静电场中的电介质

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静电场中的电介质

(一)要求

1、了解电介质极化的微观机制,掌握极化强度矢量的物理意义

2、理解极化电荷的含义,掌握极化电荷、极化电荷面密度与极化强度矢量P 之间的关系

3、掌握有介质时场的讨论方法,会用介质中的高斯定理来计算静电场;明确E 、P 、D 的联系和区别

4、了解静电场的能量及能量密度

5、演示实验:介质对电容器电容的影响

(二)要点

1、电介质的极化

(1)电介质的电结构

(2)电介质的极化

2、极化强度矢量

(1)极化强度矢量

(2)极化电荷

(3)极化电荷体密度与面密度

3、有介质时的静电场方程

(1)电位移矢量

(2)介质中的高斯定理

(3)介质中的电场方程

*4、静电场的边值关系

5、静电场的能量和能量密度

(三)难点

求解介质中静电场的具体问题,如极化电荷的分布,介质中电场的分布等

§ 3-1电介质的极化

一、介质中的电场强度

实验表明,电容器中填充介质后电容增大,增大程度由填充介质的相对介电常数£决定。由于引入外电场后,电介质表面出现电荷,产生附加电场比方向与外电场方向相反,削

弱了电介质内部的外电场,这样

f f f 4

E=E^ + E f

E t丰E‘,辰工On

二、电介质的极化

在外电场作用下电介质表面出现电荷的现象叫做电介质的极化,在表面出现的这种电荷叫极化电荷(束缚电荷)。

由于极化电荷比自由电荷少得多,极化电场比感应电场也小得多,因此介质内部合场强不为零但要注意极化电荷与自由电荷、极化电场与感应电场的区别。

§3-2极化强度矢量

一、极化的微观机制1无极分子的位移极化

在外电场作用下,无极分子正负电荷“中心”发生相对位移而出现极化电荷的现象,称为位移极化。

2、有极分子的取向极化

在外电场作用下,有极分子的电偶极矩受到电场的力矩而转向外电

场,在垂直于外电场方向的两端面上也出现极化电荷的现象,称为取向极化。

二、极化强度矢量

1定义

在介质中取一无限小体积元A L ,设△ I

内分子电偶极矩的矢量和为,则定义极化强度矢量为

也就是说,极化强度矢量等于单位体积内所有分子电偶极矩的矢量和。它是描述介质内部极化程度的物理量。单位:库/米2 ( C/m 2 )。

若介质内部各点“的大小、方向均相同,则称为均匀极化。在真空和处于静电平衡状态的导体中,没有极化电荷,所以—°。

2、P与极化电荷的关系

在介质中取一个长为/底面积为的圆柱截面

由于圆柱体体积A r很小,其内可看作常数。整个圆柱体内电偶极矩的总和为

=,PAK=P(S/)cos0 = (o

所以,圆柱体表面极化电荷面密度为

y = PCO30

写成矢量形式,得

* f 貝

u f= Pn

A

介为介质表面法线的单位矢量。

若与眩之间夹角2,则CT'

〜只0>^

若P与刃之间夹角'2,则c"—尸

f 尺

g = —.

若P与/之间夹角2,则- Pros/? 0

$-3介质中的电场

亠、基本关系式

有介质存在时,无论介质内、外或空间任一点的

反,极化电荷面密度为 C ,自由电荷面密度为

E = S —色

二、与丄;的关系

实验表明,在各向同性介质中,任一点的极化强 度矢量与该点的总场强大小成正比,方向相同,可写 为"―2‘1厂,Z 称为介质的极化率,它是一个大 于零的纯数,由介质本身性质决定。所谓均匀介质, 就是上处处相同的介质。

例:设一平行板电容器上下两极板的自由电荷面度为 士 01其中充

满极化率为乂 的介质,讨论其电场。

总场强为丘二+ F

,由于片方向与方向相

,介质内的总场强为

1、求介质中的总场强

由于自由电荷场强为

极化电荷场强为

£' = —

所以,总场强为

E = E il-E t=^~ —

窃 %

则广刃,这样

E =比—%E

1+Z (1 十Z)禺

令耳;「十2,匚7称为相对介电常数。介质中的总场强为

而极化电荷面密度

2、充满介质后的电容

充满介质后,电容器的电容比原来增大了八「倍

3、极化电荷面密度

夕=土(1 一 丄)5

®"o

式中,

上称为绝对介电常数,简称介电常数

§3-4介质中的高斯定理

一、介质中的高斯定理

1、数学表达式

有介质存在时,咼斯定理仍然成立。但在计算咼

斯面内包围的电荷时,应包括自由电荷和极化电荷q,即

甘丘-ds = —(X条+工

(I)$0

甘戸•力二一工

(5)

两式整理后,得

甘(矶丘+戶).石二艺务

(I)

如果定义一点的电位移矢量D为

D = + P

则有

(O

上式称为有介质存在时的高斯定理。因为() 是电位移矢量的通量,所以它可以表述为:通过任一闭合曲面的电位移通量,等于包围在该闭合面内自由电荷的代数和。

2、关于定理的几点说明

(1)有介质存在时的咼斯定理是更普遍的规律,它概括了真空中的高斯定理。

(2)在万的高斯定理中,@和P不直接出现,在电荷和介质分布具有一定对称性的情况下,可以由自由电荷9(1的分布,求出万的分布。

(3)高斯面上任一点的D是由空间总的自由电荷的分布决定,不能认为只与面内自由电荷有关。

二、电位移矢量

1、物理意义

相关文档
最新文档