植物生理
植物生理 (共104张PPT)
植物根系对水分的吸收
– 被动吸水
• 由于叶和枝的蒸腾作用引起根部吸水和向上运输 • 主要动力:蒸腾拉力 • 基本原理:水从水势高到水势低的渗透作用
• 根部吸水的途径
– 质外体途径:水分通过细胞壁、细胞间隙等没有细胞 质的部分移动 – 共质体途径:水分从一个细胞的细胞质经过胞间连丝 ,移动到另一个细胞的细胞质,形成一个细胞质的连 续体 – 跨膜途径:水分从一个细胞移动到另一个细胞,要两 次通过质膜,还要通过液泡膜
5. 三个相邻的细胞A、B、C,其Ψs和Ψp分 别为:A Ψs=-10巴,Ψp=4巴;B Ψs= -9巴,Ψp=6巴;C Ψs=-8巴,Ψp=4巴 ,其水流的方式正确的是() A.A←B→C B.A→B→C C. A←B←C D.A→B←C 6.在气孔张开时,水蒸气分子通过气孔的扩 散速度是() A.与气孔面积成正比 B.与气孔周长成正 比 C.与气孔面积无关,与气孔周长成反 比 D.不决定于气孔周长,而决定于气孔 大小
• 水分沿导管上升的动力
1.根压:在蒸腾较弱时,根压作用大 2.蒸腾拉力:在晴朗的环境下是主要的(蒸腾拉力-内聚力张力学说)
1.如果外液的水势高于植物细胞的水势,该外液称为
A.等渗溶液 B.高渗溶液 C.平衡溶液
。
D.低渗溶液
2. 已知洋葱表皮细胞=-10巴,置于下列哪种溶液会出现质 壁分离现象 A. -10巴溶液 B.-9巴甘油溶液 C.-8巴葡萄糖溶液 D.-15巴蔗糖溶液 3. (2004)大树中水分向上运输时,下列哪一项因素最重要 A.韧皮部中的毛细管作用 B.木质部的主动运输 C.叶的蒸腾作用 D.吐水 4.风干的种子吸水的数量与()有关 A. 温度高低 B. 养气供应 C. 种子的死活 D. 种子成分 的性质
植物的5大生理作用分别是
植物的5大生理作用分别是植物具有多种生理作用,这些作用使其能够适应环境、生长发育和维持生命活动。
以下是植物的五大主要生理作用:
1. 光合作用(Photosynthesis):光合作用是植物的核心生理过程之一,通过光合色素在叶绿体中捕获太阳能,将二氧化碳和水转化为葡萄糖和氧气。
这个过程为植物提供了能量,并是氧气的主要来源。
2. 呼吸作用(Respiration):呼吸作用是植物释放能量的过程,与动物的呼吸作用有所不同。
植物通过呼吸作用将葡萄糖和氧气转化为二氧化碳、水和能量。
这个过程发生在细胞的线粒体中。
3. 蒸腾作用(Transpiration):蒸腾作用是植物通过叶片表面散发水蒸气的过程。
这有助于植物在光合作用中吸收的水分的运输和分配,同时也有助于维持植物体内的水分平衡。
4. 激素调节(Hormone Regulation):植物产生和调节激素,如赤霉素、生长素、脱落酸等,以控制植物的生长、开花、果实发育和其他生命周期中的关键阶段。
激素对植物的发育和适应环境的响应起着重要作用。
5. 营养吸收和运输(Nutrient Absorption and Transport):植物通过根部吸收土壤中的水分和矿物质养分。
这些养分通过根内的细胞和导管系统进行运输,分配到植物的各个组织和细胞,以支持生长和代谢。
这五大生理作用共同维持了植物的生命活动和生态功能,使其能够适应不同的环境条件,并在生态系统中发挥重要作用。
植物的生理变化
植物的生理变化
植物是活体生物,它们随着时间的推移会经历各种生理变化。
在本文中,我们将探讨一些常见的植物生理变化。
1.生长过程:植物以生长为主要目标,其生长过程是一个关键
的生理变化。
植物的生长受到环境因素的影响,如阳光、水分和营
养物质的供应。
通过光合作用,植物能够将阳光转化为能量,并利
用这些能量进行细胞分裂和扩张,从而实现生长。
2.开花和结果:开花是植物的一个重要生理变化。
当植物达到
一定的生长阶段和特定的环境条件时,它们会产生花朵。
花朵中的
花粉结合雌花的柱头,进行授粉,最终结成果实。
果实则包含种子,以保证植物的后代延续。
3.休眠:植物在适应环境变化的过程中,可能会进入休眠状态。
休眠是植物的一种防御机制,可以帮助植物在不利的环境条件下生存。
在休眠状态下,植物的生长和代谢活动减缓,以节省能量和资源,从而适应干燥、寒冷或其他恶劣条件。
4.叶片的变化:叶片是植物进行光合作用和呼吸的重要器官。
植物的叶片在不同的生理阶段会有变化。
例如,一些植物的叶片可能在夏季变得更加厚实,以减少水分蒸发。
另外,一些植物的叶片会随着季节的变化而改变颜色,产生美丽的秋叶景观。
总结起来,植物的生理变化是一个复杂而有趣的领域。
了解植物的生理变化有助于我们更好地照顾和管理植物,提高农作物的产量和品质。
植物生理学
15.光能利用率:单位面积上的植物光合作用所累积的有机物所含的能量,占照射在相同面积地面上的日光能量的百分比。
1. 有氧呼吸:指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出CO2并形成水,同时释放能量的过程。
2. 无氧呼吸:指在无氧条件下,细胞把某些有机物分解成为不彻底的氧化产物,并释放能量的过程。亦称发酵作用。
2. 原初反应:包括光能的吸收、传递以及光能向电能的转变,即由光所引起的氧化还原过程。
3. 红降现象:当光波大于685nm时,虽然仍被叶绿素大量吸收,但量子效率急剧下降,这种现象被称为红降现象。
4. 爱默生效应:如果在长波红光(大于685nm)照射时,再加上波长较短的红光(650nm),则量子产额大增,比分别单独用两种波长的光照射时的总和还要高。
1.植物生长物质:是一些调节植物生长发育的物质。包括植物激素和植物生长调节剂。
2. 植物激素:指一些在植物体内合成,并从产生之处运送到别处,对生长发育起显著作用的微量有机物。
3.植物生长调节剂:指一些具有植物激素活性的
人工合成的物质。
3.胞间连丝:是贯穿胞壁的管状结构物内有连丝微管,其两端与内质网相连接。
4.代谢源:指制造并输送有机物质到其他器官的组织、器官或部位。如成熟的叶片。
5.代谢库:指植物接纳有机物质用于生长、消耗或贮藏的组织、器官或部位。如发育中的种子、果实等。
1.植物细胞信号转导:指植物感受、传导环境刺激的分子途径及其在植物生长发育过程中调控基因的表达和生理生化反应。
4.种子寿命:从种子成熟到失去发芽能力的时间。
5.种子活力:种子在田间条件(非理想条件)下萌发的速度、整齐度及幼苗健壮生长的潜在能力,它包括种子萌发成苗和对不良环境的忍受力两个方面。种子活力与种子的大小、成熟度有关,也与贮藏条件和贮藏时间有关。
植物生理名词解释
植物生理名词解释一、植物细胞生理单位膜:它是包围在整个细胞最外层的薄膜,又称质膜。
原生质体:植物细胞壁内的原生质,即指细胞通过质壁分离,能够和细胞壁分开的那部分细胞物质,包括细胞膜、细胞质和细胞核。
细胞壁:位于细胞膜外的一层较厚、较坚韧并略具弹性的结构,主要是纤维素、半纤维素、果胶物质等多糖。
微管:是一种具有极性的细胞骨架。
微管是由α,β两种类型的微管蛋白亚基形成的微管蛋白二聚体,由微管蛋白二聚体组成的长管状细胞器结构。
微丝:是由肌动蛋白分子螺旋状聚合成的纤丝,具有明显的极性。
质体:是一类与碳水化合物的合成与贮藏密切相关的细胞器,它是植物细胞特有的结构。
根据色素的不同,质体可分成三种类型:叶绿体、色质体(或称有色体)和白色体。
细胞分室化:细胞分化成各种各样的细胞器,每个细胞器在同一时间内都可以进行着特定的代谢活动而不受干扰。
叶绿体:植物进行光合作用的细胞器,具有双层膜结构的半自主细胞器。
大液泡:是由单层膜与其内的细胞液组成的。
主要存在于植物细胞中。
内膜系统:是指细胞质基质中在结构与功能上相互联系的一系列膜性细胞器的总称,广义上内膜系统包括:内质网、高尔基体、溶酶体、胞内体、分泌泡等。
细胞骨架:是指真核细胞中的蛋白纤维网架体系,由微丝、微管、和中间纤维构成胞间连丝:是指贯穿细胞壁、胞间层、连接相邻细胞的原生质体的管状通道。
细胞全能性:每个活细胞都具有产生一个完整个体的全套基因,在适宜的条件下,已经分化的细胞,仍然具有发育成完整生物体的潜能。
共质体:是指植物原生质体间通过胞间连丝连接而成的连续的整体。
质外体:是指植物细胞原生质体外围由细胞壁、胞间隙和导管组成的系统。
二、植物水分生理水势:植物细胞中的水与纯水之间每偏摩尔体积的水的化学势差,包括了溶质势、压力势和衬质式。
衬质势:是由于细胞胶体物质亲水性和毛细管对自由水的束缚而引起的水势降低值,用Ψm 表示。
渗透势:由于溶质的存在而使水势降低的值,用Ψs表示压力势:由于细胞壁压力的存在而引起的细胞水势增加的值,用Ψp表示。
植物生理
名词解释:1、渗透势:由于溶质颗粒的存在降低了水的自由能,因而其水势低于纯水水势的水势下降值。
2、渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。
3、蒸腾作用:指水分以气体状态,通过植物体的表面,从体内散失到体外的现象。
4、水分利用率:指光合作用同化CO2的速率与同时蒸腾丢失水分的速率的比值。
5、内聚力学说:水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断,以此解释水分上升原因的学说,称为内聚力学说。
6、被动运输:不需要消耗能量,通过简单扩散或易化扩散实现溶质顺电化学梯度的跨膜转运。
7、主动运输:需要消耗能量,由载体和离子泵介导的溶质逆电化学梯度进行的跨膜转运。
8、离子泵:质膜上的ATP酶,当K﹢、Na﹢等阳离子进入质膜时,活化ATP酶,促进ATP水解,释放能量,将离子逆电化学势梯度进行跨膜运输。
9、生物固氮:某些微生物把空气中游离氮固定转化为含氮化合物的过程。
10、原初反应:指光合作用中从叶绿素分子受光激发到引起第一个光化学反应为止的过程,包含色素分子对光的吸收、传递和转换的过程。
11、光合磷酸化:指在光合作用中由光驱动并贮存在跨类囊体膜的质子梯度的能量把ADP和磷酸合成为ATP的过程。
12、光饱和点:达到某一强度时,光合速率不再增强,这一光强称为光饱和点。
13、C O2补偿点:光合吸收的CO2量等于呼吸放出的CO2量,这个时候外界的CO2含量就叫做CO2补偿点。
14、氧化磷酸化:生物氧化中,电子经过线粒体的电子传递链传递到氧,伴随ATP合酶催化使ADP和Pi合成ATP的过程。
15、呼吸商:植物组织在一定时间内,放出CO2的物质的量与吸收O2的物质的量的比率。
16、P/O比:指氧化磷酸化中吸收一个O原子时所酯化无机磷酸分子数或产生ATP分子数之比值。
17、次生代谢物:植物体内的一些与植物生长发育无直接关系,但与植物适应不良环境或抵御病害以及植物的代谢调控等有重要作用的种类复杂的有机物。
(完整版)植物生理学教案
光信号转导途径光敏色素、来自花色素等光 受体介导的信号转导途径 。
温度信号转导途径
温度感受器介导的信号转 导途径,如春化作用。
植物生长与发育的农业应用
作物育种
通过遗传改良,选育具有优良 生长和发育特性的作物品种。
作物栽培
通过合理的农业措施,如施肥 、灌溉、除草等,调控作物的 生长和发育。
设施农业
利用设施条件,调控环境因子 ,促进作物的生长和发育,提 高产量和品质。
• 维持细胞内外环境稳定:呼吸作用参与细胞内pH值、渗透压等环境因素的调节。
呼吸作用的生理意义及影响因素
温度
适宜的温度有利于呼吸作用的进行, 过高或过低的温度都会抑制呼吸作用 。
氧气浓度
有氧呼吸需要充足的氧气,低氧或无 氧条件会抑制有氧呼吸,促进无氧呼 吸。
呼吸作用的生理意义及影响因素
水分
适宜的水分含量有利于呼吸作用的进行,水分过多或过少都会抑制呼吸作用。
液泡
06 调节细胞内的水分和离子浓度
,维持细胞的渗透压和pH值稳 定。
03
植物的水分生理
水的物理和化学性质
02
01
03
水的物理性质 无色、无味、透明的液体。 在4°C时密度最大,具有异常的膨胀特性。
水的物理和化学性质
• 高比热容和高汽化热,对稳定环境温度有重要作用。
水的物理和化学性质
01
水的化学性质
研究对象
植物的细胞、组织、器官以及整 体植株在各种环境条件下的生理 活动和代谢过程。
植物生理学的历史与发展
01
02
03
04
萌芽阶段
古代人们对植物生理现象的观 察和描述。
实验生理学阶段
17-18世纪,通过实验手段研 究植物生理过程。
植物生理学(第一课时)
• 引言 • 植物细胞的结构与功能 • 光合作用 • 植物的水分与矿物质吸收 • 植物的生长与发育
01
引言
课程简介
植物生理学是一门研究植物生命活动规律的科学,旨在揭示植物与环境之间的相互 作用关系。
本课程将介绍植物生理学的基本概念、原理和方法,以及植物生长发育、物质代谢、 信息传递等方面的知识。
功能
蒸腾作用有助于调节植物 体温,促进水分和营养物 质在植物体内的运输,以 及排除废物。
影响
蒸腾作用受到环境因素 (如光照、湿度、风速) 和植物自身因素(如叶片 结构、气孔开度)的影响。
05
植物的生长与发育
生长激素
生长激素的种类
生长激素是植物体内产生的一类微量有机物质,主要包括吲哚乙酸(IAA)、吲哚丁酸 (IBA)、萘乙酸(NAA)等。这些激素在植物生长发育过程中起着关键作用。
生长激素的作用
生长激素的主要作用是调节植物细胞的伸长生长和分裂,从而影响植物的形态建成。例如 ,IAA可以促进细胞伸长,IBA可以促进细胞分裂。
生长激素的合成与运输
生长激素在植物体内由特定的酶催化合成,并通过植物体内的运输系统输送到特定的部位 发挥作用。
生长周期
生长周期的概念
植物的生长周期是指植物从种子萌发 到衰老死亡的全过程,包括种子萌发 、营养生长、生殖生长和衰老死亡等 阶段。
学能。
水光解
在光反应中,水分子被裂解为 氧气、质子和电子,释放出能 量。
电子传递
光反应中产生的电子通过电子 传递链传递,驱动ATP和 NADPH的合成。
能量转换
光能被转换为活跃的化学能, 储存在ATP和NADPH中,为暗
反应提供能量和还原力。
植物生理学
植物生理学第一章水分生理(一)名词解释自由水:远离植物细胞原生质胶体颗粒而可以自由移动的水分。
束缚水:又叫结合水,由于植物细胞原生质胶体颗粒紧密吸附而不易流动和流失的水分。
水势:溶液中每偏摩尔体积水的化学势差。
蒸腾速率:又称蒸腾强度或蒸腾率,是指植物在单位时间、单位叶面积上通过蒸腾作用散失的水量。
蒸腾效率:也称蒸腾比率,是指植物每蒸腾1kg水所形成干物质的克数。
水分临界期:指植物在生命周期中对水分缺乏最敏感,最易受害的时期。
(二)问答题1、植物细胞的水势由哪几部分组成?说明成熟植物细胞从萎蔫到充分膨胀的过程中,各个组分的变化情况。
含水体系的水势主要由四部分组成,即水势(ψw)= 溶质势(ψs)+衬质势(ψm)+压力势(ψp) +重力势(ψg)。
对于一个已形成液泡的成熟细胞来说,其ψw=ψs+ψp。
植物细胞吸水或失水,细胞体积会发生变化,渗透势和压力势因之也会发生改变。
在细胞初始质壁分离时(相对体积=1.0),压力势为零,细胞的水势等于渗透势,两者都呈最小值(约-2.0MPa)。
当细胞吸水,体积增大时,细胞液稀释,渗透势増大,压力势増大,水势也増大。
当细胞吸水达到饱和时(相对体积=1.5),渗透势与压力势的绝对值相等(约1.5MPa),但符号相反,水势为零,不吸水。
蒸腾剧烈时,细胞虽然失水,体积缩小,但并不发生质壁分离,压力势就变为负值,水势低于渗透势。
2、简述气孔运动机理的无机离子泵学说。
无机离子泵学说又称K+泵假说。
在光下,K+由表皮细胞和副卫细胞进入保卫细胞,保卫细胞中K+浓度显著增加,溶质势降低,引起水分进入保卫细胞,气孔就张开;暗中,K+由保卫细胞进入副卫细胞和表皮细胞,使保卫细胞水势升高而失水,造成气孔关闭。
这是因为保卫细胞质膜上存在着H+-ATP 酶,它被光激活后能水解保卫细胞中由氧化磷酸化或光合磷酸化生成的ATP ,并将H+从保卫细胞分泌到周围细胞中,使得保卫细胞的pH 升高,质膜内侧的电势变低,周围细胞的pH 降低,质膜外侧电势升高,膜内外的质子动力势驱动K+从周围细胞经过位于保卫细胞质膜上的内向K+通道进入保卫细胞,引发气孔开张。
植物生理学
1 绪论植物生理学(Plant Physiology)是研究植物生命活动规律的科学。
植物生命活动包括:物质与能量转化信息传递和信号转导生长发育与形态建成第一章植物的水分代谢动力运输:1.水分压力蒸腾 2.根压根压的存在可以通过下面两种现象证明:伤流与吐水从受伤或折断的植物组织中溢出液体的现象,叫做伤流没有受伤的植物如处在土壤水分充足,气温适宜,天气潮湿的环境中,叶片的尖端或边缘也有液体外泌的现象,这种现象称为吐水导管中水柱如何保持不断?答:由于水分子蒸腾作用与分子间内聚力大于张力,使水分在导管内连续不断上升。
第二章植物的矿质营养植物对矿质盐的吸收、运转和同化(以及矿质元素在生命活动中的作用),叫做矿质营养(mineral nutrition)。
生物膜的功能:1.分室作用 2.代谢反应的场所 3.物质交换 4.识别功能根据跨膜离子运输蛋白的结构及离子运输的方式:1.离子通道(ion channel)2.离子载体(ion carrier)3.离子泵(ion pump)第三章植物的光合作用光合膜蛋白复合体:光系统I(PSI)光系统II(PSII)Cytb6/f复合体ATP酶复合体(ATPase)NADPH脱氢酶电子链:还原型辅酶上的氢原子以质子的形式脱下,其电子沿一系列按一定顺序排列的电子传递体转移,最后转移给分子氧并生成水,这个电子传递体系称为电子传递链光合作用,从能量转化角度,整个光合作用可大致分为三个步骤:A)光能的吸收、传递和转换为电能的过程(通过原初反应完成);B)电能转变为活跃化学能的过程(通过电子传递和光合磷酸化完成);C)活跃化学能转变为稳定化学能的过程(通过碳同化完成)。
第四章植物的呼吸作用植物呼吸主要途径有:1.糖酵解(EMP)-酒精或乳酸发酵2. 糖酵解-三羧酸循环(TCA)3. 磷酸戊糖途径(PPP)。
质子--------ATP电子--------NADPH第五章植物的生长物质植物激素生长素类赤霉素类细胞分裂素类乙烯脱落酸(油菜素内酯为第六类)生长素的生理效应A)促进伸长生长:与顶端生长有关(生长素在低浓度时促进生长浓度较高时则会转化为抑制作用)器官敏感性:根>芽>茎B)促进器官与组织分化:促进根的分化。
植物生理学
植物生理学植物生理学是研究植物的生命过程、生理机制、代谢调节等方面的学科,是植物科学中重要的基础学科之一。
它既是农业生产技术的基础,又是环境保护、资源利用和生态建设的重要基础。
在植物生理学的研究中,主要涉及气体交换、水分运输、营养分代谢、激素作用、环境适应以及生长和发育等方面。
本文将从这几个方面来阐述植物生理学的相关内容。
一、气体交换植物通过气孔进行气体交换,吸收二氧化碳进行光合作用,产生氧气和有机物质。
在这个过程中,光合作用的速率,以及氧气和二氧化碳的浓度都会影响气孔的开启和关闭。
为了适应不同的环境条件,植物会进行调节,使其气孔开启大小和数量进行变化。
二、水分运输植物的水分运动主要是通过根系吸水以及叶片蒸腾作用来完成的。
根系吸收水分主要依赖于根系的结构和毛细作用,而叶片蒸腾作用则依赖于气孔的开启和关闭以及气温、湿度和气体浓度等环境因素。
植物通过调节这些环境因素来适应干旱、高盐、低温等不同环境条件。
三、营养分代谢植物的营养分包括糖类、蛋白质、脂类等,这些物质是植物进行生长、代谢和修复的重要物质。
糖类是植物体内的主要能量来源,同时也可以转化为植物的骨架。
植物的蛋白质则主要用于构建细胞结构和参与各种代谢和生长活动。
植物的脂类则主要在种子中储存,并可以被转化为能量。
四、激素作用植物的生长与发育过程主要受到植物生长素、乙烯、赤霉素、脱落酸等多种植物激素的调节。
这些激素可以影响植物体内各种代谢过程,包括幼苗的萌发、花序的形成、根系的发育和水分运输等,从而影响植物的生长发育。
五、环境适应植物能够通过调节身体结构和生理机制来适应不同的环境条件和生长阶段。
比如干旱条件下,植物的根系可能会长出更多的侧根,以吸收更多的水分;水稻在淹水逆境下会通过生长空气根来吸收氧气。
植物还可以调节生长素和乙烯的含量来适应不同的环境条件和生长阶段。
六、生长和发育植物的生长和发育过程主要涉及到细胞增殖、细胞分化和细胞扩张等方面。
正常的生长过程需要合适的环境条件和适宜的营养物质供应。
植物生理
1、束缚水:被细胞内胶体颗粒或大分子吸附或存在于大分子结构空间不能自由移动的水2、水分临界期:作物对水分最敏感的时期,即水分过多或缺乏对产量影响最大的时期3、溶液培养法:又称水培法即用纯化的化合物配置成水溶液来培养植物以确定植物必须矿物元素种类和数量的方法4、胞饮作用:细胞通过纸膜的内折而将物质转移到胞内的过程5、抗氰呼吸:指当植物体内存在与细胞色素氧化酶的铁结合的阴离子(如氰化物、叠氮化物)时,仍能继续进行的呼吸,即不受氰化物抑制的呼吸。
6、呼吸商:又称气体交换率,指生物体在同一时间内,释放二氧化碳与吸收氧气的体积之比或摩尔数之比,即指呼吸作用所释放的CO2和吸收的O2的分子比。
7、光呼吸:植物绿色组织在光照下吸收氧和放出二氧化碳的过程。
8、光补偿点:植物同化器官中,光合作用吸收的二氧化碳与呼吸作用释放的二氧化碳相等时的光照强度。
9、代谢源:是指能够制造并输出同化物的组织、器官或部位。
10、代谢库:是指能够消耗或贮藏有机物质的组织或部位。
11、生长素的极性运输:生长素由上向下,从一个细胞到下一个细胞连续进行的运输。
12、偏上性生长:指在形态上或生理上具有正反面的植物器官(叶和侧枝等)的向上生长(向轴侧)快于向下(背轴侧)生长,而显示向上凸出的弯曲现象。
13、细胞全能性:指植物体的每个具有核的活细胞都具备母体的全部基因,在一定的条件下都具有分化发育成一个完整植株的潜在能力14、光形态建成:光控制植物生长、发育和分化的过程。
15、光周期现象:植物对白天和黑夜相对长度变化发生反应的现象16、临界夜长:指在昼夜周期中短日植物能够开花的最小暗期长度或长日植物能够开花的最大暗期长度17、休眠:植物生长极为缓慢或暂时停顿的一种现象18、衰老:在正常的环境条件下,生物机体代谢活动减弱,生理机能衰退的过程19、抗性锻炼:植物经诱导逐步适应逆境的过程20、渗透调节:水分胁迫时植物体内积累各种有机和无机物质,提高细胞液浓度,降低渗透势,保持一定的压力势,这样植物就可以保持其体内水分,适应水分胁迫环境,这种现象称为渗透调节蒸腾方式:气孔关闭、初干、暂时萎蔫质壁分离:膜的半透性、细胞死活、细胞渗透式水孔蛋白:细胞质膜、液泡膜、磷酸化.植物细胞吸收溶质:通道运输、载体运输、泵运输、胞饮作用诊断:病症诊断法、化学分析诊断法追肥:长相和叶色生理指标叶片营养状况、酰胺含量和酶活性类囊体膜四类蛋白质:P SⅡ、PSⅠ、Cytb6-f、ATPase光合碳循环中:PEP羧化酶催化PEP和HCO3-生成OAA。
植物生理学
名词解释1蒸腾系数;植物制造1g物质所消耗的水分克数。
2原初反应;叶绿素分子从被光激发至引起第一个光化学反应为止的过程。
包括光能的吸收、传递与光化学反应3休眠;植物的整体或某一部分暂时停顿的现象,是植物抵制不良自然环境的一种自身保护性生物学特征4光周期现象;生长在地球上的不同地区的植物在长期适应和进化过程中表现出生长发育的周期性变化,植物对昼夜长度发生反应的现象。
5光合磷酸化;在光照条件下,叶绿体将ADP和无机磷(Pi)结合形成ATP的生物学过程。
是光合细胞吸收光能后转换成化学能的一种贮存形式。
6细胞的全能性;每个生活的细胞都包括有产生一个完整机体的全套基因,在适宜的条件下细胞具有形成一个新的个体的潜在能力7光补偿点;随着光强的增高,光合速率相应提高,当达到某一光强时,叶片的光合速率等于呼吸速率,表现光合速率为0 这时的光强就是光的补偿点8三重反应;抑制茎伸长生长,促进茎或根的横向增粗及茎的横向生长,这就是乙烯所特有的三重现象9红降现象;大于680nm的远红光虽然仍被叶绿素吸收但量子产额急剧下降的现象10共质体;由胞间连丝把原生质连成一体的体系11温周期现象;植株或器官的生长速率随昼夜变化而发生变化有规律变化的现象12春化作用;低温诱导促使植物开花的作用13反应中心色素:少数特殊状态的叶绿素a分子属于此类,它具有光化学活性,既是光能的“捕捉器”,又是光能的“转换器”,因之亦称为“陷阱14溶质势;由于溶质颗粒的存在而引起的体系水势的降低的数值,表示溶液中水分潜在的渗透能力的大小15临界日长;光反应周期中引起长日植物成花所必须的最短日照时数或引起短日植物成花所必需的最长日照时数称为临界日长16极性运输;生长素只能从植物的形态上端向下端运输,而不能向相反的方向运输17交叉适应;即植物经历了某种逆境后,能提高对另一些逆境的抵抗能力,这种对不良环境之间的相互适应作用,称为交叉适应18生理干旱;是指由于土温过低,土壤溶液浓度过高或积累有毒物质等原因,根系吸水困难引起的植物体水分亏缺的现象19呼吸商;植物组织在一定时间内,放出CO2的量与吸收O2的量的比值20代谢库;指代谢活跃、正在迅速生长的器官或组织填空题1.植物的有氧呼吸包括(三羧酸循环TCA)和(戊糖磷酸途径PPD)两条主要途径。
第十章植物的生长生理
• 在农业生产上,可用水肥措施、修剪、生长调节剂等来调控作物得根冠 比,促进收获器官得生长。
顶端优势
(二)主茎与侧枝得相关
植物得顶芽生长占优势而抑制侧芽生长得现象。向日葵 、玉米、高粱、黄麻等得顶端优势很强。
产生顶端优势机理
第十章植物的生长生理
二、种子休眠得原因
种子休眠:指处在适宜得外部条件下种子仍不萌发得现象。 休眠得原因:
1、种皮得限制:种被不透水性、种被不透气 性、种被得机械约束作用
2、胚未发育完全: 胚以外得部分成熟且收 获,因为胚未成熟不能萌发。
3、种子未完成后熟作用 4、存在抑制萌发得物质:种子(果实) 成熟 过程中积累抑制萌发得物质,达到一定量时导致种子休眠 。
三、芽休眠得原因
促使芽休眠得主要因素:短日照
冬眠植物:短日照诱导休眠,长日照解除休眠。 夏眠植物: 长日照诱导休眠, 短日照解除休眠。 如冬眠植物:
短日照→ABA合成→GA/ABA↓ →休眠 长日照→GA合成→ GA/ABA ↑ →解除休眠
低温易被误认为就是植物休眠得原因,实际上不仅不就是植物休眠得原 因,反而就是解除休眠不可缺少得条件。
果、可可、橡胶、椰子、板栗、栎树等,以及一些水生草本植 物如水浮莲、菱、茭白等,
正常性种子:耐脱水和低温,寿命较长。 如:水稻、花生。
种子寿命与种子含水量和贮藏温度有关。
五、种子得活力
• 1、种子生活力
•
种子能够萌发得潜在能力或种胚具有得生命力。--- 红墨水法等
测定
• 2、种子活力即种子得健壮度,就是种子发芽和出苗率、幼苗生长得潜 势、植株抗逆能力和生产潜力得总和,就是种子品质得重要指标。
植物生理-名词解释
一.名词解释1.胞间连丝:是指贯穿细胞壁、胞间层,连接相邻细胞原生质体的管状通道。
2.温周期现象与光周期现象:在自然条件下气温是呈周期性变化的,许多生物适应温度的某种节律性变化,并通过遗传成为其生物学特性,这一现象称为温周期现象。
生物在暴露于阳光期间对变化产生的反应,尤指通过生物过程显示出来的反应称光周期现象。
3.质壁分离与质壁分离复原:如果把具有液泡的细胞置于水势较低的溶液中,液泡失水,细胞收缩,体积变小。
由于细胞壁的伸缩性有限,而原生质体的伸缩性较大,随着细胞继续失水,原生质层便和细胞壁分离开来,这种现象被称为质壁分离。
如果把发生了质壁分离的细胞浸在水势较高的稀溶液或清水中,外液中的水分又会进入细胞,液泡变大,整个原生质层很快会恢复原来的状态,重新与细胞壁想贴,这种现象称为质壁分离复原。
4.根系的主动吸水与被动吸水:由根系代谢活动而引起的根系吸水过程称为主动吸水。
由蒸腾拉力引起的根系吸水称为被动吸水。
5.植物的水分临界期与最大需水期:指植物在生命周期中对水分最敏感、最易受伤害的时期。
一般而言,植物水分临界期多处于花粉母细胞四分体形成期,此时若缺水,使性器官发育不正常。
植物的最大需水期指植物生活周期中需水最多的时期。
6.大量元素与微量元素:植物生命活动必需的、且需要量较多的一些元素,它们约占植物体干重的0.01-10%,有C、H、O、N、P、S、K、Ga、Mg等9种元素。
植物生命活动必需的、而需要量很少的一类元素。
它们约占植物体干重的10(-5)-10(-3)%,有Fe、Mn、Zn、Cu、B、Mo、Cl等。
7.RuBP羧化酶与PEP羧化酶:核酮糖二磷酸羧化酶,催化1,5-二磷酸核酮糖和CO2生成二分子甘-3-磷酸甘油酸反应的酶。
亦称羧基歧化酶。
催化以磷酸烯醇型丙酮酸为底物,固定CO2形成草酰乙酸的酶,简称PEP羧化酶8.CO2饱和点与CO2补偿点:光合速率随CO2浓度增高而增加,当光合速率达到最大值时CO2浓度即为CO2饱和点。
植物的生理机制
植物的生理机制植物作为自然界的生物体,具有复杂的生理机制,以适应不同环境的生存需求。
在本文中,我们将探讨植物的生理机制,包括光合作用、水分和营养吸收、植物激素以及对外界刺激的反应等方面。
一、光合作用光合作用是植物进行养分合成的关键过程。
植物中的叶绿素能够吸收光能,将其转化为植物所需能量。
光合作用分为光依赖反应和光独立反应两个阶段。
在光依赖反应中,叶绿素吸收光能,产生氧气和还原型辅酶NADPH,同时释放出能量。
而在光独立反应中,植物利用这些能量和还原型辅酶NADPH以及二氧化碳进行叶绿素和蔗糖的合成。
二、水分和营养吸收植物的根系是吸收水分和营养物质的主要器官。
通过根毛的存在,植物的根系能够增大吸收面积,提高水分和营养吸收的效率。
此外,植物的根系中还有质子泵和离子通道,能够调节根际土壤的酸碱度,并选择性地吸收所需的离子。
三、植物激素植物激素是植物体内的化学物质,用于调控植物生长和发育过程。
常见的植物激素包括生长素、赤霉素、脱落酸、乙烯和激活素等。
这些植物激素能够通过影响植物细胞的分裂、伸展和分化,调控植物的根系生长、花蕾开放、果实成熟等生理过程。
四、对外界刺激的反应植物能够通过对外界刺激的感知和反应来适应环境。
例如,植物对光的响应能够控制植物的生长方向和生长速率。
光周期也会影响植物的开花和结实。
此外,植物还对其他的刺激如温度、湿度、重力和机械刺激等产生反应,以提高自身的生存能力。
总结起来,植物的生理机制包括光合作用、水分和营养吸收、植物激素以及对外界刺激的反应。
这些机制为植物能够适应不同环境、满足生存需求提供了必要的生理基础。
植物的生理机制的深入了解对于农业生产、生态环境保护以及药物开发等领域具有重要意义。
植物生理
IAA/GA比值高,分化木质部; IAA/GA比值低,分化韧皮 部; IAA/GA比值中等,既有木质部又有韧皮部。
蔗糖浓度高,分化韧皮部;蔗糖浓度低,分化木质部;蔗 糖浓度中等,既有韧皮部,又有木质部,中间有形成层。
极性与再生作用
植物细胞分化具一定独立性, 主要表现为极性与再生作用。
极性(polarity):表现在植物 的器官、组织或细胞的形态学 两端在生理上的差异性(异质 性)。例如植物的形态学上端 总是长芽,下端总是长根。 再生作用(regeneration): 指与植物体分离了的部分具有 恢复其余部分的能力。
periodicity)。
(一)植物生长大周期(grand period of growth 生长曲线(growth curve) 无论是细胞、组织、器官,还是个体乃至群体,在其整个 生长进程中,生长速率均表现出“慢-快-慢”的节奏性变 化。通常,把生长的这三个阶段总和起来,叫做生长大周期 假若以时间为横座标,以 生长量为纵座标,就可以给 出一条曲线,叫生长曲线.生 长大周期的曲线则为S形曲线;
脱分化 再分化
(六)组织培养的应用
1、植物体的无性快速繁殖及脱毒 2、花粉培养和单倍体育种 3、人工种子 4、药用植物的工厂化生产 5、原生质体培养和体细胞杂交
第四节 植物的生长分析
一、生长速率 表示方法 绝对生长速率 相对生长速率 1. 绝对生长速率(absolute growth rate,AGR) 指单位时间内植物的绝对生长量。
2、种子生活力(seed viability)
指种子能够萌发的潜在能力或种胚具有的生命力。
常用标准条件下测得的发芽力表示。但测定较慢。 常用快速检测方法 活种子有呼吸作用,呼吸作用产生还原力, 后者可使氯化三苯基四唑(简称TTC,无色) 还原成三苯甲簪(TTF或TPF,红色) 。
植物生理学
三.植物生理学的 发展趋势
当前世界面临着
食物、 能源、 资源、 环境 和人口五大问题,
这些问题都与生物学有关。
在21世纪,作为自养生物的绿色植物 在增加食物、
增加资源、 保护环境
和改善环境中
发挥着重要的、不可取代的作用。
植物生理学
围绕如何解决食物、 能源、资源等全球性问题
向宏观和微观方向深入发展。
目前的研究是 先分析逆境蛋白氨基酸顺序, 然后合成探针, 再分离基因, 反过来对蛋白的生理功能 进行研究。
植物生理学的
学习
1.“各得其所”
合理安排,学好计划内各门课程。
2.课堂精神集中,手脑并用;
课后及时复习;
3.要不耻下问,多问为什么。
钻进去,跳出来. 不仅学习知识, 更应培养自己提出问题、分析问题、 解决问题的创造性思维能力。
宏观上,
它与环境生物学、生态生理学等 更广泛地结合, 从群体、群落着眼研究 植物间的相互影响, 植物与环境的相互作用, v 自然生态系统 和农业生态系统中 所出现的生理问题。
微观上,
它在细胞和分子水平上 研究植物体内的物质代谢、 能量转化、 信息转导、 形态建成 和植物抗逆性 及其他生理活动 的机理。
植物生理学特点:
具有理论性和综合性强、
涉及基础课专业课知识面广、 与农业生产联系紧密、 与宏观微观学科交叉渗透等.
植物生理学与农学结合起来, 在农业、 林业、 轻工业等方面 可以发挥重大作用。
四. 植物生理学 和分子生物学 的关系
当今,植物生理学面临着 分子生物学和现代农业的挑战, 这也是更新和发展植物生理学 的极好机遇。 (1) 分子生物学的渗透, 为植物生理学带来了新思想、 新观点、新概念和新方法, 为植物生理学注入了 新的活力。
植物生理
植物生理学复习1.氧化磷酸化:是指呼吸链上的氧化过程,伴随着ADP被磷酸化为ATP的作用。
2.P/O:指呼吸链中每消耗1个氧原子与用去Pi或产生ATP的分子数。
3.抗氰呼吸:某些植物组织对氰化物不敏感的那部分呼吸。
即在有氰化物存在的情况下仍能够进行其它的呼吸途径。
4.糖酵解:指在细胞质内所发生的,由葡萄糖分解为丙酮酸的过程。
5.三羧酸循环:丙酮酸在有氧条件下,通过一个包括三羧酸和二羧酸的循环而逐步氧化分解CO2的过程。
6.末端氧化酶:是指处于生物氧化作用一系列反应的最末端,将底物脱下的氢或电子传递给氧,并形成H2O或H2O2的氧化酶类。
7.呼吸链:呼吸代谢中间产物随电子和质子,沿着一系列有顺序的电子传递体组成的电子传递途径,传递到分子氧的总轨道。
8.氧化磷酸化:是指呼吸链上的氧化过程,伴随着ADP被磷酸化为ATP的作用。
9.植物生长物质:调节植物生长发育的物质。
10.植物激素:是指一些在植物体内合成,并从产生之处运往作用部位,对生长发育起调控作用的微量(0.5)有机物。
11.植物生长调节剂:指一些具有植物激素活性的人工合成的物质。
12.三重反应:乙烯可抑制黄化豌豆幼苗上胚轴的伸长生长,促进其加粗生长,地上部分失去负向地性生长(偏上生长)。
13.极性运输: 是指生长素只能从植物体的形态学上端向下端运输。
14.程序性细胞死亡:是指为维持内环境稳定,由基因控制的细胞自主的有序性的死亡,它涉及一系列基因的激活、表达以及调控等的作用,因而是具有生理性和选择性的。
15.细胞全能性:植物的每个细胞均含有母体的全套基因,并在适宜条件下均能发育成完整个体的潜在能力。
16.愈伤组织: 原是指植物在受伤后于伤口表面形成的一团薄壁细胞,在组培中,则指在人工培养基上由外植体长出来的一团无序生长的薄壁细胞。
特征:细胞排列疏松而无规则,是一种高度液泡化的呈无定形状态的薄壁细胞.17.脱分化: 是指分化细胞失去特有的结构和功能变为未分化细胞特性的过程,即分化的细胞在适当的条件下转变为胚性状态而重新获得分裂能力的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.C 2.A 3.A 4.D 5.B 6.D 7.B 8.D 9.C 10.C
四、判断题;
1. √ 2、× 3、× 4、× 5、√ 6、√ 7、√ 8、× 9、√ 10、×
五、问答题
1.
答:植物受涝反而表现出缺水现象,如萎蔫或变黄,是由于土壤中充满水,缺少氧气,短时间内可使细胞呼吸减弱,主动吸水受到影响。长时间受涝,会导致根部无氧呼吸,产生和积累较多的酒精,使根系中毒受伤吸水因难,致使叶片萎蔫变黄,甚至引起植株死亡。
C、土壤水分太多的缘故 D、空气中水分太多的缘故
2. 植物根部吸收的无机离子主要通过 向植物地上部运输。
A、韧皮部 B、质外体 C、木质部 D、共质体
3. C4植物CO2固定的最初产物是 。
A.草酰乙酸 B.磷酸甘油酸 C.果糖—6—磷酸 D.核酮糖二磷酸
4. 光呼吸的底物是 ,光呼吸中底物的形成和氧化分别在 、 和 这三个细胞器中进行的。
5. 在电子传递过程中,电子由NADH+H+脱氢传递到UQ的反应为 所抑制,由Cyt.b传递到Cyt.c的反应为
所抑制;由Cyt.a.a3传递到O2的反应为 所抑制。
2.
答:长时间的无氧呼吸会使植物受伤死亡的原因:第一,无氧呼吸产生酒精,酒精使细胞质的蛋白质变性;第二,因为无氧呼吸利用每摩尔葡萄糖产生的能量很少,相当于有氧呼吸的百分之几(约8%),植物要维持正常的生理需要,就要消耗更多的有机物,这样,植物体内养料耗损过多;第三,没有丙酮酸氧化过程,许多由这个过程的中间产物形成的物质就无法继续合成。作物受涝死亡,主要原因就在于无氧呼吸时间过久。
C.植物的年龄 D.土壤溶液的酸碱度
四、判断题(每题1分,10分)
1、在一个含有水分的体系中,水参与化学反应的本领或者转移的方向和限度也可以用系统中水的化学势来反映。
2、植物吸收矿质元素最活跃的区域是根尖的分生区。
3、N、P、K之所以被称为“肥料三要素”,是因为它们比其它必需矿质元素更重要。
3.
指单位土地面积上,绿叶面积与土地面积的比值。是衡量光合面积大小的指标,作物高产与否,在一定范围内与叶面积指数呈正相关,但超过一定范围就会走向反面,这个合理的范围不是固定不变的,而是随作物的种类、品种特性和栽培条件而异。
4. 指不受氰化物抑制的呼吸作用,简称CRR其电子传递途径不是细胞色素系统,而是由泛醌通过某种途径传递到氧,末端氧化酶为抗氰(或称交替)氧化酶,其P/o比为1。
植物生理学试题及答案15
一、名词解释 (每题3分,18分)
1. 水分临界期. 2. 诱导酶 3. 红降 4. 巴斯德效应 5. 三重反应 6. 避逆性
二、填空(每空0.5分,10分)
1. 设有甲、乙二相邻的植物活细胞,甲细胞的4s =-10巴,4p=+6巴;乙细胞的4s=-9巴,4p=+6巴,水分应从 细胞流向
六、论述题:12分
NO3-进入植物之后是怎样运输的?在细胞的哪些部分、在什么酶催化下还原成氨?
参考答案
一、名词解释:
1. 渗透作用水分通过半透膜从水势高的区域向水势低的区域运转的作用。
2. 生物固氮:微生物自生或与植物(或动物)共生,通过体内固氮酶的作用,将大气中的游离氮固定转化为含氮化合物的过程。
一、名词解释 (每题3分,18分)
1. 渗透作用 2. 生物固氮 3. 叶面积指数 4. 抗氰呼吸 5. 源与库 6. 钙调素(CaM)
二、填空(每空0.5分,10分)
1. 蒸腾作用的途径有 、 和 。
2. 亚硝酸还原成氨是在细胞的 中进行的。对于非光合细胞,是在 中进行的;而对于光合细胞,则是在 中进行的。
A、细胞分裂 B、合成DNA C、合成细胞分裂素 D、产生极性
7. 曼陀罗的花夜开昼闭,南瓜的花昼开夜闭,这种现象属于 。
A、光周期现象 B、感光运动 C、睡眠运动 D、向性运动
8. 在影响植物细胞、组织或器官分化的多种因素中,最根本的因素是 。
6. 向日葵的向性运动属于 运动。
A、向日性 B、向光性 C、趋光性 D、感光性
7. 在温带地区,秋季能开花的植物一般是 植物。
A.中日 B.长日 C.短日 D.绝对长日
8. 小麦分蘖期的生长中心是 。
酸等。
六、论述题;
答:植物吸收NO3-后,可以在根部或枝叶内还原,在根内及枝叶内还原所占的比值因不同植物及环境条件而异,苍耳根内无硝酸盐还原,根吸收的NO3-就可通过共质体中径向运输。即根的表皮
皮层 内皮层 中柱薄壁细胞
导管,然后再通过根流或蒸腾流从根转运到枝叶内被还原为氨,再通过酶的催化作用形成氨基酸、蛋白质,在光合细胞内,硝酸盐还原为亚硝酸盐是在硝酸还原酶催化下,在细胞质内进行的,亚硝酸还原为氨则在亚硝酸还原酶催化下在叶绿体内进行。在农作物中,硝酸盐在根内还原的量依下列顺序递减;大麦>向日葵>玉米>燕麦。同一植物,在硝酸盐的供应量的不同时,其还原部位不同。
6. 引起种子重量休眠的原因有 、 和 。
三、选择题(每题1分,10分)
1. 用小液流法测定植物组织水势时,观察到小液滴下降观象,这说明
A.植物组织水势等于外界溶液水势 B.植物组织水势高于外界溶液水势
C.植物组织水势低于外界溶液水势 D.无法判断
A.生长素的含量 B.“高能物质”ATP C.水分和光照条件 D.遗传物质DNA
9. 在植物的光周期反应中,光的感受器官是
A. 根 B.茎 C.叶 D.根、茎、叶
10. 除了光周期、温度和营养3个因素外,控制植物开花反应的另一个重要因素是
A.光合磷酸化的反应速率 B.有机物有体内运输速度
4.
答:由植物初级代谢产物如糖脂肪和氨基酸等衍生的物质如藻类、酸类、生物碱等称为次生物质;它们贮藏于液泡和细胞壁中,一般为代谢的终产物,一植物的生长发育和繁殖无直接关系;但某些次生物是植物必需的如植物激素,叶绿素类胡萝卜素、花色素、木质素等,使植物具一定的色香味,以吸引昆虫或动物来帮助传粉,利于种的繁衍,有些有御防天敌的作用,某些次生物质是重要的药物和工业原料如
10、在进行花药愈伤组织的分化培养时,当培养基中含有较高的CTK/GA时,可诱导芽的分化。
五、问答题;(每题10分,40分)
1. .植物受涝害后,叶片萎蔫或变黄的原因是什么?
2. 为什么说长时间的无氧呼吸会使陆生植物受伤,甚至死亡?
3. 光呼吸有何生理意义?
4. 什么叫次生植物物质?它们在植物生命活动和人类经济生活中有何意义?
2. 植物吸收矿质量与吸水量之间的关系是
A.既有关,又不完全一样 B.直线正相关关系
C.两者完全无关 D.两者呈负相关关系
3. C4植物CO2固定的最初产物是 。
A.草酰乙酸 B.磷酸甘油酸 C.果糖—6—磷酸 D.核酮糖二磷酸
4. 在线粒体中,对于传递电子给黄素蛋白的那些底物,其P/O比都是 。
A.6 B.3 C.4 D.2
5. 实验表明,韧皮部内部具有正压力,这压力流动学说提供发证据。
A.环割 B.蚜虫吻针 C.伤流 D.蒸腾
6. 植物细胞分化的第一步是 。
二.填空:
1. 气孔蒸腾,角质层蒸腾,皮孔蒸腾
2. 质体,前质体,叶绿体
3. 3:1 3:1 4:1 2:1
4. 不利用O2 不彻底 有机物的形式 能量少
5. 次生植物物质 异戌二烯 乙酰COA
6. 种皮限制;种胚育不完善;萌发抑制物质的存在。
3. 答:① 回收碳素。通过C2碳氧化环可回收乙醇酸中3/4的碳(2个乙醇酸转化1个PGA,释放1个CO2)。②
维持C3光合碳还原循环的运转。在叶片气孔关闭或外界CO2浓度低时,光呼吸释放的CO2能被C3途径再利用,以维持光合碳还原环的运转。③
防止强光对光合机构的破坏作用。在强光下,光反应中形成的同化力会超过CO2同化的需要,从而使叶绿体中NADPH/NADP、ATP/ADP的比值增高。同时由光激发的高能电子会传递给O2,形成的超氧阴离子自由基会对光合膜、光合器有伤害作用,而光呼吸可消耗同化力与高能电子,降低超氧阴离子自由基的形成,从而保护叶绿体,免除或减少强光对光合机构的破坏。
3. 叶绿素与类胡萝卜素的比值一般是 ,叶绿素a/b比值是:c3植物为 ,c4植物为 ,而叶黄素/胡萝卜素为 。
4. 无氧呼吸的特征是 ,底物氧化降解 ,大部分底物仍是 ,因释放 。
5. 类萜是植物界中广泛存在的一种 ,类萜是由 组成的,它是由 经甲羟戌酸等中间化合物而合成的。
4、绿色植物的气孔都是白天开放,夜间闭合。
5、叶绿素分子在吸收光后能发出荧光和磷光。磷光的寿命比荧光的长。
6、蓝光的能量比黄光的多(以光量子计算)。
7、活细胞内线粒体的大小和形状不断地发生变化。
8、有氧呼吸又称为线粒体呼吸,这是因为有氧呼吸的全过程都是在线粒体中进行的。
9、植物体内有机物长距离运输时,一般是有机物质从高浓度区域转移到低浓度区域。
5. 源指植物制造和输出同化产物的部位或器官,主要指进行光合作用的叶片,萌发种子的 乳等。
库指植物吸收和消耗同化产物的部位或器官,这些部位或器官生长旺盛,代谢活动非常活跃,如生长点,正在发育的幼叶、花、果实等。
6.
存在于细胞溶质中的一类小分子的水溶性蛋白,能可递的与ca2+结合。当与Ca2+结合后可活化一些关键性的酶从而对许多代谢活动具凋节作用,是影响细胞活动的第二信使。
6. 种子萌发时必需的外界条件是 、 和 。此外,还有一些种子的萌发综上述条件外,还需要
的刺激。
三、选择题(每题1分,10分)
1. 吐水是由于高温高湿环境下 。