静电场中的电介质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静电场中的电介质
(一)要求
1、了解电介质极化的微观机制,掌握极化强度矢量的物理意义
2、理解极化电荷的含义,掌握极化电荷、极化电荷面密度与极化强度矢量P 之间的关系
3、掌握有介质时场的讨论方法,会用介质中的高斯定理来计算静电场;明确E 、P 、D 的联系和区别
4、了解静电场的能量及能量密度
5、演示实验:介质对电容器电容的影响
(二)要点
1、电介质的极化
(1)电介质的电结构
(2)电介质的极化
2、极化强度矢量
(1)极化强度矢量
(2)极化电荷
(3)极化电荷体密度与面密度
3、有介质时的静电场方程
(1)电位移矢量
(2)介质中的高斯定理
(3)介质中的电场方程
*4、静电场的边值关系
5、静电场的能量和能量密度
(三)难点
求解介质中静电场的具体问题,如极化电荷的分布,介质中电场的分布等
§ 3-1电介质的极化
一、介质中的电场强度
实验表明,电容器中填充介质后电容增大,增大程度由填充介质的相对介电常数£决定。由于引入外电场后,电介质表面出现电荷,产生附加电场比方向与外电场方向相反,削
弱了电介质内部的外电场,这样
f f f 4
E=E^ + E f
但
E t丰E‘,辰工On
二、电介质的极化
在外电场作用下电介质表面出现电荷的现象叫做电介质的极化,在表面出现的这种电荷叫极化电荷(束缚电荷)。
由于极化电荷比自由电荷少得多,极化电场比感应电场也小得多,因此介质内部合场强不为零但要注意极化电荷与自由电荷、极化电场与感应电场的区别。
§3-2极化强度矢量
一、极化的微观机制1无极分子的位移极化
在外电场作用下,无极分子正负电荷“中心”发生相对位移而出现极化电荷的现象,称为位移极化。
2、有极分子的取向极化
在外电场作用下,有极分子的电偶极矩受到电场的力矩而转向外电
场,在垂直于外电场方向的两端面上也出现极化电荷的现象,称为取向极化。
二、极化强度矢量
1定义
在介质中取一无限小体积元A L ,设△ I
内分子电偶极矩的矢量和为,则定义极化强度矢量为
也就是说,极化强度矢量等于单位体积内所有分子电偶极矩的矢量和。它是描述介质内部极化程度的物理量。单位:库/米2 ( C/m 2 )。
若介质内部各点“的大小、方向均相同,则称为均匀极化。在真空和处于静电平衡状态的导体中,没有极化电荷,所以—°。
2、P与极化电荷的关系
在介质中取一个长为/底面积为的圆柱截面
由于圆柱体体积A r很小,其内可看作常数。整个圆柱体内电偶极矩的总和为
=,PAK=P(S/)cos0 = (o
所以,圆柱体表面极化电荷面密度为
y = PCO30
写成矢量形式,得
* f 貝
u f= Pn
A
介为介质表面法线的单位矢量。
若与眩之间夹角2,则CT'
〜只0>^
若P与刃之间夹角'2,则c"—尸 f 尺 g = —. 若P与/之间夹角2,则- Pros/? 0 $-3介质中的电场 亠、基本关系式 有介质存在时,无论介质内、外或空间任一点的 反,极化电荷面密度为 C ,自由电荷面密度为 E = S —色 二、与丄;的关系 实验表明,在各向同性介质中,任一点的极化强 度矢量与该点的总场强大小成正比,方向相同,可写 为"―2‘1厂,Z 称为介质的极化率,它是一个大 于零的纯数,由介质本身性质决定。所谓均匀介质, 就是上处处相同的介质。 例:设一平行板电容器上下两极板的自由电荷面度为 士 01其中充 满极化率为乂 的介质,讨论其电场。 总场强为丘二+ F ,由于片方向与方向相 ,介质内的总场强为 1、求介质中的总场强 由于自由电荷场强为 极化电荷场强为 £' = — 所以,总场强为 E = E il-E t=^~ — 窃 % 则广刃,这样 E =比—%E 1+Z (1 十Z)禺 令耳;「十2,匚7称为相对介电常数。介质中的总场强为 而极化电荷面密度 2、充满介质后的电容 充满介质后,电容器的电容比原来增大了八「倍 3、极化电荷面密度 夕=土(1 一 丄)5 ®"o 式中, 上称为绝对介电常数,简称介电常数 §3-4介质中的高斯定理 一、介质中的高斯定理 1、数学表达式 有介质存在时,咼斯定理仍然成立。但在计算咼 斯面内包围的电荷时,应包括自由电荷和极化电荷q,即 甘丘-ds = —(X条+工 (I)$0 而 甘戸•力二一工 (5) 两式整理后,得 甘(矶丘+戶).石二艺务 (I) 如果定义一点的电位移矢量D为 D = + P 则有 (O 上式称为有介质存在时的高斯定理。因为() 是电位移矢量的通量,所以它可以表述为:通过任一闭合曲面的电位移通量,等于包围在该闭合面内自由电荷的代数和。 2、关于定理的几点说明 (1)有介质存在时的咼斯定理是更普遍的规律,它概括了真空中的高斯定理。 (2)在万的高斯定理中,@和P不直接出现,在电荷和介质分布具有一定对称性的情况下,可以由自由电荷9(1的分布,求出万的分布。 (3)高斯面上任一点的D是由空间总的自由电荷的分布决定,不能认为只与面内自由电荷有关。 二、电位移矢量 1、物理意义