人工智能-北航6系人工智能课件 精品
合集下载
《人工智能》课件
我们将讨论机器人技术的 发展趋势,例如智能助手、 无人机和机器人外科手术。
深入研究人工智能可能导 致的伦理和法律问题,例 如数据隐私、人工智能武 器和就业市场变革。
人工智能技术的现状
机器学习
我们将介绍机器学习的基本原理 和主要方法,以及机器学习在各 个领域的应用案例。
自然语言处理
我们将探索自然语言处理技术, 包括文本分析、语音识别和机器 翻译的现状和发展。
我们将研究人工智能对就业、教育和社会结构等方面的深远影响。
2
生活影响
我们将讨论人工智能在日常生活中的应用,例如智能助手、智能家居和虚拟现实。
3
伦理考量
最后,我们将探讨人工智能的伦理考量,引发大家思考如何在发展人工智能的同 时保护人类价值和权益。
金融服务
深入了解人工智能在金融行业中的应用,例如风险评估、欺诈检测和智能投资顾问。
交通运输
我们将研究人工智能在自动驾驶汽车、智能交通管理和物流优化等领域的创新应用。
人工智能的未来发展趋势
1 增强学习
2 机器人技术
3 伦理和法律问题
探索增强学习的前沿技术, 了解如何使机器能够通过 反馈与环境互动自主学习 并改进。
计算机视觉
我们将介绍计算机视觉的进展, 包括图像识别、物体检测和人脸 识别等应用。
人工智能的优缺点
优点
我们将讨论人工智能的优点,例如提高效率、 创造新的机会和改善决策等方面的优势。
缺点
我们也将探讨人工智能的一些挑战和风险,例 如失业问题、不可靠的算法和伦理考量。
人工智能对社会和生活的影响
1
社会影响
2
发展阶段
我们将探索人工智能的发展阶段,从符号主义到神经网络,从弱人工智能到强人 工智能的演进。
人工智能 ppt课件
(2)自然数都是大于等于零的整数。 定义谓词如下: N(x):x是自然数。 I(x):x是整数。 GZ(x):x大于等于零。 (x)(N(x)→(GZ(x)∧I(x)))
(3) 西安市的夏天既干燥又炎热。 定义谓词: SUMMER(x):x处于夏天。 DRY(x):x很干燥。 HOT(x):x很炎热。
f4:从B瓶往C瓶倒油, 把C瓶倒满。
f5:从B瓶往A瓶倒油, 把B瓶倒空。
f6:从B瓶往C瓶倒油, 把B瓶倒空。
f1 f5 f7 0,0
f7
f1 f5
f7:从C瓶往A瓶倒油,
5,2
f4 f2
f3
4,3 f1 5,3
f7 f3
f8
4,0
f4
f5
0,1
f6 f8
f1
1,0
f7 f3
1,3
把C瓶倒空。
f8:从C瓶往B瓶倒油, 把C瓶倒空。
0,1,0 L(0,1)
L(1,0) L(0,1)
2,2,0
3,1,0
L(1,1)
R(1,1)L(0,2) R(0,2)
3,3,1
R(1,0) R(0,1)
1,1,1
0,2,1
L(1,1)R(0,2)
R(1,1)
L(0,2)
0,0,0
L(0,1) R(0,1)
R(0,1) L(0,1)
3,2,0
0,1,1
➢例1:设有下列事实性知识: 张晓辉是一名计算机系的学生,但他不喜欢 编程序。李晓鹏比他父亲长得高。
请用谓词公式表示这些知识。
(1)定义谓词及个体。 Computer(x):x是计算机系的学生。 Like(x,y):x喜欢y。 Higher(x,y):x比y长得高。
人工智能培训课件
任务
计算机视觉的主要任务包括图像和视频的获取、预处理、特征提取、目标检测与跟踪、图像分类与识别、场景理 解等。
图像处理与特征提取
图像处理
图像处理是计算机视觉的基础,包括图像的灰度化、去噪、增强、变换等操作,旨在改善图像的质量 和可读性,为后续的视觉任务提供更好的输入。
特征提取
特征提取是从原始图像中提取出有用的信息,如边缘、角点、纹理等,为后续的分类、识别等任务提 供特征描述。常用的特征提取方法包括SIFT、SURF、HOG等。
分类
根据学习方式的不同,机器学习 可以分为监督学习、无监督学习 、半监督学习和强化学习等。
深度学习的定义与原理
定义
深度学习是机器学习的一种分支,它使用神经网络模型来模拟人脑的学习过程 。深度学习模型由多个层次的神经元组成,每个神经元都有一个权重,用于将 输入信号转换为输出信号。
原理
深度学习的原理是通过反向传播算法来不断调整神经元之间的权重,以最小化 预测结果与实际结果之间的误差。当模型训练完成后,它可以用于预测新的数 据。
05
人工智能实践案例
人脸识别系统设计与实现
总结词
人脸识别技术是一种基于人的脸部特征信息 进行身份认证的生物识别技术。
详细描述
人脸识别系统包括人脸检测、人脸定位、人 脸特征提取和人脸匹配等步骤。在实现过程 中,需要选择合适的算法和模型,并进行大 量的训练和优化,以提高识别准确率和效率 。
智能推荐系统设计与实现
详细描述
自动驾驶系统包括感知、决策、控制等多个 模块,通过传感器、雷达等设备获取车辆周 围环境信息,再通过算法和模型进行决策和 控制,实现车辆的自主驾驶。在实现过程中 ,需要解决各种复杂场景下的自动驾驶问题
,并保证系统的可靠性和安全性。
计算机视觉的主要任务包括图像和视频的获取、预处理、特征提取、目标检测与跟踪、图像分类与识别、场景理 解等。
图像处理与特征提取
图像处理
图像处理是计算机视觉的基础,包括图像的灰度化、去噪、增强、变换等操作,旨在改善图像的质量 和可读性,为后续的视觉任务提供更好的输入。
特征提取
特征提取是从原始图像中提取出有用的信息,如边缘、角点、纹理等,为后续的分类、识别等任务提 供特征描述。常用的特征提取方法包括SIFT、SURF、HOG等。
分类
根据学习方式的不同,机器学习 可以分为监督学习、无监督学习 、半监督学习和强化学习等。
深度学习的定义与原理
定义
深度学习是机器学习的一种分支,它使用神经网络模型来模拟人脑的学习过程 。深度学习模型由多个层次的神经元组成,每个神经元都有一个权重,用于将 输入信号转换为输出信号。
原理
深度学习的原理是通过反向传播算法来不断调整神经元之间的权重,以最小化 预测结果与实际结果之间的误差。当模型训练完成后,它可以用于预测新的数 据。
05
人工智能实践案例
人脸识别系统设计与实现
总结词
人脸识别技术是一种基于人的脸部特征信息 进行身份认证的生物识别技术。
详细描述
人脸识别系统包括人脸检测、人脸定位、人 脸特征提取和人脸匹配等步骤。在实现过程 中,需要选择合适的算法和模型,并进行大 量的训练和优化,以提高识别准确率和效率 。
智能推荐系统设计与实现
详细描述
自动驾驶系统包括感知、决策、控制等多个 模块,通过传感器、雷达等设备获取车辆周 围环境信息,再通过算法和模型进行决策和 控制,实现车辆的自主驾驶。在实现过程中 ,需要解决各种复杂场景下的自动驾驶问题
,并保证系统的可靠性和安全性。
人工智能PPT
言处理。
生成对抗网络
通过生成器和判别器之间的竞 争,生成高质量的数据。
自然语言处理
文本分类
将文本分类到不同的类别中, 如情感分析、主题分类等。
信息抽取
从文本中提取关键信息,如命 名实体识别、关系抽取等。
机器翻译
将一种语言的文本自动翻译成 另一种语言。
语音识别
将语音转换成文本,并识别说 话人的意图。
特点
人工智能具有强大的信息处理能力、自主学习能力、推理能力和创造力,能够 进行复杂的思维活动,解决各种问题,并且能够适应不同的环境和任务。
人工智能的类型
基于问题类型的分类
分为确定性推理问题和不确定性推理 问题,分别对应于传统的人工智能和 现代的人工智能。
基于问题复杂性的分类
分为简单问题和复杂问题,简单问题 可以通过基于规则的方法解决,而复 杂问题则需要通过基于统计的方法解 决。
通过与环境的交互进行 学习,以实现长期目标
。
迁移学习
将在一个任务上学到的 知识应用于另一个任务
。
深度学习
01
02
03
04
神经网络
模拟人脑神经元的工作方式, 通过多层网络结构处理和传递
信息。
卷积神经网络
适用于图像识别和处理等任务 ,能够有效地提取图像特征。
循环神经网络
适用于序列数据和时间序列数 据处理,如语音识别和自然语
计算机视觉
图像分类
将图像分类到不同的类别中,如人脸识别、 物体识别等。
图像分割
将图像中的每个对象或区域分割出来。
目标检测
在图像中检测并定位目标对象。
立体视觉
通过多视角图像获取物体的三维信息。
03
人工智能机器人
生成对抗网络
通过生成器和判别器之间的竞 争,生成高质量的数据。
自然语言处理
文本分类
将文本分类到不同的类别中, 如情感分析、主题分类等。
信息抽取
从文本中提取关键信息,如命 名实体识别、关系抽取等。
机器翻译
将一种语言的文本自动翻译成 另一种语言。
语音识别
将语音转换成文本,并识别说 话人的意图。
特点
人工智能具有强大的信息处理能力、自主学习能力、推理能力和创造力,能够 进行复杂的思维活动,解决各种问题,并且能够适应不同的环境和任务。
人工智能的类型
基于问题类型的分类
分为确定性推理问题和不确定性推理 问题,分别对应于传统的人工智能和 现代的人工智能。
基于问题复杂性的分类
分为简单问题和复杂问题,简单问题 可以通过基于规则的方法解决,而复 杂问题则需要通过基于统计的方法解 决。
通过与环境的交互进行 学习,以实现长期目标
。
迁移学习
将在一个任务上学到的 知识应用于另一个任务
。
深度学习
01
02
03
04
神经网络
模拟人脑神经元的工作方式, 通过多层网络结构处理和传递
信息。
卷积神经网络
适用于图像识别和处理等任务 ,能够有效地提取图像特征。
循环神经网络
适用于序列数据和时间序列数 据处理,如语音识别和自然语
计算机视觉
图像分类
将图像分类到不同的类别中,如人脸识别、 物体识别等。
图像分割
将图像中的每个对象或区域分割出来。
目标检测
在图像中检测并定位目标对象。
立体视觉
通过多视角图像获取物体的三维信息。
03
人工智能机器人
(完整版)人工智能介绍PPT课件全
人的智能的理论、方法、技术及应用 系统的一门新的技术科学。
• 人工智能是计算机科学的一个分支,
它企图了解智能的实质,并生产出一 种新的能以人类智能相似的方式做出 反应的智能机器,该领域的研究包括 机器人、语言识别、图像识别、自然 语言处理和专家系统等。
Machine learning
Computer vision
1956年,塞缪尔在IBM计算机上研制成功了具有自学习、自组织和自适应 能力的西洋跳棋程序。
1957年,纽厄尔、肖(Shaw)和西蒙等研制了一个称为逻辑理论机(LT)的 数学定理证明程序。
1958年,麦卡锡建立了行动规划咨询系统 1960年纽厄尔等研制了通用问题求解(GPS)程序。麦卡锡研制了人工智
人工智能简介
Brief introduction of
Artificial Intelligence
2024/9/24 Made by Bob
•Contents
1 人工智能是什么?
What is Artificial Intelligence?
2 人工智能的发展与应用
Application of Artificial Intelligence
2024/9/24
Part 4 人工智能的未来
2024/9/24
4
人工智能的未来
健全人工智能发展标准和监管制度
任何一门新技术的诞生、发展和使用都离不开一套完整 的发展标准和科学的管理制度,这是保证科学技术“以 人为本”的根本,面对人类日益强大的科研能力,人工 智能的发展必将会在未来出现突破性的进展,强人工智 能技术也将完整的出现在人类面前。鉴于人工智能技术 的特殊性,我们不难发现,它给人类生存带来的威胁不 亚于核武器,这就要求我们必须有严格的标准来要求人 工智能的发展,并且要科学谨慎的监管其生产和使用过 程的每个细节。
• 人工智能是计算机科学的一个分支,
它企图了解智能的实质,并生产出一 种新的能以人类智能相似的方式做出 反应的智能机器,该领域的研究包括 机器人、语言识别、图像识别、自然 语言处理和专家系统等。
Machine learning
Computer vision
1956年,塞缪尔在IBM计算机上研制成功了具有自学习、自组织和自适应 能力的西洋跳棋程序。
1957年,纽厄尔、肖(Shaw)和西蒙等研制了一个称为逻辑理论机(LT)的 数学定理证明程序。
1958年,麦卡锡建立了行动规划咨询系统 1960年纽厄尔等研制了通用问题求解(GPS)程序。麦卡锡研制了人工智
人工智能简介
Brief introduction of
Artificial Intelligence
2024/9/24 Made by Bob
•Contents
1 人工智能是什么?
What is Artificial Intelligence?
2 人工智能的发展与应用
Application of Artificial Intelligence
2024/9/24
Part 4 人工智能的未来
2024/9/24
4
人工智能的未来
健全人工智能发展标准和监管制度
任何一门新技术的诞生、发展和使用都离不开一套完整 的发展标准和科学的管理制度,这是保证科学技术“以 人为本”的根本,面对人类日益强大的科研能力,人工 智能的发展必将会在未来出现突破性的进展,强人工智 能技术也将完整的出现在人类面前。鉴于人工智能技术 的特殊性,我们不难发现,它给人类生存带来的威胁不 亚于核武器,这就要求我们必须有严格的标准来要求人 工智能的发展,并且要科学谨慎的监管其生产和使用过 程的每个细节。
人工智能概论课件完整版
自然语言处理
研究如何让计算机理解和生成人类自然语言 文本。
深度学习
研究如何构建和训练深度神经网络模型,以 模拟人脑处理信息的方式。
人工智能的应用领域
智能家居
通过人工智能技术实现家庭设备 的自动化和智能化控制,提高生
活便利性和舒适度。
智能交通
利用人工智能技术提高交通系统 的效率和安全性,如自动驾驶汽 车、智能交通信号控制等。
05
人工智能伦理与安全问题
数据隐私保护问题
01
数据采集与使用的透明度不足
在人工智能应用中,大量个人数据被采集和使用,但很多时候用户并不
清楚自己的数据是如何被使用的,于网络安全威胁和技术漏洞的存在,人工智能系统所处理的数据可能
面临泄露和滥用的风险,对个人隐私造成侵害。
人工智能概论课件完整版
目录
• 人工智能概述 • 人工智能基础知识 • 人工智能算法与模型 • 人工智能技术应用 • 人工智能伦理与安全问题 • 人工智能发展趋势与挑战
01
人工智能概述
人工智能的定义与发展
人工智能的定义
人工智能(AI)是计算机科学的一个分支,旨在研究、开发能够模拟、延伸和 扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学。
恶意使用风险
人工智能技术可能被恶意使用,如用于网络攻击、欺诈行为或制造虚假信息,这对社会和个 人都构成了安全威胁。
人工智能与人类未来关系探讨
劳动力市场变革
人工智能的发展将导致劳动力市 场的深刻变革,一些传统职业可 能会消失,而新的职业和就业机 会将出现。
社会伦理挑战
随着人工智能技术的广泛应用, 社会将面临一系列伦理挑战,如 人类与机器的权利关系、责任归 属以及道德准则的制定等。
人工智能简介PPT学习课件
机器学习传统的算法包括关联规则、决策树、聚类、贝叶斯分类、支持向量机等等。机器学习已广泛应用于 数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场 分析、DNA序列测序、语音和手写识别、战略游戏和机器人等领域。
规则:牛肉—>鸡肉,购买牛肉的顾客当中也购买了鸡肉可信度是3/4。
现阶段人工智能本质
深度学习:一种实现机器学习的技术。
机器学习的分支,它是试图使用包含复杂结构的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的方法。
观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列特定 形状的区域等。而使用某些特定的表示方法更容易从实例中学习任务(例如,人脸识别或面部表情识别)。
计算机系统的理论和发展能够执行 通常需要人类智能参与的任务。
AI的核心问题包括推理、知识、规划、学习、交流、 感知、移动和操作物体的能力等。
2024/6/5
4
2 人工智能历史与现状
2024/6/5
5
发展历程
深度学习算法在语音和视觉识别上取得成功,进入感知智能时代。
2006年杰弗里辛顿提出学习生成模型的观点,“深度学习”神经网络使得人工 智能性能获得突破性进展。
手写和字符识别是认知自动化应用的范例,支持高强度、复杂繁琐的办公业务,以帮助企业降低风险和成本。如,如机 器翻译是对文本数据的处理;使用自然语言处理和OCR(光学字符识别)技术从文档中提取关键信息。
2024/6/5
16
应用领域
认知参与
系统通过认知技术与人类建立密切交互关系。
语音识别接口,它可以执行语音指令,降低温控器或打开电视频道,如Siri。再如,接收病人入院,或推荐产品和服务, 需要人工智能接触到更复杂的信息并执行数字化任务,通过学习到的认知参与人类互动。
规则:牛肉—>鸡肉,购买牛肉的顾客当中也购买了鸡肉可信度是3/4。
现阶段人工智能本质
深度学习:一种实现机器学习的技术。
机器学习的分支,它是试图使用包含复杂结构的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的方法。
观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列特定 形状的区域等。而使用某些特定的表示方法更容易从实例中学习任务(例如,人脸识别或面部表情识别)。
计算机系统的理论和发展能够执行 通常需要人类智能参与的任务。
AI的核心问题包括推理、知识、规划、学习、交流、 感知、移动和操作物体的能力等。
2024/6/5
4
2 人工智能历史与现状
2024/6/5
5
发展历程
深度学习算法在语音和视觉识别上取得成功,进入感知智能时代。
2006年杰弗里辛顿提出学习生成模型的观点,“深度学习”神经网络使得人工 智能性能获得突破性进展。
手写和字符识别是认知自动化应用的范例,支持高强度、复杂繁琐的办公业务,以帮助企业降低风险和成本。如,如机 器翻译是对文本数据的处理;使用自然语言处理和OCR(光学字符识别)技术从文档中提取关键信息。
2024/6/5
16
应用领域
认知参与
系统通过认知技术与人类建立密切交互关系。
语音识别接口,它可以执行语音指令,降低温控器或打开电视频道,如Siri。再如,接收病人入院,或推荐产品和服务, 需要人工智能接触到更复杂的信息并执行数字化任务,通过学习到的认知参与人类互动。
人工智能ArtificialIntelligence精品课件完整版
80年代以来旳实用化和工程化
• 主要特点是开始走向实用化和工程化。其主要标志之一是 有一批商品化旳自然语言人机接口系统和机器翻译系统推 向了市场。
• 另一方面,人们已经开始对大规模真实文本进行了解 • 句法-语义分析为主旳思想来自于规则旳措施,而规则不
可能把全部旳知识表达出来 –自然语言在数量上浩瀚无际 –在性质上具有不拟定性和模糊性。
Artificial Intelligence
NLP: 15
© Graduate University , Chinese academy of Sciences.
自然语言了解旳一般问题(13)
• 自然语言了解旳研究大致上经历了三个 时期
– 萌芽时期 – 发展时期
• 早期: 60年代以关键词匹配为主流 • 中期: 70年代以句法-语义分析为主流 • 近期: 80年代以来开始走向实用化和工程化
了解自然语言,首先要让计算机能从库存旳大规模语料中 自动或半自动地获取语言了解所需旳多种知识,对语言现 象作出客观旳、细致旳描述。
• 目前采用旳主要手段是建立多种统计模型,可用于词类旳 自动标注,以及句法语义旳更高层次旳分析。该措施能够 和规则措施相互补充。
Artificial Intelligence
自然语言了解旳一般问题(14)
• 60年代以关键词匹配为主流
特点:
– 没有真正意义上旳语法分析,主要依托关键词匹配技术来辨认输入 句子旳意义
– 在系统中事先存储了大量包括某些关键词旳模式,每个模式与一种 或多种解释(响应式)相相应。
– 每当输入一种句子,系统便查找与之匹配旳模式,一旦匹配成功, 系统就输出相应旳解释,不考虑其他成份对句子意义旳影响
– 语法分析:将单词之间旳线性顺序变换成一种显示单词 怎样与其他单词有关联旳构造。拟定语句是否合乎语法
• 主要特点是开始走向实用化和工程化。其主要标志之一是 有一批商品化旳自然语言人机接口系统和机器翻译系统推 向了市场。
• 另一方面,人们已经开始对大规模真实文本进行了解 • 句法-语义分析为主旳思想来自于规则旳措施,而规则不
可能把全部旳知识表达出来 –自然语言在数量上浩瀚无际 –在性质上具有不拟定性和模糊性。
Artificial Intelligence
NLP: 15
© Graduate University , Chinese academy of Sciences.
自然语言了解旳一般问题(13)
• 自然语言了解旳研究大致上经历了三个 时期
– 萌芽时期 – 发展时期
• 早期: 60年代以关键词匹配为主流 • 中期: 70年代以句法-语义分析为主流 • 近期: 80年代以来开始走向实用化和工程化
了解自然语言,首先要让计算机能从库存旳大规模语料中 自动或半自动地获取语言了解所需旳多种知识,对语言现 象作出客观旳、细致旳描述。
• 目前采用旳主要手段是建立多种统计模型,可用于词类旳 自动标注,以及句法语义旳更高层次旳分析。该措施能够 和规则措施相互补充。
Artificial Intelligence
自然语言了解旳一般问题(14)
• 60年代以关键词匹配为主流
特点:
– 没有真正意义上旳语法分析,主要依托关键词匹配技术来辨认输入 句子旳意义
– 在系统中事先存储了大量包括某些关键词旳模式,每个模式与一种 或多种解释(响应式)相相应。
– 每当输入一种句子,系统便查找与之匹配旳模式,一旦匹配成功, 系统就输出相应旳解释,不考虑其他成份对句子意义旳影响
– 语法分析:将单词之间旳线性顺序变换成一种显示单词 怎样与其他单词有关联旳构造。拟定语句是否合乎语法
北航6系人工智能课件50
状态:描述问题中事物形状或状况的符号或数据结构。
状态空间:所有状态的全体构成的集合;用四元组(S, S0, O, G) 表示:
S: 非空状态子集,S0 = 初始状态(非空)。 G: 非空目标状态子集。 O: 操作算子集合,一个状态合法转换为另一个状态的描述规则
问题求解过程:隐含求一个普通有向图,节点 - 状态,边 – 算子
“或” 节点:若节点A有边通向一组节点{{B1},{B2},…{
Bn}},问题A的解决有待于子问题B1或B2或…或Bn中某一个子 问题的解决,则称 A 为“或” 节点。如图 b 所示。
a: A
A b:
…...
B1
B2
Bn
…...
B1
B2
Bn
问题空间法有关概念(2)
问题的解(解图):从代表初始问题的节点出发,搜索到一个完 整的‘与或’ 子图,图中所有叶节点均满足问题求解的结束条件。
宽度优先搜索算法
Open 表为队 操 作: 先进先出!
1、S, A, D 2、A, D, B, D 3、D, B, A, E ………
宽度优先搜索算法
节点扩展 顺序
G
深度优先搜索算法
open := [S]; closed := [ ]; d = 深度限制值 while open ≠ [ ] do {
路径花费:设 C(ni,nj)为节点 ni 到 nj 这段路径(或弧线)的
花费。一条路径的花费等于连接这条路径各节点间所有弧线花费 值的总和。路径 ni → nj → t 的花费值C(ni,t)可递归计算如下:
C(ni,t)= C (ni,nj) + C(nj,t )。
问题求解基本原理
基于状态空间的盲目搜索算法:
状态空间:所有状态的全体构成的集合;用四元组(S, S0, O, G) 表示:
S: 非空状态子集,S0 = 初始状态(非空)。 G: 非空目标状态子集。 O: 操作算子集合,一个状态合法转换为另一个状态的描述规则
问题求解过程:隐含求一个普通有向图,节点 - 状态,边 – 算子
“或” 节点:若节点A有边通向一组节点{{B1},{B2},…{
Bn}},问题A的解决有待于子问题B1或B2或…或Bn中某一个子 问题的解决,则称 A 为“或” 节点。如图 b 所示。
a: A
A b:
…...
B1
B2
Bn
…...
B1
B2
Bn
问题空间法有关概念(2)
问题的解(解图):从代表初始问题的节点出发,搜索到一个完 整的‘与或’ 子图,图中所有叶节点均满足问题求解的结束条件。
宽度优先搜索算法
Open 表为队 操 作: 先进先出!
1、S, A, D 2、A, D, B, D 3、D, B, A, E ………
宽度优先搜索算法
节点扩展 顺序
G
深度优先搜索算法
open := [S]; closed := [ ]; d = 深度限制值 while open ≠ [ ] do {
路径花费:设 C(ni,nj)为节点 ni 到 nj 这段路径(或弧线)的
花费。一条路径的花费等于连接这条路径各节点间所有弧线花费 值的总和。路径 ni → nj → t 的花费值C(ni,t)可递归计算如下:
C(ni,t)= C (ni,nj) + C(nj,t )。
问题求解基本原理
基于状态空间的盲目搜索算法:
人工智能介绍最新PPT课件
场景解析
对图像中的场景进行解析和理解,包括场景分类 、场景布局、物体间关系等任务,有助于机器人 导航、自动驾驶等应用。
文字识别
从图像中识别出文字信息,包括印刷体文字识别 和手写文字识别等任务,广泛应用于文档数字化 、自然语言处理等领域。
05
CATALOGUE
人工智能伦理与安全问题
数据隐私保护政策解读
、建立监督机制、加强员工培训等。
算法偏见和歧视问题探讨
01
算法偏见和歧视的定义和表现
解释算法偏见和歧视的概念,以及在人工智能系统中可能出现的形式,
如性别、种族、年龄等方面的歧视。
02
算法偏见和歧视的原因分析
探讨导致算法偏见和歧视的主要原因,如数据不平衡、算法设计缺陷、
人类偏见等。
03
消除算法偏见和歧视的方法
智能客服系统能够实现多轮对话管理,根据用户的反馈和 问题进行持续的交流和解答,提高用户满意度和问题解决 效率。
智能化知识库
智能客服系统通过构建智能化知识库,整合企业内外部的 知识和信息,为用户提供全面、准确的问题解答和信息服 务。
智能推荐系统设计与实现
个性化推荐算法
智能推荐系统采用个性化推荐算法,根据用户的历史行为、兴趣偏 好和社交关系等信息,为用户推荐符合其需求的产品、服务和内容 。
自动驾驶算法
智能驾驶系统利用自动驾驶算法进行车辆控制决策和路径规划,实现车辆的自动导航和驾驶。
安全性与可靠性保障
智能驾驶系统通过多重安全保障机制,如冗余设计、故障预测与处理等,确保车辆在行驶过程中的安全 性和可靠性。同时,系统不断学习和优化自身性能,提高驾驶的准确性和稳定性。
THANKS
感谢观看
介绍消除算法偏见和歧视的技术和方法,如增加数据多样性、改进算法
对图像中的场景进行解析和理解,包括场景分类 、场景布局、物体间关系等任务,有助于机器人 导航、自动驾驶等应用。
文字识别
从图像中识别出文字信息,包括印刷体文字识别 和手写文字识别等任务,广泛应用于文档数字化 、自然语言处理等领域。
05
CATALOGUE
人工智能伦理与安全问题
数据隐私保护政策解读
、建立监督机制、加强员工培训等。
算法偏见和歧视问题探讨
01
算法偏见和歧视的定义和表现
解释算法偏见和歧视的概念,以及在人工智能系统中可能出现的形式,
如性别、种族、年龄等方面的歧视。
02
算法偏见和歧视的原因分析
探讨导致算法偏见和歧视的主要原因,如数据不平衡、算法设计缺陷、
人类偏见等。
03
消除算法偏见和歧视的方法
智能客服系统能够实现多轮对话管理,根据用户的反馈和 问题进行持续的交流和解答,提高用户满意度和问题解决 效率。
智能化知识库
智能客服系统通过构建智能化知识库,整合企业内外部的 知识和信息,为用户提供全面、准确的问题解答和信息服 务。
智能推荐系统设计与实现
个性化推荐算法
智能推荐系统采用个性化推荐算法,根据用户的历史行为、兴趣偏 好和社交关系等信息,为用户推荐符合其需求的产品、服务和内容 。
自动驾驶算法
智能驾驶系统利用自动驾驶算法进行车辆控制决策和路径规划,实现车辆的自动导航和驾驶。
安全性与可靠性保障
智能驾驶系统通过多重安全保障机制,如冗余设计、故障预测与处理等,确保车辆在行驶过程中的安全 性和可靠性。同时,系统不断学习和优化自身性能,提高驾驶的准确性和稳定性。
THANKS
感谢观看
介绍消除算法偏见和歧视的技术和方法,如增加数据多样性、改进算法
《人工智能》课件
交通领域:自动驾驶、智 能交通系统、智能物流等
制造业:智能制造、智能 生产、智能检测等
金融领域:智能投资、风 险控制、智能客服等
家居领域:智能家居、智 能家电、智能安防等
人工智能的技术原 理
机器学习
概念:一种通过数据训练模型,使 模型能够自动学习并预测未知数据 的技术
应用:广泛应用于图像识别、语音 识别、自然语言处理等领域
智能机器人
工业生产:用于生产线上的自动化操作 服务行业:用于酒店、餐厅等场所提供接待、引导等服务 医疗领域:用于手术、康复等医疗操作 家庭生活:用于家务、陪伴等家庭服务
智能安防
智能监控:实时监 控,自动识别异常 情况
智能门禁:人脸识 别,提高安全系数
智能报警:自动报 警,及时响应紧急 情况
智能巡逻:自动巡 逻,提高巡逻效率
概念:人工智能是指由人制造出来的系统能够理解、学习、适应并执行人类的某些特定任 务。
起源:人工智能起源于20世纪50年代,由美国科学家约翰·麦卡锡提出。
发展:人工智能经历了三次发展浪潮,分别是20世纪50年代、80年代和21世纪初。
应用:人工智能广泛应用于各个领域,如医疗、金融、教育、交通等。
人工智能的发展阶段
添加标题
添加标干预,能够自动 学习并预测未知数据
技术:包括监督学习、无监督学习、 强化学习等
深度学习
概念:一种模拟人 脑神经网络的学习 方法
特点:多层次、非 线性、自适应
应用:图像识别、 语音识别、自然语 言处理等领域
发展:近年来深度 学习技术取得了显 著进展,成为人工 智能领域的重要分 支
1956年,达特茅斯会 议提出人工智能概念, 标志着人工智能的诞
生
1960年代,人工智能 进入黄金时期,出现 了许多重要的研究成
(完整版)人工智能介绍PPT课件
智能模拟
机器视、听、触、感觉及思维方式的模拟:指纹识别,人脸识别,视网膜识别, 虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,逻辑推理,博弈,信 息感应与辨证处理。
谢谢
主条目:GOFAI
基于逻辑不像艾伦 纽厄尔和赫伯特 西蒙,JOHN MCCARTHY认为机器不需要模拟 人类的思想,而应尝试找到抽象推理和解决问题的本质,不管人们是否使用同样的 算法。他在斯坦福大学的实验室致力于使用形式化逻辑解决多种问题,包括知识表 示,智能规划和机器学习。致力于逻辑方法的还有爱丁堡大学,而促成欧洲的其他 地方开发编程语言PROLOG和逻辑编程科学。“反逻辑”斯坦福大学的研究者 (如 马文 闵斯基和西摩尔 派普特)发现要解决计算机视觉和自然语言处理的困难问题, 需要专门的方案-他们主张不存在简单和通用原理(如逻辑)能够达到所有的智能行 为。ROGER SCHANK 描述他们的“反逻辑”方法为 "SCRUFFY" 。常识知识库 (如DOUG LENAT的CYC)就是"SCRUFFY"AI的例子,因为他们必须人工一次编写一 个复杂的概念。
大脑模拟
主条目:控制论和计算神经科学 20世纪40年代到50年代,许多研究者探索神经病学,信息理论及控 制论之间的联系。其中还造出一些使用电子网络构造的初步智能, 如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。这 些研究者还经常在普林斯顿大学和英国的RATIO CLUB举行技术协 会会议。直到1960,大部分人已经放弃这个方法,尽管在80年代再 次提出这些原理。 符号处理
集成方法
智能AGENT范式智能AGENT是一个会感知环境并作出行动以达致目标的系统。最简单的智能AGENT是 那些可以解决特定问题的程序。更复杂的AGENT包括人类和人类组织(如公司)。这些范式可以让研究 者研究单独的问题和找出有用且可验证的方案,而不需考虑单一的方法。一个解决特定问题的AGENT可 以使用任何可行的方法-一些AGENT用符号方法和逻辑方法,一些则是子符号神经网络或其他新的方法。 范式同时也给研究者提供一个与其他领域沟通的共同语言--如决策论和经济学(也使用ABSTRACT AGENTS的概念)。90年代智能AGENT范式被广泛接受。AGENT体系结构和认知体系结构研究者设计出 一些系统来处理多ANGENT系统中智能AGENT之间的相互作用。一个系统中包含符号和子符号部分的系 统称为混合智能系统,而对这种系统的研究则是人工智能系统集成。分级控制系统则给反应级别的子符号 AI和最高级别的传统符号AI提供桥梁,同时放宽了规划和世界建模的时间。RODNEY BROOKS的 SUBSUMPTION ARCHITECTURE就是一个早期的分级系统计划。
人工智能PPT课件
估风险。
反欺诈
AI技术可以监测和识别金融交 易中的欺诈行为,保障用户资
金安全。
客户服务
AI可以提供智能客服服务,快 速响应用户的问题和需求。
教育领域
个性化学习
AI可以根据学生的学习特点和需求,提供个 性化的学习资源和建议。
在线辅导
AI可以提供在线辅导服务,帮助学生解决学 习中的疑难问题。
智能评估
AI可以对学生的学习成果进行评估和反馈, 帮助教师了解学生的学习情况。
工业领域
智能制造
AI技术可以实现自动化生产流程,提高生产 效率和产品质量。
工业机器人
AI可以控制和协调工业机器人的工作,提高 生产线的自动化水平。
智能供应链管理
AI可以对供应链数据进行挖掘和分析,优化 库存和物流管理。
预测性维护
AI可以对设备运行数据进行监测和分析,预 测设备故障和维护需求。
04
Alexa在智能家居中的应用
人工智能在家庭生活的普及化ቤተ መጻሕፍቲ ባይዱ
Alexa是亚马逊公司推出的一款智能语音助手,广泛应用于智能家居领域。通过 与各种智能家居设备的连接,用户可以通过语音指令实现对灯光、空调、电视等 家电的控制,提升了家庭生活的便利性和智能化水平。
IBM的Watson在医疗诊断中的应用
人工智能在医疗领域的创新应用
06
案例分析
AlphaGo战胜围棋世界冠军
人工智能在游戏领域的里程碑事件
AlphaGo是一款由谷歌DeepMind开发的围棋人工智能程序,于2016年击败了世界围棋冠军李世石,成为人工智能在游戏领 域的一项重大突破。AlphaGo通过深度学习和强化学习技术,不断自我学习和进步,最终在围棋这个被视为人类智力巅峰的 领域取得了胜利。
反欺诈
AI技术可以监测和识别金融交 易中的欺诈行为,保障用户资
金安全。
客户服务
AI可以提供智能客服服务,快 速响应用户的问题和需求。
教育领域
个性化学习
AI可以根据学生的学习特点和需求,提供个 性化的学习资源和建议。
在线辅导
AI可以提供在线辅导服务,帮助学生解决学 习中的疑难问题。
智能评估
AI可以对学生的学习成果进行评估和反馈, 帮助教师了解学生的学习情况。
工业领域
智能制造
AI技术可以实现自动化生产流程,提高生产 效率和产品质量。
工业机器人
AI可以控制和协调工业机器人的工作,提高 生产线的自动化水平。
智能供应链管理
AI可以对供应链数据进行挖掘和分析,优化 库存和物流管理。
预测性维护
AI可以对设备运行数据进行监测和分析,预 测设备故障和维护需求。
04
Alexa在智能家居中的应用
人工智能在家庭生活的普及化ቤተ መጻሕፍቲ ባይዱ
Alexa是亚马逊公司推出的一款智能语音助手,广泛应用于智能家居领域。通过 与各种智能家居设备的连接,用户可以通过语音指令实现对灯光、空调、电视等 家电的控制,提升了家庭生活的便利性和智能化水平。
IBM的Watson在医疗诊断中的应用
人工智能在医疗领域的创新应用
06
案例分析
AlphaGo战胜围棋世界冠军
人工智能在游戏领域的里程碑事件
AlphaGo是一款由谷歌DeepMind开发的围棋人工智能程序,于2016年击败了世界围棋冠军李世石,成为人工智能在游戏领 域的一项重大突破。AlphaGo通过深度学习和强化学习技术,不断自我学习和进步,最终在围棋这个被视为人类智力巅峰的 领域取得了胜利。
《人工智能课件》.pptx
策略梯度方法
一种基于策略迭代的方法,直接优化策略参数以最大化期望回报。通过计算梯度并更新策 略参数来实现策略改进。
Actor-Critic 方法
结合了值迭代和策略迭代的方法。Actor 负责根据当前策略选择动作,Critic负责评估当前 策略的性能并指导Actor进行改进。两者相互促进,共同优化智能体的行为。
03 深度学习技术与应用
神经网络基本原理
01
神经元模型
神经网络的基本单元,模 拟生物神经元的结构和功
能。
前向传播
输入信号经过神经元处理 后向前传递的过程。
反向传播
根据误差信号调整神经元 权重的过程。
卷积神经网络 (CNN)
卷积层
通过卷积操作提取输入数 据的特征。
池化层
降低数据维度,减少计算
量。
06
人工智能伦理、法律和社会影
响
数据隐私和安全问题
数据隐私泄露
人工智能系统通常需要大量数据进行训练和学习,其中可能包含用户的个人隐 私信息。如果这些数据没有得到妥善保护,就可能导致隐私泄露事件。
网络安全问题
人工智能系统可能成为网络攻击的目标,例如黑客利用漏洞攻击人工智能系统, 获取敏感信息或者破坏系统的正常运行。
将数据划分为K个簇,每个簇的中心由簇内所有样本的均值表示。通过
迭代更新簇中心和重新划分样本,使得每个样本与其所属簇中心的距离
之和最小。
层次聚类
通过计算样本之间的距离,将距离近的样本合并为一个簇,然后不断重 复该过程,直到达到预设的簇数量或满足其他停止条件。
03
主成分分析 (PCA)
通过正交变换将原始特征空间中的线性相关变量转换为线性无关的新变
深度学习在图像识别与分类中的应用 通过训练深度神经网络模型,学习从原始图像数据中提取有用 的特征,进而实现图像的高效识别和分类。
一种基于策略迭代的方法,直接优化策略参数以最大化期望回报。通过计算梯度并更新策 略参数来实现策略改进。
Actor-Critic 方法
结合了值迭代和策略迭代的方法。Actor 负责根据当前策略选择动作,Critic负责评估当前 策略的性能并指导Actor进行改进。两者相互促进,共同优化智能体的行为。
03 深度学习技术与应用
神经网络基本原理
01
神经元模型
神经网络的基本单元,模 拟生物神经元的结构和功
能。
前向传播
输入信号经过神经元处理 后向前传递的过程。
反向传播
根据误差信号调整神经元 权重的过程。
卷积神经网络 (CNN)
卷积层
通过卷积操作提取输入数 据的特征。
池化层
降低数据维度,减少计算
量。
06
人工智能伦理、法律和社会影
响
数据隐私和安全问题
数据隐私泄露
人工智能系统通常需要大量数据进行训练和学习,其中可能包含用户的个人隐 私信息。如果这些数据没有得到妥善保护,就可能导致隐私泄露事件。
网络安全问题
人工智能系统可能成为网络攻击的目标,例如黑客利用漏洞攻击人工智能系统, 获取敏感信息或者破坏系统的正常运行。
将数据划分为K个簇,每个簇的中心由簇内所有样本的均值表示。通过
迭代更新簇中心和重新划分样本,使得每个样本与其所属簇中心的距离
之和最小。
层次聚类
通过计算样本之间的距离,将距离近的样本合并为一个簇,然后不断重 复该过程,直到达到预设的簇数量或满足其他停止条件。
03
主成分分析 (PCA)
通过正交变换将原始特征空间中的线性相关变量转换为线性无关的新变
深度学习在图像识别与分类中的应用 通过训练深度神经网络模型,学习从原始图像数据中提取有用 的特征,进而实现图像的高效识别和分类。
人工智能课件
机器学习的分类
机器学习可以分为监督学习、无监督学习、半监督学习和强化学 习等类别。其中,监督学习是指根据已知输入和输出数据进行训 练,无监督学习是指在没有已知输出数据的情况下进行训练,半 监督学习是介于监督学习和无监督学习之间的方法,强化学习是 指通过与环境的交互进行学习。
常见的机器学习算法
K最近邻算法
人工智能课件
目
CONTENCT
录
• 人工智能概述 • 机器学习基础 • 深度学习入门 • 自然语言处理 • 计算机视觉基础 • 人工智能的伦理和社会影响
01
人工智能概述
人工智能的定义
人工智能是一种模拟人类智能的技术和系统,旨在使计算机具有 类似于人类的思考、学习、推理和决策等能力。
人工智能包括机器学习、自然语言处理、图像识别等多个领域, 是当前计算机科学和信息技术领域的重要发展方向。
经济结构变化
人工智能的发展将改变劳 动力需求,促进产业结构 升级,但也可能引发失业 问题。
社会关系影响
人工智能在社交、娱乐等 领域的应用可能导致人们 过度依赖技术,影响人际 交往能力。
法律与道德规范
随着人工智能技术的进步 ,需要制定相应的法律和 道德规范来规范其应用。
人工智能的未来发展趋势和挑战
技术创新
03
深度学习入门
深度学习的定义和特点
深度学习的定义
深度学习是机器学习的一个分支 ,它使用人工神经网络模拟人脑 神经网络的工作方式,从而实现 对数据的分析和处理。
深度学习的特点
深度学习具有强大的特征学习和 抽象能力,能够自动提取输入数 据的特征,并能够处理复杂的非 线性问题。
常见的深度学习模型
01
随着算法、算力、数据等技术 的不断进步,人工智能将在更
机器学习可以分为监督学习、无监督学习、半监督学习和强化学 习等类别。其中,监督学习是指根据已知输入和输出数据进行训 练,无监督学习是指在没有已知输出数据的情况下进行训练,半 监督学习是介于监督学习和无监督学习之间的方法,强化学习是 指通过与环境的交互进行学习。
常见的机器学习算法
K最近邻算法
人工智能课件
目
CONTENCT
录
• 人工智能概述 • 机器学习基础 • 深度学习入门 • 自然语言处理 • 计算机视觉基础 • 人工智能的伦理和社会影响
01
人工智能概述
人工智能的定义
人工智能是一种模拟人类智能的技术和系统,旨在使计算机具有 类似于人类的思考、学习、推理和决策等能力。
人工智能包括机器学习、自然语言处理、图像识别等多个领域, 是当前计算机科学和信息技术领域的重要发展方向。
经济结构变化
人工智能的发展将改变劳 动力需求,促进产业结构 升级,但也可能引发失业 问题。
社会关系影响
人工智能在社交、娱乐等 领域的应用可能导致人们 过度依赖技术,影响人际 交往能力。
法律与道德规范
随着人工智能技术的进步 ,需要制定相应的法律和 道德规范来规范其应用。
人工智能的未来发展趋势和挑战
技术创新
03
深度学习入门
深度学习的定义和特点
深度学习的定义
深度学习是机器学习的一个分支 ,它使用人工神经网络模拟人脑 神经网络的工作方式,从而实现 对数据的分析和处理。
深度学习的特点
深度学习具有强大的特征学习和 抽象能力,能够自动提取输入数 据的特征,并能够处理复杂的非 线性问题。
常见的深度学习模型
01
随着算法、算力、数据等技术 的不断进步,人工智能将在更
人工智能PPT课件
人工智能的发展将改变就业结构,部分传统岗位可能消失或被
替代,同时将催生新的就业机会。
数据隐私和安全
02
随着人工智能应用的普及,数据隐私和安全问题将更加突出,
需要加强数据保护和安全措施。
技术伦理和法律责任
03
人工智能的发展将带来技术伦理和法律责任问题,需要建立健
全相关法规和规范。
06
结论
人工智能的潜力和价值
商业价值
人工智能技术能够提高企业的生 产效率,降低成本,提升产品和 服务的质量,从而为企业创造更
大的商业价值。
社会价值
人工智能在医疗、教育、交通等 领域的应用,能够提高社会服务 水平,改善人们的生活质量,为
社会创造巨大的价值。
创新价值
人工智能的发展推动了科技创新 ,促进了各行业的数字化转型, 为人类社会带来了前所未有的变
03
人工智能的实际应用
智能家居
智能家居利用人工智能技术,通 过智能设备、传感器和自动化系 统,实现家庭环境的智能化控制
和管理。
智能家居能够提供便利的生活体 验,如语音助手控制家电、自动 调节室内温度和湿度、智能照明
和安全监控等。
智能家居还可以通过数据分析, 为用户提供更个性化的服务,如
定制化的音乐、电影推荐等。
人工智能 PPT 课件
汇报人:可编辑 2023-12-25
• 人工智能简介 • 人工智能技术 • 人工智能的实际应用 • 人工智能的挑战与伦理问题 • 未来的人工智能发展 • 结论
01 人工智能简介
人工智能的定义
人工智能
指通过计算机程序和算法,使机器能够模拟人类的智能行为 ,实现人机交互、自主策、学习和推理等功能的技术。
驶。
教学课件:第八章-人工智能
智能医疗
人工智能技术应用于医疗影像 诊断、辅助手术等方面,提高
医疗效率和准确性。
02
机器学习与深度学习
机器学习的基本概念
机器学习定义
机器学习是人工智能的一个子领 域,它利用算法使计算机系统从 数据中学习并改进,而无需进行
明确的编程。
机器学习的应用
机器学习在许多领域都有应用,包 括但不限于语音识别、图像识别、 自然语言处理、推荐系统和预测分 析。
机器学习的类型
根据学习方式的不同,机器学习可 以分为监督学习、无监督学习、半 监督学习和强化学习等类型。
深度学习的基本概念
深度学习的定义
深度学习是机器学习的一个分支,它 利用神经网络模型来模拟人脑的深度 学习过程。
深度学习的应用
深度学习的优势
与传统的机器学习方法相比,深度学 习能够处理大规模高维度的数据,并 能够自动提取和抽象特征,提高了模 型的准确性和泛化能力。
自然语言处理的技术
词法分析
将文本分解成单个的词 语或符号,识别词性、 词义等基本语言单位。
句法分析
语义分析
文本生成
研究句子中词语之间的 结构关系,建立词语之
间的依存关系。
理解句子所表达的含义, 包括实体识别、关系抽
取、情感分析等。
根据特定要求或主题, 自动生成符合语法和语
义要求的文本。
自然语言处理的应用
基于深度学习的方法
利用深度神经网络对大量语音数据进行训练,自动学习语音特征和生成模型,生 成自然语音。
06
人工智能的未来发展
人工智能的挑战与问题
1 2 3
数据隐私和安全
随着人工智能技术的广泛应用,数据隐私和安全 问题日益突出,需要加强数据保护和加密技术的 研究和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蕴含等价式: P Q P Q
…….; 量词转换律:
(x)P(x) ( x) P(x)
( x)P(x) ( x) P(x) 全称量词消去规则: (x)P(x) P(y)
存在量词消去规则:( x)P(x) P(c) c为常元 …….。
演绎推理方法
推理:根据一定准则,由前提判断导出称为结论的思维过程。
解释与赋值
解释定义:
一个解释 I 由以下四部分组成。
(1)指定一个非空集合 DI,称为 I 的论域; (2)对于每个常元 a,指定 DI 中的一个元素 aI; (3)对于每个n元函数符号 f,指定DI上的一个n元运算符 fI (4)对于每个n元谓词符号 P,指定DI上的一个 n 元谓词 PI
解释与赋值
▪子句集:
S = A11 A12 … A1n ,…, Am1 Am2 … Aml
子句的标准范式
合式谓词公式化子句集步骤 ( p43 )
▪ 合式公式 A 变换成子句集 SA 实例:
A=( x) ( P(x) (y) (R(y) S(x,y) ) )
合式公式化子句集实例
A (x)(P(x) (y)(R(y) S(x,y)) (x)(P(x) (y)( R(y) S(x,y)) 消 (x) (y)(P(x) ( R(y) S(x,y)) 前束 (x) (P(x) ( R(f(x)) S(x, f(x)))消
常元:
a, b, c,….,…..;
函数(词)符: Fn, gm, …..; e.g., f1(x): x的父亲。
谓词符:
Pn, Qm, R, …..; e.g., brother2(x, y)。
逻辑联词: , , , , 。
量词:
, 。
类自然语言的形式化的符号语言 (谓词公式描述) 强有力的推理方法(公理化推理方法、归结法); 坚实的理论证明基础(语义模型、推理的可靠性、
完备性研究等)。
逻辑是人工智能的重要基础
一阶逻辑对AI的贡献:
提出了陈述性知识表示方式 ; 将知识描述与知识处理相分离; 基于一阶逻辑扩展了多种应用逻辑
第8周
第三章 基于逻辑的问题求解方法
认知学派的层次划分
认知区域
功能
研究学派
------------------------------------------------------
理- 性带
逻辑学派、知 识工程学派
认知带
10s: 目标实现 1s: 简单操作合成 100ms:初级熟练操作 10ms: 符号存取
A,AB,AB,AB, (x) A 是合式谓词公式。 例:( x) ( P(x) (y) (R(y) S(x,y) ) )
等价公式
等价公式
( p41-42 )
得摩根定律: (P Q) P Q
分配律:
(P Q) P Q R ( P Q ) (R P ) ( R Q )
R ( P Q ) (R P) ( R Q )
基于逻辑的问题求解方法
逻辑是人工智能的重要基础 一阶逻辑的基本概念回顾 机器演绎推理技术 应用逻辑系统
机器演绎推理技术 – 归结法
谓词公式的规范化 谓词公式的合取范式 合取范式的子句集形式
推理过程规范化 命题逻辑归结原理 变量置换与合一 谓词归结证明系统的相关技术
谓词公式的子句形式
演绎推理、归纳推理、类比推理
演绎推理
推理方式:{A1,A2,…,An} |= B, iff
推理规则: ( x)( P(x) Q(x) )
P(a)
--------------------------------------
Q(a)
,
归原 理结
推理过程:反复运用等价公式、推理规则对已
知的谓词公式进行变换,得到所需的逻辑结论的 过程。
认知学派
(代表作:--SOAR)
神经带
联结学派
基于逻辑的问题求解方法
逻辑是人工智能的重要基础 一阶逻辑的基本概念回顾 基于一阶逻辑的演绎推理技术 应用逻辑系统
逻辑是人工智能的重要基础
人工智能遵循符号原理:将所有与问题有关的对象、
关系以及概念等进行形式化的表示和处理。
一阶逻辑满足形式化表达和处理要求 :
子句集SA={A1, A2,…, An } 无 型前束合取范式
子句的标准范式
无 型前束合取范式: (Q1x1)(Q2x2)…(Qnxn)M 其中, Qi:全称量词; xi:变元 母式:M = (A11 A12… A1n ) … (Am1 Am2… Aml )
是合取范式, 其中, Aij是文字。
其它:
(, ), ,。
一阶逻辑的基本概念回顾
一阶谓词逻辑的符号体系
字符表 项、谓词合式公式 等价公式 演绎推理方法
项、谓词合式公式
项:
合适谓词公式
常元: a,b,…; 变元: x,y,….; 函词: fn(x1,x2,…xn) ,其中, xi是项。
原子公式 Pn(x1,x2,…xn)是合式谓词公式 ,其中, xi 是项。 设: A,B是合式谓词公式,则
赋值定义:
设 I 是一个解释,将所有变元组成的集合映射到论
域 DI 的函数称为 I 中的赋值v。
解释和赋值共同规定了项和公式的意义。
例:设 DI 为自然数集合,fI 是自然数乘法,gI 是自然 数加法,aI = 2,I中赋值 v 使 v(x) = 1。 项 f(g(a,x),a)在 I 和 v 下的意义: I(f(g(a,x),a))(v) = ?
文字: 原子公式及其否定: P(x1,x2,…xn) , Q(x1,x2,…xm) 子句: 文字的有穷集合:{ P(x1,x2,…xn) , Q(x1,x2,…xm)} 空子句: 不含任何文字的子句: 基子句: 不含任何变元的子句:P(A), R(b, f(b))
▪ 空子句 永假公式 F 子句与合适 公式对应关系 非空子句{L1, L2,… , Ln } 析取式 L1 L2… Ln
--- 如时序 ( p53 )、模糊、非单调等多种应用逻辑。
基于逻辑的问题求解方法
逻辑是人工智能的重要基础 一阶逻辑的基本概念回顾 演绎推理技术 应用逻辑系统
一阶逻辑的基本概念回顾
一阶谓词逻辑知识表示方法
字符表
项、合式谓词公式 演绎推理方法 解释与赋值
一阶谓词逻辑的符号体系 - 字符表