高三立体几何专题复习解读

合集下载

高考数学立体几何专项知识点精选全文完整版

高考数学立体几何专项知识点精选全文完整版

可编辑修改精选全文完整版高考数学立体几何专项知识点高中数学平面几何不时是数学的一大难点,下面是小编整理的数学平面几何专项知识点,对提高数学效果会有很大的协助。

(1)空间几何体① 看法柱、锥、台、球及其复杂组合体的结构特征.② 能画出复杂空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的平面模型,会用斜二侧法画出它们的直观图.③ 了解球、棱柱、棱锥、台的外表积和体积的计算公式(不要求记忆公式).(2)点、直线、平面之间的位置关系① 了解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:假设一条直线上的两点在一个平面内,那么这条直线上一切的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只要一个平面.◆公理3:假设两个不重合的平面有一个公共点,那么它们有且只要一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线相互平行◆定理:空间中假设一个角的两边与另一个角的两边区分平行,那么这两个角相等或互补.② 以平面几何的上述定义、公理和定理为动身点,看法和了解空间中线面平行、垂直的有关性质与判定.了解以下判定定理:◆假设平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆假设一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆假设一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆假设一个平面经过另一个平面的垂线,那么这两个平面相互垂直.了解以下性质定理,并可以证明:◆假设一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.◆假设两个平行平面同时和第三个平面相交,那么它们的交线相互平行◆垂直于同一个平面的两条直线平行◆假设两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③ 能运用公理、定理和已取得的结论证明一些空间位置关系的复杂命题.温习关注:平面几何试题着重考察空间点、线、面的位置关系的判别及几何体的外表积与体积的计算,关注画图、识图、用图的才干,关注对平行、垂直的探求,关注对条件或结论不完备情形下的开放性效果的探求小编为大家提供的2021-2021高考数学平面几何专项知识点大家细心阅读了吗?最后祝考生们学习提高。

高考数学(文)《立体几何》专题复习

高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解

高考立体几何知识点与题型精讲

高考立体几何知识点与题型精讲

高考立体几何知识点与题型精讲在高考数学中,立体几何是一个重要的板块,它不仅考查学生的空间想象能力,还对逻辑推理和数学运算能力有较高要求。

接下来,咱们就一起深入探讨一下高考立体几何的知识点和常见题型。

一、知识点梳理1、空间几何体的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。

(2)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形。

(3)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

2、空间几何体的表面积和体积(1)圆柱的表面积:S =2πr² +2πrl (r 为底面半径,l 为母线长)。

体积:V =πr²h (h 为高)。

(2)圆锥的表面积:S =πr² +πrl 。

体积:V =1/3πr²h 。

(3)球的表面积:S =4πR² 。

体积:V =4/3πR³ 。

3、空间点、直线、平面之间的位置关系(1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

(2)公理 2:过不在一条直线上的三点,有且只有一个平面。

(3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

4、直线与平面平行的判定与性质(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

5、平面与平面平行的判定与性质(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

6、直线与平面垂直的判定与性质(1)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

(2)性质定理:垂直于同一个平面的两条直线平行。

7、平面与平面垂直的判定与性质(1)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

高考数学立体几何题大纲详解

高考数学立体几何题大纲详解

高考数学立体几何题大纲详解一、立体几何题的重要性1、立体几何在高考数学中的分值占比2、对学生空间想象能力和逻辑推理能力的考察二、常见立体几何题型1、证明线面平行与垂直11 线面平行的判定定理及应用12 线面垂直的判定定理及应用2、求空间角21 异面直线所成角22 线面角23 二面角3、求几何体的体积与表面积31 柱体的体积与表面积32 锥体的体积与表面积33 球体的体积与表面积三、解题方法与技巧1、建立空间直角坐标系11 坐标系的建立原则12 利用向量法求解线面角、二面角等2、传统几何法21 作辅助线的技巧22 利用几何性质进行推理和计算3、转化与化归思想31 把空间问题转化为平面问题32 体积与表面积的转化四、历年高考真题分析1、选取典型真题11 对各题型的覆盖情况12 难度分布2、详细解析真题21 解题思路的梳理22 易错点和难点的剖析五、备考策略1、基础知识的巩固11 定理、公式的熟练掌握12 常见几何体的性质2、大量练习21 模拟题与真题的训练22 错题的整理与反思3、提高解题速度和准确性31 限时训练32 答题规范的养成六、考试注意事项1、认真审题11 理解题目中的条件和要求12 挖掘隐含条件2、答题步骤的完整性21 证明过程的逻辑严密性22 计算过程的准确性3、时间分配31 根据题型和难度合理安排时间32 留出检查的时间以上内容对高考数学立体几何题进行了较为全面的大纲详解,希望对您有所帮助。

立体几何复习专题---- 线线夹角

立体几何复习专题---- 线线夹角

立体几何复习专题--空间角之线线角一、基础知识1.定义: 直线a 、b 是异面直线,经过空间一交o ,分别a ΄//a ,b ΄//b ,相交直线a ΄b ΄所成的锐角(或直角)叫做异面直线夹角。

2.范围: ⎥⎦⎤⎝⎛∈2,0πθ3.方法: 平移法、(1)平移法:在图中选一个恰当的点(通常是线段端点或中点)作a 、b 的平行线,构造一个三角形,并解三角形求角。

步骤:①根据定义,通过平移,找到异面直线所成的角θ;②解含有θ的三角形,求出角θ的大小.(常用到余弦定理)余弦定理: abcb a 2cos 222-+=θ (计算结果可能是其补角)(2) 补形法:把空间图形补成正方体、平行六面体、长方体等几何体,以便发现异面直线间的关系(3)三线角公式 用于求线面角和线线角.斜线和平面内的直线与斜线的射影所成角的余弦之积等于斜线和平面内的直线所成角的余弦 即:θθθc o s c o s c o s 21=若 OA 为平面的一条斜线,O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么 cos θ=cos θ1·cos θ2 (同学们可自己证明),它揭示了斜线和平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角(常称为最小角定理)【典型例题】【例1】在正方体1111ABCD A BC D -中,下列几种说法正确的是 ( ) A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45角 D 、11AC 与θcba B αOAC1BC 成60角答案:D 。

解析:A 1C 1与AD 成45°,D 1C 1与AB 平行,AC 1与DC 所成角的正切为22。

【例2】(1)如图,在正方体1111ABCD A B C D -中,E,FG,H 分别为1AA ,AB ,1BB ,11B C 的中点,则异面直线EF 与GH 所成的角等于 (2)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为(3) 如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA= 90,点D 1、F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成的角的余弦值_________。

高考立体几何题型知识点

高考立体几何题型知识点

高考立体几何题型知识点高考作为一个对学生综合素质进行考察的重要考试,其中数学科目一直是考生们最为头疼的部分之一。

而在数学科目中,立体几何题型往往是令人望而生畏的一块。

本文将为大家梳理高考立体几何题型的知识点,让我们一起来系统地了解一下吧。

一、立体几何基本概念在学习立体几何之前,我们首先需要了解一些基本概念。

立体几何中最常见的就是各种几何体,如球体、圆柱体、圆锥体等。

不同的几何体有不同的定义和特性,这些基本概念是我们解题的基础。

二、几何体的表面积与体积在解答高考立体几何题目时,我们常常需要求解几何体的表面积和体积。

球体的表面积和体积计算方式是不同的,圆锥体、圆柱体、棱锥体、棱柱体等的计算方式也有所不同。

因此,在考试前需要熟练掌握不同几何体的表面积与体积的计算公式。

三、立体几何的投影与相交在高考立体几何题目中,我们还需要了解几何体在平面上的投影与相交。

当我们在解题时,有时需要求解某个平面与几何体的交点数量,或者通过已知的投影求解相应的几何体等。

因此,了解几何体在平面上的投影与相交是非常重要的。

四、立体几何的空间位置关系在解答立体几何题目时,我们常常需要考虑几何体之间的空间位置关系。

比如,两个几何体是否相切、相交或者完全分离等。

这需要我们通过几何体之间的距离和角度关系来确定。

因此,在解答高考立体几何题目时,我们需要对几何体的空间位置关系有一个清晰的认识。

五、应用题与易混淆概念在高考立体几何题目中,有时会涉及一些应用题,这些题目可能需要我们运用立体几何的知识来解决实际问题。

同时,还有一些易混淆的概念,比如球截面与圆柱截面之间的关系等。

我们需要通过大量的习题训练来巩固理论知识,提高解题能力。

六、解题技巧与备考建议除了理论知识的掌握,解答高考立体几何题目还需要我们灵活运用解题技巧。

比如,可以通过选取合适的坐标系来简化解题过程,或者利用几何体的对称性质来推导结论等。

此外,备考过程中,我们还要多做一些模拟题和历年真题,逐步提高解题能力与应对考试的心理素质。

全国高考数学立体几何题大纲全解

全国高考数学立体几何题大纲全解

全国高考数学立体几何题大纲全解在高考数学中,立体几何题一直是重要的考查内容之一。

它不仅要求学生具备扎实的空间想象力,还需要熟练掌握相关的定理、公式和解题方法。

接下来,我们将对全国高考数学立体几何题进行一次全面的解析。

一、立体几何的基础知识首先,我们来回顾一下立体几何的一些基本概念。

点、线、面是构成空间几何体的基本元素。

直线与平面的位置关系包括平行、相交和在平面内;平面与平面的位置关系有平行和相交。

在立体几何中,常见的几何体有棱柱、棱锥、棱台、圆柱、圆锥、圆台和球。

对于这些几何体,我们需要了解它们的结构特征、表面积和体积的计算公式。

例如,棱柱的体积公式为 V = Sh(S 为底面积,h 为高);圆锥的体积公式为 V = 1/3Sh。

二、空间直线与平面的位置关系这部分是高考的重点和难点之一。

判断直线与平面平行的方法通常有:利用定义(直线与平面没有公共点);利用判定定理(平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行)。

证明直线与平面垂直,关键是要证明直线与平面内的两条相交直线垂直。

直线与平面所成的角,是指直线与它在平面内的射影所成的角。

平面与平面平行的判定,可通过一个平面内的两条相交直线与另一个平面平行来证明。

平面与平面垂直的判定定理为:一个平面过另一个平面的垂线,则这两个平面垂直。

三、空间向量在立体几何中的应用空间向量为解决立体几何问题提供了一种新的有力工具。

通过建立空间直角坐标系,我们可以将空间中的点、线、面用向量表示。

利用向量的数量积可以计算两直线的夹角,向量的模可以计算线段的长度。

例如,要求异面直线所成的角,可先求出它们的方向向量,然后计算方向向量的夹角,但要注意夹角的范围。

四、高考中常见的立体几何题型1、证明题这类题目通常要求证明线线、线面、面面的平行或垂直关系。

在解题时,要根据已知条件,合理选择定理进行证明。

2、计算题常见的计算包括求几何体的表面积、体积,求线面角、二面角的大小等。

高三第二轮专题复习资料:立体几何题型与方法(文科)

高三第二轮专题复习资料:立体几何题型与方法(文科)

专题二:立体几何题型与方法(文科)一、 考点回顾1.平面(1)平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

(2)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样,可根据公理2证明这些点都在这两个平面的公共直线上。

(3)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。

(4)证共面问题一般用落入法或重合法。

(5)经过不在同一条直线上的三点确定一个面. 2. 空间直线.(1)空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内。

(2)异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(3)平行公理:平行于同一条直线的两条直线互相平行.(4)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(5)两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (l 1或l 2在这个做出的平面内不能叫l 1与l 2平行的平面) 3. 直线与平面平行、直线与平面垂直.(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA . ● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)] b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结立体几何是数学中的一个重要分支,也是高考数学中的重要内容之一。

在高考中,立体几何的知识点主要包括空间几何、立体图形的面积与体积等方面。

下面是对2024年高考数学立体几何知识点的总结,供考生参考。

一、空间几何1. 空间几何中的点、线、面的概念和性质。

点是没有长度、宽度和高度的,只有位置的大小,用字母表示。

线是由一组无限多个点构成的集合,用两个点的字母表示。

面是由无限多条线构成的,这些线共面且没有相交或平行关系。

2. 空间几何中的垂直、平行等概念和性质。

两条线在同一平面内,如果相交角为90°,则称两线垂直。

两条线没有相交关系,称两线平行。

3. 点到直线的距离的计算。

点到直线的距离等于该点在直线上的正交投影点的距离。

二、立体图形的面积与体积1. 立体图形的分类和性质。

立体图形包括球体、圆柱体、圆锥体、棱柱体、棱锥体等。

各种立体图形具有不同的性质,如球体表面上每一点到球心的距离都相等。

2. 立体图形的面积计算。

(1)球体的表面积计算公式:S = 4πr²,其中r为球的半径。

(2)圆柱体的侧面积计算公式:S = 2πrh。

(3)圆柱体的全面积计算公式:S = 2πrh + 2πr²。

(4)圆锥体的侧面积计算公式:S = πrl,其中r为圆锥底面半径,l为斜高。

(5)棱柱体的侧面积计算公式:S = ph,其中p为棱柱底面周长,h为高。

3. 立体图形的体积计算。

(1)球体的体积计算公式:V = 4/3πr³,其中r为球的半径。

(2)圆柱体的体积计算公式:V = πr²h。

(3)圆锥体的体积计算公式:V = 1/3πr²h。

(4)棱柱体的体积计算公式:V = ph。

(5)棱锥体的体积计算公式:V = 1/3Bh,其中B为底面积,h为高。

三、立体几何的一般理论1. 点、线、面的位置关系。

在空间中,点、线、面可以相互相交、平行、垂直等。

高三数学第一轮复习立体几何的综合问题知识精讲

高三数学第一轮复习立体几何的综合问题知识精讲

高三数学第一轮复习:立体几何的综合问题【本讲主要内容】立体几何的综合问题立体几何知识的综合应用及立体几何与其它知识点的综合问题【知识掌握】【知识点精析】1. 立体几何的综合问题融直线和平面的位置关系于平面与几何体中,有计算也有论证。

解决这类问题需要系统地掌握线线、线面、面面的位置关系,特别是平行与垂直的判定与性质.深刻理解异面直线所成的角、斜线与平面所成的角、二面角的平面角的概念,理解点到面的距离、异面直线的距离的概念.2. 立体几何横向可与向量、代数、三角、解析几何等综合.3. 应用性问题、探索性问题需综合运用所学知识去分析解决.【解题方法指导】例1. 如图所示,在正方体ABCD—A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为()解析:P到直线BC的距离等于P到B的距离,动点P的轨迹满足抛物线定义.故选C.例2. 如图,四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD,(Ⅰ)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;(Ⅱ)证明不论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°.(Ⅰ)解:∵PB⊥面ABCD,∴BA是PA在面ABCD上的射影,又DA⊥AB ∴PA⊥DA∴∠PAB是面PAD与面ABCD所成的二面角的平面角∴∠PAB=60°,PB=AB·tan60°=3a ,∴ V 锥=3233·3·31a a a =(Ⅱ)证明:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为等腰三角形,作AE ⊥PD ,垂足为E ,连结CE ,则△ADE ≌△CDE ,因为AE =CE ,∠CED =90o,故∠CEA 是面PAD 与面PCD 所成的二面角的平面角. 设AC 与BD 交于点O ,连结EO ,则EO ⊥AC ,所以a AD AE OA a =<<=22,22a AE <, 在△AEC 中,02222cos 222222222<-=-=∙-+=∠AE a AE AE a AE EC AE AC EC AE CEA 所以面PAD 与面PCD 所成的二面角恒大于90o。

立体几何高三数学知识点

立体几何高三数学知识点

立体几何高三数学知识点立体几何是高中数学中的一门重要的分支,是几何学的一个方向。

它研究空间图形的性质、构造和计算问题。

立体几何包括了几何体的表面积、体积等几何特征以及它们之间的关系。

在高三的数学学习中,立体几何部分是一个难点,需要掌握一些重要的知识点和解题技巧。

一、空间几何的基本概念在立体几何中,我们需要了解一些基本的概念,如点、线、平面以及它们之间的关系。

在立体几何中,我们通常采用三维坐标系来描述空间图形。

点是空间中没有长度、宽度和高度的几何实体,用坐标表示,线是由一系列的点组成,可以通过两个点来确定。

平面是由无数个点构成的,可以通过三个不共线的点来确定。

掌握这些基本概念对于后续学习立体几何有很大的帮助。

二、立体几何的常见几何体在立体几何中,我们经常会遇到一些常见的几何体,如长方体、正方体、球体、圆柱体、圆锥体等。

这些几何体都有各自的特点和性质。

例如,长方体的六个面都是矩形,正方体的六个面都是正方形,球体的表面积和体积的计算都有特定的公式。

熟练掌握这些几何体的特点和性质,能够帮助我们更好地理解和解决立体几何相关的问题。

三、空间坐标系在立体几何中的应用空间坐标系在立体几何中有着广泛的应用。

我们可以用坐标系来描述点、线、平面以及其他空间几何体。

通过空间坐标系,我们可以方便地计算几何体的距离、角度等重要的几何特征。

同时,空间坐标系也可以帮助我们解决一些几何证明的问题。

因此,掌握和熟练运用空间坐标系是学好立体几何的关键。

四、立体几何的计算问题在学习立体几何时,我们经常会遇到一些计算问题,如几何体的表面积、体积等。

这些计算问题需要我们掌握一些特定的公式和计算技巧。

例如,一个圆柱体的体积可以通过底面积乘以高来计算,一个球体的表面积和体积可以通过特定的公式来计算。

掌握这些计算问题的解题技巧对于学好立体几何非常重要。

五、推导几何体的表面积和体积公式除了运用公式计算几何体的表面积和体积,我们还可以通过推导来得到这些公式。

高三《立体几何》专题复习

高三《立体几何》专题复习

高三《立体几何》专题复习一、常用知识点回顾1、三视图。

正侧一样高,正俯一样长,侧府一样宽,看不到的线画虚线。

2、常用公式与结论。

(1)圆柱、圆锥、圆台的侧面展开图及侧面积公式;(2)空间几何体的表面积与体积公式;(3)全品高考复习方案(听课手册)105页的常用结论3、两条异面直线所成的角;直线与平面所成的角。

4、证明两条直线平行的常用方法;直线与平面平行的判定与性质;面面平行的判定与性质。

5、证明两条直线垂直的常用方法;直线与平面垂直的判定与性质;两个平面垂直的判定与性质。

二、题型训练题型一:三视图的运用,求几何体的体积、表面积例1、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()(A)18+(B)54+(C)90(D)81【练习1】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()C.3D.2【练习2】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π【练习3】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π(B )24π(C )28π(D )32π例2、在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )(A )4π (B )9π2 (C )6π (D )32π3变式1:在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=5,则V的最大值是变式2:在封闭的长方体ABCD-A1B1C1D1内有一个体积为V的球.若AB=BC=6,AA1=3,则V的最大值是变式3:(1)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为(2)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为变式4:【练习1】已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A. B.12π C. D.10π【练习3】已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°,若SAB的面积为8,则该圆锥的体积为_______题型二:平行问题例1、如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明MN∥平面PAB; (II)求四面体N-BCM的体积.【练习1】如图,四棱锥P-ABCD中,侧面PADAD,为等边三角形且垂直于底面ABCD,AB=BC=12∠BAD=∠ABC=90°。

高考立体几何知识点总结(详细)

高考立体几何知识点总结(详细)

高考立体几何知识点总结一、空间几何体(一)空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二)几种空间几何体的结构特征1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2 棱柱的分类图1-1 棱柱棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体底面是四边形底面是平行四边形侧棱垂直于底面底面是矩形底面是正方形棱长都相等性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等;Ⅱ、两底面是全等多边形且互相平行;Ⅲ、平行于底面的截面和底面全等;1.3棱柱的面积和体积公式(是底周长,是高)S直棱柱表面 = c·h+ 2S底V棱柱 = S底·h2 、棱锥的结构特征2.1 棱锥的定义(1)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。

2.2 正棱锥的结构特征Ⅰ、平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、正棱锥的各侧棱相等,各侧面是全等的等腰三角形;正棱锥侧面积:(为底周长,为斜高)ABCDPOH体积:(为底面积,为高)正四面体:对于棱长为正四面体的问题可将它补成一个边长为的正方体问题。

对棱间的距离为(正方体的边长)正四面体的高()正四面体的体积为()正四面体的中心到底面与顶点的距离之比为()3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。

高三立体几何重点复习空间向量的坐标运算角度与距离

高三立体几何重点复习空间向量的坐标运算角度与距离

PCABD高三立体几何重点专题复习教案空间向量的坐标运算专题一:求角1. 求异面直线所成的角1,已知:正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为AA 1,BB 1的中点,求CM 和D 1N 所成角的余弦值。

2,已知长方体1111,A B C DA B C D -12,1,A B A A ==直线B D 与平面 11A A B B 所成的角为30︒,A E 垂直B D 于E ,F 为11A B 的中点.(Ⅰ)求异面直线A E 与B F 所成的角; (II )求平面BDF 与平面1A A B 所成的二面角; (III )求点A 到平面BDF 的距离.二、求直线与平面所成的角3,如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PA ⊥底面ABCD ,二面角P-BC-A 等于45°。

(Ⅰ)求P AA B的值 (Ⅱ)求PD 与截面PAC 所成的角大小EF ADCD 1A 1C 1B 1BNB1AADBCC1D1 M2. 求二面角的大小4,如图,在正三棱柱A 1B 1C 1—ABC 中,D ,E 分别是棱BC 、1C C 的中点,12,A B A A == (Ⅰ)证明:1BE AB ⊥;(Ⅱ)求二面角1B A B D --的大小; (Ⅲ)求异面直线1A B 与BE 的距离。

5,在三棱锥S-ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA=SC=23,M 、N 分别为AB 、SB 的中点。

(Ⅰ)证明:AC ⊥SB ;(Ⅱ)求二面角N-CM-B 的大小; (Ⅲ)求点B 到平面CMN 的距离。

专题二:求距离1、求点到平面的距离(推广到线面、面面之间的距离)6,如图,在三棱椎P-ABC 中,PA ⊥平面ABC ,90,B A C ∠=D ,E ,F 分别是棱AB 、BC 、CP 的中点,AB=AC=1,PA=2,(Ⅰ)求直线PA 与平面DEF 所成角的大小; (Ⅱ)求点P 到平面DEF 的距离。

立体几何考点梳理讲解总结,高考数学立体几何题及解析

立体几何考点梳理讲解总结,高考数学立体几何题及解析

考点24立体几何初步及空间几何体的表面积和体积【命题解读】立体几何的考察是高考必考知识点,对于几何体的体积和表面积的考察往往在空间线面位置关系问题中出现,依托于某一个几何体,因而要熟练掌握多面体与旋转体的概念、性质以及求解公式,在求解中要学会等价转化思想,等体积转化问题,以及立体问题转化为平面问题等等。

【命题预测】预计2021年的高考对于立体几何表面积和体积考察,还是以多面体和旋转体的面积和体积为主,注意公式的运用。

【复习建议】1.掌握空间几何体特征,多面体与旋转体的有关知识;2.会运用公式求解旋转体或多面体的体积和表面积。

考向一空间几何体的结构特征1.多面体的结构特征名称棱柱棱锥棱台图形结构特征有两个面互相平行且全等,其余各个面都是平行四边形;每相邻两个四边形的公共边都互相平行有一个面是多边形,其余各面都是有一个公共顶点的三角形的多面体用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分2.旋转体的结构特征圆柱圆锥圆台球互相平行且相等,垂直于底面相交于一点延长线交于一点全等的矩形全等的等腰三角形全等的等腰梯形圆矩形扇形扇环1. 一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的( )【答案】B【解析】由组合体的结构特征知,球只与正方体的上、下底面相切,而与两侧棱相离. 2. 【2019山东济宁检测】一个棱柱的底面是正六边形,侧面都是正方形,用至少过该棱柱三个顶点(不在同一侧面或同一底面内)的平面去截这个棱柱,所得截面的形状不可能是( )A .等腰三角形B .等腰梯形C .五边形D .正六边形【答案】D【解析】如图1,由图可知,截面ABC 为等腰三角形,选项A 可能.截面ABEF 为等腰梯形,选项B 可能.如图2,截面AMDEN 为五边形,选项C 可能.图1 图2因为侧面是正方形,只有平行于底面的截面才可能是正六边形,故过两底的顶点不可能得到正六边形.选项D 不可能.考向二 空间几何体的表面积与体积空间几何体的表面积与体积公式表面积体积 S 表面积=S 侧+2S 底 V= S 底h S 表面积=S 侧+S 底 V=13S 底hS 表面积=S 侧+S 上+S 下V=13(S 上+S 下+√S 上S 下)hS=4πR 2V= 43πR 31. 【2020届河南省郑州市高三第二次质量预测文科数学试题】在正方体ABCD -A 1B 1C 1D 1中,三棱锥A 1-BC 1D 内切球表面积为4π,则正方体外接球的体积为A .B .36π C . 3D . 6【答案】B【解析】设正方体的棱长为a ,则BD =,因为三棱锥11A BC D -内切球的表面积为4π, 所以三棱锥11A BC D -内切球的半径为1,设11A BC D -内切球的球心为O , 1A 到平面1BC D 的距离为h ,则1114A BC D O BC D V V --=,11114133BC D BC D S h S ∆∆⨯=⨯⨯⨯,4h ∴=, 又()223622233h aa a ⎛⎫=-⨯=⨯ ⎪ ⎪⎝⎭, 624,233a a ∴⨯==, 又因为正方体外接球直接就是正方体对角线长,∴正方体外接球的半径为()()()22223232332++=,其体积为343363ππ⨯=,故选B . 2.【2019山东东营模拟】表面积为24的正方体的顶点都在同一个球面上,则该球的表面积是( ) A .12π B .8π C .32π3D .4π【答案】A【解析】设正方体的棱长为a ,因为表面积为24,即6a 2=24,得a = 2,正方体的体对角线长度为22+22+22=23, 所以正方体的外接球半径为r =232=3, 所以球的表面积为S =4πr 2=12π.3. 在△ABC 中,AB =2,BC =1.5,∠ABC =120°(如图所示),若将△ABC 绕直线BC 旋转一周,则形成的旋转体的体积是( )A .9π2B .7π2C .5π2D .3π2【答案】D【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,如图所示,OA =AB ·cos 30°=2×32=3,所以旋转体的体积为13π·(3)2·(OC -OB )=3π2.题组一(真题在线)1. 【2020年高考全国Ⅰ卷文数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A B C D2. 【2020年高考全国Ⅰ卷文数】已知△ABC 的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为AB .32C .1D 3. 【2020年高考全国Ⅰ卷文数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π4. 【2020年高考天津】若棱长为 A .12πB .24πC .36πD .144π5. 【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D6. 【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A BC D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB=BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.7. 【2019年高考天津卷理数】若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.8. 【2019年高考江苏卷】如图,长方体1111ABCD A BC D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 .9. 【2018全国卷Ⅰ】在长方体ABCD ­A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A .8B .62C .82D .8310. 【2018全国卷Ⅰ】已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为________.题组二1. 【2020山东省日照五莲县丶潍坊安丘市、潍坊诸城市、临沂兰山区高三模拟】唐朝的狩猎景象浮雕银杯如图1所示.其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R ,酒杯内壁表面积为2143R π,设酒杯上部分(圆柱)的体积为1V ,下部分(半球)的体积为2V ,则12V V =A .2B .32C .1D .342. 【2020河南省郑州市高三第二次质量试题】在正方体ABCD -A 1B 1C 1D 1中,三棱锥A 1-BC 1D 内切球表面积为4π,则正方体外接球的体积为A.B .36 π C. 3 D. 63. 【2019四川省宜宾市高三第三次诊断性考试】如图,边长为2的正方形ABCD 中,,E F 分别是,BC CD 的中点,现在沿,AE AF 及EF 把这个正方形折成一个四面体,使,,B C D 三点重合,重合后的点记为P ,则四面体P AEF -的高为A .13 B .23C .34D .14. 【2019广东省深圳市高级中学高三适应性考试】在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______.5. 【2017全国卷Ⅰ】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .π B .3π4C .π2D .π46. 【2020湖南省常德市高三上学期期末数学】某圆柱的高为2,体积为2π,其底面圆周均在同一个球面上,则此球的表面积为__________.7. 在三棱锥P ­ABC 中,P A ⊥平面ABC 且P A =2,△ABC 是边长为3的等边三角形,则该三棱锥外接球的表面积为( ) A .4π3B .4πC .8πD .20π8. 【2019广东茂名模拟】如图,在四棱锥P ­ABCD 中,P A ⊥底面ABCD ,底面ABCD 为菱形,∠ABC =60°,P A =AB =2,过BD 作平面BDE 与直线P A 平行,交PC 于点E .(1)求证:E 为PC 的中点; (2)求三棱锥E ­P AB 的体积.题组一1.C【解析】如图,设,CD a PE b ==,则PO ==由题意得212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得b a =.故选C .2.C【解析】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC 的等边三角形,212a ∴=,解得:3a =,2233r ∴===∴球心O 到平面ABC 的距离1d ===.故选:C .3. A【解析】设圆1O 半径为r ,球的半径为R ,依题意, 得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin60AB r =︒=1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A4. C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C . 5. D 【解析】,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,2R ==344π33R V R =∴=π==,故选D .6. 118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形, ∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=.又长方体1111ABCD A BC D -的体积为32466144cm V =⨯⨯=, 所以该模型体积为3214412132cm O EFGH V V V -=-=-=, 其质量为0.9132118.8g ⨯=.7.π42.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 8. 10【解析】因为长方体1111ABCD A BC D -的体积为120,所以1120AB BC CC ⋅⋅=, 因为E 为1CC 的中点,所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 9. C【解析】如图,连接AC 1,BC 1,AC .∵AB ⊥平面BB 1C 1C ,∴∠AC 1B 为直线AC 1与平面BB 1C 1C 所成的角, ∴∠AC 1B =30°.又AB =BC =2,在Rt △ABC 1中,AC 1=2sin 30°=4, 在Rt △ACC 1中,CC 1=AC 21-AC 2=42-22+22=22,∴V 长方体=AB ×BC ×CC 1 =2×2×22=8 2. 10. 8π【解析】 在Rt △SAB 中,SA =SB ,S △SAB =12·SA 2=8,解得SA =4.设圆锥的底面圆心为O ,底面半径为r ,高为h , 在Rt △SAO 中,∠SAO =30°, 所以r =23,h =2,所以圆锥的体积为13πr 2·h =13π×(23)2×2=8π.题组二1.A【解析】设酒杯上部分(圆柱)的高为h ,球的半径为R ,则酒杯下部分(半球)的表面积为22R π, 酒杯内壁表面积为2143R π,得圆柱侧面积为223214R R ππ-=283R π,酒杯上部分(圆柱)的表面积为2283R h R ππ⨯=,解得43h R =酒杯下部分(半球)的体积332142233V R R ππ=⨯⨯= 酒杯上部分(圆柱)的体积2314433R V R R ππ=⨯=所以133224323R V V R ππ==. 故选A . 2.B【解析】设正方体的棱长为a,则BD =,因为三棱锥11A BC D -内切球的表面积为4π, 所以三棱锥11A BC D -内切球的半径为1,设11A BC D -内切球的球心为O , 1A 到平面1BC D 的距离为h , 则1114A BC D O BC D V V --=,11114133BC D BC D S h S ∆∆⨯=⨯⨯⨯,4h ∴=, 又(2h ==,4,a == 又因为正方体外接球直接就是正方体对角线长,∴3=,其体积为343363ππ⨯=,故选B . 3.B 【解析】如图,由题意可知PA PE PF ,,两两垂直,∴PA ⊥平面PEF , ∴11111123323PEF A PEF V S PA -=⋅=⨯⨯⨯⨯=△, 设P 到平面AEF 的距离为h ,又2111321212112222AEF S =-⨯⨯-⨯⨯-⨯⨯=△, ∴13322P AEF hV h -=⨯⨯=,∴123h =,故23h =, 故选B . 4. 48π【解析】如图,在等边三角形ABC 中,取AB 的中点F ,设等边三角形ABC 的中心为O ,连接PF ,CF ,OP .由6AB =,得23AO BO CO CF OF ===== PAB △是以AB 为斜边的等腰角三角形,PF AB ∴⊥,又平面PAB ⊥平面ABC ,PF ∴⊥平面ABC ,PF OF ∴⊥,OP =则O 为棱锥P ABC -的外接球球心,外接球半径R OC ==∴该三棱锥外接球的表面积为(24π48π⨯=,故答案为48π. 5.B【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1, 由圆柱两个底面的圆周在同一个球的球面上可知, r ,R 及圆柱的高的一半构成直角三角形. ∴r =12-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4. 6. 8π【解析】由题意作出示意图,设圆柱底面半径为r ,球的半径为R ,∵圆柱的高为2,体积为2π, ∴1OO'=,222r ππ=,得1r =,∴R ,∴此球的表面积248S R ππ==, 故答案为:8π. 7. C【解析】由题意得,此三棱锥外接球即为以△ABC 为底面、以P A 为高的正三棱柱的外接球,因为△ABC 的外接圆半径r =32×3×23=1,外接球球心到△ABC 的外接圆圆心的距离d =1,所以外接球的半径R =r 2+d 2=2,所以三棱锥外接球的表面积S =4πR 2=8π. 8. 见解析【解析】(1)证明 如图,连接AC ,设AC ∩BD =O ,连接OE ,则O 为AC 的中点,且平面P AC ∩平面BDE =OE ,∵P A∥平面BDE,∴P A∥OE,∴E为PC的中点.(2)解由(1)知,E为PC的中点,∴V三棱锥P ­ABC=2V三棱锥E ­ABC.由底面ABCD为菱形,∠ABC=60°,AB=2,得S△ABC=34×22=3,∴V三棱锥P ­ABC=13S△ABC·P A=13×3×2=233.又V三棱锥P ­ABC=V三棱锥E­ABC+V三棱锥E ­P AB,∴V三棱锥E ­P AB=12V三棱锥P ­ABC=33.考点25空间点、线、面的位置关系【命题解读】空间点、直线、平面的位置关系是高考常考知识点之一,它的出题形式多样,在选择题或者填空或者解答都有可能涉及,这部分以简单和中档题为主,主要是考察空间想象力和空间思维能力。

高三数学立体几何知识点

高三数学立体几何知识点

高三数学立体几何知识点
立体几何是高中数学中的重要知识点,它可以用来测量和分析物体的形状、体积等属性。

立体几何的主要内容有:
一、空间中的点、直线、面的定义
(1)空间中的点是无大小的,由三维坐标定义而成。

(2)直线是一维无穷长的物体,可以由两点定义,或者用一条直线上两点或更多点的方程定义。

(3)面是二维物体,由一条或多条交点组成,可以由直线或曲线模拟。

二、平面几何关系
(1)直线与直线、点与直线夹角的大小及其关系,如平行线、垂线、平分线、平分角、锐角和钝角的定义及其关系;
(2)线段、圆弧、椭圆形的定义及其关系;
(3)多边形面积的计算,如矩形、菱形、平行四边形等;
(4)三角形内角和外角和两边关系,如洛必达定理、勾股定理、余弦定理及相关应用;
(5)平面有关对称性的推论及其应用;
(6)几何形状的判断,如斜三角形、等腰三角形、等边三角形、矩形等。

三、立体几何
(1)立体几何的概念,包括四面体、棱柱、正四棱台、锥体等几体的几何特点;
(2)立体几何图形的构成,以及棱、边、面、点的定义;
(3)三角投影原理及其应用;
(4)立体几何图形的空间关系,如平行线、平面、直线、面积、体积、重心等;
(5)立体几何图形的判断;
(6)立体几何图形的工程应用,如几何尺寸检查与测量,机械装配精度及逆向工程等。

高考立体几何知识点详细复习总结

高考立体几何知识点详细复习总结

立体几何知识点一、立体几何网络图:(1)线线平行的判断:⑴平行于同一直线的两直线平行。

⑶如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

⑹如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

⑿垂直于同一平面的两直线平行。

(2)线线垂直的判断:⑺在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

⑻在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。

⑽若一直线垂直于一平面,这条直线垂直于平面内所有直线。

补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

(3)线面平行的判断:⑵如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

⑸两个平面平行,其中一个平面内的直线必平行于另一个平面。

(4)线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。

⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

(5)面面平行的判断:⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。

⒀垂直于同一条直线的两个平面平行。

(6)面面垂直的判断: ⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。

二、其他定理:(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线; (2)直线与直线的位置关系: 相交 ; 平行 ; 异面 ;直线与平面的位置关系: 在平面内 ; 平行 ; 相交(垂直是它的特殊情况) ; 平面与平面的位置关系: 相交 ;; 平行 ;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。

高三立体几何专题复习

高三立体几何专题复习

高考立体几何专题复习一.考试要求:〔1〕掌握平面的根本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。

〔2〕了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念〔对于异面直线的距离,只要求会计算已给出公垂线时的距离〕。

〔3〕了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。

〔4〕了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。

掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。

〔5〕会用反证法证明简单的问题。

〔6〕了解多面体的概念,了解凸多面体的概念。

〔7〕了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。

〔8〕了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。

〔9〕了解正多面体的概念,了解多面体的欧拉公式。

〔10〕了解球的概念,掌握球的性质,掌握球的外表积、体积公式。

二.复习目标:1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的根底上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的根底上,掌握它们的求法(其根本方法是分别作出这些角,并将它们置于*个三角形通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步稳固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握根本的立体几何解题方法和常用解题技巧,开掘不同问题之间的在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和"说话要有根据〞的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.三.教学过程:〔Ⅰ〕根底知识详析高考立体几何试题一般共有4道(选择、填空题1--2道, 解答题1道), 共计总分20分左右,考察的知识点在20个以. 选择填空题考核立几中的计算型问题, 而解答题着重考察立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着"多一点思考,少一点计算〞的开展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探常考常新的热门话题.1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的容,因此在主体几何的总复习中,首先应从解决"平行与垂直〞的有关问题着手,通过较为根本问题,熟悉公理、定理的容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.2.判定两个平面平行的方法:〔1〕根据定义——证明两平面没有公共点;〔2〕判定定理——证明一个平面的两条相交直线都平行于另一个平面;〔3〕证明两平面同垂直于一条直线。

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结高考数学中的立体几何,是考查考生对空间图形的认识和理解,以及解决问题的能力。

以下是2024年高考数学立体几何的主要知识点总结:一、立体几何的基本概念1. 空间直角坐标系:了解三维空间的坐标系,掌握在空间直角坐标系下求两点之间距离和判定点与多面体关系的方法。

2. 几何体的分类与特征:了解各种几何体的定义、特征和性质,包括点、直线、平面、多面体等,熟悉各种几何体的命名和常见几何体的特征。

二、多面体与球的性质1. 正多面体:熟悉正多面体的定义、性质和相关定理,如正四面体、正六面体、正八面体等的性质,掌握计算正多面体的体积和表面积的方法。

2. 欧拉定理:了解欧拉定理的内容和证明思路,应用欧拉定理求解相应问题。

3. 球的性质:了解球的定义、性质和相关定理,如球面上的点和圆应用球的性质进行计算。

三、立体空间的位置关系1. 空间几何体的位置关系:了解空间几何体之间的位置关系,包括平行与垂直关系、相交与平面关系、点在立体内部与外部的关系等。

2. 空间向量的应用:熟悉空间向量的概念、性质和运算,掌握使用空间向量判断几何体的位置关系的方法。

四、立体几何中的投影1. 投影的概念与性质:了解投影的基本概念和性质,包括平行投影和斜投影的性质,熟悉使用投影解决几何问题的方法。

2. 截痕法与截面应用:掌握截痕法求解几何问题的基本思路和方法,熟练运用截痕法和截面方法解决立体几何问题。

五、向量运算在立体几何中的应用1. 向量投影的应用:了解向量投影的概念和性质,应用向量投影解决立体几何中的相关问题。

2. 向量混合积和向量积的应用:掌握向量混合积和向量积的定义和性质,应用向量混合积和向量积求解相关问题。

六、空间坐标系中的方向余弦与方向角1. 方向余弦的概念与性质:了解方向余弦的概念和性质,掌握方向余弦在立体几何中的应用方法。

2. 方向角的概念与计算:了解方向角的定义和计算方法,熟练求解立体几何中与方向角相关的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考立体几何专题复习一.考试要求:(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。

(2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)。

(3)了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。

(4)了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。

掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。

(5)会用反证法证明简单的问题。

(6)了解多面体的概念,了解凸多面体的概念。

(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。

(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。

(9)了解正多面体的概念,了解多面体的欧拉公式。

(10)了解球的概念,掌握球的性质,掌握球的表面积、体积公式。

二.复习目标:1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.三.教学过程:(Ⅰ)基础知识详析重庆高考立体几何试题一般共有4道(选择、填空题1--2道, 解答题1道), 共计总分20分左右,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题.1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.2. 判定两个平面平行的方法:(1)根据定义——证明两平面没有公共点;(2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质:⑴由定义知:“两平行平面没有公共点”。

⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那 么它们的交线平行”。

⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⑸夹在两个平行平面间的平行线段相等。

⑹经过平面外一点只有一个平面和已知平面平行。

以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过程中均可直接作为性质定理引用。

4.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决.空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π⎡⎤⎢⎥⎣⎦,二面角的大小,可用它们的平面角来度量,其平面角θ∈(0,π].对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步培养运算能力、逻辑推理能力及空间想象能力.如求异面直线所成的角常用平移法(转化为相交直线);求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角α-l -β的平面角(记作θ)通常有以下几种方法:(1) 根据定义;(2) 过棱l 上任一点O 作棱l 的垂面γ,设γ∩α=OA ,γ∩β=OB ,则∠AOB =θ(图1);这一系列中各类几何体的内在联系和区别。

⑵平行六面体是棱柱中的一类重要的几何体,要理解并掌握“平行六面体 直平行六面体 长方体正四棱柱 正方体”这一系列中各类几何体的内在联系和区别。

⑶须从棱柱的定义出发,根据第一章的相关定理对棱柱的基本性质进行分析推导,以求更好地理解、掌握并能正确地运用这些性质。

⑷关于平行六面体,在掌握其所具有的棱柱的一般性质外,还须掌握由其定义导出的一些其特有的性质,如长方体的对角线长定理是一个重要定理并能很好地掌握和应用。

还须注意,平行六面体具有一些与平面几何中的平行四边形相对应的性质,恰当地运用平行四边形的性质及解题思路去解平行六面体的问题是一常用的解题方法。

⑸多面体与旋转体的问题离不开构成几何体的基本要素点、线、面及其相互关系,因此,很多问题实质上就是在研究点、线、面的位置关系,与《直线、平面、简单几何体》第一部分的问题相比,唯一的差别就是多了一些概念,比如面积与体积的度量等.从这个角度来看,点、线、面及其位置关系仍是我们研究的重点.多面体与旋转体的体积问题是《直线、平面、简单几何体》课程当中相对独立的课题.体积和面积、长度一样,都是度量问题.常用“分割与补形”,算出了这些几何体的体积.7.欧拉公式:如果简单多面体的顶点数为V ,面数F ,棱数E ,那么V+F-E =2. 计算棱数E 常见方法: (1)E =V+F-2;(2)E =各面多边形边数和的一半; (3)E =顶点数与共顶点棱数积的一半。

8.经纬度及球面距离⑴根据经线和纬线的意义可知,某地的经度是一个二面角的度数,某地的纬度是一个线面角的度数,设球O 的地轴为NS ,圆O 是0°纬线,半圆NAS 是0°经线,若某地P 是在东经120°,北纬40°,我们可以作出过P 的经线NPS 交赤道于B ,过P 的纬线圈圆O 1交NAS 于A ,那么则应有:∠AO 1P=120°(二面角的平面角) ,∠POB=40°(线面角)。

⑵两点间的球面距离就是连结球面上两点的大圆的劣弧的长,因此,求两点间的球面距离的关键就在于求出过这两点的球半径的夹角。

例如,可以循着如下的程序求A 、P 两点的球面距离。

S 球表=4πR 2 V 球=34πR 3⑴球的体积公式可以这样来考虑:我们把球面分成若干个边是曲线的小“曲边三角形”;以球心为顶点,以这些小曲边三角形的顶点为底面三角形的顶点,得到若干个小三棱锥,所有这些小三棱锥的体积和可以看作是球体积的近似值.当小三棱锥的个数无限增加,且所有这些小三棱锥的底面积无限变小时,小三棱锥的体积和就变成球体积,同时小三棱锥底面面积的和就变成球面面积,小三棱锥高变成球半径.由于第n个小三棱锥的体积=31S n h n (S n 为该小三棱锥的底面积,h n 为小三棱锥高),所以V 球=31S 球面·R =31·4πR 2·R =34πR 3.⑵在应用球体积公式时要注意公式中给出的是球半径R ,而在实际问题中常给出球的外径(直径).⑶球与其它几何体的切接问题,要仔细观察、分析、弄清相关元素的位置关系和数量关系,选择最佳角度作出截面,以使空间问题平面化。

10.主要题型:⑴以棱柱、棱锥为载体,考查线面平行、垂直,夹角与距离等问题。

⑵利用欧拉公式求解多面体顶点个数、面数、棱数。

⑶求球的体积、表面积和球面距离。

解题方法:求球面距离一般作出相应的大圆,转化为平面图形求解。

11.注意事项⑴须明确《直线、平面、简单几何体》中所述的两个平面是指两个不重合的平面。

⑵与“直线与直线平行”、“直线与平面平行”的概念一样“平面与平面平行”是指“二平面没有公共点”。

由此可知,空间两个几何元素(点、直线、平面称为空间三个几何元素)间“没有公共点”时,它们间的关系均称为“互相平行”。

要善于运用平面与平面平行的定义所给定的两平面平⌒⌒⌒⌒行的最基本的判定方法和性质。

⑶注意两个平行平面的画法——直观地反映两平面没有公共点,将表示两个平面的平行四边形画成对应边平行。

两个平面平行的写法与线、线平行,线、面平行的写法一议,即将“平面α平行于平面β”,记为“α∥β”。

⑷空间两个平面的位置关系有且只有“两平面平行”和“两平面相交”两种关系。

⑸在明确“两个平行平面的公垂线”、“两个平行平面的公垂线段”、“两个平行平面的距离”的概念后,应该注意到,两平行平面间的公垂线段有无数条,但其长度都相等——是唯一确定的值,且两平行平面间的公垂线段,是夹在两平行平面间的所有线段中最短的线段,此外还须注意到,两平行平面间的距离可能化为“其中一个平面内的直线到另一个平面的距离”又可转化为“其中一个面内的一个点到另一个平面的距离。

相关文档
最新文档