《概率论》课程教学大纲
《概率论》课程教学大纲
《概率论》课程教学大纲二、课程教学目标概率论是研究随机现象客观规律并付诸应用的数学学科,是本科各专业的一门重要基础理论课。
该课程的教学目标是通过本课程的学习,使学生初步掌握处理随机现象的基础理论和基本方法,训练学生严密的科学思维及分析问题、解决问题的能力,为学生学习后续课打下良好的基础。
具体目标如下:1学生获得概率论与数理统计的基本知识和基本运算技能;2学生在运用数学方法分析和解决问题的能力方面得到进一步的培养和训练;3为学习有关专业课程和扩大数学知识提供必要的数学基础。
三、教学学时分配第一章概率论的基本概念(12学时)(一)教学要求1.理解随机事件及样本空间的概念,掌握随机事件间的关系及运算。
2.了解概率的统计定义及公理化定义。
掌握概率的基本性质,会应用这些性质进行概率计算。
3.理解古典概率的定义,会计算古典概率。
4.理解条件概率的概念,掌握乘法公式、全概率公式和贝叶斯公式。
会用这些公式进行概率计算。
5.理解事件的独立性概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法。
(二)教学重点与难点教学重点:掌握古典概型中某事件发生的概率计算方法、条件概率公式、全概率公式、贝叶斯公式。
教学难点:全概率公式、贝叶斯公式及应用。
(三)教学内容第一节随机试验、样本空间、随机事件(拟用MoOC)1.确定性现象和随机现象的概念,随机试验的概念和特点。
2.样本空间、样本点、随机事件等概念。
3.事件间的关系及运算。
第二节频率与概率(拟用MoOC)1.频率的定义、基本性质及计算。
2.概率的公理化定义及概率的性质。
第三节古典概型(拟用MOOO1.等可能概型(古典概型)的定义,放回抽样和不放回抽样的概念。
2.等可能概型中事件概率的计算公式及其应用。
第四节条件概率(拟用MOOO1.条件概率的定义、性质及其计算。
2.乘法原理及其在计算概率中的应用。
3.全概率公式和贝叶斯公式及其应用。
第五节独立性(拟用MOOC)1.事件相互独立的定义、性质及在实际中的应用计算。
概率论教学大纲
概率论教学大纲一、课程简介概率论是数学的一个重要分支,它研究的是随机事件的规律性和不确定性。
本课程旨在使学生掌握概率论的基本概念、方法和应用,培养学生运用概率统计思想解决实际问题的能力。
二、课程目标1. 了解概率论的发展历程和基本概念;2. 掌握概率计算的常用方法和技巧;3. 学习各种随机变量的概率分布和特性;4. 熟悉常见概率模型及其应用;5. 培养分析和解决实际问题的能力。
三、教学内容1. 概率与随机事件1.1 概率的定义和性质1.2 随机事件的概念和性质1.3 随机事件的运算规则1.4 经典概型和几何概型2. 条件概率与贝叶斯公式2.1 条件概率的定义和性质2.2 独立事件与互斥事件2.3 贝叶斯公式及其应用3. 随机变量与概率分布3.1 随机变量的定义和分类3.2 离散型随机变量及其概率分布3.3 连续型随机变量及其概率密度函数3.4 期望、方差和协方差4. 大数定律与中心极限定理4.1 大数定律及其应用4.2 中心极限定理及其应用5. 随机过程与马尔可夫链5.1 随机过程的基本概念5.2 马尔可夫链的定义和性质5.3 状态转移矩阵和平稳分布6. 统计推断与假设检验6.1 参数估计与点估计6.2 参数估计与区间估计6.3 假设检验的基本原理和步骤6.4 常见假设检验方法的应用四、教学方法1. 讲授与示范:通过课堂讲解和示例分析,引导学生理解基本概念和方法;2. 练习与实践:布置课后习题,进行实际问题分析和解答;3. 讨论与互动:组织学生进行小组讨论,促进思维碰撞和知识交流;4. 实验与模拟:引导学生运用统计软件进行概率模型的建立和仿真实验。
五、考核方式1. 平时成绩:包括课堂表现、作业完成情况和小组讨论参与度等;2. 期中考试:针对课程前半部分的知识进行笔试;3. 期末考试:全面考察学生对整个课程内容的掌握程度。
六、参考教材1. 王新安,概率论与数理统计,高等教育出版社;2. 霍尔,概率论与数理统计,清华大学出版社;3. Ross, S. M., A First Course in Probability,Pearson Education.七、教学进度安排第一周:课程介绍,概率与随机事件第二周:条件概率与贝叶斯公式第三周:随机变量与概率分布第四周:大数定律与中心极限定理第五周:随机过程与马尔可夫链第六周:统计推断与假设检验第七周:复习与期中考试第八周:课程总结与复习第九周:期末考试及评价以上为概率论教学大纲的详细内容,希望能够为学生们提供一个清晰的学习路线,使他们能够系统地学习和掌握概率论知识,并运用到实际问题中。
《概率论》教学大纲
《概率论》教学大纲学时:36学分:1一、课程概述:本课程是管理学各专业的学科基础课,是研究随机现象统计规律性的一门数学课程,其理论及方法与数学其它分支、相互交叉、渗透,已经成为许多自然科学学科、社会与经济科学学科、管理学科重要的理论工具。
由于其具有很强的应用性,特别是随着统计应用软件的普及和完善,使其应用面几乎涵盖了自然科学和社会科学的所有领域。
本课程侧重于理论探讨,介绍概率论的基本概念,建立一系列定理和公式,寻求解决统计和随机过程问题的方法。
其中包括随机事件和概率、随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理等内容。
二、教学目的:通过本课程的学习,要求能够理解随机事件、样本空间与随机变量的基本概念,掌握概率的运算公式,常见的各种随机变量(如0-1分布、二项分布、泊松(Poisson)分布、均匀分布、正态分布、指数分布等)的表述、性质、数字特征及其应用,一维随机变量函数的分布、二维随机变量的和分布。
理解数学期望、方差、协方差与相关系数的本质涵义,掌握数学期望、方差、协方差与相关系数的性质,熟练运用各种计算公式。
了解大数定律和中心极限定量的内容及应用。
能用所掌握的方法具体解决所遇到的各种社会经济问题,为学生进一步学习其他专业课打下坚实的基础。
三、教学方法:本课程具有很强的应用性,在教学过程中要注意理论联系实际,从实际问题出发,通过抽象、概括,引出新的概念。
由于本课程是研究随机现象的科学,学生之前从未接触过,学习起来会感到难度较大,授课时应突出重点,讲清难点。
要使学生明白,本课程主要研究哪些方面的问题,从何角度、用何原理和方法进行研究的,是怎样研究的,得到哪些结论,如何用这些方法和结论处理今后遇到的社会经济问题。
在教育中要坚持以人为本,全面体现学生的主体地位,教师应充分发挥引导作用,注意随时根据学生的理解状况调整教学进度。
授课要体现两方面的作用:一是为学生自学准备必要的理论知识和方法,二是激发学生学习兴趣,引导学生自学。
概率论与数理统计课程教学大纲
《概率论与数理统计》课程教学大纲一、课程基本信息二、课程目标(一)总体目标:概率论与数理统计是研究随机现象客观规律性的数学学科,在高等工科学校教学计划中是一门基础理论课。
通过本课程的学习,使学生掌握概率论与数理统计的基本概念,基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
(二)课程目标:课程目标1:知识目标通过本课程的学习,学生系统掌握随机变量及其分布、参数估计与假设检验等重要知识。
课程目标2:技能目标通过本课程的基本概念、基本理论和基本方法的讲授及学生的练习,培养学生的数学推理,数理逻辑,演绎归纳,数据分析,假设论证能力。
课程目标3:素质培养(1) 通过本课程的教学,培养和提高学生对所学知识进行整理、概括、消化吸收能力,以及围绕教学内容阅读参考资料,自我扩充知识领域的能力。
(2) 通过作业和课堂讨论,培养学生口头表达能力,做到思路清晰,层次分明。
(3)通过作业,培养学生独立思考,深入钻研问题的习惯以及一题多解,举一反三的能力,应用数学的意识以及运用数学知识分析问题的良好品质。
(4)具有自主学习和终身学习的意识,有不断学习和适应发展的能力。
(三)课程目标与毕业要求、课程内容的对应关系三、教学内容第一章随机事件及其概率1.教学目标理解随机事件和样本空间的概念;熟练掌握事件之间的关系与基本运算。
理解事件频率的概念;了解随机现象的统计规律性。
知道概率的公理化定义;理解古典概率的概念;了解几何概率;掌握概率的基本性质;会应用这些性质进行概率计算。
理解条件概率的概念;掌握乘法定理、全概率公式和贝叶斯公式,并会应用这些公式进行概率计算。
理解事件独立性的概念;会应用事件的独立性进行概率计算。
2.教学重难点本节是基础知识,在高中阶段大部分已经学过,都是重点内容。
教学的重难点在于事件的三种关系:互斥,独立和包含,事件概率的两个公式:加法公式和乘法公式,以及全概率和贝叶斯公式的应用。
大学《概率论与数理统计》教学大纲
《概率论与数理统计》课程教学大纲(“Probability and Mathematical Statistics” Course Syllabus)一、课程说明课程编码:00000548、课程总学时(理论总学时/实践总学时):60(58/2)、周学时:4、学分:3、开课学期:第四学期。
1.课程性质:公共必修课。
是研究随机现象并找出其规律性的一门学科,被广泛应用于社会、经济、科学等各个领域。
它为各个专业学生后继专业课程的学习提供方法论的指导。
2.课程目标:该课程是学生专业课程的基础课程和先修课程,该课程能够培养学生的逻辑推理和抽象思维能力、空间直观和想象能力,从而在培养具有良好科学素养、人文精神和创新能力的数学及应用人才方面起着十分重要的作用。
该课程的内容和重要结论在自然科学与人文社会科学中均具有广泛的应用。
(1)让学生掌握和理解概率论与数理统计的基本概念、知识结构、典型方法。
(2)培养学生的思维能力,提升数学素养。
(3)培养学生应用所学的数学知识解决实际问题的意识和能力。
(4)培养学生的团队意识和协作意识。
(5)培养学生的自主学习和终生学习的能力。
(6)培养学生不畏艰难,稳中求进的能力。
(7)培养学生热爱生活的能力。
3.课程目标与毕业要求指标点对应关系4.适用专业与学时分配:适用于计算机科学与技术、计算机科学与技术(师范)、软件工程、网络工程、物理学(师范)、电子信息工程、物流管理、市场营销、国际经济与贸易(中外合作)、金融学(中外合作)、旅游管理、酒店管理专业。
教学内容与时间安排表5.课程教学目的与要求知识能力培养目标:一方面使学生掌握专业学习所必须的概率论与数理统计的基本理论、基本知识和基本技能。
了解概率论与数理统计的基本概念的发展历史,从中管窥科学知识发生发展的共同规律;另一方面培养学生应用概率统计理论及思想方法解决实际问题的意识和能力,使学生能够利用概率统计知识处理一些实际问题。
引导学生将概率统计知识与现实世界建立联系,能够做到学以致用。
概率论课程教学大纲
概率论》课程教学大纲( Probability Theory )适用专业:数学与应用数学、统计学、应用统计学、经济统计学课程学时:68 学时课程学分:4 学分一、课程的性质、目的与任务概率论是研究随机现象统计规律的一门数学学科,应用性很强,为数学与应用数学专业的专业必修基础课之一,且为数理统计课程的理论基础。
学习该课程需先修数学分析和高等代数的相关知识。
通过本课程的学习,使学生掌握概率论的基本概念、理论知识及其在实际生活中的一些应用,为学习后继课程作必要的准备,同时培养学生能综合利用所学知识分析和解决一些实际问题的能力。
二、课程的内容与基本要求本课程内容主要包括随机事件及其概率;一维随机变量;多维随机变量;随机变量的数字特征;特征函数;大数定律与中心极限定理。
第一章事件与概率本章内容是概率论的基础知识,有大量的基本概念和计算公式,因此在教学中要讲清概念,突出重点,突破难点,要逐步使学生学会运用概率语言描述概率问题。
重点内容:事件间的关系与运算,概率的性质,概率的加法公式,乘法公式,全概率公式和逆概公式,事件的独立性,古典概型,几何概型,贝努利概型。
难点内容:古典概型和几何概型的计算,概率的性质。
§ 1.1 随机事件和样本空间了解随机试验、样本空间和随机事件、基本事件等概念;掌握事件间的关系和运算。
§ 1.2 概率和频率理解概率的定义和性质及频率的稳定性。
§ 1.3 古典概率掌握古典概型、几何概型的计算公式并能解决一些相关问题。
§ 1.4 概率的公理化定义及概率的性质理解概率的公理化定义及其性质,掌握概率性质中的几个重要公式,会用概率性质解决相应的概率问题。
§ 1.5 条件概率,全概率公式和贝叶斯公式理解条件概率的定义,掌握条件概率的计算及乘法公式的使用;掌握全概率公式与贝叶斯公式,并会利用这些公式解决实际问题。
§ 1.6 随机事件的独立性理解事件的独立性的概念;掌握相互独立事件的性质及其有关计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论》课程教学大纲
Probability Theory
课程代码:课程性质:专业基础理论课/必修
适用专业:统计开课学期:3
总学时数:64 总学分数:4
编写年月:2007. 5 修订年月:2007. 7
执笔:邱红兵
一、课程的性质和目的
本课程是应用数学学院“统计学”专业的一门必修的重要专业基础课程。
概率论是对随机现象统计规律进行演绎研究的一门数学学科,是根据随机现象的规律性对随机现象的某一结果出现的可能性大小做出客观的量化定义,表述其特征,研究它们之间的关系。
概率论集理论和应用为一体,具有独特的思维方法,在现代技术、管理、科研领域有着极其广泛的应用,能够很好地发展学生的数学理论认知水平和提升学生的数学应用能力,并为以后的数理统计、随机过程等课程的学习打下必备的基础。
二、课程教学内容
第一章事件与概率(14学时)
本章内容:随机现象与统计规律性,样本空间、事件,事件之间的关系及其运算,古典概型,几何概率,概率空间:概率的公理化定义、概率的性质。
本章要求:
1、掌握事件之间的关系及其运算。
2、掌握古典概型的定义,会用古典概型的计算公式计算相应的概率。
3、掌握几何概率的计算方法。
4、理解概率空间、概率的公理化定义;熟练掌握概率的性质。
第二章条件概率与统计独立性(8学时)
本章内容:条件概率、全概率公式、贝叶斯公式,事件的独立性,贝努里概型,两点分布、二项分布、几何分布、巴斯卡分布,二项分布的普阿松逼近。
本章要求:
1、熟练掌握条件概率公式、乘法公式、全概率公式、贝叶斯公式,并能用它解决有关问题。
2、理解事件的独立性,并会利用独立性计算概率。
3、掌握贝努里概型中的一些重要分布:两点分布、二项分布、几何分布、巴斯卡分布。
4、能用Poisson定理求解有关问题。
第三章随机变量与分布函数(18学时)
本章内容:随机变量的定义,分布函数的定义及性质,常见离散型、连续型随机变量的分布,联合分布、边际分布、条件分布,随机变量的独立性,随机变量的函数及其分布、随机向量的变换。
本章要求:
1、理解随机变量的定义,掌握分布函数、离散型随机变量的概率分布、连续型随机变量的概率密度函数等概念及其性质。
2、掌握常见的离散型随机变量及其概率分布:退化分布(也称为单点分布)、二项分布、超几何分布、Poisson分布、几何分布,理解几何分布的无记忆性。
3、掌握常见的连续型随机变量及其概率密度函数:均匀分布、正态分布、指数分布,理解指数分布的无记忆性;熟练掌握一般正态分布的标准化,会查标准正态分布表。
4、掌握随机变量的边际分布、条件分布及随机变量的独立性。
5、能根据已知随机变量的分布去求随机变量的函数的分布,随机向量的变换:两个随机变量和、差、商的分布,卷积公式。
第四章数字特征与特征函数(12学时)
本章内容:随机变量的数学期望、方差、矩、协方差、相关系数,柯西许瓦兹不等式,随机变量的函数的数学期望,母函数,特征函数,多元正态分布。
本章要求:
1、掌握数学期望、方差、协方差、相关系数的定义与性质。
2、理解特征函数的定义与性质,会求一些常见分布的特征函数,分布函数与特征函数的对应:逆转公式、唯一性定理。
3、了解n元正态分布。
第五章极限定理(12学时)
本章内容:贝努里实验场合的极限定理:车贝晓夫不等式、大数定律、德莫佛—拉普拉斯极限定理,四种收敛性及其关系,独立同分布场合的极限定理:辛钦大数定律、林德贝格—勒维极限定理,强
大数定律,中心极限定理。
本章要求:
1、熟练掌握车贝晓夫不等式及其证明方法;理解车贝晓夫大数定律、贝努里大数定律、泊松大数定律;掌握德莫哇佛—拉普拉斯极限定理及其应用。
2、理解连续性定理(正逆极限定理)、四种收敛性(依概率收敛、依概率1收敛、弱收敛、r-收敛)及它们之间的相互关系。
3、理解独立同分布场合的极限定理:辛钦大数定律、林德贝格—勒维极限定理。
4、了解强大数定律、一般场合的极限定理。
三、课程教学的基本要求
(一)课堂讲授
本课程属数学基础理论课程,有自己独特的概念和方法,内容丰富,并且是一门应用性很强的学科,对于数学专业的学生教学上该加强理论知识和数学方法的传授,同时注意引导学生从传统的确定性思维模式进入随机性思维模式,使学生掌握处理随机问题的数学方法与原理,注意列举概率在各领域成功应用的实例来联系已学过课程的有关概念、理论和方法,使同学加深对本课程的基本概念、基本理论和基本方法的理解,提高学生分析问题和解决问题的能力。
(二)习题课
习题课以典型例题分析为主,并适当安排开阔思路及综合性的练习及讨论,使同学通过做题既加深对课堂讲授的内容的理解,又增强运用理论知识建立数学模型、解决实际问题的能力。
(三)课外作业
课外作业的内容选择基于对基本理论的理解和巩固,培养综合计算和分析、判断能力以及使用计算工具的能力。
习题以计算性小题为主,平均每学时2~4道题。
(四)考试
考试采用闭卷的形式,题型包括基本概念,基本理论的选择题,填空题题型和分析计算题。
总评成绩:课外作业,平时测验,实验占30%;期末闭卷考试占70%。
四、本课程与其它课程的联系与分工
先修课程:数学分析、高等代数等
后续课程:数理统计、多元回归分析、随机过程等
五、建议教材与教学参考书
[1] 李贤平。
概率论基础(第二版)。
北京:高等教学出版社,1997。
[2] 盛骤,谢式千,潘承毅。
概率论与数理统计(第3版)。
北京:高等教育出社,2001。