列函数中所有具有M 性质的函数的序号为________. ①f (x )=2-x ;②f (x )=3-x ;③f (x )=x 3;④f (x )=x 2+2.三、解答题1.(2017·全国Ⅰ文,21)已知函数f (x )=e x (e x -a )-a 2x . (1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.2.(2017·全国Ⅱ文,21)设函数f (x )=(1-x 2)e x . (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围.3.(2017·全国Ⅲ文,21)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a -2.4.(2017·北京文,20)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值.5.(2017·天津文,19)设a ,b ∈R ,|a |≤1.已知函数f (x )=x 3-6x 2-3a (a -4)x +b ,g (x )=e x f (x ). (1)求f (x )的单调区间;(2)已知函数y =g (x )和y =e x 的图象在公共点(x 0,y 0)处有相同的切线. ①求证:f (x )在x =x 0处的导数等于0;②若关于x 的不等式g (x )≤e x 在区间[x 0-1,x 0+1]上恒成立,求b 的取值范围.6.(2017·山东文,20)已知函数f (x )=13x 3-12ax 2,a ∈R .(1)当a =2时,求曲线y =f (x )在点(3,f (3))处的切线方程;(2)设函数g (x )=f (x )+(x -a )cos x -sin x ,讨论g (x )的单调性并判断有无极值,有极值时求出极值.7.(2017·浙江,20)已知函数f (x )=(x -2x -1)e -x ⎝⎛⎭⎫x ≥12. (1)求f (x )的导函数;(2)求f (x )在区间⎣⎡⎭⎫12,+∞上的取值范围.8.(2017·江苏,20)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.9.(2017·全国Ⅰ理,21)已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.10.(2017·全国Ⅱ理,21)已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0. (1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2.11.(2017·全国Ⅲ理,21)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122·…·⎝⎛⎭⎫1+12n <m ,求m 的最小值.12.(2017·北京理,19)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值.13.(2017·天津理,20)设a ∈Z ,已知定义在R 上的函数f (x )=2x 4+3x 3-3x 2-6x +a 在区间(1,2)内有一个零点x 0,g (x )为f (x )的导函数. (1)求g (x )的单调区间;(2)设m ∈[1,x 0)∪(x 0,2],函数h (x )=g (x )(m -x 0)-f (m ),求证:h (m )h (x 0)<0;(3)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且p q ∈[1,x 0)∪(x 0,2],满足⎪⎪⎪⎪p q -x 0≥1Aq 4.14.(2017·山东理,20)已知函数f (x )=x 2+2cos x ,g (x )=e x (cos x -sin x +2x -2),其中e = 2.718 28…是自然对数的底数.(1)求曲线y =f (x )在点(π,f (π))处的切线方程;(2)令h (x )=g (x )-af (x )(a ∈R ),讨论h (x )的单调性并判断有无极值,有极值时求出极值.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考真题导数专题一.解答题(共12小题)1.已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.3.已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.4.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.6.已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.7.已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.8.已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.9.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.10.已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f (x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.12.已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.2017年高考真题导数专题参考答案与试题解析一.解答题(共12小题)1.(2017•新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,由ln(﹣1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).2.(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,求导可知h′(x)=a﹣.则当a≤0时h′(x)<0,即y=h(x)在(0,+∞)上单调递减,所以当x0>1时,h(x0)<h(1)=0,矛盾,故a>0.因为当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.3.(2017•新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.【解答】解:(1)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣=,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f (a),又因为f(x)min=f(a)≥0,所以a=1;(2)由(1)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1+)<,k∈N*.一方面,ln(1+)+ln(1+)+…+ln(1+)<++…+=1﹣<1,即(1+)(1+)…(1+)<e;另一方面,(1+)(1+)…(1+)>(1+)(1+)(1+)=>2;从而当n≥3时,(1+)(1+)…(1+)∈(2,e),因为m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m成立,所以m的最小值为3.4.(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0的实根,所以4a2﹣12b≥0,即a2﹣+≥0,解得a≥3,所以b=+(a≥3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].5.(2017•新课标Ⅱ)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.【解答】解:(1)因为f(x)=(1﹣x2)e x,x∈R,所以f′(x)=(1﹣2x﹣x2)e x,令f′(x)=0可知x=﹣1±,当x<﹣1﹣或x>﹣1+时f′(x)<0,当﹣1﹣<x<﹣1+时f′(x)>0,所以f(x)在(﹣∞,﹣1﹣),(﹣1+,+∞)上单调递减,在(﹣1﹣,﹣1+)上单调递增;(2)由题可知f(x)=(1﹣x)(1+x)e x.下面对a的范围进行讨论:①当a≥1时,设函数h(x)=(1﹣x)e x,则h′(x)=﹣xe x<0(x>0),因此h(x)在[0,+∞)上单调递减,又因为h(0)=1,所以h(x)≤1,所以f(x)=(1﹣x)h(x)≤x+1≤ax+1;②当0<a<1时,设函数g(x)=e x﹣x﹣1,则g′(x)=e x﹣1>0(x>0),所以g(x)在[0,+∞)上单调递增,又g(0)=1﹣0﹣1=0,所以e x≥x+1.因为当0<x<1时f(x)>(1﹣x)(1+x)2,所以(1﹣x)(1+x)2﹣ax﹣1=x(1﹣a﹣x﹣x2),取x0=∈(0,1),则(1﹣x0)(1+x0)2﹣ax0﹣1=0,所以f(x0)>ax0+1,矛盾;③当a≤0时,取x0=∈(0,1),则f(x0)>(1﹣x0)(1+x0)2=1≥ax0+1,矛盾;综上所述,a的取值范围是[1,+∞).6.(2017•浙江)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].7.(2017•山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.【解答】解:(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(2)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].8.(2017•北京)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.9.(2017•天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.【解答】(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x=.当x变化时,g′(x),g(x)的变化情况如下表:x(﹣∞,﹣1)(﹣1,)(,+∞)g′(x)+﹣+g(x)↗↘↗所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.所以,h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;当m∈(x0,2]时,h(x)在区间(x0,m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0.由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),于是|﹣x0|=≥=.因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以|﹣x0|≥.所以,只要取A=g(2),就有|﹣x0|≥.10.(2017•山东)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.【解答】解:(1)当a=2时,f(x)=x3﹣x2,∴f′(x)=x2﹣2x,∴k=f′(3)=9﹣6=3,f(3)=×27﹣9=0,∴曲线y=f(x)在点(3,f(3))处的切线方程y=3(x﹣3),即3x﹣y﹣9=0(2)函数g(x)=f(x)+(x﹣a)cosx﹣sinx=x3﹣ax2+(x﹣a)cosx﹣sinx,∴g′(x)=(x﹣a)(x﹣sinx),令g′(x)=0,解得x=a,或x=0,①若a>0时,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x>a时,g′(x)>0恒成立,故g(x)在(a,+∞)上单调递增,当0<x<a时,g′(x)<0恒成立,故g(x)在(0,a)上单调递减,∴当x=a时,函数有极小值,极小值为g(a)=﹣a3﹣sina当x=0时,有极大值,极大值为g(0)=﹣a,②若a<0时,当x>0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x<a时,g′(x)>0恒成立,故g(x)在(﹣∞,a)上单调递增,当a<x<0时,g′(x)<0恒成立,故g(x)在(a,0)上单调递减,∴当x=a时,函数有极大值,极大值为g(a)=﹣a3﹣sina当x=0时,有极小值,极小值为g(0)=﹣a③当a=0时,g′(x)=x(x+sinx),当x>0时,g′(x)>0恒成立,故g(x)在(0,+∞)上单调递增,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,∴g(x)在R上单调递增,无极值.11.(2017•天津)设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.【解答】(Ⅰ)解:由f(x)=x3﹣6x2﹣3a(a﹣4)x+b,可得f'(x)=3x2﹣12x ﹣3a(a﹣4)=3(x﹣a)(x﹣(4﹣a)),令f'(x)=0,解得x=a,或x=4﹣a.由|a|≤1,得a<4﹣a.当x变化时,f'(x),f(x)的变化情况如下表:x(﹣∞,a)(a,4﹣a)(4﹣a,+∞)f'(x)+﹣+f(x)↗↘↗∴f(x)的单调递增区间为(﹣∞,a),(4﹣a,+∞),单调递减区间为(a,4﹣a);(Ⅱ)(i)证明:∵g'(x)=e x(f(x)+f'(x)),由题意知,∴,解得.∴f(x)在x=x0处的导数等于0;(ii)解:∵g(x)≤e x,x∈[x0﹣1,x0+1],由e x>0,可得f(x)≤1.又∵f(x0)=1,f'(x0)=0,故x0为f(x)的极大值点,由(I)知x0=a.另一方面,由于|a|≤1,故a+1<4﹣a,由(Ⅰ)知f(x)在(a﹣1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时,f(x)≤f(a)=1在[a﹣1,a+1]上恒成立,从而g(x)≤e x在[x0﹣1,x0+1]上恒成立.由f(a)=a3﹣6a2﹣3a(a﹣4)a+b=1,得b=2a3﹣6a2+1,﹣1≤a≤1.令t(x)=2x3﹣6x2+1,x∈[﹣1,1],∴t'(x)=6x2﹣12x,令t'(x)=0,解得x=2(舍去),或x=0.∵t(﹣1)=﹣7,t(1)=﹣3,t(0)=1,故t(x)的值域为[﹣7,1].∴b的取值范围是[﹣7,1].12.(2017•新课标Ⅰ)已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.【解答】解:(1)f(x)=e x(e x﹣a)﹣a2x=e2x﹣e x a﹣a2x,∴f′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a),①当a=0时,f′(x)>0恒成立,∴f(x)在R上单调递增,②当a>0时,2e x+a>0,令f′(x)=0,解得x=lna,当x<lna时,f′(x)<0,函数f(x)单调递减,当x>lna时,f′(x)>0,函数f(x)单调递增,③当a<0时,e x﹣a>0,令f′(x)=0,解得x=ln(﹣),当x<ln(﹣)时,f′(x)<0,函数f(x)单调递减,当x>ln(﹣)时,f′(x)>0,函数f(x)单调递增,综上所述,当a=0时,f(x)在R上单调递增,当a>0时,f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,当a<0时,f(x)在(﹣∞,ln(﹣))上单调递减,在(ln(﹣),+∞)上单调递增,(2)①当a=0时,f(x)=e2x>0恒成立,②当a>0时,由(1)可得f(x)min=f(lna)=﹣a2lna≥0,∴lna≤0,∴0<a≤1,③当a<0时,由(1)可得f(x)min=f(ln(﹣))=﹣a2ln(﹣)≥0,∴ln(﹣)≤,∴﹣2≤a<0,综上所述a的取值范围为[﹣2,1]。

相关文档
最新文档