清华大学电路原理于歆杰精品PPT课件
清华大学—电路原理(完全版) (16) PPT课件

则 相位差 j = (w t+y u)- (w t+y i)= y u-y i 初相位之差
• j >0, u 领先i j 角,或i 落后 u j 角(u 比 i 先到达最大值);
u, i u i
O
yu yi j
• j <0, i 领先 u j 角,
u, i
i
wt
u
O
wt
j
(i 比 u 先到达最大值)。
工程上说的正弦电压、电流一般指有效值,如设备铭牌 额定值、电网的电压等级等。但绝缘水平、耐压值指的是 最大值。
测量中,电磁式交流电压、电流表读数均为有效值。
* 区分电压、电流的瞬时值、最大值、有效值的符号。
ui U IU mm I
返回首页
正弦电流电路的稳态分析
第一讲(总第十七讲)
正弦量的基本概念 周期性电流、电压的有效值
i(t)=Imsin(w t+y)
(w t+y ) :相位(相位角)
(3) 初相位y :正弦量在 t=0时的相位角。(反映正弦量的初始值。)
y 当 t= 0 时 i(t)= I m sin
初相位y 和计时起点有关,计时起点不同初相位不同。
wy wy 0 T s2 ( it n i) d t= 0 T 1 c2 o ( 2 t si)d t= 1 2 T
I=
T1Im 2 T2
=
Im 2
=0.70I7m
பைடு நூலகம்或 Im = 2I
wy wy 即 i( t)= I m sitn i) ( =2 I sitn i) (
同理,可得正弦电压有效值与最大值的关系: U=12Um 或 Um= 2U
i
清华大学电路原理课件1

电路原理Principle of Electric Circuits于歆杰yuxj@Tel: 62771944西主楼1区308第一讲绪论,电压电流和功率第一部分:绪论Principles of Electric Circuits Lecture 1 Tsinghua University 2005什么是电路?a电路(electric circuits)就是由若干电气元件(electrical elements)相互连接构成的电流的通路。
a本课程中要接触的电气元件有`电阻、电容、电感、二极管、MOSFET、理想运算放大器(Operational Amplifier)、互感线圈、理想变压器等Principles of Electric Circuits Lecture 1 Tsinghua University 2005为什么要学习电路?a从学术的观点来看`电路是电气工程(Electrical Engineering)的基础。
`电路是计算机科学(Computer Science)的基础。
a从实际情况来看`电路原理是许多高级课程的先修课程。
`熟练掌握电路原理对现实生活有帮助。
Principles of Electric Circuits Lecture 1 Tsinghua University 2005t q t q t i t d d ∆∆lim )(0∆def ==→d d BABA Weq=AI110ΩU1U2t w p d d =uit qq w ==d dd d q wu d d =t qi d d =。
清华考研_电路原理课件_第16章__二端口网络

清华大学电路原理电子课件江辑光版参考教材:《电路原理》(第2版)清华大学出版社,2007年3月江辑光刘秀成《电路原理》清华大学出版社,2007年3月于歆杰朱桂萍陆文娟《电路》(第5版)高等教育出版社,2006年5月邱关源罗先觉本章重点 16.1二端口概述 16.2二端口的参数和方程 16.3二端口的等效电路 16.4二端口的联接二端口的特性阻抗和传播常数 16.5 二端口的特性阻抗和传播常数 16.6二端口的转移函数 16.7回转器和负阻抗变换器第16章二端口网络本章重点16.1二端口概述16.2二端口的参数和方程16.3二端口的等效电路16.4二端口的联接 16.516.6二端口的转移函数16.7回转器和负阻抗变换器本章重点.16.1二端口概述二端网络(two-terminal network )+u S _PAR四端网络(four-terminal network )n :1R理想变压器CC滤波器电路iii1i1 线性RLCM受控源i2i2三、二端口与四端网络i1 i2 i1 i2i1二端口i2 i1i2具有公共端的二端口i2i1 i3i4四端网络例+ u1 –112i1i1332ii12Ri22442i2i2222+u2-1-12,2-2 2是二端口。
3-3 2,4-4 2不是二端口,是四端网络。
因为i12 = i1 i ⎺ i1i22 = i2 + i ⎺ i2不满足端口条件i1i 线性RLCM受控源i2i216.2 二端口的参数和方程I1I 1 2I II1♠♥I 2=Y 21U 1+Y 22U 2+Y 12=U 1=0= Y b=Y b +Y c例1求图示二端口的Y 参数。
I 1Y bI 2解♣♠ I 1 = Y 11U 1 + Y 12U 2 ♦+ U 1 -Y aY c+ U 2 -I 1+U 1-U 1 = 0Y b Y a Y cI 1 Y bY a Y cY 12 = Y 21 = Y bI 2Y 11 = U 2=0 = Y a + Yb U 2 = 0I 2互易二端口U1U2U 2 = 0I1I例I12& 10& I2思路1:+U15& 10& +电阻网络,互易Y12 = Y21-电路结构左右不对称-Y11 =12 + 5 // 10=316S思路2:Y– 等效变换Y22 =110 //(10 + 2 // 5)=316SI1 2& I2对称二端口(电气对称)+ U1 - 2& 4&2&+-电路结构左右对称♠♥I 2=Y 21U 1+Y 22U 2♠例2求所示电路的Y 参数。
电路原理-清华-12

R 12 Δ
( u s3 )
R 12 Δ
u s3
5
us1 1
ia
us2 2 R11
R21
R12
R22 R12
R2 Δ
2
us1
1
R12 Δ
us22R Δ 22 u s1R 1Δ 2R 22 u s2R Δ 12 u s3
R22
u s 1 R 12
0 i a 1 R 11
把 usi 个系数合并为Gji
us1 usb
b
G uji si i 1
第i个电压源单独作用时在 第j 个回路中产生的回路电流
ij1ij2 iji ijb
支路电流是回路电流的线性组合,支路电流满足叠加定理。
同样可以证明:线性电阻电路中任意支路的电压
等于各电源(电压源、电流源)在此支路产生的电压
证明:
A ik
+
支
A
uk
路 k
A
–
B
A ik
+
+
A uk
uk
–
–
B
第k条支路也可用ik替代,留课后思考。
A ik
支+ 路 uk k–
–uk + C B – uk +
AC等电位
例
6
+ i1
i2 +
i3
20V
8 u
–
–
用节点法可求出
4 u=8V
+
i1=2A
-4V
i2=1A
i3=1A
用8V电压源替代8所在支路
i j Rl1
清华考研_电路原理课件_第10章__正弦电流电路的稳态分析

江辑光版
参考教材: 《电路原理》(第2版) 清华大学出版社,2007年3月 江辑光 刘秀成 《电路原理》 清华大学出版社,2007年3月 于歆杰 朱桂萍 陆文娟 《电路》(第5版)高等教育出版社,2006年5月 邱关源 罗先觉
第10章 正弦电流电路的稳态分析
本本章章重重点点 1100.. 11 正弦量的基本概念 1100.. 22 周期性电流、电压的有效值 10. 3 复数复习 1100.. 44 正弦量的相量表示 10. 5 电阻、电感和电容元件电
或 Im = 2I
即 i(t ) = Im sin(ωt +ψ i ) = 2I sin(ωt +ψ i )
同理,可得正弦电压有效值与最大值的关系
1
U = 2 Um
或
U m = 2U
若一交流电压有效值为U=220V,则其最大值为Um≈311V;
U=380V,
Um≈537V。
* 区分电压、电流的瞬时值、最大值、有效值的符号。
返回目录
10.3 复数复习
一、 复数(complex)A表示形式
直角坐标 A=a+jb (j = − 1 为虚数单位)
Im
b
A
0
a Re
极坐标 A=|A|ejθ =|A| ∠θ Im b
A
θ
O
a Re
两种表示法的关系:
⎧ ⎪
|
A |=
a2 + b2
⎨
b或
⎪ ⎩
θ = arctan a
⎧ a =| A | cosθ
解 U̇1 = 3∠0o V , U̇ 2 = 4∠90� V U̇ = U̇1 + U̇ 2 = 5∠53.1° V u(t ) = u1(t) + u2(t) = 5 2sin(314t + 53.1°) V
清华大学电路原理于版课件5

i11 R1 i + a1 – R2 ib1 R3
i12 R1 ia2 R2 + ib2 – R3
i13 R1 ia3 R2 R3 ib3 + –
uS1和uS2不作用
us1
uS2和uS3不作用
us2
us3
uS1和uS3不作用
R11ia1+R12ib1=us1 R21ia1+R22ib1=0
us 1 R12 0 R22 ia 1 R11 R12 R21 R22 R22 us 1 Δ
10V
–
Us'= -10 I1'+U1' = -101+41= -6V
Principles of Electric Circuits Lecture 5 Tsinghua University 2012
I1 6 + 10V – I1' + 10V – 6 4
+
10 I1
– + 4A
I1''
i
i '=1A
2
13A
1
5A
1
2A
+ 2V –
设 i'= 1A
i us ' i ' us
us 51 i ' i ' 1 1. 5 A us 34
Principles of Electric Circuits Lecture 5 Tsinghua University 2012
讨论
i a
+ 负电阻
u 开路
正电阻 电压源
N
i
b-
?
0 电流源 电流源
清华大学电路原理课件-

参考方向:任意选定的一个方向即为电流的参考方向。
i
参考方向
A
B
电流的参考方向与实际方向的关系
i
参考方向
i
参考方向
实际方向
i> 0
实际方向
i< 0
电流参考方向的两种表示
• 用箭头表示:箭头的指向为电流的参考方向。 • 用双下标表示:如 iAB ,电流的参考方向由A指向B。
例
I 10V
Uac= a– c = 1.5 –(–1.5) = 3 V
结论:电路中电位参考点可任意选择;当选择不同的电 位参考点时,电路中各点电位将改变,但任意两点 间电压保持不变。
4. 电动势(electromotive force) 外力(非静电力)克服电场力把单位正电荷从负极经电
源内部移到正极所作的功称为电源的电动势。
_
_
模型(circuit model)不再存在)。
i
实际电压源
r
(physical source)
u
US
_
_
u
US
0
i
u=US – r i
二、理想电流源(ideal current source)
电路符号
iS
1. 特点:
(a) 电源电流由电源本身决定,与外电路无关; (b) 电源两端电压由外电路决定。
电容( capacitor )元件:表示各种电容器产生电场、 储存能量的作用。
电源( source )元件:表示各种将其它形式的能量转 变成电能的元件。
2. 电路模型
由理想电路元件组成的电路,其与实际电路具有基本相同 的电磁性质。
例
开关
10BASE-T wall plate
清华大学电路原理电子课件

三相交流电路的分析方法
总结词
掌握三相交流电路的分析方法
详细描述
分析三相交流电路时,需要使用相量法、对称分量法等 数学工具,以便更好地理解电路的工作原理和特性。
三相交流电路的应用
总结词
了解三相交流电路的应用领域
详细描述
三相交流电在工业、电力、交通、通信等领域得到广泛应用,如电动机控制、输电线路、电力系统自动化等。
瞬态响应是指电路在输入信号的作用下, 电压和电流随时间从零开始变化至稳态的 过程。稳态响应是指电路达到稳定状态后 ,电压和电流不再随时间变化的状态。一 阶动态电路的响应可以通过求解一阶常微 分方程得到。
一阶动态电路的应用
总结词
一阶动态电路在电子工程、通信工程、自动 控制等领域有着广泛的应用。
详细描述
电路元件和电路模型
总结词
掌握电路元件和电路模型是分析电路的基本方法。
详细描述
电路元件包括电阻、电容、电感等,它们具有特定的电气特性。电路模型是用 图形符号表示电路元件及其连接关系的一种抽象表示方法。
电路的工作状态和电气参数
总结词
了解电路的工作状态和电气参数是评估电路性能的关键。
详细描述
电路的工作状态可以分为有载、空载和短路等,不同的工作状态对电路的性能产 生影响。电气参数包括电压、电流、功率等,它们是描述电路性能的重要指标。
二阶动态电路的应用
要点一
总结词
二阶动态电路在电子设备和系统中的应用
要点二
详细描述
二阶动态电路广泛应用于各种电子设备和系统中,如振荡 器、滤波器、放大器等,用于实现特定的信号处理和控制 系统功能。
06
三相交流电路分析
三相交流电的基本概念
总结词
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电路符号
+– 受控电压源
受控电流源
清华大学电路原理教学组
一个受控电流源的例子(MOSFET)
IDS
MOSFET
+ D
G
+
S
UDS
IDS
UGS
-
-
电流源
电 阻
受控源与独立源的比较:
UDS
(1) 独立源电压(或电流)由电源本身决定,而受控源电压(或
电流)直接由控制量决定。
二、欧姆定律 (Ohm’s Law)
(1) 电压电流采用关联参考方向
i
R
+u
uRi
R 电阻 (resistance) 单位: (欧)
清华大学电路原理教学组
令G 1/R
G 电导 (conductance)
单位: S (西) (Siemens,西门子)
欧姆定律(关联参考方向下): i G u
u 关联参考方向下线性电阻器的u-i关系 :
清华大学电路原理教学组
(2) 伏安特性 i
+
iS
u
_
u
IS
0
i
(a)若iS= IS ,即直流电源,则其伏安特性为平行于电 压轴的直线,反映电流与端电压无关。
(b)若iS为变化的电源,则某一时刻的伏安关系也是 平行于电压轴的直线
(c)电流为零的电流源,伏安特性曲线与 u 轴重合,相 当于开路状态。
清华大学电路原理教学组
(3) 理想电流源的短路与开路
+
i
(1) 短路:R=0, i= iS ,u=0 ,
电流源被短路。
iS
u
R
_
(2)理想电流源不允许开路(此时
电路模型不再存在) 。
(4) 实际电流源的产生 可由稳流电子设备产生,有些电子器件输出具备电流源
特性,如晶体管的集电极电流与负载无关;光电池在一定光 线照射下光电池被激发产生一定值的电流等。
uS
电路符号
(1) 特点 (a) 电源两端电压由电源本身决定,与外电路无关; (b) 通过它的电流由外电路决定。
清华大学电路原理教学组
(2) 伏安特性 i
+ +
uS
u
_
_
u US
0
i
(a)若uS = US ,即直流电源,则其伏安特性为平行于 电流轴的直线,反映电压与电源中的电流无关。
(b)若uS为变化的电源,则某一时刻的伏安关系特性 为平行于电流轴的直线。
清华大学电路原理教学组
五、电阻的额定值
阻值+功率
清华大学电路原理教学组
六、决定阻值的因素
R L
S
T 0 1 T
材料
银
0 / ·m 1.5×10-8 /(℃-1) 4.0×10-3
几种常见材料的0℃电阻率与温度系数
铜
铝
铁
碳
1.6×10-8 4.3×10-3
2.5×10-8 4.7×10-3
清华大学电路原理教学组
+ +
(5) 功率 i
iS
u
_
i _
iS
u
p发= uiS p吸= –uiS
p吸= uiS p发= –uiS
清华大学电路原理教学组
二、受控电源 (非独立源) (controlled source or dependent source)
1. 定义 电压源电压或电流源电流不是给定的时间函数,而是受
八、非线性电阻
激励
e1(t)
网络 响应
线性网络 r1(t)
e2(t) 线性网络 r2(t)
满足齐次性和可加性,即
Ae1(t) +Be2(t) 成立 Ar1(t)+ Br2(t)
线性电阻
u Ri
非线性电阻
i
IS
e
u
UTH
1
清华大学电路原理教学组
九、时变电阻
e (t)
r (t)
非时变元件
e (t - )
r (t- )
非时变元件
即输出响应与输入信号 外加时刻无关。
线性非时变电阻
线性时变电阻
ut = R·it
电阻Rt是时间 t 的函数 i(t) R(t)
+
u(t)
ut = Rt ·it
清华大学电路原理教学组
返回目录
2.2 电源
一、独立电源 (independent source) 1. 理想电压源(ideal voltage source)
8.7×10-8 5.0×10-3
3500×10-8 -5.0×10-4
镍铬合金 110×10-8 1.6×10-4
清华大学电路原理教学组
七、电阻器
贴片电阻
碳膜电阻 金属膜 电阻 线绕电阻
电阻器的尺寸 主要取决于什么?
体积小 重量轻 可靠性高
阻值范围宽 价格低廉
稳定性高 精度高
功率大
清华大学电路原理教学组
i = 0 , u由外电路决定。
短路
0
i
u
开路
0
i
清华大学电路原理教学组
四、电阻消耗的功率
功率: R
i
+
u
p吸 ui i2R u2 / R
R
i p发 ui (–Ri)i –i2 R
+
u
u(–u/ R) –u2/ R 或 p吸 u(–i) (–Ri) (–i)
i2 R u2/ R
无论参考方向如何选取,电阻始终消耗电功率。
_
i
u _
清华大学电路原理教学组
u
US
0
i
u=US – r i2. 理想电流源(ide来自l current source)
iS
电路符号
(1) 特点 (a) 电源电流由电源本身决定,与外电路无关; (b) 电源两端电压由外电路决定。
例
I 1A U R
R 1 , I 1A , U 1V R 10 , I 1A , U 10V
uRi
R = tan
0
i
清华大学电路原理教学组
(2) 电压电流非关联参考方向
i
R
+ u
欧姆定律: u –Ri 或 i –Gu
公式的列写必须根据参考方向!!
清华大学电路原理教学组
三、开路与短路
+
i 当 R = 0 (G = ),视其为短路。
u
u = 0 , i由外电路决定。
R
u
–
当 R = (G = 0),视其为开路。
第2章 简单电阻电路分析
2. 1 电阻 2. 2 电源 2. 3 MOSFET 2. 4 基尔霍夫定律 2. 5 电路的等效变换 2. 6 运算放大器 2. 7 二端口网络 2. 8 数字系统的基本概念 2. 9 用MOSFET构成数字系
统的基本单元——门电路
2.1 电阻
一、电阻 (resistor) R
(2) 独立源作为电路中“激励”,在电路中产生电压、电流, 而受控源在电路中不能作为“激励”。
清华大学电路原理教学组
+
uGS
(c) 电压为零的电压源,伏安曲线与 i 轴重合,相当于 短路状态。
清华大学电路原理教学组
(3) 理想电压源的开路与短路
+ +
+ +
i
uS
u
_
_
(a) 开路:R,i=0,u=uS。
R (b)理想电压源不允许短路(此时电路 模型(circuit model)不再存在)。
实际电压源
r
(physical source) US